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B Main topics: hyperbolic systems of conservation laws, gas dynamics. B The context of the con-
sidered interaction assumes a minimal nonlinearity — in the form of a nonlinear subconscious.
Consequently the interaction solution is essentially constructed as an admissible solution. The
present analysis has essentially two objectives: (a) finding an ezplicit optimal form for the in-
teraction solution, and (b) offering an ezhaustively classifying characterization of this mentioned
solution. B Realizing the objective (a) is connected with: (a1) considering a singular limit of
the interaction solution, (as) considering a hierarchy of (natural) partitions of the singular limit,
(a3) inserting some (natural) gasdynamic factorizations at a certain level [see sections 4.3, 4.5
and 4.7] of the mentioned hierarchy and (a4) noticing a compatibility of these factorizations
(indicating a gasdynamic inner coherence), (as) predicting some ezact details of the interaction
solution, (as) indicating some parasite singularities [= strictly depending on the method] to
be compensated [= pseudosingularities], (a7) re-weighting the singular limit of the interaction
solution. W Realizing the objective (b) is connected with finding some Lorentz arguments of
criticity. ® The interaction solution appears essentially to (exhaustively) include a subcritical
and respectively a supercritical contribution distinguished by differences of a "relativistic” na-
ture. Precisely: in the singular limit of the interaction solution [cf. (a1)] the emergent sound
is singular in the subcritical contribution and it is regular in the supercritical contribution (see
Figure 3). It can be shown that this "relativistic” discontinuity in the nature of the emergent
sound, corresponding to the singular limit of the interaction solution appears to be dissembled
(hidden) in the re-weighted interaction solution [mentioned in (a7)].

1. THE MAIN RESULTS

The aim of this paper is to consider, in a linearized context, the interaction between two gasdy-
namic objects: a turbulence model and, respectively, a planar shock discontinuity. The turbu-
lence, regarded as a perturbation, is modelled by a nonstatistical /noncorrelative superposition
of some compressible finite core (or point core) planar vortices. The linearized context implies
the taking into consideration of a linear problem with a nonlinear subconscious; the resultant
perturbation is regarded as a solution (“interaction solution”) of such a linearized problem. The
turbulence — planar shock interaction is associated with a class of interaction elements. An
interaction element models the interaction between a planar shock and a single incident vortex
corresponding to a certain inclination of the vortex axis with respect to the shock.
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Modelling the incident turbulence by a superposition of compressible planar vortices appears
to correspond to a first level of decomposition; next, in order to proceed, each incident vortex
is decomposed (by a Fourier representation) into planar monochromatic waves — a second level
of decomposition; finally, each incident planar monochromatic wave is Snell passed through the
shock discontinuity. The composition of the two mentioned levels leads to a Fourier—Snell rep-
resentation of the interaction solution (cf. §§3—5). The main point of the analysis in §§3—5
is that the result of the passage through the shock can again be presented by two levels of
recombination so that each incident level of decomposition has a correspondent in the emergent
solution.

A Fourier—Snell representation of the linearized interaction between a planar shock disconti-
nuity and a planar compressible finite-core vortex the axis of which is parallel to the shock has
been considered first time by Ribner (1959) in a theoretical attempt consecutive to a pioneering
and most suggestive experimental approach of Hollingworth and Richards (1956) concerning the
mentioned interaction. An ample and significant series of theoretical and experimental develop-
ments has followed the two mentioned works [see Ribner (1985), for a thorough review].

The results of the present paper follow from an analysis initiated in Dinu [2] and consid-
ered in a thorough detail in Dinu [3]. This analysis would imply: () to notice a gasdynamic
factorization of the vorticity—shock interaction and to make use of this factorization to give
an ezxplicit, closed form to Ribner’s representation; (i) to identify a sequence of other five
gasdynamic factorizations in the explicit form of the vortex—shock interaction solution [since a
vortex represents a structured vorticity, the present factorizations appear to be induced by that
mentioned in (4) by structuring] and to take into account the reality of a factoring compatibility
of these factorizations (indicating an inner coherence) in order to select an extensible (to the
case of the oblique interactions) structure of the mentioned explicit form ; an optimal simplicity
is seen to be induced in the extensible structure by this factoring compatibility; (4ii) to use the
mentioned extensible structure in order to indicate an exhaustively classifying, deterministic
and ezplicit characterization of Lighthill’s statistic and implicit approach concerning the turbu-
lence — planar shock interaction. The resulting classification takes into account the importance
of some subcritical or supercritical inclinations of the incident vortices with respect to the shock
in the mentioned interaction.

A final (extended) version of the above mentioned analysis consists in replacing the vortic-
ity incident perturbation by a general gasdynamic incident perturbation. This version extends
particularly (cf. Dinu [4]) the paper Dragos [8]. In fact it may be proven that the structure
(i)—(4i1) of the above mentioned interaction analysis persists in this final version.

The results presented in this paper correspond to a “minimal” nonlinearity [associated to the
presence of a nonlinear subconscious]; still, they structure a mazimal (exhaustive; explicit and
oblique) classifying characterization of the turbulence—shock interaction.

The present analysis could be set in contrast with a lot of recent studies which allow (analiti-
cally or numerically) a more complete considering of the nonlinearity contribution yet in presence
of the minimal case of a (strictly) parallel interaction; see for example Grove and Menikoff [9],
Han and Yin [10] or Inoue et all [12].

The work of Han and Yin (analytically) allows more nonlinearity yet in presence of a set of
(approzimating) restrictions [cf. its page 188]. These authors characterize the context of their
work to be “complicated” [page 189]. Still, from such a (“complicated”) context an analogue
of the maximal (exhaustive; explicit and oblique) characterization presented in this paper does
not emerge. A possible cause for such an issue appears to be the absence of some structuring
arguments (needed to replace a “complicated” context by a complex context).

More nonlinearity is (numerically) allowed in the parallel interactions considered in the papers
by Inoue et all or Grove and Menikoff.



2. LINEARIZED CONTEXT.
INGREDIENTS OF A FOURIER-SNELL ANALYSIS

2.1. Linearized context

We begin by presenting the linearized context which will be used to describe the turbulence —
shock interaction.

We consider, at the zeroth order of the linearization, a shock (= admissible discontinuity).
A distinctive feature of the linearized analysis will be therefore that a triad is perturbed which
includes, in addition to the adjacent (to the shock) constant (left/right) states u;, u,, the shock
propagation speed D. If the perturbation is two-dimensional a linearized analysis has to begin
with the system of equations

Ou  Of(u)  Og(u) _
ot + 0w + a—y =0 (2.1)

together with the jump conditions on the shock

[ 5 + 55 + o] =0 (22

where we put [u] = u, — u; and, similarly, [f(u)] = f(u,) — f(w), etc.
We have to develop, with respect to a small parameter ¢ of the flow

0 < & € min(|uy|,|u|) for |u,| # 0, |uy| # 0,

both the dependent and independent variables in (2.1), (2.2). We express z,y,t in terms of
X,Y,T (variables which are independent of ¢) and ¢, cf.

$:X+(PE(Y’T)7 t=T, y:Y; <P€:DT+¢E(Y7T) (23)

use the independence of X, Y, T of € in (2.3), assume that the perturbed data and the perturbed

solution
up(z,y) =U5(X,Y5¢e), u'(z,y,t) =U(X,Y,T;e)

smoothly depend on ¢, and take into account

d

[Uls,r]tf:O = Ui,r, [¢6]€:0 = O, [EUS]

~ d ~ | d
= U, |:_U€:| =U, |:_¢6:| =1
e=0 de e=0 de e=0

then, separating the first order in €, we are left with the linearized problem

a%ﬁJrAaiXﬁeraiYﬁ:o, (X,Y)eR?, T >0 (2.4)
AT, = AT+ [ 5% + [o@)] 5% for X =0 (2.5)
U(X,Y,0) = Up(X,Y), %(Y,0) =o(Y), (X,Y)eIR? (2.6)
where
Ay =alu,) — DI, A=AX)=A[l-HX)]+AHX); a(u)=f(u), (2.7)

and b results from (2.7) when A;, is replaced by b(u;,); H is the Heaviside function.



We notice that the limit |u, — u;| — 0 of the linearized solution fulfils a linear problem; in
fact, the limit linear problem ignores the contribution of 1 in the limit solution. This con-
tribution could be regarded as a memory of an optimal context connected with the linearized
problem. This aspect indicates the reality of a nonlinear subconscious. A nonlinear subconscious
results when the nonlinearity is allowed only at the zeroth order of a perturbation expansion:
we linearize the perturbation of a piecewise constant admissible solution and prove that the re-
quirement of admissibility is still active at the first order and essentially structures the linearized
description.

In the case of the adiabatic gas dynamics of a perfect inviscid gas the system (2.4) takes the
form

1 a9 O o,
qppﬁp%ma—”’:o, D0+ PL— 0, 5D+ L =0, D5;=0 for X <0 (2.8)
C

Y 0X oY
where
P ="2p1 + (ps)i51 (2.9)
and
ou ov op op
— U4 = = - =0 for X 2.1
Dp+E)X+8Y 0, Du+8X OD+E)Y 0, Ds=0 for X >0 (2.10)
where
p=p+ (ps)rg (2'11)
and we denote
— 0 0 15] 0 15] 0
— D=—+M M
D=grt Mag + Myze, ar T Max T Mgy

Here, in usual notations, we put p,p,s,vs,vy for the density, pressure, specific entropy and
velocity components respectively.
Relations (2.5) take in this case the form

. x o~ o~ ~ o~ o~ oy O
(34, P4, 1y, 04) =a(38 ,p a0 )" toor t ooy for X =0 (2.12)

where +/— indicate respectively the states behind/ahead of and, in presence of a component M,
in the direction Y for the velocity corresponding to the adjacent constant states, the coefficients
a, b, ¢ have the expressions

/

D
(7_1), a3 = —0i,

M
a1 =1+ —by, ajp =—

2 20y+1) 2yM2 —
pR— (y+1)=2(y —1)MM
a1 Tt 1 ) 022 2yM? — (v — 1) ; 023 2,
vy—1— 2 ’y—l
a3 =M — ——M, azo=—-——, azz3 =1—bs,
) 31 Y1 32= 3r° Y+l 33 3

a14 =024 = a34 = 041 = 042 = 0643 =0, agy =1,
1, AM 3y M
b:—_c,b:——,b:—+:,b:0,
! 17 LRSS B VA

¢l = Mybl, €y = Mbe, €3 — Mybg, €4 = M — M.




We notice that the equations (2.8)—(2.12) are presented in a dimensionless form for which the
entities of the perturbed flow are divided by the constant unperturbed state behind the shock.
We denote by s, p,u,v the dimensionless perturbation where

[.’II]:L, [t]zgv [,O]Z;Or, ['U]:Cra [p]:prcz, [S]ZCP, [T]:z—;
Vo =D gp vm =D vy o o 1o e e @
M= "= M TR e T T

2.2. Ingredients of a Fourier—Snell analysis

Two essential, distinct and complementary classes of admissible (entropy) solutions of (2.8)—(2.12)
are considered in §§3—5: (a) solutions evolving from initial data which tend suitably fast to
zero as |X| — oo, and, (b) elementary polymodal Fourier—Snell structures of a real frequency
[an admissible elementary polymodal Fourier—Snell structure of a strictly complex frequency
belongs to the class (a)]. It can be shown that the requirement of admissibility completely
structures/determines the [linearized] solutions in each of these classes.

In the multidimensional case [in contrast with the one-dimensional case] the stability of these
linearized solutions is not unconditionally guaranteed. A distinction between the stable and
unstable circumstances is essentially made, in this case, by a linearization criterion: see Blokhin
and Trakhinin [1] and Dinu [3] for a thorough review. Incidentally, in case of the adiabatic
dynamics of a perfect inviscid gas the linearization appears to be active.

This paper aims to present an example of evolution in the class (a) still constructed as a
superposition of elements in the class (b).

We complete the present paragraph with a short review of some aspects of a (linearized)
Fourier—Snell analysis in presence of a shock (= admissibile discontinuity).

In presence of an admissible discontinuity (shock) the role that a modal monochromatic wave
plays in a linear Fourier analysis is taken over, in a linearized Fourier type analysis, by an el-
ementary polymodal structure. Such an elementary structure consists in a finite (eventually
minimal) number of Snell compatible monochromatic waves.

A monochromatic wave has the form

~ ~ o~ o~ \t ~ o~~~ Nt .
(sl,rapl,’raulﬂ'avl,r) = (sl,rapl,raul,’r’vl,’r) expl(al,,X +,Bl,rY - wl,rT)a ;Bl,r € |R,

associated with the propagation vector

(al,ra /Bl,r) = kl,r (COS Ki,r, sin Kl,r)-

As is well known, there are three gasdynamic distinct modes: a sound mode and a (double)
entropy—vorticity mode; therefore, we have at our disposal six modal monochromatic waves
(three for each of the two regions adjacent to the shock) to construct an elementary structure
and we use, as a key element of this construction the following Snell laws of refraction through
/reflection at the shock:

all the monochromatic waves implied in the elementary structure have
(S1) equal frequencies w, when measured in the same reference frame, and
(S2) equal values of .

Essentially, for the monochromatic waves which contribute in an elementary structure, we use
in this construction: the shock relations (2.12) to connect their amplitudes and the mentioned



Snell laws (S1), (S2) to connect, via the modal dispersion laws, their propagation vectors.

The class (b) of elementary structures is presented in our study as an union of two disjoint
subclasses (see for example Kontorovich [13], Dinu [3]) : a pseudohyperbolic subclass [each
element of this subclass includes only monochromatic waves with a real «], and, a pseudoelliptic
subclass [each element of this subclass has a structure which includes at least a monochromatic
wave with a (strictly) complex a]. It can be proven that only four [real frequency] elementary
structures are admissible [= have a completely determined/organized linearized evolution] in
presence of an admissible discontinuity (see for example Kontorovich [13], Dinu [3]); precisely:

ViSiiVas SiSriViar SiSraViar SriSiaVias (2.13)

where in (2.13) V and § indicate, respectively, an entropy—vorticity [ahead of the shock: en-
tropy and/or vorticity] and a sound contribution [with the subscripts [/r for left (ahead of; in
our study we consider a backward shock wave)/right (behind), and i/d for incident/divergent
(emergent)]. In other words, each elementary polymodal structure fulfills the part (2.8)—(2.12)
of the linearized problem and the interaction solution of (2.6), (2.8)—(2.12) is Fourier—Snell
represented /constructed as a superposition of certain [admissible, real frequency]| elementary
polymodal structures. We have to notice in this respect that in a refraction passage the emer-
gent initial data in (2.6) result constructively from the Fourier representation of the incident
initial data.

The present paper only considers the details related to the first of the elements (elementary
structures) (2.13). If we associate, as a parameter, to this element the inclination of its incident
entropy—vorticity propagation vector, cf.

3 =tankey ;i = i = —cot ¢y, (2.14)
Qey,li
(see Figure 1) then it can be shown that two cases, a pseudohyperbolic one [for |3| < 3. and
respectively a pseudoelliptic one [for |3| > 3.], are possible for the considered structure, separated
by the critical value o
B M
e = s
The structures (2.13) replace the four elementary (monochromatic) waves of the gasdynamic
Fourier theory of a linear problem.

(2.14),

3. THE RIBNER PARALLEL LINEARIZED SOLUTION

3.1. Highlights of this work

Paragraphs 3—5 present (thus materializing a suggestion of §1) a set of arguments needed to
structure the complex construction of the interaction (turbulence—shock) solution. Paragraphs
3,4 consider a parallel version (see §1) of the mentioned set of arguments. Then, an oblique
version of this set of arguments is taken into account in §5.

3.2. Sound contribution in the interaction solution: first constructive details.
Gasdynamic partitions (I)

We shall use the Lagrangian reference frames z, y (fixed on the undisturbed flow ahead of the

shock) and Z, 7 (fixed on the undisturbed flow behind the shock) in addition to the frame X,Y



fixed on the shock discontinuity. We have

t=X-MT, 2=X-MT=z+(M-M)t; y=y=Y; t=2t="T. (3.1)

Now, in the frame z,y we consider for the subsystem (2.8), (2.9) the steady solution of a
vortex with a finite core

()= y,z) forr <

[U(ga 2)5 (% %)] o (1/7"2)[— y, 55] for r, <r

m
2
!
!

, §=p=0 (3.2)

where 7, is the radius of the vortex core.

ProposITION 3.1 (Ribner [15]). The solution (3.2) is Fourier represented by

w/2
9

o)
o € 1 2Jy(kr, )
{s,p,u,u}:—ﬁlm/% . %dk / exp[l(alg—l-ﬂl%)]{0,0,ﬁl,—al}dlil. (3.3)

0 —7/2
O

Remark 3.2 (Ribner [15]). (7) The parallel vortex—shock interaction solution results cf. (3.3)
and (2.13);. Precisely: we have to complete, in the region behind the shock, each incident vortic-
ity wave in the sum (3.3) up to an elementary structure (2.13);. Therefore, a sound contribution
and, respectively, an entropy—vorticity contribution are seen to be included by the mentioned
interaction solution in the region behind the shock. Only the emergent sound contribution will
be constructed. The emergent entropy—vorticity contribution will be then represented in terms
of the emergent sound contribution [see (3.8)—(3.11) here in below]. (ii) We notice (Figure

1) that to each elementary structure (2. 13)1 which contributes in the representation of the in-
teraction_solution an associated frame X Y coresponds which translates along the shock, cf.
X=XxY=v+ M,T, where the velocity M, is chosen [to annul the frequency of the incident
vorticity wave] so as to make steady the elementary structure (2.13); associated to it. O

We compute: R R
oz +61y =X + [Y.

Now, the emergent sound monochromatic wave coresponding to the incident vorticity monochro-
matic wave

A0(07 Oa :Bla _al) exp[i(al &z +16l g)]

. g 2J1(k7°*) 1 _ g 2J1(kr*)
Ao = 22 kr, 'kdkdm_ 22 kr, k 143 2dkd3

—

in (3.3) can be presented by:

A[0, —(May + MyBy), as, Bi] expli(as X + BY)], AL = a14o

di32 +d + (d d 2
4y = (d113% + di2) + (d135° + d14)EV/]52 — 52| {1 for [3] < 3, (3.4)

3 .
(do13% + do2) + (do33® + doa) &/ |32 32\ i for |3 > 3



with
—9

2 M M 8 M
dog = —— —(1 = 2M?), dpy = —dop; — ————= —(1 — M?
2 M
= —T 1-— M2, d04 = Mdog,
8 M
dii = ————=(1—M?), dig = ——dq1, diz=dis =0
11 (7+1)2( ), di2 4 i 14
where we use the Lorentz coordinates
Z+ Mt X - t+ Mz
T = 5 = 2,y:y,tzi2 (3.5)
vVi-M Vi-M 1-M
to compute, cf. (2.14), (3.1) and Remark 3.2(i7):
2 _ .2
Ve — 3" — Mj,
for [3| <
o _ VI ls] < 3c
’Bl iv32_3g_M30 fOI‘3 <|3|
3V1 — M? ¢
2 _ .2 _ _
TV =3 — (s — y3) for 13| < 3.
~ ~ 1-|—32
i(aSX+ﬁlY) -

\/1+3 V1432

The sound contribution in the constructed solution for X >0 (behind the shock) results from
(3.3), (2.14) and (3.5) cf. Remark 3.2(¢) and consists of a pseudohyperbolic part, abbreviated h-
part, which is a superposition (Figure 1a,b) of pseudohyperbolic waves corresponding to [3| < 3.,

[ﬁh('I Y, ) U (*T Y, )’ (3: Y, )]
7 Vit =8 = V-9 My | 5 1 (3.6)
2 T e e T b
() :/2J1k(rlir*) “in {kx\/az—zjliiac—ya)] dk (3.6)"

0

and a pseudoelliptic part, abbreviated e-part, which is a superposition of pseudoelliptic waves
corresponding to |3| > 3.,

[ﬁ/e (x’ y7 t)’ ﬂe (‘T’" y7 t)’ 176 (1‘7 y7 t)]

o~ _30 0 . .
_ /+/ Ty [MVE® — 58 s V5 — 32 — Ms, Y DR B
22 ; o Wi-M2 V1 — M?2 1+32 14352
A
(3.7)
o0
Te(ry) :/72‘]1(’”*) exp GAVE Mt — ik the _ Y2 (3.7)"
‘ Sk \/1 + 52 V1432




M ctg k =-T.

FIGURE 1 Details of the parallel construction



The form (3.6), (3.7) reflects some essential rearrangements (see Dinu [2], [3]) of the original
Ribner’s representation.

We could obtain expressions similar to (3.6), (3.7) for the entropy—vorticity contribution and
the shock disturbance. Still, we shall prefer, using the equations (2.8)—(2.11) and the shock
relations (2.12), to represent these contributions in terms of the sound contribution cf.:

ﬂvorticity (-% ’ ga E)

T
- X bs . [ Bp - — e~
=u- (%’ t= T - M) + b3p+( =T - _> / % .'L' ,Y, 0 usound(xayat) (38)

X
M

,ﬁvorticity (% ) g’ 7?)

T
~ X o[ - op - -
=v_ (g, z =T — M) + C4a—§,(y,t =T — —) / BZ x y, Usound(xayat) (39)
T—3
56,00 = Sy~ (3.10)
S\Z, Y, = b2p+ May .
; 1
v = [ [ohe@0 + i) (3.11)
—00
where we have to insert in (3.8), (3.9), cf. (3.1)
~ X z ~
T_ta T_M__Ma g_y,

and we take into account that Tlim 1 = 0 in order to get (3.11).
——00

We motivate by Remark 3.2 to call (3.2), (3.6), (3.7), (3.8)—(3.11) the Ribner representation
of the linearized interaction solution.

4. EXPLICIT FORM OF RIBNER’S REPRESENTATION

4.1. Two essential elements of the structural analysis

Before presenting the details of the analysis in this paragraph we have to identify, cf. Terminology
4.1 here below, two elements essential for structuring this analysis. We denote in (3.6)*

~ o~ def
E@,7,53) = 232 — 32 — (tse — v3)

_ (V5= 82— M) + V1 = M2+ H{(M/52 — 52 — 5.) € (Caosd)

10




A straightforward calculation shows that for each £ > 0 the envelope (corresponding to the
pseudohyperbolic contribution; depicted, cf. Figure 1, in X,Y with T as a parameter) of the
straightlines family £ = 0, 3 € (—3,,3.) has the form of an arc of the (dimensionless) sonic circle

PP -P=2+y -t =0, X>0. (4.1)

TERMINOLOGY 4.1 (Ribner [15]). We shall call the arc (4.1) the S-are; also, we shall call the
region of the sonic disk belonging to the half-plane X > 0 the S-region.

4.2. The highlights of the parallel analysis

Remark 4.2. We have &(%,%,t;3) < 0, 3 € (—403.) at the interior points of the S-region.
Consequently, the phase in (3.6)* is (strictly) negative at the interior points of the S-region. O

At this point we have to notice that even in presence of the structuring arguments of §3 we
may need a bit of “chance” in order to get a successful calculation in the Ribner representation.
For example, the attempt to obtain an explicit/closed form for the Ribner parallel interaction
solution may be fruitless if we are not aware of the presence of a lot of “traps”: (i) the emergent
sound contribution (3.6), (3.7) cannot be computed directly; in fact, this contribution can be
put in an explicit form directly only in the limit r, — 0 and only at the points of the S-
region; incidentally it can be predicted (and verified) at the exterior points of the S-region; (i)
the emergent entropy—vorticity contribution cannot be computed directly in its Fourier—Snell
representation [similar to (3.6), (3.7)] even in the limit 7, — 0; its explicit form results by taking
into account its connection (3.8)—(3.11) with the emergent sound contribution; (i) finally, the
explicit form of the Ribuner nonsingular interaction representation results from a re-weighting (a
re-set of the weight lost in the limit 7, — 0; cf. Dinu and Dinu [6]).

4.3. Gasdynamic factorizations (I)

Remark 4.3 (Dinu [2]). By rationalizing the denominator of (3.4) we obtain, irrespectively of
the circumstances [3| < 3. or |3 > 3., the factorized expression

f
EGY) Y (do1s® + do2)? + (doss + dos)® (62 — 52) = ds (2 + a®) (62 — b)) P — *)  (4.2)

where
def M def M — y—-1_ def def
a = 0 w2 = M[(2MM—1) +2M ﬁM , P E e, 2wk (43)
B2>0 for —1< <§- >0
a>1 LY (4.4)
0 <[b] <le| <3e

where a corresponds to the entropy—vorticity contribution while b, ¢ correspond to the sound
contribution. O

4.4 Singular limit of the sound contribution: the first details

The computation of the limit r, — 0 of the sound contribution begins with the following steps.



B (1) We explicitly calculate Zp(ry), Ze(rs), given by (3.6)*, (3.7)*, and then limOIh(r*),
Tx—>
limOIe(r*) at the points of the S-region (using the Remark 4.2). We have from (3.6)* for each
Tx—>

interior point of the S-region:

2¢/1 + 32
Ih(r*) = —
zv/32 —8° — (tac — y3)| + \/Iw\/za% =32 — (e — v3) ]2 — 72(1 + 32)
and then
lim Ty (r,) = V1+s _ V145 avee — 8+ (e — vs)
*¥) - .
0 ool =~ (tac—y) @Y (6= €)% +n?

A similar calculation gives for each interior point of the S-region:

/1 2 /22 22 _ ta. —
limOIe( )_ +3 x 3 30 1( 36
Ts—>

r = .
Ve’ (6—¢&>+n

B () We use the calculations () and the factorization (4.2) to get the limit r, — 0 of the
sound component (3.6), (3.7) at the points of the S-region. We denote

3ty _ jer/tE —a? —y?

£:$2_|_y2’7’_ 2 + 42
1 — — € 1

K: K K:—-
i-M2 2r  dgy

Q13 )dﬁfdn?) +di2, Q2(3 )difdom +do2, Q33 )Efd0332+d04

to obtain at the points of the S-region:

[pNh(w,y,t),ﬂh($,y,t),?7h($,y,t)]
3
K /32 —5° + (e — v3)
z? +y? (=62 +n?
-[(M 32 — 32 —3c), — (V32 — 5% — Mj3,), MQ]

3Q169)@2(%) — Qs )\/Wu (4.5)
@Era)@ - -AE+)°

[Pe(z,y,1), Ue(T,y,1), Ve (x,y,1)]

I / / 3 - 3c —i(t3. — v3)
m
.’172—}—:(/ _|_,,7

-[(iM\/zF—s%—zc (iv/32 — 32 — M3,), 1—M2]

3Q1( )[QQ 1Q3 \/3 _30] 3 (4 6)
(3% + a?)(3 —62)(3 ) +1) T
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4.5. Gasdynamic factorizations (II). Gasdynamic partitions (II)

We notice that the representations (4.5), (4.6) have a most suggestive form. They present, for
example, through distinct factors, the contribution of the vortex shape and the contribution of
the shock-vorticity interaction; these contributions are connected to the factors [(3 — £)? + n?]
or, respectively, (32 — ¢;), 1 < i < 4 where we denote, cf. (4.3), (4.4),

G=-a’ =V, 3=c%, (4=-1

We shall add to the partition (3.6), (3.7) a new partition to distinguish between the contri-
bution of the vortez shape (label vs) and that of the shock—vorticity interaction (label int); such
a partition will take into account the decompositions

1
(G —&)? +n?1(* - G)
_ 1 { (=265 + (3~ — G) (2034 (& +n° +G) }
(&2 +n* + ()? — 482, (6— &> +n? 32— G
5
(6 — &)+ n%](* — &)
_ 1 {—(§2+772+Ci)3+2§(€2+n2) N (€2+n2+@)3+(2£@)}
(&2 +n% + §)? — 462 (3 —&2+n? 32 =G '

The expression [(£2 4+ n? + (?)? — 4£2(;] is then revealed as a price paid for separation or, as
a memory of this separation. It allows a second gasdynamic factorization [which uses (3.5)]

1
E+ 0"+ G)* — 487G = m[(éct — /32 = G)? = GyllGet + 232 — G)? — Giy?l. (4.7)
We briefly present the succession of the two mentioned partitions by

[ﬁa ﬂa IT)] = [5’” ﬂh, gh] + [ﬁea aea 56] = [5115, ﬂvsa 5115] + [ﬁinta ﬂinta 5mt] (48)

4.6. Some calculation details

The list of integrals corresponding to the vs-part consists of

2 2 T 1, T
[Zo(¢,7°), T1(&,7%)]] :/ (3_[5)723]4_772 d; = 5[1@] (4.9)
3¢ ,5]
Ko (&, 2 y K1(é, 2 = &
[Ko(€, %), K (6,7)] 3/ — e

1 G- ) PO Al

2 VG2 +n? — €)% +482°
. 28 1
(2402 —€2) + /(2 +n? — )2+ 4822’
1 2 2
- = TVl (4.10)

3¢

RN
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1 _
[T0(672), 1 (6,12, T, )] /[ “ 30 5y = I )+ 196, 90, 98] (411)
_30

( 1
[j()rajlraJZT] ™ |:_1, _257 533 - 3£2 + 772

< [j()sajlsajig] = —7T30[2£, 352 _772 _32, 25(252 _2772 _33)]1(:0
( +7[E + 0 452, 26(62 +1%), (€% +1?) (362 — n* — 52)]K4
(4.11), 5
Js = t s 3c (2t2 _ 1_2 _ y2)
s t dc 2 2/q9,2 2 2 2 2 2
5= s (my?) POy - %) - (& + )2 — 2]
(4.11)4

We complete this list by using the remark that if n? is replaced by (—7?) in (4.9)—(4.11) then
we get

{ To(¢,—7%) =0, Ty (¢, —7%) = 0,

(4.12)
ICO(& _ﬁZ) = Oa ICl (65 _ﬁ2) = Oa
T3 &, -n°) =0, JE(&-0) =0, J5 (&, -7°) =0. (4.13)

A list similar to (4.9)—(4.11) can be shown for the int-part; the integrals of this list result from
(4.9)—(4.13) when the details concerning the form of ¢;, 1 <14 < 4, are taken into consideration
cf. (4.3), (4.4). We have, for 1 < i <4,

To(Gi) = To(0, —Ci) = (2 — ) (3 — i) ——. T,(¢) =0, 4.14
0(Gi) = Zo(0, —=Gi) = (2 —4)( )2\/@ 1(G) (4.14)
Jo(&) = Jo(0,—G) = |( 1)+(2_i)2(3_i)' 33_.@]
Gl
N T1(G) = J71(0,—¢) =0 (4.15)
| 7260 = 00.-¢) = [ (522 - ) + R0 VeG4
[77(;(4‘1)’7;((2),772"(9) = [jOT(Oa _Ci)aJIT(Oa _gi)ajg(oa _Cz) =7 |:_1a aOa %33_C2:| .
(4.15),
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4.7. Gasdynamic partitions (IIT). Gasdynamic factorizations (III).
A prefinal form of the sound emergent contribution

Next, the integrals corresponding to the ws-contribution appear, cf. section 4.6, to include a
part which is singular, concurrently with !, with respect to the S-arc (4.1). This circumstance
naturally completes the sequence (4.8) of partitions with a last element (the labels r/s mean
regular/singular with respect to the S-arc):

[ﬁvs,ﬂv& avs] + [ﬁz’nt; ﬂinta Gmt] = [171"; "71";57"] + [ﬁs,ﬂs;a‘s]- (4'16)

Now, we carry and re-arrange the calculations 4.6 into the last partition of the sequence
(4.16). In Dinu [3] it is noticed that, incidentally and remarkably, to the terms of the mentioned
last partition in (4.16) a set of other four gasdynamic factorizations, compatible with (4.7), can
be naturally associated [via (3.5)]:

EV (G202 — Gi)z€ + 23c/32 — Cité — /32 — Gy(€% + 1 + ()]
+ E5(G) =230t + y(E2 + 0 + (i) — 2¢/32 — (i€
= [V32 — GET(G) — &5 (G)[2V/32 — Gi € + 25,88 — y(&2 +1° + ()]
= V3 = GEN(G) — (G {lw/(@® + y)l(aet + /37 = G)? — Gl

V2 — Gits2(1? — 2?) — (2?4 )] £ 50232 (1 — 2?) — (267 — 2 — y?)]
= (832 — G F 730) (6t + 34/32 — G)? — v

—{26GT(G) + (2 +0* + G) TP (G) }
+/32 = G- {26G[-vEV (G)] + (€% + 0% + G) 327 (¢i) — €3 (Gi)]}
= —[E3(¢:) — €V (C)V32 — GlI(E® + % + G) et + z4/32 — Gi) — 2Gi€]
= —{E35(G) = ENGIV32= G/ (2® +97] Get = 2+/52— G) [(3et +24/32— 6) = Giy]

selae (8 — 22 — 2% — 2%y?) — G(t%)? — 2%y” — y* — £%27)]
+ /52 — GtalsZ (2 —v%) — (62 — G)(«® +97)]
= [tGet 7 2v/32 — G) — 3’|t £ 24/52 — G)* — Gi”]

where
def

MQQ(CZ) + 3cQ3(<z) 55(@) = 3cQ2(Cz) + M( Cz)Q3(Cz)
) Q3(¢), E3(¢) Y Qa(G)
TP S —y€(G)y T (G)E —2(52 — G)ET(G) + t3:E3 (G)-

We have to notice here that an analogue of the first of these factorizations holds true if &7, &Y
are replaced by £}, €5 corresponding respectively to the u-component of the sound contribution
in the interaction solution.

M) Y
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Finally, we naturally get for the sound emergent contribution a more suggestive (prefinal)
form (see Dinu [3] for the calculation details):

. il ki
pr(z,y,t) = 2(.772 +y )2 Z 52 +7) )2 )\/|C_4£2 (V3 Qgp (Gi) — &€5(Gi)]
'[(3ct tTv 30 - CZ) - CZyQ] (4'17)10

4
~ _ ™Y —1)(3 — 1)/l k
ur(x,y,t) = T2+ ) ZZ_; (52‘*'77 1) 452 \/ — GET(G) — E5(G)]
(Get + 232 — G)? — Gy®l (4.17),

m/i 2 ¢ —OVIGTEQ)
or(z,y,t) = o Z 52 2 \/K_ GEY(Gi) — €3 (Gi)]

1—
22 +y?)? +n +Gi)? 452

(et — V32 — Gt + 332 — G)? — Gy?l (4.17),

_ y ki(¢)
ps(xayat):_ 12 _ 52 _ y2($2+y QZ £2+7I C)Q 4&'2
z)
)l

{IVs2 - gzgp (Gi) Ep CZ)]( — 3c2)[(3ct + TV/32 — <2)2 - §1y2]
+[V 30 ngp Cz + gp Cz tV 30 Cz + 3.% ( t— vy 30 )2 - Czy2]} (4'18)p
y . - ki(¢)
t2—x2—y $2+y )2 — (&2 +n? +Cz) —48%¢;
V 3c GEY Cz (C )]( 2 — G — 3 )[(3ct + Ty 3% - Cz)2 - Ciy2]
+[\/ 3c ngl Cz + 82 Gi ](t V3 2 -G+ 3c 3ct LAY 32 - Cz)Z - Cz"JQ]} (4'18)u

"75(37; Y, t) =

4

1 _7n/1—M?Z ks (C) G
Py (w2+y2)2“£2+n+C) S TN

{IVa2 - GEY(¢ (GItEGet — 252 — G) — 301Gt + 252 — G)* = (i)

—[V32 — GEY(¢ (C)I[tGet + 252 — G) — 371Gt — V52 — G)* — Cay*l}

(4.18),

,ﬁs(fﬂayat) = -

K\J@ [\3@

where ~

B = . 1 Qu(G)
=0 = e o)

J#i

4.8. A special nature of the gasdynamic context. Inner coherence

It is interesting to remark that to the factorizations mentioned here above [in sections 4.3, 4.5
and 4.7] we have to add the coefficients factorizations and other particular relations included
in 4.10. A special nature is shown therefore for the gasdynamic context. This special nature is
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even more extensive; in fact, we have to notice a factoring compatibility (”inner coherence”) of
the factorizations mentioned here above [see comparatively (4.7) and (4.16), (4.17)].

We have to notice, on the other hand, that the mentioned factorizations may become imma-
terial if the gasdynamic context is extended /lost (see Dinu and Dinu [7]).

4.9. The singular limit of the sound contribution: an optimal explicit form

Next, we take into account the mentioned compatibility (gasdynamic “inner coherence”) —
precisely: we use (4.7) into (4.17) and (4.18) — to finally get the following optimal form of the
limit r, — 0 of the sound emergent contribution

[ (%,9,0), 4 (3, @ t), v (, ﬂ,f)]

_ Qe (<) L (E b (Ve TR (6 4 B (s
- KZ [Tk~ cz +a:k (G)]2 —Ci@‘z[k (C)y, =k~ ()Y, th(G) + 2k ()] (4.19)

, . Ag[ﬁ“ (CZ)‘ka ()]
im1 [tk (Gi) + Tk (G)]? — Gig?

| | i+ (@fr 7k (G)] } (4.20),
T IR () + TR (G — G

2

1
'{ZEi(C)Q_(Ci)i‘?—(Cz) iy

1 [tk (Cz)+$k (Cz)]

4 A~ ~
3 (¢ ) yltk+t (Cz')fr Tkt (G)] } 4.20),
! 2:21 QG ) [th+(G) + xkT(()]2 — G2 (4.20)
@50) =~y BV )
4 . e n .
= —oy 2o (B MT)[th™ () + ok ()] —
. k; i i — ~
{z’:1 (@ (ke [t~ (G) + k= ($)]2 — G2
4 . e . _
- o (E+ ME)EET () + Tk ()] - M@’z}
k; H(G) k(¢ = = 4.20),
+ 2O K G O S R - o (420

where we denote
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Brq) = TV G ey - Mot Vi GG
Vio M2 VT NIESTEN

QF(G) = Q1(¢)[Q2(G) + Q3(G) Va2 — Gl -

4.10. A few useful gasdynamic relations.

We notice at this point a few useful gasdynamic relations:

- M 5c+a2—0
Q2(—a +Q3 Vi +a? =
Q2(b%) — Qs(b?) ac—b2=0, b <32

Q2() — Qa(A)V3E — 2 =0, <3

V 30 ngp Cz :t Sp gz MV —Gi iﬁc [Q2 Cz :t V 3c CZQ?»
V32 — GEY Cz ) £E3(G) = (V32 — G £ M3.)[Q2(8) £ V32 — GiQ3(G
V'3 C151 Cz ;} ) i[QQ CZ :l: \/3(; CZQ?) CZ

Va2 = GEV(G) —ER(G) =0, 1<i<3
\/ —GEMG) - &3 (¢)=0, 1=2,3
V3 ngl Cz - ‘cfg(Cz) =0 2,3

V() =0, &(C)=

to get that

k5(C) =0, k5(¢) = 0; K(G1) = 0; QT (¢1) =0, Q(¢2) =0, Q(¢3) =

in the coefficients of (4.19), (4.20) — thus annulling some of these coefficients.

4.11. Final notes

This sound contribution corresponds to the incidence [obtained from (3.2) in the limit 7, — 0]

~ [_ gaz]
W90l = o oy FEP=0 @0 £ 00, (4:21)

We have to complete these results with the explicit form of the rest of the limit 7, — 0 of the
Ribner solution by carrying (4.19), (4.20) and (4.21) into (3.8)—(3.11).

It is easy to show, finally, that the singular structure of the cumulative contribution of (4.19)
and (4.20) consists in the sound singularities continuously distributed along the S-arc and is
completed with a vorticity singularity laid at the point (z = 0, = 0). The other singularities of
(4.19), (4.20) are proven to be pseudosingularities: they appear to be compensated in the sums
Dr + Ds, Ur + Ug, Uy + Vs. In fact this result is suggested by Figure 1.

The presence, at ¢ > 0, of the S-arc — which supports a continuous distribution of sound
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singularities — could be regarded as a widening, corresponding to a nonlinear subconscious, of
an incident vorticity singularity.
We end this section by noticing the irreversible character of this solution.

5. AN OBLIQUE EXTENSION OF RIBNER’S PARALLEL SOLUTION

5.1. Details of the oblique extension

We tentatively present the sound part (4.19), (4.20) of the parallel interaction solution in the
form

Dr +ﬁs = ﬁ”('xayat; C1,62,€3,C45 3es Ql,QZani)
ﬂr +ﬂs = ﬂ”(xay,t; C1,<2,<35C4; des QlaQQ,Q?)) (51)
767‘ + 5S = 5||(a;,y,t, ClaC2aC37 C47 des Qla Q?a Q3)

which has a “Lorentz type” arguments structure [the arguments structure (5.1) could be regarded
as being a code (”cipher”) which filters out the passage to an oblique approach]. Incidentally,
this form appears to be extensible to the case of oblique interactions. The nature of the extension
is suggested in Figure 2.

axis of the axis of the
/ incident vortex resultant vortex

A

"

\ incident

vorticity wave

resujtant
NP, vorticity wave

—— resultant
sound wave

1=

Y

the plane of the axes A, A'

FIGURE 2 Details of the oblique construction
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Let A be the axis of the (oblique) incident vortex and let 6 be the angle between this axis and
the axis A [along which a sense is indicated by the coordinate X]. In Figure 2 we particularly
depict the passage of a plane of zero phase corresponding to a certain incident monochromatic
vorticity wave in the Fourier representation [analogous to (3.3)] of the incident vortex; let d be
the intersection of this plane with the shock plane. We denote by w the angle between the line
d and the axis OZ. Let 7(dy,dz) the plane spanned by two concurrent lines dq,ds. We use the
facts of Figure 1 in order to characterize the refraction of the plane 7(d, A). To complete the
Fourier—Snell representation of the considered passage we need the expression of the dihedral
angle ¢, of the planes 7(d,A) and 7(d, A) in terms of the angles § and w. We have
2
1+tanw(1§f 3 —ESQSE- (5.2)
2 2

We adapt the Figure 1 to the analysis around the line d by using a bar over the notations
of Figure 1. So, ¢, ¢,¢' of the Figure 1 become ¢;, ¢, ¢’ around the line d. The same as in
the parallel case, it is easy to be seen that the envelope of the refracted zero-phase vorticity
planes, which result from the passage of the mentioned incident vortex, is a straightline A’ —
the axis of the refracted vorticity (Figure 2). A straightforward geometrical analysis shows that,

cotpy = ——————— =
Z tan ftan w

tan§ = tan@ — where ¢’ is the angle between the axes A’ and A.

Now, the parallel solution or its oblique extensions concern an interaction element - which
models the passage through the discontinuity of a single incident vortex. To an oblique interac-
tion element we should associate the oblique extensions z, y, z and, respectively, Z,,z of the

Lagrange parallel frames (3.1) [Figure 2]. These frames [as well as the frame XY, Z] depend on
the interaction element considered. In fact: the axis OZ results from the intersection between
the plane m(A,A) and the plane of the shock discontinuity.

In section 5.4 the passages of some vortices of distinct and [cf. section 5.2] significant incli-
nations are compared.

The direction z of the frame z, y, z is laid along the axis A of the oblique vortex; therefore

the oblique incident vortex has again the form (3.2) in this frame.

The direction z of the frame 7,7, 2 will be placed along the axis A’ of the resulting vorticity;
the emergent sound field will get in the frame z,%, z the structure p,u, v, w.

In order to pass from the frame x,y, z to the frame z,y,z we use an intermediate frame

)?, 17, Z — an analogue of the frame )/(:, Y of Figure 1. The origins O [of the frame z, y, z] and

-~

O [of the frame X,Y, Z] coincide at the initial time £ = 0.

5.2. Subcritical and supercritical inclinations.

Remark 5.1. We put © = 7 — @signf and notice that the requirement
31 < 3c (5.3)

consists, cf. (5.2), in

V1 + tan?w be

1< [tanw|  tan®
or, equivalently, in
tan® < 3, (5.4)
together with
ftan | > —— 2O (5.5)

V32 —tan?0
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This suggests that we ought to distinguish between the supercritical and suberitical inclina-
tions of the incident vortex axis respectively characterized by tan® > 3, and tan©® < 3.. In
fact, for a supercritical inclination of the mentioned axis the possibility (5.3) is excluded cf.
(5.4) and we must require |3/ > ., so that the sound component of the refracted solution is
entirely pseudoelliptic. On the other hand, for a subcritical inclination of the mentioned axis
a pseudohyperbolic part, isolated by the requirement (5.5), is allowed in a mized type sound
component of the refracted solution. O

5.3. Extended Lorentz coordinates. The subcritical case.

Let us consider next the case of subcritical incident vortices (see Dinu and Dinu [5] for the
details of the supercritical case). This case is largely similar, to the (subcritical) case considered
(for ©® = 0) in §4. Tt is easy to show that the zero-phase planes corresponding to the sound
component of the emergent solution envelop a circular sonic cone with the axis A’ and the vertex

angle 2y where
cos 6

. 1 o'
siny = — cos ' =
XS M =2 9  Tp2 9
M™+ (M? — M) cos? 0
and we notice that for a real y we must require tan © < 3., i.e. subcriticity.
In the sequel we parallel (3.5) by introducing the extended Lorentz coordinates

3.C08 O M3, (sign @) sin © - X

~ M.
T = T+ =t+—= ;
_ . _ 2
\/M2+(M2 _Msn2e MM Vi-M

: z
\/MQ—}—(MZ—MQ)SinQ@

S Y=Y z2=2

M3%(©) cos © ~ 32 32 (signé)sin© -

= T+ 4+ — ” . z
VI + (M2 — 1) sin? © O) I+ (M2 - W) sin? @

M3:(©) 3

\

(5.7)

where

55(0) ¥ V37 —tan?0, ;=

and notice that

2
~ . i ~
2 — % —y? = z—l—(s1gn9)_—] tan?y — (22 + 72).
sin

5.4. The simplest nonstatistical model of turbulence refraction
and its relation with Lighthill’s model.

The explicit form of the sound emergent contribution in the limit r, — 0 of the mentioned
subcritical interaction is

plz,y,t) = {1+[:(0) =3}
Plmsy a7 e, e, v"%153(0); Q1 @3, Q3]
+M(3c(0) — 5]
Y[z, y, 0%, b ecc™?, v 55(0); QF, Q3 Q3]
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2

_ M 1
(o,y,t) — M{“rﬁac [3z<®>—3c—3—tan2®]}-

c

cos ©®
VI + (M2 — 1) sin? ©
[z, y, 60", epb*? ecc™?, 0% 55(0); QF, Q5, Q3]

M . 1 cos ©
+ﬁ30 |:3c(®) —3c — _ta’n2®:| ’ — >
de \/M + (M2 —M")sin2©

~ 2 2 2 2
p||[wayat7a* agbb* a€CC* aIU* 73Z(®)aQ>{aQ§aQ§]

5(:E,y,t) = 5||["If'ayat; a'*zaEbb*25500*25/v*2;32(®);QLQ;Q;]
~ M? sign 0) sin ©
w(z,y,t) = M {2 + ﬁzcbc(@) - 30]} ) {sign )

\/M2 + (M2 — ") sin2©
: IEH ['Ta Y, t; CI,*2, Ebb*Qa 560*2, U*2; 32(9)7 QTa Q;a Qg]

M? signf) sin ©
+ {1 + rzﬁcbc(@) _30]} ' - ( £ ) —>
M \/M + (M2 —M")sin2©

~ 2 2 2 2
p||[wayat7a* agbb* a€CC* aIU* 73Z(®)aQ>{aQ§aQ§]

where z,7,t depend on %, 7, %, cf. (5.7) and we denote

a*? = a® + tan 20, b*? = |p? — tan 20|, ¢*? = |c? — tan?0|, v** =1 4 tan’0
€y = sign (tan20 — b?), €. = sign (tan 20 — ¢?)

Q1 (%) o d113*? + (di1tan 20 + dy2) = Q1(3?)
Q5% © 152 + (do1tan 20 + dg2) = Q2(3?)
Q56" Y dyss*2 + (dostan 20 + dos) = Q3(32).

A suggestive description concerning the refraction of a turbulence model through a shock
discontinuity is considered in Figure 3. This description brings together and compares the pas-
sage through the discontinuity of an incident point vortex the axis of which is parallel to the
shock and the passage through the same shock of a point vortex the axis of which is oblique —
subcritical or supercritical.

In the singular limit of the interaction solution [see section 4.4] the subcritical contribution
and the supercritical one — which appear to be essentially and exhaustively included — are
distinguished by differences of a ”relativistic” nature. Precisely: in the singular limit of the in-
teraction solution the emergent sound is singular in the subcritical contribution and it is reqular
in the supercritical contribution (see Figure 3).

In Dinu and Dinu [6] it is shown that the "relativistic” discontinuity in the nature of the
emergent sound, corresponding to the singular limit of the interaction solution, appears to be
dissembled (hidden) in the re-weighted interaction solution.

In the Lighthill’s fundamental paper [14] the turbulence is acoustically modelled by a distri-
bution of quadrupoles — which is equivalent with a “weighted” distribution of point vortices.

We notice that the explicit character of Figure 3 induces an exhaustive nonstatistical classifi-
cation into Lighthill’s implicit description.
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FIGURE 3 The simplest nonstatistical model of turbulence refraction (£ > 0)
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