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This paper presents a new theory and discussions about the motion of avalanches
from initiation to run-out over arbitrarily curved and twisted complicated moun-
tain topographies and its numerical simulations down curved and twisted channels
incorporating variable cross sectional widths. To this end, a well established and
widely used depth-averaged avalanche model of Savege & Hutter has been gener-
alised by Pudasaini €& Hutter to arbitrary channelised topographies, the intention
being that the new model would be able not only to describe the flow of a finite
mass of snow, gravel, debris or mud, down a corrie of arbitrary curvature and twist
and arbitrary cross sectional profile, but equally also the transportation of grains
or pills in the agricultural and pharmaceutical industry, respectively. The emerging
equations for the distribution of the avalanche thickness and the topography-parallel
depth-averaged velocity components are a set of hyperbolic partial differential equa-
tions. The model equations are solved for different topographic configurations, from
simple to complex, by applying a high resolution Non-Oscillatory Central (NOC)
differencing scheme with Total Variation Diminishing (TVD) limiters. The new the-
ory and its numerical simulations disclose unknown physics of flow of avalanching
debris or snow through strongly curved and twisted channels of general types and
open an enormous spectrum of applications.
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1. Introduction

Natural hazards such as avalanches, debris- and mud-flows as well as landslides are
common natural phenomena to the inhabitants of high-mountain areas. People and
municipal authorities in these areas who have learned to accept their occasional
occurrence and to avoid the damage that accompanies them are always seeking
to minimise such unpleasant, and sometimes unavoidable happenings, causing the
death and damage of the life and property of the people. In the second half of
the last century significant efforts have been made to understand the mechanisms
of formation of avalanches at high elevations, dynamics of the motion along the
complicated and non-trivial mountain tracks and settlements of such huge and
catastrophic events in the flat valleys. Special attentions have been paid to the
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mechanical, dynamical and the geometrical parts of the problem separately or to-
gether. To this end, several theories - ranging from statistical and mass point to
hydraulic and molecular dynamics or the kinctic theorics - have been proposed
(see, Jenkins & Savage 1983; Eglit 1983; Jenkins & Richman 1985; Savage 1989;
Savage & Hutter 1989, 1891; Hutter et al. 1993; Greve et al. 1994; Hwang & Hut-
ter 1995; Iverson 1997; Gray et al. 1999; Iverson & Denlinger 2001; Pudasaini &
Mohring 2002; Pudasaini et al. 2003a, 2003b), different numerical techniques have
been developed and well implemented, and a number of experiments both in the
laboratory and the field have been performed (Hutter & Koch 1991; Greve & Hut-
ter 1993; Gray et al. 1999; Wieland et al 1999; Denlinger & Iverson 2001; Tai et
al. 2002; Koschdon, K. & Schifer 2003; Issler 2003; Zwinger et al. 2003; Pudasaini
2003; Denlinger & Iverson 2003; Iverson et al. 2003; Pitman et al. 2003; Patra et
al. 2003). The main aim behind all these scientific and technical activities is to
forecast the occurrence of avalanches and debris flows and to predict zones of ef-
fects either on their tracks or down in the valley as they come to settlements. This
essentially means the construction of hazard maps into the regions of dangerous,
less dangerous and danger-free zones. Nevertheless, accidents causing damage of
property and loss of life have regularly occurred in the past and continue to occur
today (Hutter & Pudasaini 2003). This apparently signifies the need of study and
research of avalanches and debris flows from even higher and intensified levels, and
makes it a topic of permanent public concern in mountainous regions.

The physics of the release or failure of a large mass of soil, gravel or snow and
the dynamics of its motion must be understood if the concomitant danger should
be avoided or the impact of a moving mass on the avalanche track or on obstruct-
ing buildings be estimated. One hopes that understanding their physical basis will
enable the appropriate defensive measures to be taken. Natural avalanches and de-
bris flows are always associated with the complicated mountain topographies which
make the prediction and defensive measurements very difficult. In this regard, an
exact analysis of avalanching debris flow is a very difficult and challenging task.
Nevertheless, the last few years have witnessed increased efforts devoted to the
physical understanding of avalanche formation and modelling its dynamical mo-
tion in complex topography compatible to the mountain surfaces. To some extent,
success has been achieved in this direction, but it still needs serious and unified
research to acquire the desired goal.

In this paper we present a new theory and discussions about the motion of
avalanches from initiation to run-out over a generally curved and twisted compli-
cated mountain topography and its numerical simulations for flows down curved
and twisted channels of different kind. The model computations allow inferences
as to the distribution of the mass of different granulates, like gravel or snow, in
the deposition zone as well as to the forces exerted on structures that are affected
by the motion of the avalanche through general tracks. To achieve this aim, a well
established and widely used hydraulic avalanche model of Savage and Hutter (SH,
1989) has been recently generalised by Pudasaini and Hutter (PH, 2003) to de-
scribe the motion of flowing geo-materials over arbitrary channelised topographies,
the intention being that the model would be able not only to predict the flow of
a finite mass of snow, gravel, debris or mud, down a corrie of arbitrary curvature
and twist and arbitrary cross sectional profile, but equally also the transportation
of grains or pills in the agricultural and pharmaceutical industry, respectively. The
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emerging model equations for the distribution of the avalanche thickness and the
topography-parallel depth-averaged velocity components, to be presented here, are
a set of nonlinear hyperbolic partial differential equations with possible discontinu-
ities in the variables and the coefficients. Once they are derived, a new significant
question concerns the solution of the model equations for physically significant and
mathematically interesting configurations in order to judge their adequacy and ap-
plicability: How are these equations solved numerically, in order to simulate the
dynamics of flow avalanches through such complex and non-trivial topographies?

The model equations are solved by implementing the NOC scheme with TVD
limiters (see, Nessyahu & Tadmor 1990; Jiang & Tadmor 1998). These are high-
resolution numerical techniques that are able to resolve the steep height and velocity
gradients and moving sharp fronts often observed in experiments and field events
but not captured by traditional finite difference schemes (Wang et al. 2003). We per-
formed several numerical tests for avalanching masses down curved and twisted bed
topographies (Pudasaini 2003). Uniformly and non-uniformly curved and twisted
channels as well as channels which incorporate continuous transition zones merging
into the horizontal run-out zones are considered. Both, confined and unconfined
transition zones with constant and variable inclination angle of the topography are
taken into account. These computations reveal fantastic and fascinating results that
we were imaging while developing the theory. They demonstrate the combined ef-
fects of curvature, torsion and the radial acceleration (the radial effects due to the
curvilinear coordinates) associated with the bed topography. Thus, we are able to
quantify the intrinsic effects of the topography on the dynamics of flow avalanches.
Such sophisticated studies have not been carried out before, and it was possible
here only with the new model equations of PH.

2. Model equations

Before presenting the new theory proposed by Pudasaini and Hutter (PH) we briefly
discuss the physically justified and realistic assumptions made in the development of
the model equations. Savage and Hutter (1989) developed a continuum hydraulic
theory to describe the evolving geometry of a finite mass of a granular material
and the associated velocity distribution as an avalanche slides down an inclined
surface. In order to formulate a realistic model the following assumptions were
made: (i) The moving dry and cohesionless granular mass is incompressible and
obeys a Mohr—Coulomb yield criterion both inside the deforming mass as well as
at the sliding basal surface. (ii) The geometries of the avalanching masses are
shallow in the sense that typical avalanche thicknesses are small in comparison to
the extent parallel to the sliding surface. (i4¢) To obtain a dimensionally reduced
theory the field equations are integrated through the depth of the avalanche, and a
nearly uniform velocity profile through the depth is assumed. (iv) Scaling analysis
identifies the physically significant terms in the equations and isolates the terms
that can be neglected. These assumptions are supported by observations of large
scale snow avalanches in the fields as well as small scale laboratory avalanches of
different dry granular particles sliding and deforming down different chutes and
channels. These facts are well documented and can be found in a wide range of
literatures (see, Savage & Hutter 1989; Hutter & Koch 1991; Keller et al. 1998; Dent
et al. 1998; McElwaine & Nishimura 2001; Pudasaini 2003; Ancey & Meunier 2003;
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Iverson et al. 2003; Denlinger & Iverson 2003). The simple spatially one-dimensional
model of SH, applicable along a straight sliding surface, has been generalised to
higher dimensions, to more complex geometries, and has been tested against realistic
laboratory experiments and back calculations of the field events. Good to excellent
agreements were obtained between the theoretical predictions and the experiments
and field data (see, e.g., Savage and Hutter 1991; Hutter & Koch 1991; Greve &
Hutter 1993; Hutter et al. 1995; Gray et al. 1999; Wieland et al. 1999; Denlinger
and Iverson 2001; Zwinger et al. 2003; Pudasaini et al. 2003a,b,c; Pudasaini 2003,;
Denlinger & Iverson 2003; Pitman et al. 2003; Patra et al. 2003). Here we will focus
on a recent three-dimensional extension of the SH-model by PH and its application
to avalanche motion over a realistic three-dimensional flow paths as pointed out
earlier.

(a) Effects of the topography

Curved flow path surfaces strongly influence the flow dynamics because trans-
verse shearing and cross-stream momentum transport occur when the topography
obstructs or redirects the motion due to its curvature and torsion. Local deceler-
ation and deposition of mass may occur due to energy dissipation. Resistance due
to basal friction is modified by “centrifugal forces” induced by the bed curvature
as well as torsion.

Recently PH (2003) extended the SH-theory to flows of dry granular masses in a
non-uniformly curved and twisted channel. Consider an avalanche-prone landscape
and a subregion of it where the topography allows identification of the avalanche
track. A space curve parallel to the talweg of the valley is singled out as a mas-
ter curve C (which can be obtained, e.g., by shifting the talweg along its normal
direction) from which the track topography will be modelled. The curvature and
torsion of the master curve, k = k(x), 7 = 7(x), are either assumed to be known
or can be computed from digital elevation GIS (Geographic Information System)
data as functions of the arc length z of the master curve. Then, an orthogonal
coordinate system along the master curve is introduced and the model equations
are derived in this general coordinate system. In the model equations under con-
sideration in this paper, (z,y) form a curved reference surface, where z is the coor-
dinate along the talweg of a mountain valley, while y is the circular arc length in a
cross-sectional plane perpendicular to the talweg whose value is determined by the
relation y = €8z, where ¢ is the aspect ratio between the avalanche height and the
extent, # is the azimuthal angle which accounts for the cross-slope curvature and
zr (usually zp >> 1) is the radial distance between the master curve and the talweg
and z is the coordinate perpendicular to the reference topography. Every quantity
in this paper is written in non-dimensional form. The channel topography and the
geometry of the avalanche in lateral and longitudinal directions are illustrated in
Fig. 1. Let us discuss some terms and parameters arising in the model equations
presented in the next section. g, g, and g. are the projected components of the
gravitational acceleration along the down-slope, cross-slope and normal directions,
for explicit computation see, Pudasaini & Hutter 2003, Pudasaini at al. 2003¢. The
aspect ratio ¢, and A, the measure of curvature relative to the typical avalanche
length, are both small numbers. The basal topography (which is the deviation of
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Figure 1. Left: The avalanche domain in the lateral direction occupies a region in a circular
section of a plane perpendicular to the talweg of the valley and 8 is the azimuthal angle
in this plane. OO = zr is the radial distance between the master curve and the talweg.
{T,N, B} is the moving orthonormal unit triad following the talweg. ¢ is the slope angle
of the talweg with the horizontal. The depth of the avalanche in this section is represented
by a height function h(z,y,t) and is measured in the radial direction. Right: Avalanche
passing through the transition into the run-out zone in a vertical plane containing the
talweg of the valley. In this picture, z; and x, are the left and right end points of the
continuous transition between the straight inclined upper part with inclination angle (o
and the horizontal run-out in the valley.

the basal topography from the reference surface z = 0, and includes the small-scale
geometric features of the bed morphology) will be denoted by b(z,y).

The extended theory is designed to model the flow of (debris) avalanches over
curved and twisted channels having general curvature and torsion. Although there
are other models that consider the problem of avalanche motion over curved slopes
(e.g., Savage and Nohguchi 1988; Maeno and Nishimura 1987; Norem et al., 1987;
Zwinger et al. 2003; Iverson et al. 2003; Pitman et al. 2003), the model equations
considered in this paper explicitly and simultaneously include the curvature and tor-
sion effects in a systematic and rigorous manner. This makes the extended model
amenable to realistic snow and debris motions down arbitrary guiding topographies.
In fact, GIS data of mountainous avalanche- and debris-prone regions can be imple-
mented to this model, which provides the geometrical basis for realistic application
and tuned to practical use, and thus lays the theoretical foundation towards this
end. Different from the original SH-theory and all their previous extensions (e.g.,
Gray et al. 1999; Wieland et al. 1999; Pudasaini et al. 2003a) an arbitrary space
curve is used to define an orthogonal curvilinear coordinate system. The final gov-
erning balance laws of mass and momentum are written in these coordinates. PH
(2003) are, thus, able to study the simultaneous effects of curvature and torsion on
the flow avalanche in channels which have not been investigated analytically before.

(b) Description of the model equations

As in the previous models of the SH-theory, PH (2003) formulated the balance
laws of mass and momentum as well as the boundary conditions in slope-fitted
curvilinear coordinates of mountain surfaces, averaged these equations over depth
and then non-dimensionalised the equations. The final balance laws of mass, and
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momentum in the down-slope and cross-slope directions take the form

Oh 0 o

Bt + E (hu) + (9_y (hv) =0, (2.1)
9 N N e

5 (hu)+8_x (hu )+8_y (huv) =hs, B < 5 ), (2.2)
s 2+ 2 1)<ty 2 ()

51 (hv)—l—ax (huv)—l—ay (hv?) =hsy By < 5 ) (2.3)

where h is the depth of the avalanche measured along the normal direction of the
reference surface and the factors 3, and 8, are defined, respectively, as

B = —eg. Ky, ﬂu = —eg. K. (2-4)

The terms s, and s, represent the net driving accelerations in the down-slope and
cross-slope directions, respectively, and are given by

u 9 Ob
= Yz — 7 —Yz At 2.
Sx =g al tand (—g. + Asnu®) + &g o (2.5)
sy =gy — T tand (—gs + Awnu® ) + eg; (2.6)

|ul Ay’
|lu| = Vu? +v? is the magnitude of the velocity field tangential to the reference
(basal) topography. Similarly, Ax is the local radius of curvature of the talweg,
whilst 1 gives the accumulation of the torsion of the talweg from an initial position.

The first terms on the right-hand side of (2.5) and (2.6) are due to the grav-
itational accelerations in the down- and cross-slope directions, respectively. The
second terms emerge from the dry Coulomb friction and the third terms are the
projections of the topographic variations along the normal direction. K, and K, in
(2.4) are called the earth pressure coefficients. Elementary geometrical arguments
and Mohr’s circles may be used to determine these values as functions of the internal
(¢) and basal () angles of friction, (Hutter et al. 1993), according as

Ko =Ky, ... =25eC ¢(1 F /1—cos? psec? 6) -1, (Ou/0zx)

Ky =Ky = % (Kz+1 + /(K. —1) +4 tan? 5) , (9v/0y)

where K, and K, are active during dilatational motion (upper sign) and passive
during compressional motion (lower sign).

Given the master curve, C, the material parameters 6 and ¢ and the elevation
of the basal topography, b, above the curved reference surface, equations (2.1)-(2.3)
allow h,u and v to be computed as functions of space and time once appropriate
initial and boundary conditions are prescribed, where h is the avalanche depth, and
(u, v) are the depth-averaged velocity components parallel to the flow surface.

(¢) Comparison to the previous models

Equations (2.1)—(2.3) constitute a two-dimensional conservative system of equa-
tions. There are several advantages of the model equations considered in this paper.
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They are as follows: (i) They simultaneously include the curvature and torsion of
the basal topography. Therefore, the model equations can be utilised to describe the
flow of avalanches along non-uniformly curved and twisted channels. (ii) There is a
non-zero gravity term g, in the cross-slope direction which takes into account the
global effect of topographic variation in the lateral direction. This might be very
crucial in designing the defence structures and when dealing with the motion of
avalanches that hit obstructions or deflecting structures on their ways. The torsion
effect n of the topography is included in the net driving force components s, and s,
in the two flow directions. The components of the gravitational acceleration also de-
pend on both the curvature and the torsion of the basal topography, see (Pudasaini
& Hutter 2003). The y coordinate is curved in the cross-slope direction, including
the cross-slope curvature, which was just a straight line before. For a torsion-free
master curve, which lies in a vertical plane, these model equations exactly repro-
duce all previous extensions of the SH equations as special cases (see, e.g., Gray et
al. 1999; Pudasaini & Hutter 2003; Pudasaini 2003). In this sense, there is an enor-
mous application of these equations. (iii) We can form a three-dimensionally curved
and twisted channel using down-slope and cross-slope coordinates x and y, and we
do not necessarily need to superimpose basal topography on top of the reference
topography. In principal, it is thus possible to model a given channel or avalanche
gully by considering its talweg and by choosing 6 appropriately as a function of
the down- and cross-slope coordinates. These are considerably new contributions in
the model equations which are crucial to describe the complete motion of avalanch-
ing debris flows in curved and twisted channels and mountain terrains in a more
realistic manner.

3. Numerical techniques

The avalanche equations (2.1)-(2.3) comprise a nonlinear hyperbolic system. Shock
formation is an essential mechanism in granular flows on an inclined surface merg-
ing into a horizontal run-out zone or encountering an obstacle when the velocity
becomes subcritical from its supercritical state. To produce more accurate and
physically reliable solutions of strongly convective nonlinear hyperbolic equations,
such as ours, it is therefore natural to apply conservative high-resolution numeri-
cal techniques that are able to resolve the steep gradients of the unknown variables
and moving fronts often observed in experiments and field events of avalanches. The
NOC scheme proposed first by Nessyahu & Tadmor (1990) and extended to higher
dimensions by Jiang & Tadmor (1998) is implemented to solve the model equations.
This is a high resolution shock capturing scheme. Necessary backgrounds and full
details of this method can be found in diverse literature (see, e.g., Harten 1983;
Harten et al. 1986; Yee 1987; Nessyahu & Tadmor 1990; LeVeque 1990; Kroner
1997; Jiang & Tadmor 1998; Tai 2000; Toro 2001; Tai et al. 2002; Pudasaini 2003).

Essentially, this scheme requires the system to be written in terms of conserva-
tive variables, which are the avalanche thickness h and the depth integrated down-
and cross-slope momenta, m, = hu and m, = hv, respectively. With the vector of
conservative variables, w = (h,m;, m,)T, the model equations (2.1)-(2.3) can be
rewritten in conservative form as

ow  Of(w)  Og(w)
ot + Oz + dy

= s(w). (3.1)
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The downslope and cross-slope momentum flux vectors f and g and the vector of
the source terms s are given by

My My 0
f=| m2/h+B.0%/2 |, g= MMy [h , s=| hsgy |. (3.2)
memy [h m2/h+ Byh? /2 hs,

The terms 8, and £, defined in (2.4) incorporate the extending and contracting
states of the avalanching mass through the active and passive earth pressures.
Similarly, the source terms s, and s,, described in (2.5) and (2.6), are of crucial
importance as they include the total driving force generated by gravity, friction,
curvature, torsion and local details of the basal topography through its gradient
terms. They jointly determine the dynamics of the flow.

4. Avalanche motion down curved and twisted channels

Our main intention while developing the avalanche theory of section 2 was to be able
to include the simultaneous effects of the curvature and torsion in the dynamics of
an avalanching mass over generally curved and twisted mountain topography. One
might expect that there must be not only the effect of curvature but equally also
that of torsion on the entire dynamics and the deposit of an avalanche when it slides
down over a curved and twisted natural terrain. The model equations (2.1)-(2.3)
should be able to predict the flow of an avalanche over a non-uniformly curved
and twisted channel in which the cross-slope curvature (or the channel width) may
equally be varying. This section is devoted to the numerical simulations of such
flows, their physical explanations and analysis over such topographic configurations.
The main target is the analysis of the joint effects of curvature, torsion, cross-slope
curvature (i.e., the channel width) and the “centrifugal” force in the dynamics of the
avalanching body down more general channels and topographies. This is an entirely
new aspect in the field of avalanche research. On the one hand, the simulations,
which we are going to present in the sequel, will disclose the unknown physics and
will discover some fundamental insights of the avalanches, and thus allow us to
judge about the applicability of the new-model equations that we have presented
in section 2. On the other hand, they will open a wide spectrum of possibilities
for the practitioners involved in the hazard mapping, risk management and public
safety. This, then leads to the implementation of our theory to realistic mountain
topography together with GIS elevation data of some specific mountain sub-regions.

Several numerical simulations of avalanching flows from simple to complex to-
pographies incorporating curvature as well as torsion of the topography demonstrate
fundamental and physically interesting and practically applicable results. The new
theory and its numerical simulations makes it possible to answer the questions re-
lated to the flow of avalanching debris through strongly curved and twisted channels
and opens enormous possibilities of applications. In principle, the theory can be ap-
plied to any kind of topography - from a simply inclined plane to very complicated
arbitrarily curved and twisted channels in industrial as well as geophysical flows
down mountain valleys from initiation to the deposits in the run-out zones.
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(a) Flows through uniformly curved and twisted channels

As an example, we consider a helically curved and twisted channel. This is an
academic test example, but there are many industrial applications of granular flows
in process engineering scenarios where such flow configurations are practically used.
For this reason, we consider a helix as a master curve so as to form a helically curved
and twisted channel. Let us consider a circular helix described by

R(¥) = (Acosd, Asin}, —B?Y), (4.1)

where 9 is the azimuthal angle. The arc length, curvature, torsion and pitch of the
helix are given by

o= (A2+B%)"0, k=A) (A2 + B?), r=—B/ (A>+ B?), P=21B, (4.2)

respectively. Based on the master curve (4.1) a helically curved and twisted chan-
nel is formed. The lateral section of the topography is the intersection of a plane
perpendicular to the talweg of the channel and the channel itself. Therefore, this
section is a circular arc, but note that in the following considerations the curvature
of this arc changes with respect to the width of the channel while dealing with
variable channel widths.

One may expect that the flowing granular mass will deviate continuously out-
ward from the central line (i.e., the talweg) of the channel due to the radial accel-
eration induced by the slope-fitted curvilinear coordinates that rotates and moves
according to the curvature and the torsion of the bed topography. Figure 2 displays
thickness contours of an avalanche sliding down through a helically curved and
twisted channel with uniform curvature and torsion given by (4.2) and a constant
cross-slope channel widthj. The parameter values are: A = 13, B = 13, so that
the channel is inclined with the horizontal at 45°; the radius of curvature and the
radius of torsion are each 26, and the internal and bed friction angles are ¢ = 33°
and § = 27°, respectively. The radius of curvature in the cross-slope direction is
zr = 96. The mass held by a hemi-spherical cap centered at (23,0) with radius
6.5 is suddenly released with zero initial velocity. These contours are plotted at the
time steps 12, 18,24, 29, 31, 33, respectively. All quantities are non-dimensional. As
time increases, the avalanching mass is getting less spread laterally, but, it is rapidly
moving outwards from the center line of the channel. The speed of the front is much
larger than the speed of the tail. This means that the body is accelerating rapidly
down- and out-ward of the talweg of the channel. Such behaviour of the deforming
mass is the joint effect of the curvature, torsion, and the radial acceleration that
is modelled in the theory (equations (2.1)-(2.3)) through the gravitational accel-
eration components g, g,, 9. and the net driving force components s,, s,, which
include the curvature and torsion of the talweg, bed topography and the cross-
slope curvature of the channel. The mass is always extending and accelerating in
the down-slope direction, because the channel does not merge into transition- and
run-out-zones. In the sequel, we will deal with the cases in which the transition and
run-out zones are included in the geometrical part of the model.

t All figures shown for helical chutes are geometrically distorted. The graphs are vertical pro-
jections of the chute and granular heaps whose circular-annular geometry are stretched to become
straight. Thus, a segment of the annular ring becomes a rectangle of which the top edge is the
chute outside and the bottom edge the chute inside boundary. This graphical representation is
choscn because it is relatively casy to program.
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Figure 2. The height contours of an avalanching mgtion in a helically curved and twisted
channel with uniform curvature & torsion and a constant circular cross-slope channel
width. The planc rectangles arc in reality helically curved and twisted in the # direction
and circularly curved in the y direction.
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(b) Awvalanching flows through non-uniformly curved and twisted channels

In reality channels may be arbitrarily curved and twisted with variable cross-
slope curvature and channel width. Another interesting aspect is the final deposit
which is the ultimate and very important item of avalanche dynamics, because the
masses neither can always be flowing nor be hanging on the steep slopes. The ge-
ometry must play a crucial role to make the body stand still in the valley. The
settlement of the mass is directly related to the geometry of the bed topography.
The concave curvature of the mountain side increases the bed friction and conse-
quently forces the avalanche to slow down and eventually come to rest. Therefore,
to achieve a deposited mass we must be able to include the run-out zone into the
bed topography of the model. In this section we will present avalanche simulations
through more general channels with different run-out zones.

(i) Variable pitch
One geometric model is such that the pitch defined in (4.2) can be modified as

B07 OSxSxU
2
B(x) = BO(“’T“”)  m<z<an, (43)
Ty — Tf
0, T 2> Ty,

so that prior to the left end point , z;, of the continuous transition zone, the chute
is exactly the same as that used in the previous subsection. However, there is a
continuous decrease of the pitch from z; to x,. Then, for z > z, the pitch is always
zero, and thus, the subsequent channel is forming a channelised circular run-out.

Avalanche simulations for this case are presented in Fig. 3. The chosen param-
eter values are as in Fig. 2, and By = 13,2; = 300 and z, = 500. The first panel
corresponds to the last panel of Fig. 2. Therefore, the deformation is presented
mainly after the avalanche enters the transition zone. Since the pitch of the channel
is continuously decreasing for & > x;, from t = 43 onward, the granular mass tends
to turn smoothly towards the central line of the channel. Corresponding to the
decrease of the pitch, the inclination angle of the chute with the horizontal plane is
also continuously decreased. Ultimately, the channel merges into a horizontal cir-
cularly curved channel, thus forming a gully-type channelised run-out zone. After
t = 33 the sidewise pressure from the channelised bed topography exceeds the force
due to radial acceleration. This leads to a continuous rotation of the body towards
the center of the channel. This sidewise pressure is so strong that after ¢ = 63 the
mass crosses the talweg of the channel and heads towards the opposite side of the
channel. Finally, the body comes to rest at time ¢ = 75.

(ii) Variable curvature and torsion

Next, consider a channel of which curvature and torsion are redefined with the
new expression for A in (4.2) as

AOa 0 S x S zy,
A(x) = Agexp[(x — 21)?], <z <y, (4.4)

Agexpl(z, — )], x>,
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Figure 3. The height contours of an avalanching motion down a helically curved and
twisted channel with variable pitch and a constant circular cross-slope channel width.
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where a is an exponent that determines the intensity of decrease of the curvature
and torsion. For the simulations, we have set a = 1. The other parameters are the
same as before with Ag = 13. Equation (4.4) tells us that the radius of curvature
and the torsion of the channel increase rapidly as the arc-length z becomes larger
than z;. Before this transition point, the channel has uniform radius of curvature,
torsion and pitch. This increase of the radius of the curvature and torsion forces the
channel quickly to merge (approximately) into an increasingly less curved horizontal
channel. This horizontal portion of the channel also forms the run-out zone for the
avalanche.

The results of the avalanche simulation for this configuration are presented in
Fig. 4. There is a great difference in the avalanche motion between Figs. 3 and 4,
specially in the run-out zones. For the present case, since the radius of curvature
and torsion increase rapidly from z = x;, the avalanche quickly turns back to the
central line of the channel and suddenly comes to rest, much earlier than in Fig. 3.

The differences manifest themselves for ¢t > 48. In particular, for ¢ = 58, the pile
in Fig. 3 has left the transition zone by more that half of its mass, whereas it is
still almost inside the transition zone in Fig. 4. This can physically be understood:
The increasing radius of curvature of the channel axis in the transition zone for
case (ii) reduces the local slope angle of the channel axis much faster than for case
(i), so that within the transition zone of case (ii) the avalanching mass encounters
deposition-prone conditions quicker than in case (i). Comparing the deposits for
t > 58 in the two figures shows that the run-out distance of the avalanche mass is
greatly affected.

(iii) Decreasing pitch and variable channel width

Real channels may be diverging or converging (with respect to their chan-
nel width or cross-slope curvature) along the down-hill direction. Therefore, the
avalanche theory must be able to deal with more general channels and natural
valleys or gullies with generally varying cross-slope curvature. At this point, we
simulate the avalanche motion in a channel of which the pitch is defined by (4.3),
as for case (i), but now we vary the channel width starting from its left boundary
of the transition zone at which the pitch starts to decrease. This can be achieved
by defining a channel which merges continuously into an open flat run-out zone
according to

y/z2T, 0 <z <,
O(z,y) =4 (y/er)f(x), o <z, (4.5)
0°, T2 Ty,

where z7 is the distance between the master curve and the talweg in the upper in-
clined part of the channel (hence a constant) and f(z) = (1 — (z — z1) / (z — 71))°.
Thus, the continuous transition of the parametric function 8 from its higher value
(y/zT) in the upper part to its zero value in the open run-out zone constitutes a
required three-dimensional channel which has variable pitch and variable curvature
both in the longitudinal as well as in the lateral direction. Figure 5 depicts the
contours of the avalanche motion from its transition to the open run-out zone. The
graphs describe the fascinating deformation of the avalanche. Although the pitch is
decreasing, after reaching the transition zone the avalanching body is heading radi-
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Figure 4. The height contours of an avalanching motion in a “helically” curved and twisted
channcl with decreasing curvaturce and torsion and a constant cross-slope channcl width.

Article submitted to Royal Society



Rapid avalanches through general channels

-50

50

|
100

|
150

|
250

400

501

50

|
100

|
150

|
200

300

50

100

150

200

250

300

350

50

100

150

200

250

300

350

-50

50

1
100

1
150

1
200

1
250
r

300

1
350

400

1
450

500

15

70

75

Figure 5. The height contours of an avalanching motion in a “helically” curved and

twisted channel with decreasing pitch and increasing cross-slope channel width
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Figure 6. The height contours of an avalanching motion in a “helically” curved and twisted
channel with decreasing curvature and torsion and increasing cross-slope channel width.
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ally outwards of the flat run-out zone until it comes to rest close to the outside edge
of the chute. The main mechanism for this is that, as soon as the mass enters the
run-out zone the radial acceleration decreases rapidly, but, since the chute is flat-
tening in the cross-slope direction, the decreasing radial acceleration must keep the
mass further and further away from the center line. The direction and the process
of the deposition is in conformity with our physical intuition and expectation.

(iv) Decreasing curvature & torsion, and variable channel width

A further interesting geometrical model is a channel whose curvature and torsion
decrease from the beginning of the continuous transition zone as described by equa-
tion (4.4). The channel opens and merges continuously into the horizontal plane
as described by (4.5). This case is more important in the geophysical applications
because curvature and torsion generally decrease as one enters into the horizontal
run-out zone of a mountain valley. The avalanching motion from the transition to
the run-out zone in such a channel is presented in Fig. 6. The principal mechanism
for the deformation and the deposition of the mass is analogous to case (iii) (i.e.,
Fig. 5), but it stops quite earlier in time and at a shorter run-out distances than
before. Given the results of cases (i) and (ii), this was to be expected.

5. Concluding remarks

We presented and applied a new model describing the flow through curved and
twisted channels of a cohesionless mass of granular materials. We are now able to
include the simultaneous effects of curvature and torsion of the topography system-
atically in the avalanche motion, which could not be achieved by earlier models.
The applicability of the present model equations is, therefore, much broader than
in previous cases. The advantage of this formulation lies in its flexibility of appli-
cation. Analysis of the motion of avalanches in channels with different cross-slope
curvatures and widths is now possible. The flow down an inclined surface or within
a channel with its axis in a vertical plane which may be curved can be described.
The flow down complicated mountain valleys with arbitrarily curved and twisted
talwegs and bed topographies can genuinely be predicted by these model equa-
tions. Thus, the theory provides an entirely new direction in the field of avalanche
and debris flow research. It also opens a large spectrum of applications in different
geophysical problems connected with the use of GIS and digital elevation data.
To avoid any spurious oscillations and include naturally induced shock phe-
nomena, into the solution of the nonlinear hyperbolic model equations, with pos-
sible discontinuities in the unknown variables and coefficients, we implemented
two-dimensional high-resolution Non-Oscillatory Central shock-capturing numeri-
cal schemes with Total Variation Diminishing limiters. One of the most basic and
fundamental questions related to the new theory is: are these model equations re-
ally able to predict flows in chutes and channels which simultaneously incorporate
curvature, torsion and the cross-slope curvature effects of the bed topography? To
answer this question, several numerical tests were performed for avalanching masses
down curved and twisted bed topographies. Uniformly and non-uniformly curved
and twisted channels as well as channels which incorporate continuous transition
zones merging into the horizontal run-out zones are considered. Both, confined and
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unconfined transition zones with constant and variable inclination angle of the to-
pography are taken into account. Computational findings clearly demonstrate the
combined effects of curvature, torsion and the radial acceleration associated with
the bed topography. Such sophisticated studies have not been carried out before,
and it is possible here only with the new modecl cquations.

This research was supported by Deutsche Forschungsgeminschaft through the project
Hu 412/33-1: Avalanche Dynamics in Complez Topography. This manuscript was
written while KH was a member of the programme Granular and Particle Laden
Flows at the Isaac Newton Institute at Cambridge University, UK and while the
authors were in the satellite workshop at Bristol organised by INI.
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