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Abstract. We consider a system with two infinite-buffer FCFS servers (of speed
one). The arrival is formed by three independent Poisson flows Z;, of rates A;,
7 = 0,1,2, each with IID task service times. The tasks from Z; are directed
to server 1 and from Z» to server 2 (dedicated traffic). The tasks from =y are
directed to the server that has the shorter workload in the buffer at the time of
arrival (opportunistic traffic). We analyse the large deviation (LD) probabilities
for the virtual waiting time in flow =, in the stationary regime.

1. Introduction. The description of the results

1.1. This paper focuses on queueing systems with dynamic routing, in particular
on large deviation (LD) probabilities of a long delay in the stationary regime.
In the past, various problems of heavy load in systems with dynamic routing
were investigated in [5], [6], [7], [8]; see also the literature there. In particular,
in [5], [6] a system with several servers was studied, with different speeds and
a single discretionary flow where all tasks are directed to the least busy server
(a GI/GI/s/oo load-balanced queue). In [7], [8] a system with two servers was
considered, with different speeds and three Poisson flows, two dedicated and
one discretionary, with exponentially distributed service times (a M/M/2/co
load-balanced queue).

Here, for the first time in the literature, LD probabilities are analyzed in a
system with non-exponential service times. We consider a model with two
servers and three Poisson flows with a general distribution of service times (a
M/GI/2/c0 load-balanced queue). We only discuss systems with equal server
speed and do not consider LD probabilities for queue lengths (where the answers
can be different).



There is also novelty in methods used: we introduce an auxiliary system where
the discretionary flow is partitioned between servers in some proportion, regard-
less of the delays. We then determine a ‘genuine’ proportion which occurs in
the original system in the stationary LD regime.

It is well-known that for a standard M/GI/1/oo FCFS single-server system
(with server speed one), under the non-overload condition AES < 1, the LD
asyptotics of the probability of a large workload in the stationary regime is
expressed via the rate function

I(d) = do*, (1.1)
where 1
I(d) = lim %log P(W > dn), d > 0. (1.2)

Here W stands for the workload (virtual waiting time) at a fixed time, 8* > 0
is the positive solution to the equation

0% = AMep(87) - 1), (1.3)

where ¢ is the Laplace transform of a random variable S that is distributed as
the service time of the tasks,

©(0) = Ee?S, (1.4)

assuming that ¢ is defined on some positive interval and takes all values in
[1,00) (although it may not be defined on the whole positive half-axis Ry =
[0,00)).(See, e.g. [1], [2] and the references there.)

REMARK 1. For a single-server system the optimal LD trajectory can be pre-
sented on (t, W) plane (where ¢ is the time and W is the workload) as a segment
of a line through the origin, of slope A¢'(6*), up to its intersection at the point
(T, T + d) with another line, through the point (d,0), along the angle v = 7 /4,
where T is defined by A/ (6*) = (T + d)/T.

1.2. As was said above, we focus on a system with two infinite-buffer FCFS
servers of speed one. The arrival in such a system is formed by three independent
Poisson flows Zg, =1 and 23, of rates A;, i = 0, 1,2, each with IID service times.
Flows Z; and =, are dedicated: flow =; is directed to server 1 and flow =, to
server 2. Flow Zg is discretionary: its tasks join the queue with the shorter
workload. We denote by S the random variable that is distributed as the
service time in flow Z;, the Laplace transform of S is

0:(8) = Eef57. (1.5)
We assume that functions ¢;, i = 0,1, 2, are defined on some positive intervals
and take all values in [1, c0).

The tasks from Z; are directed to server 1 and from =5 to server 2 (dedi-
cated traffic). The tasks from =, are directed to the server that has the



shorter workload in the buffer at the time of arrival (opportunistic traffic).
The non-overload domain (where 3 a unique stationary regime) is A;pf < 1,4 =

1,2, Zi:O,l,Q Aiph < 2.

We analyse the LD probabilities for the delay of a virtual task (of zero length)
put into the flow Z; at some not random time. In our problem it is

-1 .
Io(d) = lim —log P(W™™ > nd), d > 0, (1.6)

n—oo N

where W™in stands for the min [W(), W], Here W is the workload in the
buffer of server ¢ (at the fixed time), i = 1,2.

Our aim is to give an explicit expression for function d — Iy(d). It is identified
in terms of solution ¥ to (1.7) and the solutions 8;,6y ;,7=1,2, j =3 — 4, to
(1.8),(1.9),

9=: ( > i) - 1)) , (17)

i=0,1,2
0; + 60,5 = Xi(pi(8:) — 1) + Aj(p;(0o,5) — 1) + Ao(9o(o,5) — 1), (1.8)
and
Xipi(05) = X;95(60,5) + Xowy (0o,5), (1.9)
where
i=1,2, j=3—i
THEOREM 1.

Let 9 be a solution to (1.7)
A. In the case

Qoo (9) > | Auepy (9) — Aah (9)], (1.10)
Iy(d) has the form
Iy (d) = 2d9, (1.11)
B. In the case
A2 () > A1y (9) + Aowo V), (1.12)
Io(d) has the form
Io(d) = d(02 + 60.1). (1.13)

where B2, o1 are the solution to (1.8),(1.9) withi =2, j = 1.
C. In the case
A1 (9) > Aaph (9) + Ao (9).- (1.14)

I(d) has the form
Iy(d) = d(61 + 6y,2), (1.15)



where 8y, 65 are the solution to (1.8),(1.9) withi=1, j =2

In general case on the set where the equality in (1.10) is attained the derivatives
ol
o\

Observe that the expressions (1.7) and (1.11) are similar to (1.1),(1.3)

are discontinues.

2. The large deviation calculus

For the large delay problem in a one-server system with a Poisson flow the
optimal LD rate function I(d) was presented by (1.1). In our problem the
input flows to the servers are neither independent nor Poisson. To find I we
consider the auxiliary systems where there are two servers and two independent
Poisson flows to these servers. Using the large deviation principal for the Poisson
processes of the auxiliary system (see [2]) we find the optimal LD trajectories
for achieving the large workloads in both servers. It can be shown that the
probability of large workloads in the initial and auxiliary systems coincide.

Next we describe the auxiliary system. Consider a system with two servers and
two Poisson flows ZF and 2, that are directed to the first and the second server
correspondingly. Let the rate of the flows be

M =X+ad, and M =X+1T-a)), 0<a<l,

then the Laplace transforms of the service times are

1 1

Y ran A A d A 1 — @)Xowo)-
A1 +Oé/\0( 1P+ @ 0900) an /\2+(1_a))\0¢0( 29024‘( a) O‘PO)

Here all ¢;, and A;, 2 = 0,1, 2, are the same as in the initial problem, the value
of o is presented below.

Let W (t) be the workload at server i of the auxiliary system at time ¢.
Consider the following event A4:
(i) At some moment T both workloads WF (T) > nd.

(ii) The busy periods of both servers during which the workloads W} where
achieved coincide with each other.

For fixed o, 0 < & < 1 we look for

IP(d,a) = lim _—llog P(A). (2.1)

n—oo 1N

ProprosIiTioN 1. For any o under event A the conditional mean wvelocities
of, vf of the WE(t) are equal, vF = vF, i =1,2.

LEMMA 1. If the inequality (1.10) takes place (case A) there exists @ = ap such
that
IP(d, 0p) = 2d0, (2.2)



where ¥ is the solution to (1.7).

SKETCH OF THE PROOF. Let a by fixed. It is sufficient to consider the straight
line trajectorics (for cxample, sce [2]). Assume that at the moment T the
workload of both servers is d then vF = ZX4 (compare with the Remark 1).
Define 6; and 8, by

v = Mg (61) + adog(61) = Aagh(62) + (1 — @) dog (62). (2.3).

The LD rate function that corresponds to such trajectory is

IP(Ta a) = T(gug) (UP91 + UP92 = A(p1(01) — 1) — ado(po(61) — 1)
1,V2

“Xa(p2(82) — 1) = (1= @)do(0(62) — 1)) ). (2.4)

To find minimum of I (T, ) in T we look for the condition where % =0.

That gives us the equality

01 +62 = Ai(p1(01) = 1) +aro(wo(f1) = 1) + (L —a) Ao(po(62) = 1+ A2(p2(f2) - 1).
(2.5)
Further, there exists a = g such that

wo(01) = po(f2), thus 6; =6,.

Therefore by (2.5) we have 6, = 05 = 9. After straightforward calculations we
get

IP(d) = I (d, a0) = 29d, (2.6)
where ¥ is the single positive solution to (1.7). The value of oy is found now

from (2.3) where #; = 8, = 9. Under condition (1.10) 0<ap<1. A

REMARK 2. In fact %Ia:ao =0.

Observe that if the equality takes place in (1.10) the above calculations give
a=0ora=1.

Next we consider the cases B and C. Let (1.10) be wrong and, for example, let
(1.12) take place.

Consider another auxiliary system with two Poisson flows Zf = Z; + = and
=P = Z,, that are directed to the first and the second server correspondingly.
We are interested again in I¥(d, 1) (see (2.1) where a = 1).

LEMMA 2. If the inequality (1.12) takes place (case B) the rate function has the

form
17(d,1) = d(63 + 65.,) (2.7)



where 65,05, satisfy (1.8) with i = 2, j = 1, and on the 62,001 plane at the
solution-point (05,05 ,) the line along the angle —m/4 is tangent to the curve
(1.8).

P
Observe that in general case as &« = 1 or a = 0 in (2.4) the values of %9—, i =

0,1,2, along the diagonal 8y ; = 62 and along the curve (2.5) arc different.

SKETCH OF THE PROOF Consider equality (2.4) with @ = 1. The condition
OI¥ /8T = 0 gives equation (1.8), i = 2, j = 1. Further, the condition 8IF /0T =
0 uniquely defines 65,65, on the convex curve (1.8) because by (2.3) the line

along the angle —7/4 is tangent to (1.8) at this point, i.e. % =-1. A
2

The case C is considered similar to case B.

PrOOF OF THEOREM 1, THE SKETCH. On (Wi, W) plane in all cases the
projections onto the diagonal Wi = W, of trajectories of flows 2 = =F + =P
and = = Zg + =1 + 2, coincide. Note, that the projections of these flows onto

diagonal Wy = Ws are Poisson flows by itself of intensity 20’172 Ai.

The LD probability for these projected flows to have the delay > v/2dn is equal
to the probability for each of flows Ef + 52P and Eg + =1 + 22 to have the delays
> 2dn .

Further, consider on (W;, Ws) plane the projections of trajectories of Ef , J=
1,2, and =Z;,,4 = 0,1,2 flows onto the line C that is orthogonal to diagonal
W1 = W5. We need to show that the projections on C of trajectories of flows
=F and = bring no contribution to the LD probabilities. Really, as n — oo, and
under the condition that the trajectories reach the line Wy + Wy > 2dn, with
conditional probability tending to 1 the projections of trajectories stay within
the region S : |s| < n®, 0 < b < 1/2, where s is the distance to the diagonal.

Therefore the limit LD trajectories of the auxiliary and of initial flows coincide
and the LD probabilities in both problems are equal. That proves the Theorem.
A

REMARK 3. We have so far discussed LD probabilities for a long delay in flow
Zo. A different problem arises when one considers LD probabilities for the total
(summatory) overload in the system, which may have a different asymptotics.
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