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Abstract

We consider the spatially one-dimensional Savage-Hutter equations for the motion
of a finite granular mass moving down an inclined planar chute, [1]. In a coordinate
system moving with the centre of gravity these equations are given by the system of
hyperbolic partial differential equations (1.1). They admit the Lie algebra; it consists of
the direct sum of the five-dimensional Lie algebra plus an infinite Lie algebra, [4]. We
construct the partially invariant solutions. Then (1.1) is transformed to a linear system
of PDEs by interchanging the role of the dependent and independent variables. Exact
solutions to the Cauchy and Gorse problems can be found via a transformation of the
two linear equations to a single hyperbolic PDE whose Riemann function is expressible
in terms of a hypergeometric function. The theoretical findings are illustrated by
determining the various stages of the motion of a collapsing granular rectangle on an
incline, either free or confined from above by a stationary wall. For large time, also an
approximate solution is given, which serves as a basis for solutions of free avalanches

starting from an arbitrary smooth or non-smooth initial profile.

1. Introduction

In 1989 Savage and Hutter [1] derived a mathematical model for the flow of a finite
mass of granular materials down inclined planes. The model equations involve a height
and a depth averaged velocity as functions of the time and the downslope spatial
coordinate. Later, the model was also generalized to the flow down slightly curved
chutes [2]. A brief summary of the equations with applications to one-dimensional
flows down chutes and in rotating cylinders is provided by Gray [3]. For the flow down
inclined planes the equations have the form

oh  O(uh) _ o 8u+u ou B oh _

_ + _ _ _
o  on ot on on

in which A, u, ¢, n are, respectively, the thickness, thickness averaged streamwise

; 0 (1.1)
velocity, the time and the spatial coordinate. To be precise, 1 is the spatial coordinate

of an observer moving with the centre of gravity of the spreading mass of the granular
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material and beta is a coefficient measuring the earth pressure and takes different values

under dilating and contracting flows. Thus,

stKCOSC’ K:Kact lf‘ %>05 K=K 0 lf‘ _<0,
on on

K oy o =256C7 (1 u\/l—cos2 dsec’d)—1,
n=x-syt’/2, u=0/h-sy,

Q

s, =sing —@tané cos§ if & =const,

in which x, € ,¢, &, in this order, are the physical spatial coordinate, the slope

inclination angle, internal angle of friction and the bed friction angle, respectively, and
¢ 1s the aspect ratio "typical depth divided by typical length" of the avalanche. In the
ensuing analysis, the quantities f3, s, are known and pre-assigned positive constants,
which requires Q and the derivative of u# with respect ton do not change the sign, and
¢ =>0.

The system of hyperbolic partial differential equations (1.1) admits the Lie algebra
which has been shown by Chugunov et al. [4] to consist of the direct sum of the five-
dimensional Lie algebra plus an infinite Lie algebra. With its aid, all similarity
solutions of equations (1.1) were constructed in [4]. However, all the families of
similarity solutions do not exhaust all possible exact solutions.

In the present work, our intention is the finding of some exact solutions different
from the similarity solutions, but with physical relevance and with a potential to be
reproducible by experiment.

The first example is the spreading of a pile, initially covering a finite interval and
having constant height. Its early time response is a pile with the same height but
decreasing width and with shoulders that spread more and more until the pile is eroded
from the left and right to zero width, i. e., until the left and right edge points meet, see
Fig.1. For this early phase an exact solution can be found. The construction of the exact
solution for the second phase is possible because the system (1.1) admits the infinite
Lie algebra and can be linearised .

The second problem is the flow down an inclined plane from an initial rectangular

pile of which the upper edge is held constant by a wall. In this case, the lower edge of
the pile erodes as in the previous example, but the erosion of the upper flank is now
different, and the solution must be constructed to satisfy the boundary condition at the

wall, see Fig. 2. This solution is valid so long as neither the two edge points at the free



pile surface have met nor the wall point of the upper eroding surface has reached the
slide plane. The subsequent motion then depends on which case occurs first.
Incidentally, this solution may be solved with an active or a passive earth pressure
coefficient at the upper eroding surface. Different results are obtained in the two cases.
Intuition would advocate for the passive case, but experiments will have to resolve the

matter.

2. Partially invariant solutions
System (1.1) is invariant under rigid translations in the spatial coordinate

Nn'=n +a . The infinitesimal operator

X = % (2.1)
determines this transformation group. Therefore, the surface tangent to the class of
these transformations is given by the equation

F(tu,h)y=0 or h=f(tu). (2.2)
Since the union of equations (1.1) and (2.2) constitutes an overdetermined system if f'is

arbitrary, f must in fact be restricted. Indeed, by substituting (2.2) into (1.1), one finds

U | gAY |
c?tJ{f B(auj ]an 0 (2.3)
as well as

ou of \ou _

Because f depends on ¢ and u, but not on n, equation (2.4) is a quasilinear first order

partial differential equation, of which the general solution is given by
n = ®(u) +ut + Bj@dt, (2.5)
ou

in which ®(u) is an arbitrary function.

If the function f'is known, then (2.2) and (2.5) together determine the functions A(t, u)
and u(t, n ) implicitly. Thus, with the use of (2.2), (2.3) and (2.5) various different exact

solutions can be constructed. Let us examine a series of special cases.



2.1. Classical partially invariant solution
This case assumes that f depends on u only: f=f(u). In the terminology of Ovsynnikov
[7] this case corresponds to the so-called partially invariant solutions. From equation

(2.3), on assuming that ou/on # 0, we deduce

{f—B(Z—f;ﬂﬂ,

of which the general integral is given by

in which C is an arbitrary constant. Thus, knowing f, we infer from (2.2) and (2.5) the

solution in implicit form, namely as

h:[z\l/%+C] . Mm=0w)+(15u+BO). 2.7)

By analogy with gas dynamics one may call this a "simple wave". The formulas

comprise, since C and ®(u) are arbitrary, an entire class of solutions.

2.2.Generalized partially invariant solution
We now return to the situation when f depends on both t and u, but restrict

considerations to u-functions that are piecewise linear in 1. So, we may assume u to
have the form u=w (¢ + p(¢). It can be shown that p(¢) = Cw(t), where C is a

constant. It follows, because (1.1) is invariant under the operator (2.1), that it suffices to

consider
u=o(n. (2.3)
Thus u is affined to n . With this choice a solution of (2.3) for f will be sought by
restricting f to the form
f=0@) +y (. (2.9)
If this ansatz is substituted into (2.3), an identity of the form a+bu’=0 is obtained,
which must hold for arbitrary u; this implies a=0 and b=0, or
¢ +90 =0,y +yo —4py * =0,

two differential equations which possess the solution

0 =C, exp(— jwdt) and y = ﬁ [1 -C, exp(jwdf)r >



in which C; and C, are constants of integration. It follows from (2.2), (2.8) and (2.9)

that 4 and u can be expressed as
h=C, exp(— Imdt)Jr % [1 -G, equmdt)r; u=on. (2.10)

An equation determining ®(#) can now be obtained by substituting these expressions

into the second equation of (1.1). This process yields
o'+ +03[-C, exp(jmdt)H=o. @.11)
which is an integro-differential equation for w(¢). However, with

g0 = exp(jmdr), g'=g(®w(t) ando = g
g

(2.11) transforms into

14 !

g g
g 2g(1-C,g)

which is now a second order differential equation for g. A first integral can easily be

b

constructed and is given by

1 d; ~
1n|g'|=5j g

— +C,,

g(C,g-1)

53 being a constant of integration. The further integration depends upon whether
C,#0o0r C,=0.

1

g-C,

a) C, #0 then g'== C;,

which admits the following solutions

) Jee-Cih+C g +yg-C; |=curc, g
a,) —\/g(C;1 —g)+C2_1arctg /C_lg_g =C,+C,, g<C2_1.
2

b.) If C,=0, then integration of equation for g(?) yields

2

3 3 3
b) Cz =Otheng= EC3Z+§C4 ,

C,C,, C,, C, are all constants of integration and are determined by the specific

problem at hand.
Explicit expressions for # and u are obtained by substituting the relevant relations

into (2.10); the following expressions are obtained:



e
N =y
g g
g>C,'. (2.12)
¢ Cin’ j
gl
g [ 45C,C g’
c, |C)' -
u=— =25,
g g
g<C;. (2.13)
hzﬂ(H C32772 j
g\ 4pC,Cg°
C
u=—rn;
gg
C,=0. (2.14)
2.2 2
hzi[HCs_ﬂ].
g\ 4pCg’

To summarize: If C, >0, then at | g| > C,' the solution (2.12) applies and a;) must

hold; if, however,

g| < C;' , then (2.13) holds together with @ ). On the other hand, if

C, <0Othen at g>0 and g < C,', solution (2.12) with a)) is realized, whilst for C,”

<g<{(, solution (2.13) with a, ) applies.

2.2, Partially invariant solution with respect to the operator X =0/ 0t
It is similarly possible to examine solutions which are partially invariant with

respect to the operator X =0/ 0¢. In this case, the tangent manifold is written as

h= f(n,u) (2.15)
and, thus, the compatibility equation of the system (1.1) takes the form
2
u |- ug+ﬂ(gj +ui20 (2.16)
on ou ou on

and if it is assumed that /' depends only on ,

[f—(u%w(%jzﬂ ~0.

One solution of this equation is easily seen to be f =—(48)"'u’, but it does not
satisfy the condition h>0 that must be met by physical reasons. The other solution must

have the form f = (48)"'(C*> +2Cu) and is best written as



C?+2Cu

f=hu)= i3 (2.17)
Substituting this into the second of (1.1) yields

%+(ui0.5€)2—:{7:0,
which is easily integrated to give

n=w=x0.5C)+d(u), (2.18)

in which ®(u) is an arbitrary function. The formulas (2.17) and (2.18) together define

the solutions that are partially invariant with respect to X=0/0¢ .

3. Exact solutions constructed from the linear system associated with (1.1)
Because the system of differential equations (1.1) admits the infinite Lie algebra

with the basis

X, =Z(u,h)i+T(u,h)g,
on ot

it can be transformed into a linear system by interchanging the roles of the dependent
and independent variables. So, let 7 and Z be differentiable and locally invertible
functions of % and u, such that

t=T(h,u), n=Z(h,u), (3.1)
with inverse

h=H(t, n), u=U(t, n),

Then, the Jacobian determinants

oU OH or oZ
_|ot ot _lon on

J = oU oH|* 0 thenD = or ozl* 0 (3.2)
on 0n ou Ou

must necessarily differ from 0. It is also easy to show that

ou__ 10z oh_10z ow_1or. oh__ 10T 33)
o0 Dok’ ot Dou onm DOk’ on  Dou '

in which we have reverted to the notation u=U, h=H. Using transformations (3.1) and

(3.3) in (1.1), we find



z_or ot
ou ou Oh
(3.4)

oz

——u8l+ﬁ8l:0.
Oh Oh ou

which is linear and in which 4 and u are now the independent variables.
Remark I: In the transition from system (1.1) to (3.4) solutions could be lost for which

J=0. According to (3.2) these solutions must obey

-1
Gh_auﬁtﬁuj u g (3.5)

o aon\en) o
When this relation is used in (1.1) and ou / ot is eliminated, the

following equation is obtained:

ou oh
h— =+ h —. 3.6
on b on (3.6)

Alternatively, the second equation of (1.1) yields, if (3.6) is used
ou oh
h— ==+ ph—. 3.7
ot p ot 3.7)

The last two relations obviously imply the total differential hdu = £,/ fhdh, which

integrates to

2
h :(L—L] : (3.8)
NN

with the aid of which the second equation of (1.1)

n= (% u— O.SCjt + O (u) (3.9)
is obtained. This agrees with the classical partially invariant solution (2.7).

Let us find a solution of the linear system (3.4) by choosing Z according to

Z=ur-¥ (3.10)

ou
(This choice follows an analogous choice made in gas dynamics). If we substitute

(3.10) into the first of (3.4), then

2
T+ha—T=6—l//

3.11
oh  ou’ G40

is obtained; alternatively, the second of (1.1) implies

_Ov
Oudh

+p Z—T =0 provided S =constant.
u

This suggests to choose



_ 1oy

: 3.12
5 on (3.12)
Back substitution into (3.11) yields the single partial differential equation for y
O’y 81//
h — 3.13
ahZ ( )
Once its solution has been found, the functions 7 and Z can be obtained from
1 81//
,B oh’
(3.14)
oy
Z=ul ———.
ou

A series of further transformations identifies (3.13) as an equation from which the

Riemann function can directly be constructed. First, we introduce y=y(%) in the form

y =2 ph (3.15)
and deduce
2
1
0 Y 4 oy & v, (3.16)
oy y oy Ou

Second, we choose

E=u+y, v=u-y (3.17)
and may then obtain (3.16) in the so-called canonical form
2
20w 1 fov _ov_ (3.18)
okov E—-vI o& ov

Third, see [5], we replace by @, defined via
o=y E-v (3.19)
and then obtain
0’w o
oon  4(-

which is the standard final form of the original equation (3.13).

=0. (3.20)

The Riemann function to equation (3.20) has been constructed, see [5], and is given

by

REv.E,) = [ Rt B Lo V“J (21

(& v

where



11, 0.5),(0.5), z ~ ~
F(z > ]_1 ; TR (@), =a(a+1)..(a+k-1) (3.22)

is the hypergeometric function, see [5]. Notice that, if the Riemann function is known,
it is possible to write the explicit solutions for the Cauchy and Gorse problems by using
the formula due to Riemann

(a)R)Mz(a)R)P +(wR), _l ( __R_Jdé (R—— a_R]dV, (3.23)
2 250\ 0 on

where M is the point of the plane (£,v) with the coordinates (&,,v,) and PQ is the arc,

where the function @ and its derivatives are known. If PO does not contain the
characteristics of equation (3.20), then we have the Cauchy problem, on the other hand,
if PO consists of characteristics, then (3.23) defines the solution of the Gorse problem.
Finally, we note that formula (3.23) represents an exact solution of the considered
equation, which is known, once values for the function w(&,v) and its & and v-
derivatives are prescribed along the arc PQ. Therefore, Riemann’s formula together
with (3.21) can be used to construct solutions to different problems.

The next section will list a few applied problems in order of increasing complexity.

4. Physical interpretation and discussions
4.1. Example I: Consider a rectangular pile of length 2A and height 4,, held between

two walls on a straight chute with inclination angle ¢ . Assume that at time /=0 the

upper and the lower walls are suddenly removed. In a coordinate system moving with
the centre of gravity the motion of the deforming sand pile is described by equations
(1.1). It is possible with the help of (2.7) to construct the solution to this spreading
problem. We impose the following initial conditions:
t=0, h=h,, u=0,-I<n<l
with m = J.hod n = 2lh, as the initial mass (or volume) which is a preserved quantity
-1

for all time, see also Fig.1.

10



T

neo-p 7 g A

7

Figure 1: Sketch of the spreading of a granular heap, given in its initial configuration as a
rectangle and at a later time 0<¢<t*.

The construction of the solution to this problem can more easily be understood, if
the characteristics to system (1.1) are determined. To this end, let

n=n(t) 4.1)
be the equation of such a characteristic line. Along such a line the total time derivatives

of h and u are given by

dh oh oh*  du ou ou*

___+_77’ - =
dt ot on dt ot ony

b

where 77 is the uni-variate derivative of 77 (z). With these expressions, equations (1.1)

take the forms

ou y oh du Ou *. Oh dh
S u-my+ == -yt = -1, (42)
on on dt 0On on dt
which, when viewed as linear equations for ou/0n and O0h/0n, can be solved for
these, viz.,
dh * du * dh du
8_u:'85_(u_77)5. a_h:_(U—U)E—hE.

N O N (2 O
Now, along the characteristics, these derivatives are undetermined. This implies that

the numerators and denominators on the right-hand sides must independently vanish.

This implies
. * dh du dh * du
-1 = Bh=0, ) —-h—=0, B——(u-n)—=0.
(u—mn)-p (u U)dt 7 ﬂdt (u ﬂ)dt
The first can be written as
n=ut|pn; (4.3)

the two others, subject to (4.3), reduce to the single relation /f/hdh+du =0 or, after

integration

11



uzx 2@ = const . (4.4)

So, we have just proved that the expression (4.4) remains constant along the
characteristic lines. However, the first of (2.7) can also be expressed in the form (4.4),
viz.,

ux2\ph=-2C,pis const, 4.5)
and this equation is valid for all 7 for which the heap exists. Thus, (4.5) is valid, in
particular on the lines n=7.(f) and n=7,(t) (and similarly for n=7"(¢) and
n =n"(t)), which, respectively, denote the eroding edge and travelling foot points of
the spreading granular mass, see Fig. 1. In terms borrowed from aerodynamics, 7.(¢)
and 7°(¢t) are also called the right and left Mach fronts, respectively. Finally,
comparing (4.4) and (4.5) for 7.(¢) and n"(¢) yields C = —/h, , since h=h, and u=0 at
these point. Now, since u+2,/fh remains constant on these lines, they are

characteristics, and therefore in view of (4.3)

daz* =u—/ph =—ph, ,since on 1. h=h,, u=0 and 7. moves in the negative

direction;

d . : b e
o _ N Bh =u ,since on 1, h =0 and 7, moves in the positive direction.
t

Let us find u at the foot point 77,, where 2=0. From (4.5) with C = —\/Z we find
u=2ph, —2:/Bh, valid Vhe[0,h,], (4.6)
which for 4=0 yields the desired result: u|% = 2\/ﬂ_h0 . Integrating the equations for
n.andr, and using this result, we find
n.=A—ph,t, 4.7)
Ny =N, +2/fht. (4.8)
where A.,A, are constants of integration which must be equal, since 7.(0) =17,(0) =A.

There still remains the determination of ®(u). The expression follows from the second
of (2.7), which, with C = —\/E and when subject to (4.6), takes the form

n = (2 By — 2 )+ 2 By — 3Bt 4.9)

When h=h, or h=0, this equation must coincide with (4.7) and (4.8), respectively, from

which we deduce

12



dO0)=N and  D2,/fh,)=A for Vh,.
This last condition implies

d(u)=A. (4.10)
Substituting this into (4.9), solving the resulting equation for /4, and copying u from

(4.6), we find the solution at the right shoulder of the heap in the form

2
h :L(z Bh, _77__)‘) ’
98 t
7. <1 <1, @10
u=2p G, - Jh),
where 7. and 7, are given in (4.7) and (7.8).
An analogous analysis, conducted for the left shoulder, yields
2
hzﬁ(z Bh, +'7:)‘J ,
n’<n<n s (4.12)

u=2\/ﬁ(\/h_—\/a),

where 7° = —A—2./Bh, t and " =N+ ./ Bh, t . By substituting the first of (4.11) into

the second of (4.11) and the first of (4.12) into the second of (4.12), it is also possible to

write the velocities in terms of the variables 77 and 7, namely

2 —A
uzgﬂ,/ﬂh0+777} n.<n<mn,,

2 +A .
u=§(—\/ﬂho+"7), n’<n<n.

With the construction of (4.11) and (4.12) the early time solution of the posed

(4.13)

problem is complete. We note also that the examined problem is similar to the dam
break problem in the inviscid shallow water equations. Furthermore, the constructed

solution must satisfy the global conservation of mass, and indeed it does so, since

*

n T Ty
M = Ihdﬂ + jhodn + jhdn = 2h,A, which is constant.
: .

n° n

Obviously, the solution can only be correct as long as the left and right eroding
edges do not meet. Denoting this time by ¢*, the solutions hold for 0<¢<t*, where ¢*

follows from the equation

7' (6)=17.(6) or A= [yt = [t —A,

13



implying that
t = A . (4.14)
Phy

Let us next try to find the solution for times 7> ¢". Now, the new Mach fronts move

as reflected waves away from the position 7 = 0. To describe their coordinates in time,
we use the same symbols as before: 7,(¢) for the Mach front to the right side 7 =0 and
n"(¢) for that on the left of 7 =0. Obviously, 7.(f) moves in the positive and 7" (¢)
in the negative 7 -direction. The motions of the shoulders to the right of 7.(¢) and to the
left of 7°(¢) are described by the same solution principle as for t<t". To construct
them, we only must recall that the functions#.(¢)and 7 (¢) are characteristics. The

initial value problems for their motion follows from the condition 7" (t" ) =7.(t") =0.

Therefore
dn, :
T _ ., 4 [n; di:u_ [
dt . dt
n.=0,t=t. n'=0,t=t.

(Note that the signs in front of ./fh are opposite to those in equation (4.6) because

now, the Mach fronts move in the opposite directions). Inserting for u and h the
expressions in (4.11) and (4.12), respectively, now yields

dn. 4 —— n-»\ dn” 4 — n+A
dt 3ﬁ° 3¢ dt 3ﬂh0+3t

7.=0,t=t". n =0,t=t

and straightforward integration subject to the initial conditions yields
t 1/3
N.(t)=N= 2 Bhyt —(A+2 ﬁhot*)(_*j ) t>t;
t
(4.15)
t 1/3
7" (t) + A= =2/ Bhyt + (N +2 ﬂhot*)(—*] , =t
¢
These two solutions must be patched together with the thickness, 4, and velocity, u,
profiles in the interior of the interval (77*,77*). To construct this interior solution,

equation (3.16) for the function  must be solved. So, let us first determine the values

for w on the above characteristics. It follows from (4.11) that the value of

u+2,/ph =4 is constant on the first characteristics, and A =2,/fh, , according to

(4.11). Similarly, (4.12) implies that u—2,/ph =-2,/ph, =—A is constant on the

14



second characteristics. According to (3.15) and (3.17) these expressions in the plane

(f,v) take the form &=A1 and v =-1; these are straight lines parallel to the
coordinates v and &, respectively, and form the characteristics of equation (3.20).

Next, let us calculate dy /dhon the characteristics 7. and 7 respectively. Using
(4.11) and (3.14) and recalling the definitions of 7' and Z, yields

N

in which the very last step follows by substituting ¥ and 7 from (4.11) and (4.9),

8!// Ol//du 6(//
oh 8u dh  Ohl|,

v
dh|,

respectively. Thus, on the characteristics £ =4 (7 =n.(t))

(2_(}/1/ = g or 1//|§:i =2M/ fh + const.

Analogously, on the characteristics v =-4 (n=7.)

‘Z_Z = )\\/g or 1//|V:_i =2\ fh + const.

The constants of integration are both the same, but may be set to zero, since ¥ has

potential character. Therefore
w|., =2Nphand y|_, =2\/pBh. (4.16)
Now, from (3.15) and (3.17) we deduce 2@ =0.5(¢ -v); so,
v ., = 05NA-n), v =05MA+¢&)

and in view of (3.19)

o) = 0.5MA-v)"2, @], =05NA+&)7. 4.17)

From these, the derivatives along the characteristics are given by

9o _3a-w, 29 G (4.18)
on 4 oL|,_, 4

)
Relations (4.17) define the boundary values of @ along the characteristics & =4 and
v =—A for a solution in the rectangle [0 <& <A ,0<v <—-A]. This defines a Gorse

problem, of which the solution can be constructed with the Riemann formula (3.23).

Recalling (3.21), (3.22) and the properties of the hypergeometric functions [5], we have

15



7, :F[ L A=&)0v - vo)J R =F(1
= 2°2’ (& =V )(A=V) =4 2

1, E=E)A=m))
2’
OR _1 (& -v)(v=-vy) F( 3, -8 mj

(& v E+ )

05 4 (& —vo)é- (S0 —vo)(&
AR _1 (£-4)E-7) F[ 2(5 £V - vo
ov 4(680_‘/0)(5_ )2 2 2 Vo)(f
R|§§0—l R, —R|¢¢0—1 RQ:R|§=/1=1.

v=v, v=v,

Using these in Riemann formula, we have
4 f "
F OG0V = G+ )+ (A=vg) = [0, 60 v ME = [@,(v,E0, vV (4.19)
& -

where now

= 1/2 (5 50)( 4 Yo
@, (Edov) =S (E+ D) F(z e _VO)(§+/1))+

L1 v+ ) F( 2(5—@)(%—%)}
TG e T (22T G v ) S

Knowing the function o it is easy to write, using (3.17) and (3.19), the expression

for y in the coordinates (u, y):

)\ 3/2 3/2
w(u,y)=4@{<u+y+z> +(y+A—u) —ICD(éuy)dé jcb (vuy)dv} (4.20)

ytu

here
(E—u—y)~A-u+y)
(0] =— A F 1,
(Eu,y) <§+) (22 (E+ A2y ]

Ll ru= y)(u+y+z)F[ 2(§—u—y>(—z—u+y)}
Y e h 2’2 (£+ )2y

(DZ(V,M,)/) = CDI(—V,—M,y).

Formally this completes the construction of the solution to the posed problem: Via
differentiation the functions 7 and Z, defined in (3.14), can be derived. However, the
expressions that are obtained are very complicated and difficult to implement

numerically. Therefore, it is desirable to construct an approximate solution to the

considered problem.
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4.2. Approximate solution of the problem.

In order to construct an approximate analytical solution for y, let us use the

integral method proposed in [6]. According to this method, the profile of the function to
be determined is preselected except for a free element, which is determined by

integrating the partial differential equation for y in one coordinate direction and thus

deducing an ordinary differential equation from which the free element can be

determined. Since the evolving profile is symmetric with respect to =0, A(7n) = h(-n);
s0, (3.16) implies that y is also symmetric with respect to u. Therefore, we choose as
profile for the function y the polynomial

u
(A=)

(notice only the even powers in o). The coefficients b and c¢ are determined by the

w=a+bo’+co’, o=

values which v and dy /du take on the characteristicu= A4 -y (o =1). Using (3.11),
(4.11), (4.15) and (4.16), one may easily deduce

ov ={\ﬁ_1j. (421)
s y

Using this, the coefficients b and ¢ are obviously functions of y and so

=N +(a-N)(1-0?) —%){\/%—1](1 —y)o*(l-0?), (4.22)

in which a(y) remains still unknown, but the derivatives are

4 _Ha-N) ) _ 2
A{\/7 1]0‘(26 i) —20(1-07), (4.23)

oy _ oo Ma=N) o o MAEY A ) L
ay—)\Jr(a&—)\)(l o) ) o (1 (7)+2( 2 \/; lja (1-07)+

+){\/Z—1J62(20'2 -1).
y

Here & is the derivative of the function a(y). To determine this function, consider the

u=A-y -

7

2

partial differential equation (3.16) for w and integrate it over u fromu=0tou = 4 -y
(corresponding to an integration from 7=0to 7" (t)). This yields
d’v. 14V
—+—
A’y dy

= 3\ (4.25)

in which oy / 8u|u= , = 0has been used and where

17



A=y
Vo= [wdu . (4.26)

0

So, ¥(y = A4) = 0. The solution of (4.25) subject to this initial condition is given by
V:%)\(f—yzhcm%. (4.27)

Its constant of integration will be determined lateron. However, when substituting

(4.22) into (4.26), the relation
V=%[8a+ﬂ)\+6)\y+)\ i(y—/l)} (4.28)
Y

is obtained. Comparison of the two different expressions for V" allows determination of

the function a(y). Indeed, from (4.27) and (4.28) we obtain

A(y) = 8a(y)——ﬂ)\ = )\+)\\/7(/1— +2C (4.29)
from which
1|21 A A 30C (1 1 y
=—| A=A =1+ = [+ —| —+ In= 4.30
A 2{2 y( yj l—y[y /I—yn/lﬂ 430

is derived. The expression (4.29) completes the approximate solution, except that the

constant C is still not determined. To this end, consider the first of formulas (3.11) in

the form
jo Loy _20y (4.31)
B oh y oy

If (4.24) 1s substituted in this formula, then the resulting expression describes implicitly

the height 4 as a function of # and u. At the centre (77=0) one has u=0 (o =0) due to
symmetry, and 4 assumes its maximum value here. Furthermore, the limit y — A4

corresponds to & — h,, and & —> h, is also assumed everywhere in the region [7.,7"]

astt—t¢ . Thus

y—=>A (h—>hy), t—>t = A 2—)\

N

This condition can be used to find the constant C. Indeed, from (4.31) we conclude that

2N 20y g L (17 +152Cj or
2 y2Ey Oy |, 42,J—>1 2 A

C=052. (4.32)
This value determines A(y) and Ig‘(y) in (4.29) and (4.30) which now become
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1522\
2(A-Yy)

2
1§(y)=l 2)\—)\ 4 l+i SAA + ! In?
21 2 y y A-y\y A-y 4

They fix w and its derivatives in (4.22)-(4.24). The approximate solution of the

41 21 A y
AY) =N+ A+ A |[Z (A=) + InZ
(») , 77 y( y) no

original problem then follows from the application of (3.11); what obtains reads as

follows:

—m—H\P —1Ja(2 t oy A 02)} (4.33)
2(A-y)

_2 {)ﬁ(l }&—)\j(l—az)z _A%y o(1-o’ )}+
y 8 2(A-y)

+AKM\/Z_ngz(1—0-2)—2£\/Z—1J0'2(1—20'2):|.
YU 2y \y y

It is expedient to adjust the formulas (4.33), (4.34) to the particular needs in the explicit

(4.34)

calculations. This will now be done.
1. A practically relevant information is the temporal evolution of the maximum

thickness at 77 = 0. To evaluate this relation, note that u=0 (o =0) at 17 = 0; this can be
verified in (4.33), whilst (4.34) yields

2
__ A2 A [1+ 4 J+ 154 ( 1! 1nymaxJ . (435
8y]TlaX 2 ymax ymax A’_ymax ymax ﬂ’_ymax A’

which gives ¢ as a function of y_. (4

max )'

2. Another significant relation is the value of y(k) at 1~ (or 7.) which are
characteristics. It is physically obvious that this value of y is the smallest in the interval
[0, 77" ]. The formula follows from (4.34) by setting o =1 (u=4 - y):

2/3
Vooin = /1”3[2—)‘j : (4.36)
t

[This expression could also be found from (4.11)].

3. Evidently, if t is known, then the function 7(y) can be found from (4.33), which
determines the profile of the free surface in the interval [y . , ... ]- To facilitate the

corresponding numerical calculations, the expression (4.34) must be solved for # or o .

As for o, the equation is biquadratic; so, to find o 1is straightforward. To this end, let

w=l-c’oro=+l—-w
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Then, from (4.34) we may derive

w(y) = (231)‘{— B, + \/Bj ~4B, {A\P —%ytn, (4.37)
y

(the second solution with w<0 is meaningless) where

B, = %/8—\+P(y); B, :—P(y)—){\/z—lj;
y
24-y) 2 2y \vy y

Finally, (4.33) is expressed in terms of w(y) as follows

1—w(y) |:t(2, ) - A{\/:—IJ(I 2w(y)) + 2(3_ )y w(y )} (4.38)

which is the inverse relationship to y(77).

To summarize: With y= y=2,/fhthe formulae (4.35) - (4.38) allow the
computation of the motion of the pile in the interior region [77.,7"].
Figure 3 depicts the variation of the maximum thickness y . =2,ph_ . as a

function of time ¢, whilst Figs. 4 and 5 display time series of the free surface of the
granular layer before the two Mach fronts meet (Fig. 4) and after they have met, (Fig.
5). The initial data for these figures are A =1; A=1; 4, =1; f =0.25. Finally, Fig. 6
shows a comparison of the exact and the approximate solution of the pile thickness at
the centre 77=0 as a function of time. It is evident that the two curves agree very well

with one another.

t 120
100

80

60

)

20

0.2 0.4 0.6 0.8 1 Vmax

Figure 3. Variation of the layer thickness with time at 7 =0.
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0.8
0.6
0.4¢

0.2

Figure 4. Evolution of the free surface of the layer of the granular material at early
times before the fronts coalesce (¢ < t=2 ).

t=6.16
t=15.5
2.5 5 7.5 10 2.5 15 n

Figure 5. Evolution of the free surface of the layer of the granular material after the
fronts did coalesce (#>1 =2).
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1- exact solution
2- approximate
solution

80

60
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20

' ' ' ' ymax
0.2 0.4 0.6 0.8

Figure 5. Comparison of the exact solution with the approximate solution in the
center 7 =0.

Remark 2: Using the Riemann function, it is possible to construct exact solutions for
the spreading motion of granular materials along an incline starting from an arbitrary

initial profile at rest. o

Remark 3: The above solution of the spreading of a rectangular pile can only be correct
as long as the physical velocity at the upper shoulder is in the downhill direction. This

is the case so long as

t>m/s.

4.3. Example 2: We now alter the fomulation of Example 1 by confining the material at
the upper edge for all time by a wall at rest, see Fig. 2. In the coordinates of the
laboratory frame (x,/), the wall, located at x =—A remains still during the entire
process. Therefore, in the coordinates of the moving frame (7,4 ), the motion of the

wall and its velocity are, respectively, given by

2
7,(6) = A=

(4.39)

u, =% =—s,t, (4.40)

w
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initial profile
—

X

Figure 2. Sketchy image of the scattering of the granular material, originally
resting at the motionless wall.

or, when solving for time
t=-u,ls,, n=-A—u’/(2s,) (4.41)
The origin of the 77 -coordinates lies at the x-position of the centre of mass of the pile.

It is also clear that the solution of the eroding flank at the downstream side, i.e., to the

right of 7=0 is identical to the corresponding solution of Example I; it does not need
to be repeated here. The moving eroding point on the upstream side, to the left of 7=0,
is given by 7" (¢). This Mach front is characteristic; in view of (11), it is given by the

differential equation

ddit =u++/Bh =+Bh, sinceu=0and ;" (t)moves to the right.

Integration yields

1 (t) = Bhyt = \. (4.42)
Besides, the first of (2.7) again yields (4.5) (with the lower sign), implying C=,/A, , so
that

u=2ph—2./ph, . (4.43)
Consequently, the second of (2.7) becomes

1 =D(u)+(1.5u + /B ).
To find ®(u), we write this equation for the wall: n =7, ¢

= ®(u,) +(1.5u, ++/ B )1, .

If in this relation 77, and ¢, are replaced by the expressions on the right-hand side of

u=u,,whence

=tw’

(4.41) and the resulting expression is solved for ®(u )
2
D(u) = —)\——+(—u+ ph, j (4.44)
2 2 S,
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is obtained, in which u, is replaced by u, because (4.44) is simply an identify in its

argument. Substituting this in (4.43) and rewriting (4.42) yields

n=—)\+£+(@—%t]u+ Pht, (4.45)

So So
h:[

These formulas describe the parametric solution for the upper eroding shoulder. It is

2j/lﬁ+\%] . u, <u<0. (4.46)

possible to write down an explicit formula for h as a function of 7 and ¢. This form of

the solution is obtained by solving the quadratic equation (4.45) for u and substituting

the resulting expression in (4.46), the result being

2
h:i{,/ﬂho —0.5s0t+l\/( bh, +§S0t)2 —4s,+/Phot +4s,(n+ N |,
165 3 2 (4.47)
2
A= <t By

2
As in Example 1 this solution is only valid for early times in the interval 0<¢<T, where
T= =min(t, ¢ ), in which ¢, is the time when the foot point of the upper shoulder at the
wall reaches the base, and ¢ is the time when the fronts meet. Obviously, ¢ follows
from the equation n° (¢ ) =n.(¢") , implying
. A
t =
Phy

and ¢, is found from the condition /(7 ,t,) = 0. Equating the velocities inferred from

(4.40) and (4.43) thus yields

2P @19)

So

0

When >T, new Mach fronts appear which differ from one anther according to
whether 7=, or 7= {". For the construction of these, equation (2.7) is not helpful and it
is necessary to operate as in Example 1.

Remark 4: Experiments in which this solution is reproduced, can be used to determine

the parameter S by measuring the time 7, i. e., #, or ¢ . Its value depends upon which

one occurs first from (4.14) and (4.48), respectively, namely

(i) if T= t,, then from (4.48) 8 = hi (tij

0

(4.49)
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2
(ii) if 7= £, then from (4.14) S = hi (’o%j _
0

4.4. Example 3: Let us return to the partially invariant solution (2.7), and let
C,=1,C; =4pC,, C, =0 in (2.12).

Then, the pile shape is given by the equation

hzﬂ[ _i]
g g’

and describes an extending parabola. The constant C, follows from mass balance

g
M=jhdn=5(§g—3gj=iq, C,=3M/4
o g\3° 3 3

and the spreading is given by al). Thus, summarizing, we have in this case

2
h:%(l_"_z)
4 g

u=2|3MP |g-1, (4.50)
g\l 4 g

Je(g—1) +In(y/g +/g—1) = 3Mpt

which recovers the solution given by Savage and Hutter in [1].
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