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Abstract 

We consider the spatially one-dimensional Savage-Hutter equations for the motion 

of a finite granular mass moving down an inclined planar chute, [1]. In a coordinate 

system moving with the centre of gravity these equations are given by the system of 

hyperbolic partial differential equations (1.1). They admit the Lie algebra; it consists of 

the direct sum of the five-dimensional Lie algebra plus an infinite Lie algebra, [4]. We 

construct the partially invariant solutions. Then (1.1) is transformed to a linear system 

of PDEs by interchanging the role of the dependent and independent variables. Exact 

solutions to the Cauchy and Gorse problems can be found via a transformation of the 

two linear equations to a single hyperbolic PDE whose Riemann function is expressible 

in terms of a hypergeometric function. The theoretical findings are illustrated by 

determining the various stages of the motion of a collapsing granular rectangle on an 

incline, either free or confined from above by a stationary wall. For large time, also an 

approximate solution is given, which serves as a basis for solutions of free avalanches 

starting from an arbitrary smooth or non-smooth initial profile. 
 
1. Introduction 
 

In 1989 Savage and Hutter [1] derived a mathematical model for the flow of a finite 

mass of granular materials down inclined planes. The model equations involve a height 

and a depth averaged velocity as functions of the time and the downslope spatial 

coordinate. Later, the model was also generalized to the flow down slightly curved 

chutes [2]. A brief summary of the equations with applications to one-dimensional 

flows down chutes and in rotating cylinders is provided by Gray [3]. For the flow down 

inclined planes the equations have the form 
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in which h, u, t, η  are, respectively, the thickness, thickness averaged streamwise 

velocity, the time and the spatial coordinate. To be precise, η  is the spatial coordinate 

of an observer moving with the centre of gravity of the spreading mass of the granular 
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material and beta is a coefficient measuring the earth pressure and takes different values 

under dilating and contracting flows. Thus, 

,costansin

,/,2/

,1)seccos11(sec2

,0,0,cos

0

0
2

0

222
/

constif
Q
Qs

tshQutsx

K

uifKKuifKKK

pasact

pasact

=−=

−=−=

−−=

<
∂
∂

=>
∂
∂

==

ζζδζ

η

δφφ

ηη
ζεβ

µ
 

in which x, ζ ,φ , δ , in this order, are the physical spatial coordinate, the slope 

inclination angle, internal angle of friction and the bed friction angle, respectively, and 

ε  is the aspect ratio "typical depth divided by typical length" of the avalanche. In the 

ensuing analysis, the quantities β , so are known and pre-assigned positive constants, 

which requires Q and the derivative of u with respect toη  do not change the sign, and 

δφ ≥ . 

The system of hyperbolic partial differential equations (1.1) admits the Lie algebra 

which has been shown by Chugunov et al. [4] to consist of the direct sum of the five-

dimensional Lie algebra plus an infinite Lie algebra. With its aid, all similarity 

solutions of equations (1.1) were constructed in [4]. However, all the families of 

similarity solutions do not exhaust all possible exact solutions. 

In the present work, our intention is the finding of some exact solutions different 

from the similarity solutions, but with physical relevance and with a potential to be 

reproducible by experiment. 

The first example is the spreading of a pile, initially covering a finite interval and 

having constant height. Its early time response is a pile with the same height but 

decreasing width and with shoulders that spread more and more until the pile is eroded 

from the left and right to zero width, i. e., until the left and right edge points meet, see 

Fig.1. For this early phase an exact solution can be found. The construction of the exact 

solution for the second phase is possible because the system (1.1) admits the infinite 

Lie algebra and can be linearised . 

The second problem is the flow down an inclined plane from an initial rectangular 

pile of which the upper edge is held constant by a wall. In this case, the lower edge of 

the pile erodes as in the previous example, but the erosion of the upper flank is now 

different, and the solution must be constructed to satisfy the boundary condition at the 

wall, see Fig. 2. This solution is valid so long as neither the two edge points at the free 
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pile surface have met nor the wall point of the upper eroding surface has reached the 

slide plane. The subsequent motion then depends on which case occurs first. 

Incidentally, this solution may be solved with an active or a passive earth pressure 

coefficient at the upper eroding surface. Different results are obtained in the two cases. 

Intuition would advocate for the passive case, but experiments will have to resolve the 

matter. 

 

2. Partially invariant solutions 

System (1.1) is invariant under rigid translations in the spatial coordinate 

αηη +=' . The infinitesimal operator  

η∂
∂

=X                                                                                                                  (2.1) 

determines this transformation group. Therefore, the surface tangent to the class of 

these transformations is given by the equation 

( )utfhorhutF ,0),,( == .                                                                             (2.2) 

Since the union of equations (1.1) and (2.2) constitutes an overdetermined system if f is 

arbitrary, f must in fact be restricted. Indeed, by substituting (2.2) into (1.1), one finds 
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as well as 
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Because f depends on t and u, but not on η , equation (2.4) is a quasilinear first order 

partial differential equation, of which the general solution is given by 

dt
u
futu ∫ ∂
∂

++Φ= βη )( ,                                                                                      (2.5)    

in which  )(uΦ   is an arbitrary function. 

   If the function f is known, then (2.2) and (2.5) together determine the functions h(t, u) 

and u(t, η ) implicitly. Thus, with the use of (2.2), (2.3) and (2.5) various different exact 

solutions can be constructed. Let us examine a series of special cases. 
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2.1. Classical partially invariant solution 

This case assumes that f depends on u only: f=f(u). In the terminology of Ovsynnikov 

[7] this case corresponds to the so-called partially invariant solutions. From equation 

(2.3), on assuming that  0/ ≠∂∂ ηu , we deduce 

0
2

=


















∂
∂

−
u
ff β , 

of which the general integral is given by 
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in which C is an arbitrary constant. Thus, knowing f, we infer from (2.2) and (2.5) the 

solution in implicit form, namely as 
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By analogy with gas dynamics one may call this a "simple wave". The formulas 

comprise, since C and )(uΦ  are arbitrary, an entire class of solutions. 

 

2.2.Generalized partially invariant solution 

We now return to the situation when f depends on both t and u, but restrict 

considerations to u-functions that are piecewise linear in η . So, we may assume u to 

have the form )()( tptu += ηω .    It can be shown that )()( tCtp ω= , where C is a 

constant. It follows, because (1.1) is invariant under the operator (2.1), that it suffices to 

consider 

ηω )(tu = .                                                                                                             (2.8) 

Thus u is affined to η . With this choice a solution of (2.3) for f will be sought by 

restricting f to the form 
2)()( uttf ψϕ += .                                                                                                (2.9) 

If this ansatz is substituted into (2.3), an identity of the form a+bu2=0 is obtained, 

which must hold for arbitrary u; this implies a=0 and b=0, or 

04,0 2 =−+′=+′ βψψωψϕωϕ , 

two differential equations which possess the solution 

( )∫−= dtC ωϕ exp1  and ( )[ ] 1

2 exp1
4
1 −

∫−= dtC ω
β

ψ , 
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in which C1 and C2 are constants of integration. It follows from (2.2), (2.8) and (2.9) 

that h and u can be expressed as 

( ) ( )[ ] ωηω
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An equation determining )(tω  can now be obtained by substituting these expressions 

into the second equation of (1.1). This process yields 
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which is an integro-differential equation for )(tω . However, with  
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which is now a second order differential equation for g. A first integral can easily be 

constructed and is given by 
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3
~C  being a constant of integration. The further integration depends upon whether 

02 ≠C  or 02 =C . 
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b.) If C2=0, then integration of equation  for g(t) yields 

b) 02 =C  then 
3
2

43 2
3

2
3







 += CtCg , 

4321 ,,, CCCC  are all constants of integration and are determined by the specific 

problem at hand. 

Explicit expressions for h and u are obtained by substituting the relevant relations 

into (2.10); the following expressions are obtained: 
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To summarize: If 02 >C , then at 1
2
−> Cg   the solution (2.12) applies and a1) must 

hold; if, however, 1
2
−< Cg  , then (2.13) holds together with a2 ). On the other hand, if 

02 <C then at  g>0 and 1
2
−< Cg , solution (2.12) with  a1) is realized, whilst for C2

-1 

<g<0, solution (2.13) with a2 ) applies. 

 

2.2.  Partially invariant solution with respect to the operator tX ∂∂= /  

It is similarly possible to examine solutions which are partially invariant with 

respect to the operator tX ∂∂= / . In this case, the tangent manifold is written as 

),( ufh η=                                                                                                           (2.15) 

and, thus, the compatibility equation of the system (1.1) takes the form 
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and if it is assumed that f depends only on u, 
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One solution of this equation is easily seen to be 21)4( uf −−= β , but it does not 

satisfy the condition h>0 that must be met by physical reasons. The other solution must 

have the form )2()4( 21 CuCf ±= −β  and is best written as 
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Substituting this into the second of (1.1) yields 
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which is easily integrated to give 
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in which )(uΦ  is an arbitrary function. The formulas (2.17) and (2.18) together define 

the solutions that are partially invariant with respect to X= t∂∂ / . 

 

3.  Exact solutions constructed from the linear system associated with (1.1) 

Because the system of differential equations (1.1) admits the infinite Lie algebra 

with the basis 
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it can be transformed into a linear system by interchanging the roles of the dependent 

and independent variables. So, let T and Z be differentiable and locally invertible 

functions of h and u, such that 

t=T(h,u), η =Z(h,u),                                                                                              (3.1) 

with inverse           

h=H(t, η ), u=U(t, η ), 

Then, the Jacobian determinants 
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must necessarily differ from 0. It is also easy to show that 
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in which we have reverted to the notation u=U, h=H. Using transformations (3.1) and 

(3.3) in (1.1), we find 
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which is linear and in which h and u are now the independent variables. 

Remark 1: In the transition from system (1.1) to (3.4) solutions could be lost for which 

J=0. According to (3.2) these solutions must obey 
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When this relation is used in (1.1) and tu ∂∂ /  is eliminated, the 

following equation is obtained: 
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The last two relations obviously imply the total differential dhhhdu β±= , which 
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2

22 









−=

ββ
Cuh ,                                                                                            (3.8) 

with the aid of which the second equation of (1.1) 
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is obtained. This agrees with the classical partially invariant solution (2.7).•                                            

Let us find a solution of the linear system (3.4) by choosing Z according to 
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(This choice follows an analogous choice made in gas dynamics). If we substitute 

(3.10) into the first of (3.4), then 

2

2

uh
ThT

∂
∂

=
∂
∂

+
ψ                                                                                                  (3.11) 

is obtained; alternatively, the second of (1.1) implies  

0
2

=
∂
∂

+
∂∂

∂
−

u
T

hu
βψ  provided β =constant. 

This suggests to choose 



 9 

h
T

∂
∂

=
ψ

β
1 .                                                                                                          (3.12) 

Back substitution into (3.11) yields the single partial differential equation for ψ  
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Once its solution has been found, the functions T and Z can be obtained from 
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A series of further transformations identifies (3.13) as an equation from which the 

Riemann function can directly be constructed. First, we introduce y=y(h) in the form 

hy β2=                                                                                                             (3.15) 

and deduce 
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Second, we choose 

 yuyu −=+= νξ ,                                                                                        (3.17) 

and may then obtain (3.16) in the so-called canonical form 
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Third, see [5], we replace ψ  by ω , defined via 

νξψω −=                                                                                                        (3.19) 

and then obtain 
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which is the standard final form of the original equation (3.13). 

The Riemann function to equation (3.20) has been constructed, see [5], and is given 

by 
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is the hypergeometric function, see [5]. Notice that, if the Riemann function is known, 

it is possible to write the explicit solutions for the Cauchy and Gorse problems by using 

the formula due to Riemann 
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where M is the point of the plane ),( νξ  with the coordinates ),( 00 νξ  and PQ is the arc, 

where the function ω  and its derivatives are known. If PQ does not contain the 

characteristics of equation (3.20), then we have the Cauchy problem, on the other hand, 

if PQ consists of characteristics, then (3.23) defines the solution of the Gorse problem. 

Finally, we note that formula (3.23) represents an exact solution of the considered 

equation, which is known, once values for the function ),( νξω  and its ξ  and ν -

derivatives are prescribed along the arc PQ. Therefore, Riemann’s formula together 

with (3.21) can be used to construct solutions to different problems. 

The next section will list a few applied problems in order of increasing complexity. 

 

4. Physical interpretation and discussions 

4.1. Example 1: Consider a rectangular pile of length 2λ  and height ho, held between 

two walls on a straight chute with inclination angle ζ . Assume that at time t=0 the 

upper and the lower walls are suddenly removed. In a coordinate system moving with 

the centre of gravity the motion of the deforming sand pile is described by equations 

(1.1). It is possible with the help of (2.7) to construct the solution to this spreading 

problem. We impose the following initial conditions: 

lluhht <<−=== η,0,,0 0   

with  00 2lhdhm
l

l

== ∫
−

η  as the initial mass (or volume) which is a preserved quantity 

for all time, see also Fig.1.  
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Figure 1: Sketch of the spreading of a granular heap, given in its initial configuration as a 
rectangle and at a later time 0<t<t*. 
 

The construction of the solution to this problem can more easily be understood, if 

the characteristics to system (1.1) are determined. To this end, let 

)(tηη =                                                                                                                  (4.1) 

be the equation of such a characteristic line. Along such a line the total time derivatives 

of  h  and  u  are given by 
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which, when viewed as linear equations for η∂∂ /u  and η∂∂ /h , can be solved for 

these, viz., 
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Now, along the characteristics, these derivatives are undetermined. This implies that 

the numerators and denominators on the right-hand sides must independently vanish. 

This implies 

0)(,0)(,0)( 2 =−−=−−=−−
•••
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The first can be written as 

hu βη ±=
•

;                                                                                                        (4.3) 

the two others, subject to (4.3), reduce to the single relation 0/ =± dudhhβ  or, after 

integration 
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consthu =± β2 .                                                                                                (4.4) 

So, we have just proved that the expression (4.4) remains constant along the 

characteristic lines. However, the first of (2.7) can also be expressed in the form (4.4), 

viz., 

constisChu ββ 22 −=± ,                                                                               (4.5) 

and this equation is valid for all  η  for which the heap exists. Thus, (4.5) is valid, in 

particular on the lines )(* tηη =  and )(0 tηη =  (and similarly for )(* tηη =  and 

)(0 tηη = ), which, respectively, denote the eroding edge and travelling foot points of 

the spreading granular mass, see Fig. 1. In terms borrowed from aerodynamics, )(* tη  

and )(* tη  are also called the right and left Mach fronts, respectively. Finally, 

comparing (4.4) and (4.5) for )(* tη  and )(* tη  yields 0hC −= , since h=ho and u=0 at 

these point. Now, since  hu β2±  remains constant on these lines, they are 

characteristics, and therefore in view of (4.3) 

0
* hhu

dt
d ββη

−=−= , since on 0,0* == uhhη  and *η  moves in the negative 

direction; 

uhu
dt

d
=+= β

η0 , since on 00 =hη  and 0η  moves in the positive direction.  

Let us find u at the foot point 0η , where h=0. From (4.5) with 0hC −= we find 

hhu ββ 22 0 −= ,      valid ],0[ 0hh∈∀ ,                                                           (4.6) 

which for  h=0 yields the desired result: 02 hu
o

β
η
= . Integrating the equations for 

*η and 0η  and using this result, we find 

th0** βη −= λ ,                                                                                                  (4.7) 

thβη 200 += λ .                                                                                                  (4.8) 

where *λ , 0λ  are constants of integration which must be equal, since λ== )0()0( 0* ηη . 

There still remains the determination of )(uΦ . The expression follows from the second 

of (2.7), which, with  0hC −=  and when subject to (4.6), takes the form 

( ) thhhh )32(22 00 ββββη −+−Φ= .                                                        (4.9) 

When h=ho or h=0, this equation must coincide with (4.7) and (4.8), respectively, from 

which we deduce 
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λ=Φ )0(        and      λ=Φ )2( 0hβ  for 0h∀ .  

This last condition implies 

λ≡Φ )(u .                                                                                                             (4.10) 

Substituting this into (4.9), solving the resulting equation for  h, and copying  u  from 

(4.6), we find the solution at the right shoulder of the heap in the form 

 














<<
−=







 −

−=

0*

0

2

0

),(2

,2
9
1

ηηη
β

ηβ
β

hhu

t
hh λ

,                                         (4.11) 

where *η  and 0η are given in (4.7) and (7.8). 

An analogous analysis, conducted for the left shoulder, yields 














<<
−=







 +

+=
*0

0

2

0

),(2

,2
9
1

ηηη
β

ηβ
β

hhu

t
hh λ

,                                       (4.12) 

where thandth 0
*

0
0 2 βηβη +−=−−= λλ . By substituting the first of (4.11) into 

the second of (4.11) and the first of (4.12) into the second of (4.12), it is also possible to 

write the velocities in terms of the variables η  and t, namely 

.,
3
2

,,
3
2

*0
0

0*0

ηηηηβ

ηηηηβ

<<





 +

+−=

<<





 −

+=

t
hu

t
hu

λ

λ

                                                         (4.13) 

With the construction of (4.11) and (4.12) the early time solution of the posed 

problem is complete. We note also that the examined problem is similar to the dam 

break problem in the inviscid shallow water equations. Furthermore, the constructed 

solution must satisfy the global conservation of mass, and indeed it does so, since 

∫ ∫ ∫ =++=
*

0

*

*

0

*

00 2
η

η

η

η

η

η

ηηη λhhddhhdM , which is constant. 

Obviously, the solution can only be correct as long as the left and right eroding 

edges do not meet. Denoting this time by t*, the solutions hold for 0<t<t*, where t* 

follows from the equation 

)()( *
* tt ηη =  or λλ −=− *

0
*

0 thth ββ , 
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implying that 

0

*

h
t

β
λ

= .                                                                                                          (4.14) 

Let us next try to find the solution for times t> t*. Now, the new Mach fronts move 

as reflected waves away from the position 0=η . To describe their coordinates in time, 

we use the same symbols as before: )(* tη for the Mach front to the right side 0=η  and 

)(* tη  for that on the left of 0=η . Obviously, )(* tη  moves in the positive and )(* tη   

in the negative η -direction. The motions of the shoulders to the right of )(* tη and to the 

left of  )(* tη  are described by the same solution principle as for  t<t*. To construct 

them, we only must recall that the functions )(* tη and )(* tη  are characteristics. The 

initial value problems for their motion follows from the condition 0)()( *
*

** == tt ηη . 

Therefore 







==

+=

.,0

;
*

*

*

tt

hu
dt

d

η

βη







==

−=

.,0

;
**

*

tt

hu
dt

d

η

βη
 

(Note that the signs in front of hβ  are opposite to those in equation (4.6) because 

now, the Mach fronts move in the opposite directions). Inserting for u and h the 

expressions in (4.11) and (4.12), respectively, now yields 







==

−
+=

.,0

;
33

4

*
*

0
*

tt
t

h
dt

d

η

ηβη λ







==

+
+−=

**

0

*

,0
33

4

tt
t

h
dt

d

η

ηβη λ
 

and straightforward integration subject to the initial conditions yields 

*
3/1

*
*

00
*

*
3/1

*
*

00*

,)2(2)(

;,)2(2)(

tt
t
tththt

tt
t
tththt

≥





++−=+

≥





+−=−

ββη

ββη

λλ

λλ

                                     (4.15) 

These two solutions must be patched together with the thickness, h, and velocity, u, 

profiles in the interior of the interval ( )*
*,ηη . To construct this interior solution, 

equation (3.16) for the function ψ  must be solved. So, let us first determine the values 

for ψ  on the above characteristics. It follows from (4.11) that the value of 

λβ =+ hu 2  is constant on the first characteristics, and 02 hβλ =  , according to 

(4.11). Similarly, (4.12) implies that λββ −=−=− 022 hhu  is constant on the 
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second characteristics. According to (3.15) and (3.17) these expressions in the plane 

( )νξ ,  take the form λξ =  and λν −= ; these are straight lines parallel to the 

coordinates ν  and ξ , respectively, and form the characteristics of equation (3.20). 

Next, let us calculate dhd /ψ on the characteristics *η  and *η respectively. Using 

(4.11) and (3.14) and recalling the definitions of T and Z, yields 

h
ut

h
t

uhhdh
du

uhdh
d βηββψβψψψψ

ηηη

λ=−−=
∂
∂

−
∂
∂

=
∂
∂

+
∂
∂

= )(
***

, 

in which the very last step follows by substituting u and η  from (4.11) and (4.9), 

respectively. Thus, on the characteristics λξ =  ( )(* tηη = ) 

.2 consthor
hdh

d
+==

=
βψβψ

λξ
λλ  

Analogously, on the characteristics  λν −=   ( *ηη = ) 

.2 consthor
hdh

d
+==

−=
βψβψ

λν
λλ  

The constants of integration are both the same, but may be set to zero, since ψ  has 

potential character. Therefore 

hβψ
λξ

λ2=
=

and .2 hβψ
λν

λ=
−=

                                                          (4.16) 

Now, from (3.15) and (3.17) we deduce )(5.02 νξβ −=h ; so, 

)(5.0),(5.0 ξλψηλψ
λνλξ

+=−=
−==

λλ  

and in view of (3.19) 
2/32/3 )(5.0,)(5.0 ξλωνλω

λνλξ
+=−=

−==
λλ .                                           (4.17) 

From these, the derivatives along the characteristics are given by 

2/12/1 )(
4
3,)(

4
3 ξλ

ξ
ωνλ

η
ω

λνλξ

+=
∂
∂

−−=
∂
∂

−==

λλ .                                             (4.18) 

Relations (4.17) define the boundary values of ω  along the characteristics λξ =  and 

λν −=  for a solution in the rectangle [ λξ <<0 , λν −<<0 ]. This defines a Gorse 

problem, of which the solution can be constructed with the Riemann formula (3.23). 

Recalling (3.21), (3.22) and the properties of the hypergeometric functions [5], we have 



 16 

.1,1,1
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4
1

,
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,2,
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))((
))((

4
1
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,1,
2
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2
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))((
))((

,1,
2
1,

2
1

0

0

0

0

00

00
2

00

00

00

00
2

00

00

00

00

00

00

=====









−−
−−

−−
−−

=
∂
∂









−−
−−

−−
−−

=
∂
∂









+−
−−−

=







−−
−−

=

=
=

−=
=

=
=

−==

νν
λξ

λν
ξξ

νν
ξξ

λνλξ

νξνξ
ννξξ

νξνξ
νξξξ

ν

νξνξ
ννξξ

νξνξ
νννξ

ξ

λξνξ
νλξξ

νλνξ
ννξλ

RRRRR

FR

FR

FRFR

QP

 

Using these in Riemann  formula, we have 

ννξνξνξξνλλξνξω
ν

λ

λ

ξ

dd ∫∫
−

Φ−Φ−−++=
0

0

),,(),,()()(),(4
002001

2/3
0

2/3
000λ

,(4.19) 

where now 

,
))((
))((

,2,
2
3,

2
3

))((
))((

4
1

))((
))((

,1,
2
1,

2
1)(

2
3),,(

00

00
2/1

00

00

00

002/1
001









+−
−−−

+−
++

+

+







+−
−−−

+=Φ

λξνξ
νλξξ

λξνξ
λξνλ

λξνξ
νλξξ

λξνξξ

F

F

 

Knowing the function ω  it is easy to write, using (3.17) and (3.19), the expression 

for ψ in the coordinates (u, y): 












Φ−Φ−−++++= ∫∫

−

−+

ννξξλλψ
λ

λ

dyudyuuyyu
y

yu
yu

uy

),,(),,()()(
24

),( 21
2/32/3λ , (4.20) 

here 

).,,(),,(

,
2)(

))((,2,
2
3,

2
3

)(2
))((

4
1

2)(
))((,1,

2
1,

2
1)(

2
3),,(

12

2/1
1

yuyu

y
yuyuF

y
yuyu

y
yuyuFyu

−−Φ=Φ












+
+−−−−

+
++−+

+

+










+
+−−−−

+=Φ

νν

λξ
λξ

λξ
λλ

λξ
λξλξξ

 

Formally this completes the construction of the solution to the posed problem: Via 

differentiation the functions T and Z, defined in (3.14), can be derived. However, the 

expressions that are obtained are very complicated and difficult to implement 

numerically. Therefore, it is desirable to construct an approximate solution to the 

considered problem. 
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4.2. Approximate solution of the problem. 

In order to construct an approximate analytical solution for ψ , let us use the 

integral method proposed in [6]. According to this method, the profile of the function to 

be determined is preselected except for a free element, which is determined by 

integrating the partial differential equation for  ψ   in one coordinate direction and thus 

deducing an ordinary differential equation from which the free element can be 

determined. Since the evolving profile is symmetric with respect to η =0, h(η ) = h(-η ); 

so, (3.16) implies that  ψ   is also symmetric with respect to  u. Therefore, we choose as 

profile for the function  ψ  the polynomial 

)(
,42

y
ucba
−

=++=
λ

σσσψ ,  

(notice only the even powers in σ ). The coefficients b and c are determined by the 

values which ψ  and dψ /du take on the characteristic u = λ  - y  (σ  = 1). Using (3.11), 

(4.11), (4.15) and (4.16), one may easily deduce 









−=

∂
∂

=
−=

−=
1,

yu
y

yu
yu

λψψ
λ

λ
λλ .                                                                (4.21) 

Using this, the coefficients b and c are obviously functions of y and so 

)1()(1
2
1)1)(( 2222 σσλλσψ −−








−−−−+= y

y
yay λλλ ,                            (4.22) 

in which  a(y) remains still unknown, but the derivatives are 

),1(
)(
)(4)12(1 22 σσ

λ
σσλψ

−
−
−

−−







−=

∂
∂

y
ya

yu
λλ                                            (4.23) 

).12(1

)1(1
22

)1(
)(
)(4)1)((

22

222222

−







−+

+−







−

+
+−

−
−

−−−+=
∂
∂

σσλ

σσλλσσ
λ

σψ

y

yy
y

y
yaa

y

λ

λλλ&λ

     (4.24) 

Here a& is the derivative of the function a(y). To determine this function, consider the 

partial differential equation (3.16) for  ψ   and integrate it over u from u=0 to u = λ  - y  

(corresponding to an integration from η =0 to *η  (t)). This yields 

λ31
2

2

−=+
dy
dV

ydy
Vd                                                                                              (4.25) 

in which 0/
0
=∂∂

=u
uψ has been used and where 
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∫
−

=
y

duV
λ

ψ
0

.                                                                                                (4.26) 

So, V( λ=y ) = 0. The solution of (4.25) subject to this initial condition is given by 

λ
λ yCyV ln)(

4
3 22 +−= λ .                                                                                  (4.27) 

Its constant of integration will be determined lateron. However, when substituting 

(4.22) into (4.26), the relation 









−+++

−
= )(68

15
)( λλλλ y

y
yayV λλλ                                                         (4.28) 

is obtained. Comparison of the two different expressions for V allows determination of 

the function a(y). Indeed, from (4.27) and (4.28) we obtain 

λλ
λλλ y

y
Cy

y
yyayA ln15)(

4
21

4
41)(8)(

−
+−++== λλλ ,                                 (4.29) 

from which 

















−

+
−

+







+−=

λλλ
λλ y

yyy
C

yy
yA ln11301

2
21

2
1)( λλ&                                   (4.30) 

is derived. The expression (4.29) completes the approximate solution, except that the 

constant C is still not determined. To this end, consider the first of formulas (3.11) in 

the form 

yyh
t

∂
∂

=
∂
∂

=
ψψ

β
21 .                                                                                             (4.31) 

If (4.24) is substituted in this formula, then the resulting expression describes implicitly 

the height h as a function of t and u. At the centre (η =0) one has u=0 (σ =0) due to 

symmetry, and h assumes its maximum value here. Furthermore, the limit λ→y  

corresponds to 0hh → , and 0hh →  is also assumed everywhere in the region [ *η , *η ] 

as t *tt → . Thus 

λβ
λ λλ 2),(

0

*
0 ==→→→

h
tthhy . 

This condition can be used to find the constant C. Indeed, from (4.31) we conclude that 







 +==

∂
∂

=
→

=
→ 2

0

15
2

17
8
1lim

4
12lim2

λλλ
ψ

λ λ
σ

λ

CA
yy yy

λ&λ   or 

 25.0 λ=C .                                                                                                          (4.32) 

This value determines A(y) and A&(y) in (4.29) and (4.30) which now become 
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λλ
λλλλ y
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y

y
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21
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1)(
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They fix  ψ  and its derivatives in (4.22)-(4.24). The approximate solution of the 

original problem then follows from the application of (3.11); what obtains reads as 

follows: 

,)1(
)(2

8)12(1 22
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ut λλ                                      (4.33)  
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     (4.34)  

It is expedient to adjust the formulas (4.33), (4.34) to the particular needs in the explicit 

calculations. This will now be done. 

1. A practically relevant information is the temporal evolution of the maximum 

thickness at 0=η . To evaluate this relation, note that u=0 (σ =0) at 0=η ; this can be 

verified in (4.33), whilst (4.34) yields 

















−

+
−

+







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λλλ
λλλ max

maxmaxmax

2

maxmaxmax

ln11151
2
21

8
y

yyyyyy
t λ  ,         (4.35) 

which gives t as a function of maxy ( maxh ). 

2. Another significant relation is the value of y(h) at *η  (or *η ) which are 

characteristics. It is physically obvious that this value of y is the smallest in the interval 

[0, *η ]. The formula follows from (4.34) by setting σ =1 (u=λ  - y): 

3/2
3/1

min
2







=

t
y λλ .                                                                                              (4.36) 

[This expression could also be found from (4.11)]. 

3. Evidently, if t is known, then the function )(yη can be found from (4.33), which 

determines the profile of the free surface in the interval [ miny , maxy ]. To facilitate the 

corresponding numerical calculations, the expression (4.34) must be solved for u or σ . 

As for σ , the equation is biquadratic; so, to find σ  is straightforward. To this end, let  
21 σ−=w  or w−= 1σ  . 
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Then, from (4.34) we may derive 
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λλ ,                                            (4.37) 

(the second solution with w<0 is meaningless) where 
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Finally, (4.33) is expressed in terms of w(y) as follows 













−
−

+−







−−−−= )(

)(2
8)())(21(1)()(1 yw
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λλη λλ                (4.38) 

which is the inverse relationship to y(η ). 

To summarize: With y= hy β2= the formulae (4.35) - (4.38) allow the 

computation of the motion of the pile in the interior region [ *η , *η ]. 

Figure 3 depicts the variation of the maximum thickness maxmax 2 hy β=  as a 

function of time t, whilst Figs. 4 and 5 display time series of the free surface of the 

granular layer before the two Mach fronts meet (Fig. 4) and after they have met, (Fig. 

5). The initial data for these figures are .25.0;1;1;1 0 ==== βλ hλ  Finally, Fig. 6 

shows a comparison of the exact and the approximate solution of the pile thickness at 

the centre η =0 as a function of time. It is evident that the two curves agree very well 

with one another. 
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Figure 3. Variation of the layer thickness with time at 0=η . 
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Figure 4. Evolution of the free surface of the layer of the granular material at early 
times before the fronts coalesce  ( 2* =≤ tt ). 
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Figure 5. Evolution of the free surface of the layer of the granular material after the 
fronts did coalesce  ( 2* => tt ). 
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Figure 5. Comparison of the exact solution with the approximate solution in the 
center 0=η . 

 
Remark 2: Using the Riemann function, it is possible to construct  exact  solutions  for  

the spreading motion of granular materials along an incline starting from an arbitrary 

initial profile at rest. •  

 

Remark 3: The above solution of the spreading of a rectangular pile can only be correct 

as long as the physical velocity at the upper shoulder is in the downhill direction. This 

is the case so long as 

sht /β> . 

 

4.3. Example 2: We now alter the fomulation of Example 1 by confining the material at 

the upper edge for all time by a wall at rest, see Fig. 2. In the coordinates of the 

laboratory frame (x,h), the wall, located at λ−=x  remains still during the entire 

process. Therefore, in the coordinates of the moving frame ( h,η ), the motion of the 

wall and its velocity are, respectively, given by 

2
)(

2
0tstw −−= λη                                                                                                 (4.39) 

tsu ww 0−==η& ,                                                                                                   (4.40) 

1 

2 

1- exact solution 
2- approximate 

solution  

t 

ymax 
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Figure 2.  Sketchy image of the scattering of the granular material, originally 

resting at the motionless wall. 
 

or, when solving for time 

)2/(,/ 0
2

0 susut ww −−=−= λη                                                                         (4.41) 

 The origin of the η -coordinates lies at the x-position of the centre of mass of the pile. 

It is also clear that the solution of the eroding flank at the downstream side, i.e., to the 

right of η =0 is identical to the corresponding solution of Example 1; it does not need 

to be repeated here. The moving eroding point on the upstream side, to the left of η =0, 

is given by )(* tη . This Mach front is characteristic; in view of (11), it is given by the 

differential equation 

0

*

hhu
dt

d ββη
=+=    since u=0 and )(* tη moves to the right. 

Integration yields  

λ−= tht 0
* )( βη .                                                                                               (4.42) 

Besides, the first of (2.7) again yields (4.5) (with the lower sign), implying C= 0h , so 

that 

022 hhu ββ −= .                                                                                            (4.43) 

Consequently, the second of (2.7) becomes 

.)5.1()( 0 thuu βη ++Φ=  

To find )(uΦ , we write this equation for the wall: wηη = , wtt = , wuu = , whence 

.)5.1()( 0 wwww thuu βη ++Φ=  

If in this relation wη  and wt  are replaced by the expressions on the right-hand side of 

(4.41) and the resulting expression is solved for )( wuΦ  

0
0

0

2

2
3

2
)(

s
uhu

s
uu 






 ++−−=Φ βλ                                                                    (4.44) 
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is obtained, in which wu  is replaced by u, because (4.44) is simply an identify in its 

argument. Substituting this in (4.43) and rewriting (4.42) yields 

thut
s

h
s
u

0
0

0

0

2

2
3 β

β
η +










−++−= λ ,                                                              (4.45) 

0,
2

2

0 <<









+= uuhuh wβ

.                                                                      (4.46) 

These formulas describe the parametric solution for the upper eroding shoulder. It is 

possible to write down an explicit formula for h as a function of η  and t. This form of 

the solution is obtained by solving the quadratic equation (4.45) for u and substituting 

the resulting expression in (4.46), the result being 

0

2
0

2

000
2

0000

2

,)(44)
2
3(

3
15.0

16
9

h
ts

sthstshtshh

βη

ηβββ
β

+−<≤−−









++−++−=

λλ

λ
     (4.47) 

As in Example 1 this solution is only valid for early times in the interval 0<t<T, where 

T= =min(to, t*), in which to is the time when the foot point of the upper shoulder at the 

wall reaches the base, and t* is the time when the fronts meet. Obviously, t* follows 

from the equation )()( *
*

** tt ηη = , implying 

0

*

h
t

β
λ

=  

and to is found from the condition 0),( 0 =th wη . Equating the velocities inferred from 

(4.40) and (4.43) thus yields 

0

0
0

2
s

h
t

β
= .                                                                                                        (4.48) 

When t>T, new Mach fronts appear which differ from one anther according to 

whether T= to or T= t*. For the construction of these, equation (2.7) is not helpful and it 

is necessary to operate as in Example 1. 

Remark 4: Experiments in which this solution is reproduced, can be used to determine 

the parameter β  by measuring the time T, i. e., to or t*. Its value depends upon which 

one occurs first from (4.14) and (4.48), respectively, namely 

(i) if T= to, then from (4.48)  





= *

0

1
th
λβ   

                                                                                                                             (4.49) 
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(ii) if T= t*, then from (4.14)  
2

00

0 2
1







=

st
h

β .   •                                                                                    

4.4. Example 3: Let us return to the partially invariant solution (2.7), and let 

 0,4,1 41
2
32 === CCCC β  in  (2.12). 

Then, the pile shape is given by the equation 









−= 2

2
1 1

gg
Ch η  

and describes an extending parabola. The constant 1C  follows from mass balance 

1
1

3
4

3
2

3
6 Cgg

g
ChdM

g

g

=





 −== ∫

−

η  ,      1C =3M/4 

and the spreading is given by a1). Thus, summarizing, we have in this case 















=−++−

−
=









−=

tMgggg
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gM
g

u

g
Mh

β

ηβ

η

3)1ln()1(

;1
4

32

;1
4

3
2

2

                                                            (4.50) 

which recovers the solution given by Savage and Hutter in [1]. 
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