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We study the limiting distribution of partial sums Sy (¢) = vazl etXi
as t — oo, N — oo, where (X;) is a sequence of i.i.d. random vari-
ables. Two cases are naturally distinguished: (A) esssup X; = 0 and (B)
esssup X; = +o0o. In this paper, the problem is considered under the as-
sumption that the log-tail distribution function h{z) = —log P{X; > x}
(case B) or h(z) = —logP{X; > —1/x} (case A) is regularly varying as
z — oo, with index ¢ such that 1 < ¢ < oo (case B) or 0 < ¢ < o©
(case A). An appropriate scale for the growth of N relative to t is of
the form e*70(t) where the rate function Hy(t) is a certain asymp-
totic version of the cumulant generating function H(t) = log E[e?X:]
(case B) or H(t) = —log E[e?Xi] (case A), provided by the Kasahara—de
Bruijn exponential Tauberian theorem. We have found two critical points,
0 < A1 < A2 < o0, below which the Law of Large Numbers and the
Central Limit Theorem, respectively, break down. Below A3, we impose a
slightly stronger condition of normalized regular variation of hA. The limit
laws here appear to be stable, with characteristic exponent a = a(g, \)
ranging from 0 to 2 and with skewness parameter 3 = 1. Limit theorems
about extreme values of the sample e?X1,..., e*X~ are also proved.
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1. Introduction.

1.1. The problem. In this work, we are concerned with partial sums of expo-
nentials of the form

(1.1) Sn(t) =) e,
i=1

where (X;) is a sequence of independent identically distributed random variables
and both ¢ and N tend to infinity. Our goal is to study the limiting distribution of
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Sy (t) and to explore possible ‘phase transitions’ due to various rates of growth of
the parameters ¢ and N.

In such analysis, two cases are naturally distinguished according to whether X;
are bounded above (case A) or unbounded above (case B). In the former case,
without loss in generality we may and will assume that the upper edge of the
support of X; is zero, esssup X; = 0.

One can also expect that the results will heavily depend on the structure of the
upper tail of the distribution of X;. In the present work, we focus on a fairly general
class of distributions with the upper tail of the Weibull/Fréchet form

exp(—cz?) as ¢ — +oo (case B),

(1.2) P{X; >z} = { exp(—c(—z)7%) as # — 0— (case A),

where 1 < ¢ < oo (case B) or 0 < p < oo (case A). More precisely, we will be
assuming that the function log P{X; > z} is regularly varying at the vicinity of
esssup X; with index ¢ € (1,0) (case B) or —¢ € (—00,0) (case A). For example,
a normal distribution is contained in this class (case B, o = 2).

1.2. Motivation.

1.2.1. Topics in Probability. One motivation for this study is quite abstract and
purely probabilistic. In fact, such a setting provides a natural tool to interpolate
between the classical limit theorems concerning the bulk of the sample, i.e. the Law
of Large Numbers (LLN) and the Central Limit Theorem (CLT'), on the one hand,
and limit theorems for extreme values, on the other hand. Indeed, it is clear that
the limiting behavior of Sy(t) is largely determined by the relationship between
the parameters ¢ and N. If, for instance, one lets N tend to infinity with ¢ fixed
or growing very slowly, then, under appropriate (exponential) moment conditions,
the usual LLN and CLT should be valid. In contrast, if the growth rate of N is
small enough as compared to ¢, then the asymptotic behavior of the sum Sy (¢)
is dominated by its maximal term. We will see that when both ¢ and N tend to
infinity, a rich intermediate picture emerges made up of various limit regimes.

In this connection, let us mention a recent paper by Schlather (2001) who stud-
ied the asymptotics of the /,-norms of samples of positive i.i.d. random variables,
1Yinll, = iy Yi”)l/p, where the norm order p = p(n) grows together with the
sample size n. The link with our setting becomes clear if one puts Y; = eX¢, so that
[|Y1n]|p is expressed through an exponential sum of the form (1.1). Schlather (2001)
has demonstrated that under a suitable parametrization of the functional relation
between p and n, there is a ‘homotopy’ for the limit distributions of ||Y1,||, extend-
ing from the CLT to a limit law for extreme values. In fact, the situation where
p = p(n) = 0o asn — oo, arises in Theorem 2.2 [Schlather (2001), p. 864], where the
random variables Y; are bounded above and, in the sense of extreme value theory, be-
long to the domain of attraction of the Weibull distribution ¥, (z) = exp (—(—z)%)
(e > 0, z < 0). [In Theorem 2.3 (p. 865), where ¥; are unbounded and are in
the domain of attraction of the Fréchet distribution ®,(z) = exp(—2~%) (a > 0,
z > 0), the parameter p does not depend on n.]
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Let us point out that our results are complementary to Schlather’s findings,
since for random variables X; with the Weibull/Fréchet tails of the form (1.2), the
distribution of the maximum of eX*, ..., eX» can be shown to converge, as n — o0,
to the Gumbel (double exponential) distribution A(z) = exp (—e™®) (z € R) (see
Proposition 9.7 below). Note that in this case Schlather (2001) has obtained a
partial result and only for exponential random variables (Theorem 2.4, p. 867).
However, our results corroborate a conjecture in Schlather [(2001), p. 867] related
to the case of attraction to A. In Section 9.2 below, we will provide more comments
on the relationship of our results to the work by Schlather (2001).

1.2.2. Branching populations. The second motivation (and in fact the most
important one) comes from problems related to the long-time dynamics in ran-
dom media. In the simplest situation, sums of exponentials arise as the expected
(quenched) total population size of a colony of non-interacting branching processes
with random branching rates. Indeed, consider a collection of N branching pro-
cesses Z;(t) driven by the binary branching rates X; = X;(w) (i = 1,..., N). More
specifically, for a fixed random branching environment w (i.e., in a ‘quenched’ set-
ting), each Z;(¢) is a Markov continuous-time branching process evolving as follows:
during infinitesimal time dt, a particle from the ith population, independently of
other particles and the past history, with probability |X;|dt may split into two de-
scendants (if X; > 0) or die (if X; < 0); otherwise, with probability 1 — | X;|d¢, the
particle survives over the time di. Let m;(t) = m;(t, w) denote the expected number
of particles in the ith population at time ¢. It is well known that m;(¢) satisfies the
differential equation m}(¢t) = X;m;(t) [see Athreya and Ney (1972), Ch. III, § 4, p.
108]. Hence, assuming that Z;(0) = 1 we obtain m;(t) = e!*¢, and therefore the
quenched mean total population size is given by the sum (1.1).

In more interesting and realistic situations, there is spatial motion of particles and
hence interaction between individual populations. However, there are grounds to be-
lieve that the long-term dynamics problem can be essentially reduced, in each partic-
ular case, to sums involving random exponentials, and therefore various asymptotic
regimes that we establish in the present paper will provide a basic building block
for the understanding of the new dynamical phase transitions for branching pro-
cesses in random media. Such sums may also contain additional random weights,
thus having the form Sy(t) = Zfil Y;(t)etXi. Here, the parameter N will char-
acterize the spatial span of the initial population, while the random variables X
and Y; will represent the local (spectral) characteristics of the quenched branching
process, according to the mechanisms of the dynamical randomness in the medium.
Typically, the weights (Y;) will be mutually independent when conditioned on the
(X;) [e.g., being some functions of (X;)]. These more difficult questions, including
a more general type of the abstract problem, will be addressed elsewhere.

To conclude this set of examples, let us mention that weighted exponential sums
emerge already in the above context of non-interacting branching populations, if one
considers the total population size rather than its quenched expected value. Indeed,
if X; > 0 then it is known that Y;(t) := Z;(t) e t%: converges with probability one,
as t — 00, to a random variable with unit exponential distribution [see Athreya
and Ney (1972), Ch. III, § 7, Theorem 1, p. 111 and § 11, p. 128]. Therefore, if all
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X, are positive, the total population size is represented as Z(t) = Zfil Yi(t) etXi,
where the coeflicients Y;(¢) are i.i.d. random variables (in fact, functions of X;) with
E[Y;(t)] = 1 and unit exponential distribution in the limit ¢ — oco.

1.2.3. Random Energy Model. A completely different example is provided by
the Random Energy Model (REM) introduced by Derrida (1980, 1981) as a sim-
plified version of the mean-field Sherrington—Kirkpatrick model of a spin glass. (At
about the same time, a similar model was independently proposed by Lifshitz, Gre-
deskul and Pastur [(1982), in particular see Eq. (2.11), p. 1372], who studied the
transmission of waves through a bundle of channels with random transmission co-
efficients.) The REM describes a system of size n with 2" energy levels E; = v/n X;
(i =1,...,2"), where (X;) are i.i.d. random variables with standard normal dis-
tribution. Thermodynamics of the system is determined by the partition function
Z,(8) := 322, exp(By/n X;), where 3 > 0 is the inverse temperature, which exem-
plifies the exponential sum (1.1) with N =27, t = 8/n.

The free energy for the REM, first obtained by Derrida (1981) using heuristic
arguments, is given by

(1.3) F(B) := lim log Z,(8) _ | #*/2+82/2 if 0<B <P,
. . ﬁIBC if IBZIBC,

n—oo n
where 8, = /2log2. Note that the function F(3) is continuously differentiable
but its second derivative is discontinuous at point 3. [a third-order phase tran-
sition, see Eisele (1983)]. Later on, Eisele (1983) and Olivieri and Picco (1984)
rigorously derived the limit (1.3) (in probability and also with probability one)
and also extended this result to the case where the random variables X; have the
Weibull-type upper tail (1.2) (case B). More precisely, the class of distributions
considered in these papers is subject to the condition z72h(z) — ¢ as ¢ — +o0,
where h(z) = —logP{X; > z} and 1 < p < oo [see Eisele (1983), Theorem 2.3, p.
130], which is more restrictive than our assumption of (normalized) regular vari-
ation of h. A similar case was considered by Pastur (1989), where the proof was
based on a Tauberian theorem by Minlos and Povzner (1967).

Some attempts to characterize the fluctuations of the partition function were
undertaken by Gardner and Derrida (1989) using the statistical moments of Z,(3)
and by Galvez, Martinez and Picco (1989) who studied the finite-size corrections of
order (logn)/n to log Z,(3). Recently, a detailed analysis of the limit laws for Z,,(83)
in the Gaussian case has been accomplished by Bovier, Kurkova and Léwe (2002).
In particular, they have shown that in addition to the first phase transition at the
critical point 3., manifested as the LLN breakdown for § > ., within the high-
temperature phase 8 < 3, there is a second phase transition at S = v/ log2/2 =
%BC, in that for 8 > 3. the fluctuations of Z,(8) become non-Gaussian.

In our work, we extend these results to the class of distributions with the
Weibull/Fréchet-type tails of the form (1.2). As compared to Bovier, Kurkova and
Lowe (2002) who proceeded from extreme value theory, we use methods of theory
of summation of independent random variables. Moreover, we show that the non-
Gaussian limit laws are in fact stable. We will further discuss some applications of
our results to the REM in Section 9.1.
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1.2.4. Risk theory. Finally, let us point out some possible applications related
to insurance. A basic quantity in risk theory is the aggregate claim amount Y (¢) :=
Zfi(f) U;, where (U;) is a sequence of i.i.d. claim sizes and N(¢) is a claim counting
process independent of (U;); the risk reserve process is then given by R(t) := u +
Bt —Y (t), where v is the initial reserve and 3 is the premium income rate [see Rolski
et al. (1999), Sect. 5.1.4]. A common problem is to estimate the moment generating
function my(s) := E[e®*V], in particular for large s. Such a question arises, for
example, in connection with the Lundberg bounds for the tail distribution of Y (¢)
or for the ruin probability ¢ (u) := P{min;>¢ R(¢) < 0}. Similar questions are of
interest in other areas such as queueing theory [the equilibrium waiting time in the
M/G/1 queue, see Asmussen (1987), Ch. XII, § 5, p. 269 and Ch. XIII, § 1, p. 281]
and storage models [a dam process, see Asmussen (1987), Ch. XIII, § 3, 4].

The Lundberg bounds are constructed using the root v (called the ‘adjustment
coefficient’) of the equation of the form my(y) = 1/p > 1 [see Rolski et al. (1999),
Sect. 4.5.1, p. 125-126 and Sect. 5.4.1, p. 170-171]. Here the parameter p has
the meaning of either the claim arrival rate [for the aggregate claim process Y (¢)]
or the expected aggregate claim per unit time [for the risk reserve process R(t)],
and hence the case p — 0 (and therefore ¥ — 00) corresponds to the practically
important situations of small ‘claim load’. The statistical method for estimating
the unknown solution v can be based on the empirical moment generating function
my(s) = n~1 Y%, e®Vi, which has similarity with the exponential sum (1.1). A
natural estimator 4 defined by the equation 1y (%) = 1/p, has nice asymptotic
properties including a.s.-consistency and asymptotic normality, providing 1/p is
fixed or bounded [see Rolski et al. (1999), Sect. 4.5.3, Lemma 4.5.1 and Theorem
4.5.3, p. 130]. However, the asymptotic behavior of 4 when both n and s are large
does not seem to have been addressed so far.

Let us also mention discounted risk processes, which may provide another, more
direct link with our setting. In the simplest case, let a company’s portfolio consist of
n identical policies over term ¢ each, and assume that claim sizes (U;, i = 1,...,n)
and claim arrival times (r;, 4 = 1,...,n) are sequences of independent random
variables (not necessarily independent of each other —for instance, U; may depend
on 7;), with common distributions Fyy and F, respectively. Suppose for simplicity
that the inflation rate is constant, so that the inflated monetary unit at time s equals
e"*. Then the aggregate claim amount is given by Y (t) = Y"1, U;e "7 [cf. Rolski
et al. (1999), Sect. 11.4.2, p. 472]. Let us now note that if the insured term ¢ is large,
it is reasonable to assume that the ratio 7; /t has a non-degenerate limit distribution,
and hence each 7; can be approximated by ¢tX;, where (X;) is a sequence of i.i.d.
random variables not depending on ¢. Then the expression for Y (¢) is reduced
to Y(t) = Yo, Uie "%i [cf. Gerber (1990), Sect. 1.9, Eq. (1.9.1)], which is a
weighted sum of random exponentials mentioned above in Section 1.2.2. Similarly,
interpreting U; as the investor’s profit on ith share (payable at time 7;), one would
arrive at the sum with the plus sign in the exponent, Y (t) = .1 | U; e®tXi.

1.3. General notations. We write := for ‘is defined by’ and =: for ‘is denoted
by’. Abbreviation ‘iff” stands for ‘if and only if’. Letters X, Y, ... are used for a
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generic representative of random variables (X;), (Y;), ..., respectively. The indica-
tor of an event A is denoted by 1 4. Relation f(z) ~ g(z) means that f(z)/g(z) — 1.
Convergence in probability, in distribution and with probability one is denoted by
2, 44 and 22, , respectively, and the symbol 0p(1) denotes a random variable

converging to zero in probability. The symbol 2 means equality in distribution.
By N(0,0?%) we denote the normal distribution on R with zero mean and variance
o?%; in particular, A/(0, 1) stands for the standard normal distribution. If a random
variable { has distribution F, we write log F for the distribution of the random
variable log C.

We denote wy := esssup X, that is, wx = sup{z : P(X > z) > 0}. Therefore,
the above mentioned cases A and B (see Section 1.1) correspond to wx = 0 and
wx = 400, respectively. In view of the above interpretation of the problem us-
ing the terminology of branching populations (see Section 1.2.2), this labeling can
be mnemonically associated with the terms annihilation (case A) and branching
(case B). Let us also make a special convention that will allow us to consider both
cases A and B simultaneously: in the symbols +, =, Z and the like, the upper sign
always refers to case B, whereas the lower sign corresponds to case A. The notation
a* stands for the power a*! (we use this for the sake of brevity and also to avoid
confusion with a function’s inverse). Finally, f(z)® is understood as [f(z)]®.

2. Statement of the main results.

2.1. Regularity and scaling. Recall that wx stands for esssup X, and assume
that P{X < wx} =1, that is, X is finite with probability 1 (case B) or there is no
atom at point wx = 0 (case A). Consider the log-tail distribution function

—logP{X > z}, z€R case B),
(2.1) h(z) := g ; ( )
—logP{X > -1/z}, x>0 (case A).
Clearly, in both cases h(-) is non-negative, non-decreasing, and right-continuous; it
takes finite values in its domain and h(z) — +00 as ¢ — +00. According to the
above *-convention (see Section 1.3), the upper tail of the distribution of X can
be written down in a united manner as

(2.2) P{X > z} = exp{—h(+z%)}, z < wx.

We will be working under the assumption that b is regularly varying at infinity
with index o (we write h € R,), where 1 < ¢ < 0o (case B) or 0 < p < oo (case A).
That is, for any « > 0 we have h(kz)/h(z) = k2 as z — +o0.

It follows that the cumulant generating function

(2.3) H(t) := +log E[et¥], t>0,

is well defined; furthermore, it is non-decreasing and H(t) — +00 as t — oo.

The link between the asymptotics of the functions A and H at infinity is charac-
terized by the combined Kasahara—de Bruijn exponential Tauberian theorem [see
Bingham et al. (1989), Theorem 4.12.7, p. 253, and Theorem 4.12.9, p. 254]. We
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will give a precise formulation of this theorem in Section 3.1 below. Here, it suffices
to mention that h € R, implies H € R, where the index o’ is defined by

Q
2.4 o = ——.

24) oF1

Remembering that 1 < ¢ < oo in case B and 0 < ¢ < 0o in case A, it follows that

1< p'<oo (case B),

2.
(25) 0<o'<1 (case A).

According to (2.3), the expected value of the sum Sy (t) is given by

E[Sn(t)] = Y _E[e"*i] = NetH®),

i=1

suggesting that the function H(t) sets up an appropriate (exponential) scale of the
form e*?® for the number of terms N = N(¢). In fact, it is technically more conve-
nient to use Hy(t) as a rate function, where Hy is a certain asymptotic version of H
provided by the Kasahara—de Bruijn Tauberian theorem. This makes no difference
in the ‘crude’ Theorems 2.1 and 2.2 below, since Hy(t) ~ H(t) as t — oo, but it
will be crucial for the more delicate Theorems 2.3, 2.5 and 2.6.

The following two values turn out to be critical with respect to the scale AHg(¢),

!
(2.6) Mi=2 = 20’%,

in that the LLN and CLT break down below A; and A, respectively. Let us also
introduce another parameter,

@) = alo)) o (@Q_i)”g’,

which will be shown to play the role of characteristic exponent in the limit laws and
hence provides their natural parametrization. In particular, note that the critical
values of  corresponding to A;, A are given by a; = 1, as = 2, respectively.

Below the critical points, the behavior of the sum Sx(¢) becomes increasingly
sensitive to subtle details of the upper tail’s structure. It turns out, however, that
enough control is gained via imposing a slightly stronger condition on regularity of
the log-tail distribution function h—that of normalized regular variation, h € NR,
[see Bingham et al. (1989), Sect. 1.3, § 2, p. 15]. This property will be discussed in
detail in Section 5.1. A characteristic property of this class is that h is (absolutely)
continuous and a.e.-differentiable, and

zh'(z)
h(z)

(see Lemma 5.1 below). As a benefit of this assumption, the relationship between the

functions & and Hy can be characterized explicitly. We will describe this relationship

in detail later on (see Section 5.1). Here we note that H(¢) can be found (for all ¢
large enough) as the unique solution of the equation

(2.9) ¢'Ho = oh((e'Ho/t)*).

(2.8)

—p (z — o0)
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Examples illustrating the difference between the functions H and Hy can be
found in Appendix A.1.

2.2. Statement of the main theorems. We proceed to state our results. The first
two theorems assert that Sy (¢) satisfies the Law of Large Numbers and the Central
Limit Theorem in their conventional form provided that the number of terms N
in Sy (t) grows fast enough relative to ¢ (roughly speaking, N > exp{A; Ho(t)} for
LLN or N >» exp{A2Hy(t)} for CLT). More precisely, denote

(2.10) A= lltII_l>Cl>£1f AGR

THEOREM 2.1 (LLN, A > A1). Suppose that X > A;. Then
SN(t) 4

e ! t— ).

G0) (= o)

THEOREM 2.2 (CLT, A > X2). Suppose that X\ > Aa. Then

SN(t) — E[SN(t)] i> N(()’ 1)

(Var[Sn (E))72 (£ o0).

At and below the critical points, we need to specify the growth rate of N more
precisely. Namely, we assume that

(2.11) N ~ o (3 5 o),

where ) > 0 is a parameter. We also require a few more notations. Let u = u(t) be
a (unique) solution of the equation

(2.12) h((eHo(t)/1)*) = =7 h((e'Ho(t) /1)F)-

Using that h € R, and comparing the asymptotics of both parts of equation (2.12)
as t — oo, one can show (see Lemma 5.11 below) that

A
(2.13) lim p(t) = &

t—oo a )

A@

For 2 > 0, let us set
pOHo(t) | logz

(2.14) na(t) i= ;
In particular, for = 1 this is reduced to

t)Ho(t
(2.15) m(t) = M

Note that the identity (2.9) combined with equation (2.12) and notation (2.15)
yields a relation which we call the Basic Identity:

(2.16) h(n(t)%) = AHo(t).

How the function 7, (¢) emerges and the importance of the Basic Identity will be
heuristically explained in Section 2.3.
We are now in a position to state one of our main results.
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THEOREM 2.3 (Convergence to a stable law, A < X2). Let 0 < X < Az, and set
(2.17) B(t) := etrHHo(t)
E[Sn(t)] (A <A<A2),

(2.18) A(t) ;= ¢ NBi(?) (A=),

0 (0 <A< )\1),
where B (t) is a truncated exponential moment,
(2.19) Bi(t) == E[e" 1 x <spy]-

Then, as t — o0,

Sn(t) — A(t) _a
T — Fa,

where Fo 1s a stable low with exponent o € (0,2) defined in (2.7) and skewness
parameter 3 = 1. The characteristic function of the law F, is given by

(2.20)

[ exp {_m — a)|u|* exp <_”T°‘sgnu>} O<a<l)
(2.21)  ¢a(u) = exp{% [l exp (—% sgnu)} (1<a<?2)
\exp{iu(l—'y)—g|u|<1+isgnu~%log|u|>} (a=1)

where ['(s) = fooo z*~le=% dzx is the gamma function, sgnu := u/|u| for u # 0 and
sgn0:= 0, and v = 0.5772... is the Fuler constant [see Gradshteyn and Ryzhik
(1994), 8.367, p. 955].

REMARK 2.4. For 1 < a < 2, expression (2.21) can be reduced to that in the
case 0 < a < 1, using an analytic continuation I'(1 — a) =T(2 — a)/(1 — a).

Let us now describe what happens at the critical points. In fact, the Law of
Large Numbers and the Central Limit Theorem prove to be valid at A; and Az,
respectively; however the normalizing constants now require some truncation.

THEOREM 2.5 (LLN, A = A;). If A = A; then

SN(t) P
NB, () —1 (t = o0),

where By (t) is given by (2.19).

(2.22)

THEOREM 2.6 (CLT, A = X2). If A = As then

Sn(t) — E[Sn(t)]
(N Bs(t)"/2

Ly N(0,1)  (t— o0),
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where Bs(t) is a truncated exponential moment of ‘second order’,

(2.23) Bs(t) := E[* ¥ Lix conu )] -

The last set of results refer to the limit distribution of extreme terms of the
exponential sample {e*Xi, i = 1,..., N}. Surprisingly enough, it appears that the
picture here precisely replicates the classical results in the i.i.d. extreme value the-
ory, known in the case of attraction to the Fréchet distribution. We will work out
the extreme value theory for i.i.d. random exponentials in Section 8 below. For il-
lustration, let us state here the simplest result of this kind — for the maximal term
My n(t) := max{e!Xi i =1,...,N}.

THEOREM 2.7 (Limit distribution of My ). Let a > 0 be given by (2.7) and
B(t) defined in (2.17). Then for all X >0, as t = oo,

(2.24) P{ Méj(gt) < :c} — exp(—z~%) =: ®,(2), z > 0.

(®, is known as the Fréchet distribution.)

2.3. Orientation and comments. QOur results (and in particular Theorems 2.3,
2.5 and 2.6) can be proved using the known methods for sums of independent ran-
dom variables [see Gnedenko and Kolmogorov (1968) and Petrov (1975)]. However,
the proofs are technically quite involved, because we have imposed only minimal
smoothness conditions on the distribution of X (regular or normalized regular varia-
tion). Nevertheless, it is not difficult to explain heuristically the main points behind
the calculations— hopefully, this will give the reader some orientation in what will
follow in the proofs. In particular, it is important to clarify the central role and
power of the Basic Identity (2.16).

The key step in the proofs is the evaluation of the tail probability

(2.25) P{e!X > 2B(t)} = P{X > £n, ()} = e Hm(®),

where we used (2.17), (2.14) and (2.2). This needs to be compared to the sample size,
N ~ e*o(®) and therefore we have to relate the function k(1 (¢)*) to the canonical
scale determined by the rate function Hy(¢). In so doing, the Basic Identity (2.16)
plays the major role, as well as the following formula (cf. Lemma 5.15 below):

(2.26) lim [A(ne(8)*) = h(m(t)*)] = alogz (x> 0).

An explanation of (2.26) can be as follows: let us apply Taylor’s approximation and
use the property (2.8) of normalized regular variation of ~ to obtain

+ .+
2.27)  h(nE) — h(nE) ~ K () (F — nF) ~ oh(nE) L (¢ — o0).
1

By the Basic Identity (2.16), h(n¥) can be replaced by AHy(t). On the other hand,
using the definition (2.14) of 7, we get
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Hence, the right-hand side of (2.27) is asymptotically equivalent to (¢ A/u(t)) logz,
and our claim readily follows using the limit of p(t) given by (2.13).

It is now easy to obtain the main ingredient of the limiting infinitely divisible
law for 0 < A < Ay —the Lévy-Khinchin spectral function (see Section 6.1 below)

L(z) = — tli{&N P{e!X > «B(t)} (z > 0).

Indeed, using the scaling assumption (2.11), formula (2.25), the Basic Identity (2.16)
and relation (2.26) we get, as t = oo,

(2.28) NP{etX > zB(t)} ~ A Ho(M)—h(nF) _ Sh(ni)—h(nE) _, e—alogz

and hence L(z) = —z~® (see Theorem 6.1). In particular, « is indeed the charac-
teristic exponent of a limit law.

Let us now pay attention to the normalizing function B(t) defined by (2.17). Note
that by (2.11), we have B(t) ~ N1/} a5 t — 00. In particular, (2.13) implies
that in case B, N is being raised to the power u(t)/A ~ o/a > 1/a. This should
be compared to classical results in the i.i.d. case [see Ibragimov and Linnik (1971),
Theorem 2.1.1, p. 37, 46], where the normalization is essentially of the form N o,
As we see, in case B the sums of random exponentials (1.1) have a limit (stable)
distribution by virtue of a non-classical (heavier) normalization. As for case A, we
have B(t) ~ N~#(*)/X 5 0, which has no analogies in the classical theory.

However, another look at the tail probability reveals the mechanism of settling
down to a stable law which is in fact quite analogous to that in the i.i.d. situation.
Indeed, in order that i.i.d. random variables (Y;) belong to the domain of attraction
of a stable law with characteristic exponent « > 0, it is sufficient that

1
1
(2.29) P{Y > n'/%z} ~ — (n — o0)

[see Ibragimov and Linnik (1971), Theorem 2.6.1, p. 76]. Note that if we set Y; :=
etXi | B(t)yN~1/« (; = 1,...,N), then, according to (2.28), for = > 0

P{Y > Nl/ax} = P{etX > zB(t)} ~

Nao (t — o0),

which mimics the condition (2.29). Thus, in the normalizing function represented
in the form B(t) = B(t)N~'/® . N'/« the factor B(t)N~/* is responsible for
the correct behavior of the distribution tail, while the conventional power N1/«
performs averaging towards a stable law with characteristic exponent «.

This simple observation explains heuristically the many similarities between the
limit behavior of random exponentials e**¢ and that of the usual ii.d. random
variables—from convergence to a stable law (Theorem 2.3 and Section 6) to the
properties of extreme values (Section 8).

Outline. The structure of the paper should be clear from the table of contents.
Let us briefly comment on how the remaining part is laid out. In Section 3 we specify
our regularity assumption on the distribution tail of the random variables X,; and
formulate the Tauberian theorem of Kasahara—de Bruijn. In Section 4 we prove the
LLN above A; (Theorem 2.1) and the CLT above Az (Theorem 2.2). In Section 5, the
condition of normalized regular variation of the function h is discussed and the Basic
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Identity is established (Lemma 5.12). Section 6 is devoted to the proof of Theorem
2.3 (0 < XA < Ag). We first demonstrate convergence to an infinitely divisible law
(Theorem 6.1), which is then reduced to a canonical stable form (Theorem 6.6).
In Section 7 we prove the LLN at A = A\; (Theorem 2.5) and the CLT at A =
A2 (Theorem 2.6). Section 8 is devoted to characterization of the limit behavior
of extremes. In particular, we obtain the limit distribution of the maximal term
M n(t) (Theorem 2.7) and of the ratio Sy (t)/M1 n(t) (Theorem 8.20). Section 9
contains two applications of our results —to the limit laws for fluctuations of the
‘free energy’, by analogy with the REM, and to the limit laws for /;-norms of vectors
(eX)¥,, in the spirit of Schlather (2001). Appendix A presents some examples,
in particular in the model case of the Weibull/Fréchet distribution where a more
explicit transcription of the limit theorems is available. Appendix B is devoted to the
(quite technical) proof of Lemma 5.16 about asymptotics of truncated exponential
moments. Finally, in Appendix C we give two direct proofs of Corollary 8.25 about
the expected value of the limiting ratio Sy (¢)/My n(2) in the case 0 < A < Ay,

3. Preliminaries.

3.1. Regularity. Let us start by making precise our basic assumption on the
regularity of the log-tail distribution function h defined in (2.1).

REGULARITY ASSUMPTION. The function A is reqularly varying at infinity with
index ¢ (we write h € R,), such that 1 < p < oo (case B) or 0 < g < oo (case A).
That is, for every constant x > 0

h(kz)

L hs) _
&) M h@) "

[see Bingham et al. (1989), Sect. 1.5, § 2, p. 18].

It is known that A € R, iff A admits the Karamata representation [see Bingham
et al. (1989), Eq. (1.5.2), p. 21]

(3.2) h(z) = c(z) exp {[:v o+e(w) du} (x > a)

u

for some a > 0, where ¢(-), £(-) are measurable functions and ¢(z) — ¢4 > 0,
e(z) = 0as ¢ — oo.

The following result, known as the Uniform Convergence Theorem (UCT) [see
Bingham et al. (1989), Theorem 1.5.2, p. 22], significantly extends the definition of
regular variation (3.1) and proves to be extremely useful.

LeEmMA 3.1 (UCT). If h € R, with ¢ > 0 then (3.1) holds uniformly in k on
each interval (0, b].

3.2. Exponential Tauberian theorems. Let the generalized inverse of a function
f be defined by f (y) := inf{z : f(z) > y}, with the convention that inf & = +00
[see Resnick (1987), Sect. 0.2, p. 3-4]. In what follows, we will be extensively using
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the inverse of the log-tail distribution function A (2.2). Thanks to the fact that
h is non-decreasing and right-continuous, its inverse A" has the following useful
property allowing one to handle ‘level’ inequalities [Resnick (1987), Eq. (0.6¢), p. 4]:

(3:3) R o(y) <z iff y < h(z).

The next result [cf. Bingham et al. (1989), Theorem 1.5.12, p. 28] shows that the
generalized inverse inherits the property of regular variation and, quite naturally,
is an ‘asymptotic inverse’.

LEmMMA 3.2.  If f € R, with ¢ > 0, then there exists g € Ry, such that
g(f(@)) ~ f(g(z)) ~z  (z = o0).

Such g is unique to within asymptotic equivalence, and one version is f* .

For 1 < ¢ < 0o (case B) or 0 < p < 0o (case A), we define the ‘conjugate’ index
o' by the formula (2.4). Rearranging (2.4), we obtain the useful identities

o' / 0
3.4 L £ ¥l
(3.4) . (o' —1) ek

!

We are now in a position to formulate the exponential Tauberian theorems of
Kasahara and de Bruijn [see Bingham et al. (1989), Theorem 4.12.7, p. 253 and
Theorem 4.12.9, p. 254], which play a fundamental role in our analysis. We will
state both theorems in a unified way and in terms convenient for our purposes.

LeEmMMA 3.3 (Kasahara—de Bruijn’s exponential Tauberian theorem). Let h be
the log-tail distribution function (2.2) and H the corresponding cumulant generating
function (2.3). Suppose that ¢ € Ry, and put

(3.5) Y(u) ;= up(u)T € Ry,
Then
36 he)~ L et@) @) i HEO~ GO (o).

In particular, h € R, iff H € R,.

Let us point out that the function
1
(3.7) Hy(t) := G P(t) ~ H(t),

appearing in (3.6), is the rate function Hy mentioned above in Section 2.1.
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3.3. Some elementary inequalities. 'The following inequalities will be useful [see
Hardy et al. (1952), Theorem 41, p. 39]: Let a > 0, b > 0 and a # b, then
(3.8) paP~ (a—b) <af — b < pb* " (a—b) (0<p<l,
(3.9) pb?~(a —b) <a? — W < paP (a—b) (p<0 or p>1).

Let us also record a technical lemma.

LEMMA 3.4. Consider the function
(3.10) n(@) =Az-1)F@"-3z), z>1
If XA > A1 then there exists xo > 1 such that vy(z) > 0 for all x € (1, x).

PrOOF. One could use inequalities (3.8), (3.9), but we choose to give a shorter,
analytic proof. By (2.6) and (3.4), we have Ay = p'/p = (o' — 1). Note that
va(1) = 0 and v4(z) = A F (0'z¢ "1 — 1), s0 that v} (1) = AF (o' = 1) = A — \; >
0, according to the hypothesis of the lemma. Therefore, Taylor’s formula yields
va(z) = (z — 1) (w4 (1) + o(1)) > 0 for all z > 1 sufficiently close to 1. O

4. Limit theorems above the critical points. In this section, parameter A

is defined by (2.10). We also recall that A\; and A» are given by (2.6).

4.1. Proof of Theorem 2.1 (LLN above X\1). Set

* ,_SN(t)_thi t
SN = Ergmi] = N;e XFHO),

so one has to prove that S5 (t) 25 1 as t = oo. To this end, it suffices to show that
lim; o E|S%(¢) — 1|" = 0 for some r > 1.
By the inequality of von Bahr and Esseen [(1965), Theorem 2, p. 301; see also
Petrov (1975), Ch. III, § 5, no. 15, p. 60], for any r € [1, 2] we have
Els}k\f —1"< gN1-T EletX:FH(t) _ 1|1~ < oN1-7 E|etX:|:H(t) + 1|1~'

Applying the elementary inequality (z + 1)” < 2"~}(z” + 1) (z > 0, r > 1), which
follows easily from Jensen’s inequality, we further obtain
(41) Elsltf _ 1|1" < 2er—re:|:H(rt):FrH(t) + 9r N1-r

Since H € R, and also using (2.10) and the asymptotic equivalence H () ~ Hy(t)
[see (3.7)], we get

. . [(r=1)logN _ H(r?)

1 f

i HO T HQO
[see (3.10)]. By Lemma 3.4, we can choose r > 1 such that v,(r) > 0, which implies
that in the limit ¢ — oo the right-hand side of (4.1) is bounded by e~¢H®) = o(1).

tr| =Ar 1) Frd £r=u\(r)
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4.2. Proof of Theorem 2.2 (CLT above A\2). Denote

(4.2) o(t)? := Var[etX] = E[e*X] — (E[etY])” = XH0) _ £2H(),

LEMMA 4.1. Ast — oo,
(4.3) o(t)? = e (1 4 (1)) and e — 5(8)2 o(1).
ProOF. In view of (4.2) it suffices to prove the first statement. Note that
(44) e:FH(2t)o,(t)2 —1— e:FH(2t):|:2H(t)‘

Using that H € R, we obtain

. H(2t) _ o — |2¢'

[see (2.5)]. Hence, the exponential term on the right-hand side of (4.4) vanishes as
t — o0, and (4.3) follows. O

The following lemma is a variation of Chebyshev’s inequality.

LEMMA 4.2. Let Y be an arbitrary non-negative random variable. Then for
every T >0 and all k< m
(4.5) E[Y*1iysry] < 7™ E[Y™].

ProOF. Similarly to the usual proof of Chebyshev’s inequality, we write
E[Ym] > E[Ym]-{Y>‘r}] = E[Ym_k' Ykl{Y>‘r}] > Tm_k E[Ykl{Y>‘r}:| )
whence (4.5) follows. O

PROOF OF THEOREM 2.2. In view of Lemma 4.1, the statement of the theorem
may be rewritten as follows:

Sn(t) — NetH®)

(4.6) e N O (o),
Denote

_ etXi )
(4.7) E:E(t) = m, Z:1,2,...

1) According to the classical results on the Central Limit Theorem for indepen-
dent summands [see, e.g., Petrov (1975), Ch. IV, § 4, Theorem 18, p. 95], we firstly
need to check that for all 7 > 0

SOPYi(t) > =NP{Y(t) >} =0  (t— o0).

Assuming that » > 1, let us apply Chebyshev’s inequality (of order 2r) and recall
the definition (4.7) to obtain

(48) NP{Y > 7_} < NT—27" E[y2r] — Nl—rT—2re:|:H(2rt):FrH(2t)‘
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Using that H € Ry and H(t) ~ Ho(t) as t — oo, we find
(r—1)log N _ H(2rt) , rH(2t)
F +
H(t) H(t) — H()

= 291(2_91)\(7‘ ) F(r? - r)) = 29y (1),

lim inf
t—oo

] = A(r —1) F (2r) £ r2¢

where N := 27¢A and the function v,(-) is defined in (3.10). By the theorem’s
hypothesis, \' > 27¢A, = \; and hence, by Lemma 3.4, vy (r) > 0 for a suitable
r > 1. Therefore, the right-hand part of (4.8) tends to zero as t — oo.

2) Next, we have to verify that for every 7 > 0, as t — 00,

N 2
w9 S {EPLen] - (EBtmen]) | = MVarly L] > 1

i=1
By Lemma 4.1, Var[Y] ~ 1/N, so condition (4.9) can be rewritten in the form
NVar[Y] — NVar[Y1y<,3] — 0.

Expanding the variances, the left-hand side is represented as

(4.10) NE[Yzl{Y>T}] - N E[Yl{y>.,.}] E[Y (1 + 1{Y§‘r})] .
Applying Lemma 4.2 to the first term in (4.10) (with & = 2, m = 2r > 2) yields
(4.11) NE[Y?1ys,y] < Nr 2D E[Y?] = o(1),

as shown in the first part of the proof. The second term in (4.10) is bounded by
2N(E[Y])? = 2eFHCEHE2H(®)  which is o(1) by Lemma 4.1. Hence, (4.10) vanishes
as t — oo, and condition (4.9) follows.

3) Finally, we need to show that

N N
DB =) E[Vilgvicn] = NE[Yiysn] =0,
=1 =1
Indeed, applying Lemma 4.2 with k = 1, m = 2r (r > 1), we obtain the estimate
N E[Yl{y>7—}:| < Nrpt=2r E[er] = o(1)
[see (4.8), (4.11)], and the proof of the theorem is complete. O
5. Normalized regularity and the Basic Identity.
5.1. Normalized regular variation. From now on we impose the following
NORMALIZED REGULARITY ASSUMPTION. The log-tail distribution function h

is normalized regularly varying at infinity, h € NR, (with 1 < ¢ < oo in case B and
0 < ¢ < o in case A), that is, it can be represented in the form

(5.1) h(z) = cexp {/: Lg(u)du} (z > a),

u
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where ¢ = const > 0 and e(z) — 0 as z — oo [see Bingham et al. (1989), Sect. 1.3,
§ 2, p. 15]. That is to say, the function ¢(-) in the Karamata representation (3.2) is
now required to be a constant.

More insight into the property of normalized regular variation is given by the
following lemma [cf. Bingham et al. (1989), Sect. 1.3, § 2, p. 15].

LEMMA 5.1.  Let h be a positive (measurable) function. Then h € NR, iff h is
differentiable (a.e.) and
zh'(z)
h(z)

(5.2) — 0 (z — 00).

ProoF. From representation (5.1) it is seen that h is absolutely continuous,
hence the derivative b’ exists (a.e.) and

(5.3) W(z) = ¢ exp {[w 0 +;‘(u) du} e+e(@) _ h@)(ete(@)

T T

Therefore, zh/(z)/h(z) = 0+ e(z) — ¢ as © — oo and (5.2) is fulfilled.
Conversely, let us set

(@) = {a:h'(a:)/h(:c) —o if W'(z) exists,
o otherwise.

Then £(x) — 0 as x = oo, and integration yields

[0 [0 vt s

Hence, representation (5.1) follows (with ¢ = A(a)) and therefore h € NR,. O

REMARK 5.2. Differentiating the general Karamata representation (3.2) yields
xh'(z)  xc'(x)
h(z) (@)

Hence, (5.2) is equivalent to the condition

+ o+ e(x).

zc'(x)
c(z)

which looks more general than ¢(z) = ¢ = const. However, the argument above

implies that in fact it is not. This can also be seen directly, as (3.2) may be reduced

to the form (5.1) by replacing the original function ¢(z) with e(x) + zc'(z)/c(z),

which is o(1) as well, due to (5.4).

(5.4)

-0 (xz = o0),

The following lemma, provides another important characterization of normalized
regularly varying functions [see Bingham et al. (1989), Theorem 1.5.5, p. 24].

LEMMA 5.3. A positive (measurable) function h is normalized reqularly varying
with index g, i.e. h € NR,, iff for every € > 0 the function h(z)/x? ¢ is ultimately
increasing and the function h(z)/x?T¢ is ultimately decreasing.
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As noted in the proof of Lemma 5.1, the derivative A’ may exist only a.e. This
presents technical difficulties, as for instance one cannot use the Lagrange mean
value theorem, the Laplace asymptotic method etc. However, by exploiting the spe-
cial structure of a normalized regularly varying function h given by the representa-
tion (5.1), it is possible to overcome such difficulties thus avoiding imposing further
assumptions like continuity of £(-). One preparatory step in this direction is made
in the next lemma, which provides a useful integral representation of normalized
regularly varying functions.

LEMMA 5.4. A function h € NR, can be written in the form

(5.5) ha) = hta) + [ ) a2,

where e(x) = 0 as x — o0.

Proor. Consider the function
* h(u
D(z) := h(z) — h(a) — [ % (0 + e(u)) du.

Obviously, D(a) = 0. As already mentioned in the proof of Lemma 5.1, represen-
tation (5.1) implies that A is absolutely continuous, and hence D(-) is absolutely
continuous as well. Differentiating D(z) and using equation (5.3), we have (a.e.)

D'(e) = W(x) - M2 (g 4 c(a) = 0
Hence, D(z) = 0 and (5.5) follows. O

The following lemma can be viewed as a refinement of the UCT of Lemma 3.1
for the case of normalized regular variation.

LemMMA 5.5. If h € NR, (¢ > 0) then, uniformly in k on each interval
[£0, ©1] C (0, 00),
h —h
%)("”) =k —1)(1+0(1) (z— o).
PRrROOF. Suppose for definiteness that x > 1 (the case 0 < x < 1 is considered
similarly). Using the representation (5.5), after the substitution v = zy we have

(5.6 Pt M [T et dy

The UCT (Lemma 3.1) implies that the function under the integral sign converges
to oy~ ! uniformly on [1, x;] as # — co. Therefore, the integral in (5.6) converges,
uniformly in « € [1, k1], to [" oy®ldy =k —1. O
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5.2. Basic Identity. Let us now re-examine the application of the Kasahara—de
Bruijn Tauberian theorem (Lemma 3.3) to our situation. Note that the function
oh(z) is continuous and, by Lemma 5.3, ultimately strictly increasing, and hence
its ordinary inverse (t) := (oh)~1(t) is well defined and strictly increasing for all
t large enough. In turn, for all z large enough we have

(5.7) ¢ (@) = oh(z).
It then follows that the function 1 (¢) defined by (3.5) is ultimately strictly increasing

as well. For suppose s < ¢, then the required inequality (s) < ¢(t) is equivalent
to sp(s)T < tp(®)T, or

(5.8) e Hz)aT <o M (y)yT,

where z := (s), y := ¢(t) and z < y. Using (5.7), inequality (5.8) can be rewritten
as h(z) 2z~ < h(y)y =T with e := gF1 > 0, and the latter holds by Lemma 5.3.

Consequently, the inverse function ¢! exists and is ultimately increasing. There-
fore, formula (3.7) is reduced to

(5.9) %1 (t) = o'Ho(t).
For the sake of notational convenience, let us introduce the function
"Ho(t)\*
(5.10) s(t) == (QTO()> . t>0.

Since Hy € Ry, we have s(t) € Ry(y_1) = R|y_1| and hence s(t) = oo as t = oo.

We are now in a position to explicitly characterize the link arising between the
regularly varying functions A and Hy through the Tauberian correspondence. Re-
markably, due to normalized regular variation of &, such a relationship has the form
of an exact equation, rather than just an asymptotic relation.

LEMMA 5.6. For all t large enough, the functions h and Hy satisfy the equation
(5.11) o' Ho(t) = oh(s(t)).

REMARK 5.7. Remembering that s(-) is expressed through Hy [see (5.10)], iden-
tity (5.11) can be viewed as a functional equation determining the function Hy.

ProOOF OF LEMMA 5.6. Let us apply % to (5.9) and use relation (3.5) to obtain
t =9 (o'Ho(t)) = ¢'Ho(t) p(¢'Ho (1)) 7,
which yields

' +
p(e'Ho(t)) = (—Q Ii‘)(t)) = s5(1).

Hence, using (5.7) we get o' Ho(t) = o~ 1(s(t)) = oh(s(t)). O



LIMIT THEOREMS FOR RANDOM EXPONENTIALS 21

REMARK 5.8. One can prove an identity dual to (5.11), making the relationship
between h and Hy more symmetric. Namely, for all large enough z one has

(5.12) oh(z) = o' Ho(s" (z))

[cf. (5.11)], where s*(z) := oh(z)zT [cf. (5.10)]. Formally, (5.12) is obtained by
raising (5.11) to the power ¢’ — 1. We will not, however, need this relation.

In order to rewrite equation (5.11) in a form suitable for us (to be called ‘Basic
Identity’), we need to make some technical preparations. Recall that « is defined
in (2.7). Conversely, using (3.4) X is expressed in either of the two forms

7

al
1%

(5.13) A=2Y =1 - 1)af.

LEMMA 5.9.  For large enough s, there exists a unique root ji(s) of the equation
(5.14) h((i/¢')*s) = a?h(s),
given by the formula
(5.15) a(s)* = @ h= (a?(s)).

In particular, if a =1 then i(s) = o'.

ProOOF. Recall that h is normalized regularly varying and (absolutely) contin-
uous [see (5.1)]. Therefore, by Lemma 5.3 it is strictly increasing in some [a, 00), so
the (usual) inverse h~! exists and is defined on [h(a), o). Hence, equation (5.14)
can be resolved to yield formula (5.15), which is well defined for all s large enough.
The case a = 1 follows easily. O

LEMMA 5.10.  The function j(-) defined in Lemma 5.9 is ultimately bounded
above and below, and furthermore, for all s large enough

~ +
(5.16) min{l,a"l/zg} < (%) < max{l,az"l/g}.

ProoF. If a <1 then, due to monotonicity of the function A1,
(5.17) %h_l(a"'h(s)) < % h=(h(s)) = 1.
In the case a > 1, we note that for every x > 1 and all s large enough
(5.18) rkh(s) < h(k?/s),

because h € R, and hence lim,_, o, h(x2/2s)/h(s) = k% > k. Applying inequality
(5.18) with k = a? > 1, we get

1 ’ ]. ! ’
(5.19) - R~ (a?h(s)) < - h1(h(a?e/s)) = a?¢/e.
Combining (5.17) and (5.19) and using (5.15), the upper bound (5.16) follows.
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Similarly, for o > 1 we obtain
% W1 (o h(s)) > % h(h(s) =1,
whereas for a < 1
S ThE) 2 T (e 0) = a2,
which is consistent with the lower bound in (5.16). O

LEMMA 5.11.  The function ji(s) has a finite limit as s — oo given by

(5.20) lim fi(s) = o'a® 1.
§—00

ProOF. Since fi(-) is bounded by Lemma 5.10, the UCT (Lemma 3.1) implies

+o
h((ﬁ(s)/g'>is)~(§) hs) (s oo).

Comparing this with equation (5.14), we obtain

(-

whence it follows that the limit (5.20) exists and is given by

lim fi(s) = ¢'a®?/ = p'a? !,
8—00
in view of the first of the identities (3.4). O

Let us define the function

(5.21) u(t) == (i o s)(t) = pls(t),

where s(t) is given by (5.10). From the definition of fi(s) (see Lemma 5.9), it is clear
that for all ¢ large enough the function u(t) satisfies the equation

(5.22) B((u(t)/)* s(8) = a?h(s().
Since s(t) — oo, Lemma 5.11 implies that
(5.23) Jim p(t) = o'a? 1.

For 7 > 0, denote

(5.24) 0o (t) = w(t)Ho(t) :I:logr‘

In particular, for 7 =1

(5.25) (o) = L0 20+

[see (5.10)]. From equations (5.25) and (5.23) it follows
(5.26) m(t)E = (ut)/e)s(t) 5> 00 (t— o).
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Furthermore, it is easy to see that

mell) g, losT

(5.27) 0 = O (t — 00).
Hence, using (5.23) we obtain
(5.28) tne(t) _ e () u(t) = o'af 1 (t — c0).

Ho(t) — m(t)

The following lemma will play the crucial role in our analysis.

LEMMA 5.12 (Basic Identity). For all t large enough,
(5.29) h(m (t)%) = AHy(t).

ProoF. From (5.25) and (5.22) it follows

(m(®)*) = h((u(t)/e)*s(8) = a?'h(s(1)).
By Lemma 5.6 and relation (5.13), this coincides with AHp(¢). O

5.3. Implications of the Basic Identity. In this section, we prove three use-
ful lemmas concerning the asymptotics of various ‘perturbations’ of the function
h(n: (t)*). Of particular importance for further calculations will be Lemma 5.15.

LeMMA 5.13.  Let g(-) be such that tg(t)/Ho(t) — 0 as t — 0o0. Set i 4(t) :=
17.-(t) F yg(t). Then for each T > 0 uniformly in y on every finite interval [yo, y1]

. +
(5.30) fim A7) o
t—00 tnr’y(t) 0

In particular, for g = 0 one has

. h( () _
(5:31) R O

ProoF. Relation (5.28) implies that, uniformly in y € [yo,¥1],
Nr oy (t 1 tg(t) Hp(t
y(t):nr,y()z  Jog _ytglt) Ho(®)
m(t) tm(t)  Ho(t) tm(t)
Therefore, by the UCT (Lemma 3.1), uniformly in y on any finite interval [yg, ¥1]
h(ii,) = hsyni) ~ K¢ h(ni) ~ h(ny).
Hence, taking into account Lemma 5.12 and the limit (5.23), we obtain

hiz,)  R(pE) _ AHo(t) _ A A a

(t — 0).

tiry e tm ou(t) " elef Tt T g
in view of formula (2.7). O

’
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LEMMA 5.14.  Under the conditions of Lemma 5.13, for each 7 > 0

i PO OF) = Ay (F) _
t—=00 tg(t)

ay,

uniformly in y on every finite interval [yo, y1].

PROOF. Similarly to the proof of Lemma 5.13 we get

Nr oyt tg(t) Ho(t
oy Bl L vte®) Ho®)
17 (t) Ho(t) tn-(t)
uniformly in y € [yo,y1]. Therefore, for all large enough ¢ the function x,(¢) is
uniformly bounded, 0 < k¢ < £y () < k1 < 00. Applying Lemma 5.5 we have

(5.32) h(nF) = (i) ~ —h(7) (k¢ = 1) (t = o).

(t = o)

Furthermore,

+eo
K 1= (1 - yg(t)> . _eys)

- (t) N (t) .
Substituting this into (5.32) and using the limit (5.31), we finally obtain

) = h(iE,) ~ 1) 22 ~ ayego),

and the lemma, follows. [
LEMMA 5.15.  For each 7 > 0
Jim [ (6)%) = h(n, ()*)] = ~alogr,
ProoF. Apply Lemma 5.14 with y = —log 7, g(t) = 1/t. O
5.4. Asymptotics of truncated exponential moments. The goal of this section is
to establish some general estimates for truncated exponential moments, which will

be instrumental later on. Recall that the parameter o > 0 is defined in (2.7).

LEMMA 5.16. If 7 > 0 is a fized number then
(i) for each p > a,

5 :Fptnr""h("f) ptX = @ :
Jim e E[e" Lixcany] = o0
(ii) for each p < «,
: Fotnr+h(nd) ptX __“
Jim e B[ Lixouny] = -

The proof of this lemma is deferred to Appendix B.
In the case p = a not covered by Lemma 5.16, we prove one crude estimate that
will nevertheless be sufficient for our purposes below.
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LEMMA 5.17. For o > 0, denote

(5.33) Bo(t) := E[e™ Lixcuny],
where n1(t) is defined in (5.25). Then
(5.34) ba(t) := eFAMHRIIB (1) & 400 (t = o0).

PROOF. Set 71 () := 0, (t) F g(t), g(t) :=t~1+¢/2 Integration by parts yields
+m

E[e** Lix <amy] 2 E[e* Lz <x<an)] =/ et d(1 - eh(EaT))
+7
(5.35) . . . . .
— _/ ecte d(e—h(:l::c )) > _ezl:atnl—h(nl ) + Oét/ eatw—h(:l::c )da:
+in +7
Making in the last integral in (5.35) the substitution +z = n1(¢) F yg(t) =: 1.4 (t),
we obtain

1
(5.36) bo(t) > —1+ atg(t) / —ate(Ou+h(n)=h(i,) gy,
0

By Lemma 5.14, h(ni) — (nly) = atg(t)y(1+ 0(1)), uniformly in y € [0,1]. S
for any § > 0 and all large enough ¢ we have h(nf) — h(ﬁfy) > atg(t)y(1l - )
Returning to (5.36) we obtain

1
ba(t) > —1 + atg(t) / e OW dy = —1 + % (1),
0

hence lim inf;_, o, b (t) > (1/8) — 1. But the number § > 0 can be chosen arbitrarily
small, so it follows that lim inf;_, o b, (t) = +00, as claimed. O

The next lemma provides some additional information in the case p = a.

LEMMA 5.18. Forany 7 >0

: v * 22 i
(5:37) Jim ¥t HOD) [0 X (1 oy 3 — Tyxcany)] = alogr.

PrROOF. Let us assume for definiteness that = > 1, so that £, (t) > £ (¢).
Integrating by parts and using the substitution z = +7,(t) + y/t, we obtain

" h + tX
eTatm+h(ny) E[e*** Liup < x<tn.}]

(538) 4 log 7
— 1 — exlogTHh(nE)—h(nE) | 4 / govHhOrE)~h((mEy/H%) gy,

0
By Lemma 5.14 (with g(t) = —1/t), we have h(ni) — h((m + y/t) ) = —ay as
t = oo, uniformly in 0 < y < log 7, and in particular h(n) — h(n¥) = —alogT. It
is then easy to see that the right-hand side of (5.38) tends to alogt ast — co. O
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For convenience of reference, we record here a few further estimates for truncated
moments of the random variable e*X under a certain normalization adopted in this
section. Namely, consider the random variables

etXi

(NBa(t)M/’

where N is subject to the scaling assumption (2.11) and B, is defined in (5.33).
For o > 0 and 7 > 0 denote

(5.39) Y, = Yi(t) =

log(N B,(t)) " log T
at t
From (5.39) it is seen that the inequality Y (¢) > 7 is equivalent to X > %7, . (¢).
Recalling representation (5.34) and using the Basic Identity (5.29), we obtain

(5.41) NBy(t) ~ erHoFatm=h(nE) p 4y — gxatmy (5).

(5.40) fla,r (t) 1= &

Therefore, formula (5.40) implies
log b, () + o(1)

. 7 = + —
(5.42) fla,r (t) = m(t) P P
whence it follows that for all sufficiently large ¢

(5.43) *fja,r (t) > £ (t).

LEMMA 5.19.  For any p such that 0 < p < « and each 7 > 0
; D _
(5.44) tligloN E[Y(t) 1{Y(t)>‘r}] =0.
In particular, for p = 0 this yields
(5.45) fli)m NP{Y(t)>7}=0.

ProoF. From (5.39), (5.40) and (5.43) we obtain
E[Yp]-{Y>‘r}] < (NBa)_p/a E[eth]-{X>:|:n1}] .
Using Lemma 5.16(ii) and relations (2.11), (5.41), (5.29) and (5.34), we get

N x eMo(?) A ot _h(nE
71’/‘1 E[ept 1{X>:|:771}] ~ +ptnigp/a ’ _ € ptm—h(m’)
(5.46) (NB,) e bZ a—p
= ai—p b;p/a = O(].).
Thus, relation (5.44) is proved. O
Denote
:l:t’l]l(t)
(5.47) Yo = Yalt) = 6717
(NBq(t)V®

so that Y > y,, iff X > 4n;. From (5.41) it follows that y,(t) ~ b, (t)~ 1/« = 0.
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LEMMA 5.20.  Suppose that p > 0. Then for any 7 > 0
(5.48) fll)lgloN E[Y(t)pl{ya(t)<y(t)s7.}:| =0.

PROOF. Pick a number g such that 0 < ¢ < min{a, p}. Applying Chebyshev’s

inequality (4.5), we can write
_ NP1 X
NE[YP1ly, cy<ry] SNTPTUE[YI1g, ovy] = (NBe E[e™* Lixsamy]
a4

and the latter expression is o(1) as shown above [see (5.46)]. O

LEMMA 5.21.  Suppose that p > o > 0. Then for any 7 > 0
i P —
(549) tliglo N E[Y(t) 1{Y(t)§r}] =0.

PrOOF. Let us write
(5.50) NE[YPLiy<] = NE[YPLliy<y 3| + NE[YP 1y cv<ry] -

Applying Lemma 5.16(i), one can show, similarly to (5.46), that the first term on
the right-hand side of (5.50) is asymptotically equivalent to

e)\Ho(t)

. @ iptﬂl_h(ni) = —a —-p/a =
e:l:pt?h(t)ba (t)p/a P—a € 1 o ba (t) O(].),

while the second term on the right of (5.50) is o(1) by Lemma 5.20. O
6. Limit theorems below .

6.1. Convergence to an infinitely divisible law, 0 < A < Az. As already men-
tioned in Section 2.2 [see (2.11)], in the case 0 < A < Ay we impose the following

ScALING AsSUMPTION. The number N = N(¢) of terms in the sum Sy(t)
satisfies the condition
(6.1) lim Ne Mo = 1

t—o00

where A is a parameter such that 0 < A < 0.

Denote

etXi

B(t)’
where B(t) is defined in (2.17). According to classical theorems on weak convergence

of sums of independent random variables [see Petrov (1978), Ch. IV, § 2, Theorem
8, p. 81-82; cf. also Theorem 7, p. 80-81], in order that the sum

(6.2) Y; =Yi(t) = =1,2,...,

Sn(t) := ZYi(t) — A*(t)
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converges in distribution to an infinitely divisible law with characteristic function

2,2 . '
(6.3) é(u) = exp {iau — 02u + /|m|>0 (e““” —-1- IZ_:_L—Q;Q> dL(:c)} ,

it is necessary and sufficient that the following three conditions be fulfilled:
1) In all points of its continuity, the function L(-) satisfies

lim NP{Y <z} for z <0,

.4 L — t—o0
(64) (@) { ~lim NP{Y >a} for 2>0.
— 00

2) The constant ¢2 is given by

2 _ 1 . T o
(6.5) o*= Tlg&_ limsup N Var[Y1iy<,3] = lim liminf N Var[V 1y <,y].

t—00 7—=0+ t—o0

3) For each 7 > 0, the constant a satisfies the identity

3

. . _ Tz 3 *
(66) Jim {NE[YLyo,)] -4 (t)}—a+[0 = dL() [ s dL(@).

As the first step towards the proof of Theorem 2.3, we establish convergence to
an infinitely divisible law.

THEOREM 6.1.  Suppose that 0 < A < Xs. Then

SN(%(;)A“) A Fa (t > o0),

where B(t) and A(t) are defined in (2.17) and (2.18), respectively, and F, is an
infinitely divisible law with characteristic function

ey e dz
. o — y UuT 1 ,
(6.7) dalu) = exp {zau+a/0 (e -1 2) — 1}

where the constant a is given by

aTm
(69 e
0 (a=1).

6.2. Proof of Theorem 6.1. The proof is broken down into several steps accord-
ing to formulas (6.4), (6.5) and (6.6).

PROPOSITION 6.2.  The function L defined in (6.4) is given by

(6.9) L(z) = {

0, z <0,
—x7% x>0



LIMIT THEOREMS FOR RANDOM EXPONENTIALS 29
PRrROOF. Since Y > 0, it is clear that L(z) = 0 for < 0. Henceforth, assume
that z > 0. Using (6.2), (2.17) and (6.1), we obtain
NP{Y(t) > 2} = NP{X > dn, ()} ~ ;HoO-Am0F) (¢ 5 o0)
where 1, (t) is defined in (5.24). Furthermore, by Lemmas 5.12 and 5.15
AHo(t) = Bz (t)*) = R(m (1)) = h(n:()*) = —alogz  (t = ),

so from (6.4) we get L(z) = —e~ @182 = —p=> 0O
PROPOSITION 6.3.  For o2 defined in (6.5), for all a € (0,2) we have 0 = 0.

PrOOF. Since 0 < Var[Y 1iy< ] < E[Y? 1y ,1], it suffices to prove that
lim lim NE[Y?1;y<y] =0.

T7—=0+t—00

Let us fix 7 > 0. Recalling (6.2) and (2.17) and using condition (6.1), we have
(6.10) NE[Y?1(ycny] ~ ePFHOEOE[2Xy 0] (= 0).
Application of Lemma 5.16(i) with p = 2 and 0 < a < 2 yields

E[etil{X<inr}] ~ - 3 —h(n) (t — o0).
= —a

Returning to (6.10) and recalling relation (5.24), we conclude that

NE[Y?1yery] ~ 5 fa A Ho () F24(t) Ho (t)£2tn- —h(n7)

— @& AHo®)-h(ni)+2logr _, _*

(2—a)logr _ o 2—a
2 -« 2-a 2—a
where we have also used Lemmas 5.12 and 5.15. Letting now 7 — 0+, we see that
2= 5 0,since2—a>0. O

PROPOSITION 6.4.  Set A*(t) := A(t)/B(t), where B(t) and A(t) are given by
(2.17) and (2.18), respectively. Then the limit

(6.11) D, (r) = tlg& {NE[Y1y<y] — A" (1)}
exists for all a € (0,2) and is given by
a et
T a # 1),
(6.12) Dy(r) =X 1-« (7 1)
log 7 (a =1).

ProoOF. Using expressions (6.2), (2.17) and recalling (5.24) we obtain
(6.13) NE[Y1{y<,y] = NeFHOHO E[etXy (0],
1) Let 0 < a < 1, then A* = 0. Lemma 5.16(i) with p = 1 yields

X Etn—h(n)
11—«

E[etXl{XS:I:m-}] ~ (t — OO)
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Hence, on account of the scaling condition (6.1) the right-hand side of (6.13) is
asymptotically equivalent to

X AHo(OFu(®) Ho(H)tn —h(nF) — _ X Jlog7+AHo(t)—h(n¥)

11—« 11—«
Finally, using the Basic Identity (5.29) and Lemma 5.15, we get
(6.14) log 7 + AHp(t) — h(nE) = (1 — a)log T (t = o0),

and (6.12) follows.
2) Let 1 < a < 2. Using (6.13), (6.1), (2.17) and (2.18), we obtain

NE[Y Ly cny] — A°(8) = NePHO80 (B[t 1y o, )] — E[e1X])

= —N T E[et O glog THAHo(t)=h(n¥)

Xl{X>inf}] ~ Ta—1

where we used Lemma 5.16(ii) with p = 1. Applying (6.14) we arrive at (6.12).
3) Let « = 1. Similarly as above, we obtain using Lemmas 5.18 and 5.12:

NE[YI{Ygr}] — A*(t) = NeTFu®Ho(t) (E[etxl{xgin,}] _ E[etX]-{ngtm}])
~ QHOOFUOHo(®) | oEtm—h(15) Jo0 - = log 7,

and the proof is complete. O

PROPOSITION 6.5.  The parameter a defined in (6.8) satisfies the identity (6.6)
with L(-) specified by (6.9), that is,

1 D R Ty
(6 5) a(T)—a‘Fa/O\ 1+—$2 J?—Oé[; 1+$2 T (T>0),

where Dy (1) is given by (6.12).
Proor. 1) Let 0 < a < 1. Observe that
Top?e 1 Tore
——dz = 1me _ ——dz.
/0 1+ " 1-a’ [0 Ttz

Taking into account (6.12) and (6.8), we see that equation (6.15) amounts to

(6.16) f e il
0

1+22"  2cosr’

which is true by a formula in Gradshteyn and Ryzhik [(1994), 3.241(2), p. 340].
2) For 1 < o < 2, we note that

o Tl—a o0 z2—oz
de = — d
/T 1+22 ™ T a-1 /T 1+22 ™
and hence, in view of (6.12) and (6.8), equation (6.15) is reduced to

o0 2—a
(6.17) =+ / L _dr=0,
0 ].

2cos &F + z2

which again follows from Gradshteyn and Ryzhik [(1994), 3.241(2), p. 340].
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3) Finally, for @ = 1 equation (6.15) takes the form

Tz e 1
1 1 = ——dzr — ——dz.
(6.18) 08T /0 1+a2 " fT (14 2?)x v
The integrals on the right of (6.18) are easily computed to yield
T 2 o0

.2 8Ty
and this completes the proof of Proposition 6.5. [

%log(l + z?) =logr,

T

PROOF OF THEOREM 6.1. Gathering the results of Propositions 6.2, 6.3, 6.4
and 6.5, which identify the ingredients of the limit characteristic function ¢, we
conclude that Theorem 6.1 is true. O

6.3. Stability of the limit law. In this section, we show that an infinitely divisible
law F, with the characteristic function (6.7) is in fact stable.

THEOREM 6.6.  The characteristic function ¢, determined by Theorem 6.1 cor-
responds to a stable probability law with exponent o € (0,2) and skewness parameter
B =1, and can be represented in a canonical form (2.21).

REMARK 6.7. Formula (6.9) and Proposition 6.3 imply that ¢, corresponds to
a stable law [see Ibragimov and Linnik (1971), Theorem 2.2.1, p. 39-40]. We give a
direct proof of this fact via reducing ¢, to the canonical form (2.21), which allows
us to explicitly identify all the parameters.

PRrROOF OF THEOREM 6.6. According to general theory [see Zolotarev (1957),
p. 441; Hall (1981), p. 24], the characteristic function of a stable law with exponent
a € (0,2) admits a canonical representation

exp {i,uu—b|u|°‘(1 — ifsgnu - tan %)} (a #1),

exp {iuu — blu| (1 +if8sgnu- % log|u|)} (a=1),

where p is a real constant, b > 0 and -1 < g < 1.
1) Suppose that 0 < a < 1. It is easy to verify that, due to formula (6.8) and
identity (6.16), the characteristic function (6.7) can be rewritten in the form

(6.20) Po () = exp {afo e’:Z—:ll dx} .

The integral in (6.20) can be computed [see Ibragimov and Linnik (1971), p. 43-44]:
foo etur _ 1 de = _F(l - a) |u|ae—(i7ra/2) sgnu
0 @ ’

(6'19) o (u) =

xa—i—l

and (6.19) follows with 4 =0, b =T'(1 — @) cos(ra/2) >0, 5 =1 [cf. (2.21)].
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2) Let now 1 < a < 2. Using relation (6.17), we can rewrite (6.7) in the form

(6.21) Do (u) = exp i ; (e"* —1—iuz) el
The integral in (6.21) is given by [see Ibragimov and Linnik (1971), p. 44-45]

o dz T2 -« ;
fur 1 _ — a (ira/2)sgnwu
/0 (e iuzr) 75 = (e —1) |u|“e ,

and (6.19) is satisfied with p =0, b= -T(2 - a)/(a — 1) - cos(ra/2) > 0, § = 1.
3) If & = 1, from (6.8) and (6.7) we get by the substitution y = |u|z (for u # 0)

(6.22)  ¢1(u) =exp {—|u|[ cosy ——dy - iu[o (siny u2u+yy ) dy }
Tt is well known [see Gradshteyn and Ryzhik (1994), 3.782(2), p. 470] that

1 —cosy ™
2 — 2 dy=—.
(6.23) | ==
To evaluate the second integral in (6.22), let us represent it in the form
> [ si 1 d ° 1 2 d
o0 [ ()8 [ o)
0 vy  l1+y/ vy  Jo \1+y w49’/ y
It is known that [see Gradshteyn and Ryzhik (1994), 3.781(1), p. 470]
(6.25) / (Smy _ _) W _
0 y l14+y/ oy
where v is the Euler constant. Furthermore, note that
/1 u? dy 1. u?>+42|%
6.26 / (———)—:—lo = —log|ul.
(6.26) o \1+y w?+9y2) y 2 g(1—|—y)20 gl
Returning to (6.24), from (6.25) and (6.26) we get
o0 . u2y dy
(6.27) /0 (smy - m) 2 =1—~—log|u|

Therefore, substituting expressions (6.23) and (6.27) into (6.22), we obtain a re-
quired canonical form (6.19) with p=1—-+v, b=n/2, g=1. O

7. Limit theorems at the critical points.
7.1. Proof of Theorem 2.5 (LLN at \1). For o = 1, notation (5.39) amounts to
tX;
(7.1) Yi(t) =
where [see (5.33), (5.34)]
(7.2) Bi(t) i= E[eX 1 xcin] = eXtmh0) by (1),

e
NB(t)’
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with b1(t) = +o00 as t — 0o0. Note that 1, defined in (5.25), is reduced to 1 (t) =
0'Hy(t)/t, since by Lemma 5.9 in the case a = 1 one has p(t) = ¢’. Recalling the
Basic Identity (5.29) we get

Ltm — h(nf) = Lo'Ho(t) F (¢ — 1)Ho(t) = L Ho(2),
so that
(7.3) B (t) = eTHeW p (1),

Let us find the median mx of X. According to the definition and the ‘tail’
formula (2.2), we have

mx : = inf{z: P(X <z)>1/2} =inf{z : h(+z¥) > log2}.
Using the property (3.3), this is rewritten as
mx = inf{z : £z > h"(log2)} = £h* (log2)*.
It is easy to see that there exists a (large enough) number M > 0 such that
(7.4) mx = £h (log2)* < £M*.

This amounts to saying that mx < +o0 in case B and mx < 0 in case A, which is
obvious since, by assumption, the distribution of X does not charge the upper edge
of its support (see Section 2.1). More formally, the condition (7.4) is equivalent to
h* (log2) < M, which is obviously satisfied for M large enough.

The median of the random variables Y; defined in (7.1) is expressed as

etmx
(7.5) my = my(t) = Wl(t).
Let us show that my (t) — 0 as t = 0o, and moreover
(7.6) ,li}& Nmy(t) = 0.

Indeed, from (7.5), (7.3) and (7.4) we obtain
etmx et (EME—Ho(%))

= <

eiHO(t)bl(t) - by (t)
Using that Hy € Ry, where o’ > 1 (case B) or o’ < 1 (case A), it is easy to check
that £(tM* — Hy(t)) — —oco. On the other hand, b; () — oo [see (5.34)], and hence
the right-hand side of (7.7) tends to zero, which proves (7.6).

Denote Y (t) := Y (t) — my(t). According to classical theorems on the LLN for

sums of independent random variables [see Petrov (1975), Ch. IX, § 1, Theorem 1,
p. 258], we have to check that for any 7 > 0 the following three conditions hold:

(7.7) Nmy (t)

(7.8) Jim NP{[Y(t)| > 7} =0,
. > 2 _

(7.10) Jim N (my (1) + E[Y ()1 9012y ) = 1
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Since my () = o(1), we may and will assume that |[my (¢)| < e7 for all sufficiently
large ¢, where ¢ is a number such that 0 < & < 1. Therefore, if |Y ()| > 7 then
(7.11) Y(t) > [V (t)| - |my(t)]| >7—er = (1 —&)7.
Hence, P{|Y (¢)| > 7} < P{Y(t) > (1 — €)7}, and Lemma 5.19 [see (5.45)] yields
N@P{Y(®)| >} < N@P{Y(t) > (1 —¢e)r} =0 (t — o00),
which proves condition (7.8). Analogously, if |V (t)| < 7 then
(7.12) Y(t) =Y (@) +my(®) <V + my (@) < (1+e)7.
Also note that ¥ (¢)2 = (Y (¢) — my ()2 < 2Y(£)? + 2my (¢)?. Therefore,

NE[Y* L5 1cny ] S 2VE[Y 10| +2NE[mE 150

<2NE[Y?Liy<(14e)r}] + 2Nm3 = o(1),

(7.13)

where we used Lemma 5.21 and relation (7.6), and hence condition (7.9) follows.
In view of (7.6) the condition (7.10) is reduced to

(7.14) Jim NE[Y (0)159<y] =1
Inequalities (7.11) and (7.12) imply

E[Y Liyca-on) S E[Y g ] SEYycaion]-
We also note that according to (7.1), (7.2) and (5.47) (with o = 1)
1
NE[Y]'{YS?A}] = B_1 E[etX]-{XS:I:m}] =1
Hence, in order to prove (7.14), it suffices to check that for any 7' > 0
NE[Y1ly<rm] - NE[Y1lyayy] = NE[Y 1y, cverm] =0,

It remains to notice that the latter property follows from Lemma 5.20.
Thus, the proof of Theorem 2.5 is complete.

REMARK 7.1. Let us point out that Theorem 2.5 follows from Theoremi2.3 (for
a = 1). Indeed, according to (2.18) and (7.2), A(t) = NBy(t) = NeTtm—h(n) p, (¢).
Furthermore, (2.17), (6.1), (5.29) and (5.34) imply
_ A®)
~ B()
Therefore, dividing (2.20) by A*(¢t) — oo we obtain Sn(t)/A(¢) = 1+ 0,(1), which
is in agreement with (2.22). However, we have chosen to give a direct independent
proof of this result, which may be helpful for further applications.

(7.15) NOE ~ HOW=TE) ) () = by(t) > 00 (t — 00).
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7.2. Proof of Theorem 2.6 (CLT at X2). Denote
etXi
1 Y,=Yi(t)i=—— . i=1,...,N,
(7 6) 7 l( ) (]\]—Bz(t))l/2 (3
where Ba(t) is defined in (5.33). According to a classical CLT for independent
summands [see Petrov (1975), Ch. IV, § 4, Theorem 18, p. 95)], it suffices to check

that for any 7 > 0 the following three conditions are satisfied as ¢t = oo:

(7.17) NP{Y(t) > 7} >0,
(7.18) N(EY (O 1yimen] - EY O1ymen))’) = 1,
(7.19) NE[Y(t)].{Y(t)>.,-}] — 0.

Firstly, note that condition (7.17) is guaranteed by (5.45). Next, let us show that

(EFly<n))’ _ El™ e )’
EY?1ven]  E[e X lixcsg, ]

Indeed, taking into account inequality (5.43) and representation (5.34), the ratio in
(7.20) is estimated from above by

(E[etX])2 et2H(t) E2H(t)+h(nf)F2tm
E[e*XLix<uany]  Ba(t) ba(t)
Using the Basic Identity (5.29) and the limit (5.28), we have
L2H (1) + hinE) F 2tm (1)
Ho(2)

and hence the numerator on the right of (7.21) tends to zero. Moreover, bz (t) = oo
[see (5.34)], and therefore (7.20) is validated. Hence, condition (7.18) amounts to

(7.22) NE[Y?1liy<y] = L
Noting that, according to (7.16), (5.47) and (2.23),

(7.20) =0 (t = o0).

(7.21)

424 (o' —1)29 F0'2¢ = £(2-29) <0,

1
NE[Y?Liy<y,y] = 2 E[® ¥ Lixcuny] =1,
B,

we can rewrite (7.22) in the form NE[Y?1(,,cy<,3] — 0. But this is true by
Lemma 5.20, and (7.18) follows.
Finally, condition (7.19) is fulfilled by Lemma 5.19 (with p =1 < 2 = a).

8. Limit distribution of extremes. Throughout this section, we assume
that the log-tail distribution function % is normalized regularly varying, h € NR,,
and that the scaling condition (6.1) is fulfilled. Let us also recall that the parameter
a is given by a = (pA/g’)'/¢ [see (2.7)], and the normalizing function B(t) has the
form B(t) = exp{£u(t)Ho(t)} [see (2.17)], with p(t) defined in Section 5.2.
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8.1. Limit theorems for extreme values. Let us arrange the random variables

e!*1. ..., e~ in the non-increasing order, My x > Many > -+ > My n, so that

My N = My, n(t) are the order statistics of the sample (e!*¢)N .. In particular,

My n(t) = max{e!®i, i = 1,..., N} is the maximal term. Note that M y can be
represented in the form

(8.1) My, n = etXmn, k=1,...,N,
where X, & are the (non-increasing) order statistics of the sample (X;)Y ;.

THEOREM 8.1 (Limit distribution of M; n; cf. Theorem 2.7). For all X > 0,
as t — 00, My n(t)/B(t) converges in distribution to the Fréchet law B, [see (2.24)].

REMARK 8.2. The Fréchet distribution ¢, represents one of the three types of
possible weak limits for maxima of i.i.d. random variables [see Galambos (1978),
Theorem 2.4.1, p. 71]. However, the known general theorems about convergence to
®,, are not directly applicable in our case.

ProoF oF THEOREM 8.1. Using (2.17), (5.24) and (2.2), for > 0 we have

N
P{Min <oB()} = P{Xin < 2} = (1-e"0D)
(8.2) .
= exp [—Ne_h("m (1 + 0(1))] .
Furthermore, recalling (6.1) and (5.29) we obtain
Ne~hnd) o hn)=h(nF) _, g=alogs (4 o)
according to Lemma 5.15. Hence, returning to (8.2) we get

. _ _,—alogzy _ —=z
Jim P{M, n(t)/B(t) < 2} = exp(—e )=e )

and the theorem is proved. [
This result implies the following Law of Large Numbers for the maximum.

COROLLARY 8.3 (Log-LLN for My n). Forall A >0,
log My n(t)

4 1 _o'—1
— +o'a? t — 00).
Ho(0) 0 ( )
ProoF. From Theorem 2.7 we deduce that
8 MWN) _ i) 1 op1) (12 00)
Hy(t) P

whence, recalling the limit (5.23), our claim follows. O
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REMARK 8.4. Comparing Theorem 8.3 and Theorem 9.1 which we will prove
in Section 9.1 below, we note that in the case 0 < A < A\

log My n(t) »
Tog Sut) —1 (t — o0),

which indicates that the contribution of the maximal term M n(¢) to the sum Sy (%)
is logarithmically equivalent to the whole sum. In the opposite case where A > Ay,
the limit in (8.3) is strictly less than 1, so that M n(t) is negligible as compared
to Sy (t). This observation is supported by the LLN being valid for A > A; (see
Theorems 2.1 and 2.5), and is further evidenced by Theorem 8.20 characterizing
the limiting distribution of the ratio Sy (t)/M; n(t) in the case A < Ap.

(8.3)

In a way similar to the proof of Theorem 8.1, one can obtain the asymptotic
distribution of subsequent extremes.

THEOREM 8.5 (Limit distribution of My ). For all A > 0 and each k € N,

k=1 o
(8.4) Jim P{Mg—N(t) < :c} =" Z l (z > 0).

t=o0 (t) = 7

Proor. Using (8.1), we have P{M} v < zB(t)} = P{Xi.n < 1.} [cf. (8.2)].
The distribution of the kth order statistic X n is given by the following known
formula [see Galambos (1978), Sect. 2.8, Eq. (135), p. 102]:

P LN < u} = Z ( )= Pl PP,
where F'(u) is the common distribution function of the random variables X;:
Flu):=P{X <u}=1- e—hEu®),
Setting u = £, (t), similarly to the proof of Theorem 8.1 we obtain

kot N R +\\ V-7
P{Xiw < £ne()} = 3 ( ,)e—fhwm )(1- o)

=0 7

~ (1 — e‘Mﬁf))N S

2

i
Jh(nz

)

[
x

|
—

L i (hm)—nty ),

~ exp(_ehwf)—h(n:ﬂ)) ce

J

Il
<
&\.

and (8.4) follows by Lemma 5.15. O
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8.2. Joint distribution of extremes. One can also derive the limiting form of the
joint distribution for a finite number of upper extremes. For instance, let us prove
the following assertion.

THEOREM 8.6 (Joint limit of M, y and M n). For anyr <s and z,y >0

. M, N M, N
lim P{ =22 < p, =2 <
b {B(t) =% B —y)}

a mfa] 704 — k—j
(8.5) 2093 S ey
=0 k
= . 1 xia]
e 7 if z<y.
j=0 7

ProoF. For z <y the inequality M, n < z implies M, xy <y, so that
P{M, Ny <zB(t), Ms v <yB(t)} = P{M, n < zB(t)},
and (8.5) follows by Theorem 8.4. For z > y, using (8.1) we obtain
P{M, n <zB(t), Ms v <yB(t)} = P{X, nv < £1,(t), Xsn < E0y(0) }-
The joint distribution of the order statistics X, x and X y (with r < s, u > v) is
given by [cf. David (1981), Sect. 2.2, p. 11]
P{X:~ <u, X, Ny < v}

r—1s—1

= 1= F@)Y [F(u) = F)]*7 [F(u)]" "

=tk N —j)!

<.
Il
o

.

Taking u = £n,(t), v = £n,(t), similarly as above we arrive at (8.5). O

This theorem can be extended to the case of any given number of upper extremes.
But it is more instructive to characterize the limit distribution of extreme values
in a different way. Let us consider the random measure ppy (corresponding to the
empirical extremal process) which counts the order statistics ‘from the right’:

N
(8.6) un(z,0) := Z 1, v>2B(t))s z > 0.
k=1
The following theorem reveals a Poisson asymptotic structure as ¢ — oo.

THEOREM 8.7 (Poisson limit theorem for order statistics). In the sense of con-
vergence of all finite-dimensional distributions, un converges to a Poisson random
measure on (0,00) with mean measure v(z,00) = z~%. That is, for any points
Ty > - > xp > 0 and any integers my, ..., mpy >0

) N T ™ sy
(8.7) tll>11010 P{un(A;) =m;, i=1,...,n} = 1:[ o e )
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where A; := (z;,25-1], ®o 1= 00, and v(A;) =z, *

-z

REMARK 8.8. The same answer was established by Weissman (1975) for the
counting measure of extremes in the case of i.i.d. random variables in the domain
of attraction of the Fréchet distribution ®,. Analogous results were also obtained
in Weissman (1975) for the cases of attraction to the Weibull distribution ¥, and
the Gumbel distribution A. See also David [(1981), Sect. 9.4, p. 266].

PrOOF OF THEOREM 8.7. In view of (8.1) and (8.6), the condition un(4;) =
m; means that the interval (+7,,,+7,, ,] contains exactly m; points out of
Xi1,...,XN. Hence, putting m,+1 := N —my; — -+ — my, by the multinomial
formula we obtain

P{un(A;))=m;,i=1,... ,n}

. N'H F(£ne,_,) — F(:I:mi)] " . [F(£n2,)]""+

z' mn—i-l!

—h(nE) _ —h(nE_ )ymi _ o—h(nE )y
I LR

mz' mn+1!

—h(n¥ _ ) m:
] (1-e” (nzn))N

n 1 h(nE)—h(nE) _ h)—h(nE,_ )ym:
- H [6 1 e | 1 1 ] ,exp{eh(nli)—h %n)}
=1 my:

Using that, by Lemma 5.15, h(nit) — h(nE) — —alogz;, we arrive at (8.7). O

8.3. Some representations of ertreme values. In this section, we record a few
(basically well known) representations in distribution for extreme values My y and
hence for the sum Sy (t). These representations are expressed in terms of auxiliary
sequences of i.i.d. random variables with either exponential or uniform distribution.
In particular, they will be used to study the asymptotic behavior of Sy (t) in the
case 0 < XA < A;. The advantage of such an approach (usually called the ‘method
of common probability space’) is that the random variables of interest will have a
limit with probability one, rather than just in distribution.

Consider the random variable = := +h* (£)%, where ¢ has the unit exponential
distribution, that is, P{¢ > z} = e™® (z > 0). A key observation is that Z L x.
Indeed, since h is right-continuous, we can use the property (3.3) to obtain

P{E < 2} = P{£h"(6)* < 2} = P{h"(¢) < +a*)
= P{¢ < h(#a®)} = 1 - e M=) = p{X <z},

according to (2.2). Furthermore, if &1, ..., N are i.i.d. random variables with unit
exponential distribution, then the random variables Z; := £h* (§&)* are also inde-
pendent and hence the random vector (Z;), has the same distribution as (X;)X,.
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In particular, the joint distribution of the order statistics E; 5 > ... > Enn
coincides with that of the order statistics X3 v > ... > Xy n. We also note
that since the function £4* (z)* is non-decreasing in its domain, the order statis-
tics 2~ can be represented through the underlying exponential order statistics
N> . 2¢énNasEgN = ihk(fkyN)i (k=1,...,N).

Furthermore, let us recall the following representation in distribution of the ex-
ponential order statistics [see David (1981), Sect. 2.7, p. 20-21].

LEMMA 8.9. For each k =1,...,N, the distribution of the kth order statistic
&N coincides with the distribution of the random variable

(8.8) Tew =%,
i=k

where ((;) is an auziliary sequence of i.1.d. random variables, each having the unit
exponential distribution. Moreover, (§1,N,---,EN.N) 2 (TuNy--- s INN)-

As a result, the joint distribution of the order statistics My y = etXe.~ coincides
. T, . - +
with the joint distribution of the random variables et (Tx.v)™  Hence, the sum
Sn(t) =N etXi = N etXkN has the same distribution as the sum

N
(8.9) Z eEth™ (Tw)*

k=1

with Ty v given by (8.8). It is convenient to rewrite Tj n as

N .

; +1 N +1
1 Ty n = S 0T 4 .
(8.10) &N §<z g — >+ g

LEMMA 8.10. The series
o0 .
Gi 1+1
8.11 = —
(8.11) Z ( i BTy

converges with probability one.

PRrROOF. Let us represent the series (8.11) as

— (G i+1 2 G-1 /1 i1
(8.12) Z<7—10g7>=27+2<{—10g ; )
=1 =1 =1

and show that both series on the right are convergent. Recalling that (; are expo-
nentially distributed with mean 1, we have E[({; — 1)/¢] = 0 and

> i1 S VarlGl] =1
;Var<%>=2$=zi—2<oo.

=1 i=1
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Since ({;) are independent, this implies a.s.-convergence of the series > .((; — 1)/¢
[see Petrov (1975), Ch. IX, § 2, Lemma 8, p. 266]. Further, note that

1 1
i 10g<1 + ;) =0(i7%) (i > o),
hence the last series in (8.12) converges. O

REMARK 8.11. A similar approach was used by Hall (1978) to obtain a canon-
ical representation for limiting extreme values in the i.i.d. scheme, following the
ideas suggested by Rényi (1953) [see also Rényi (1970), Chapter VIII, § 9].

Lemma 8.10 implies that for each & > 1 the sum of the series
>0 .
_ G 1+
(8.13) Zjy 1= Z (7 —log —
i=k
is finite with probability one. It is not difficult to find the (joint) distribution of Zj.

LEMMA 8.12.  Let us set 7, := ke ™% (k=1,2,...). Then (13,) 4 (oK), where
ok 1= {1+ -+, and ({}) is a sequence of independent exponential random variables
with mean 1. In particular, 7, has the gamma distribution with mean k.

REMARK 8.13. The random variables (1) are distributed as a sequence of ar-
rival times of a Poisson process with unit rate.

ProOOF OoF LEMMA 8.12. According to the definitions (8.13) and (8.8), we have

N—00 4 7
i=k

N .
Zk= lim Z (z ng—; ) =1\}E>noo(Tk7N*10gN)+10gk

Hence,

(8.14) T, = e~ ZrHlogk = lim (Ne Ten) .
N—oo

Recall that by Lemma 8.9, the random variable T} x has the same distribution
as the kth (decreasing) order statistic &,y of N independent exponential random
variables (&)X, (with mean 1). From this, one could derive the distribution of 7
using the known limit results for the exponential order statistics [see Galambos
(1978), Example 1.3.1, p. 12, for £ = 1 and Theorem 2.8.1, p. 102-103, for £ > 1].

However, a more neat proof is possible that requires almost no calculations and
simultaneously allows one to establish independence of the successive differences
Tpt1 — Tk- Namely, observe that the random variables U; := e=% (i = 1,..., N) are
independent and uniformly distributed in [0, 1]. Therefore, (e =5+~ ) 4 (U NN,
where Uy vy < --- < Un y are the order statistics of (U;)X; . In turn, it is well known
[see Feller (1971), Ch. III, § 3] that

(8.15) (ULN,...,UN,N)%< a_ ..oy )
ON+1 ON+1
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where o), are described in the lemma. Returning to (8.14), the distribution of the

vector (71,...,7) for each k > 1 can be computed as the weak limit
NO’k NJk d
( ey )—)(01,...,0k) (N = 00),
ON+1 ON+1

where we used that, due to the Law of Large Numbers, on41/N -+ 1. O

8.4. Preparatory estimates. The main goal of this section is to establish, with
probability one, a suitable uniform upper bound for the terms of the sum (8.9) (see
Lemma 8.16 below), which will allow us to pass to the limit in (8.9) as t — oo.

The next elementary lemma provides a convenient criterion of convergence in
terms of ‘level’ inequalities.

LEMMA 8.14. A number sequence (ay,) has a limit a € R iff for each ¢ # a
nlgr;o 1<.(an) = 1<c(a),

where 1<.(-) denotes the indicator function of the interval (—oo,c].

LEMMA 8.15.  For each fixred k > 1, with probability one,
+
‘m exp{xth* (T n)=} _ k—l/ozeZk/a,
t—o0 B(t)
where B(t) is given by (2.17) and Zj; is defined in (8.13).

(8.16)

PROOF. Let us fix an arbitrary number ¢ > 0 and consider the inequality
exp{:l:th‘_ (TkyN)i}
C’
B(t) -
which, in view of notations (2.17) and (5.24), amounts to A (Tn) < n.(t)*.
Furthermore, due to the property (3.3) the last inequality can be rewritten as

(8.17)

(8.18) T n < h(ne(t)%).
Our next step is to use the identity (5.29) and represent inequality (8.18) as
(8.19) Tp,n —log N < h(n(t)*) — h(m (8)*) + A\Ho(t) — log N.

According to (8.10) and (8.13), the left-hand side of (8.19) amounts to

N ,
G 141 N+1
2 S log Y~ " _logh — Z —loghk (N :
(8.20) §<z g, + log N ogk — Z — log (N — o0)
while on the right, using Lemma 5.15 and the scaling relation (6.1), we have
R(ne(£)%) = R(n ()F) + AHo(t) — log N — aloge (t = o0).

Therefore, in the limit ¢ — 0o, N — 0o inequality (8.19) takes the form Zj —logk <
alogc, or equivalently, k~1/®eZ»/¢ < ¢. Comparing this inequality with (8.17) and
applying Lemma 8.14, we obtain (8.16). O
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Let us note that if Y, a; is a convergent series, then its partial sums > ;. , a; are
uniformly bounded. Indeed, set s, := Z?:l a;, 89 := 0, then s*:=sup,, s, < +00,
$y:=1inf,, s, > —oo and |Z?:k ai| = sy —8p—1] < 5*— 3, < oo for alln and k < n.

Therefore, since by Lemma 8.10 the series (8.11) is convergent, there exists a
proper random variable Z* such that, with probability one,

N ,
(8.21) > (.’ — log ZH) <Z* forall N and 1<k <AN.
=\ i
Using (8.10) it follows that with probability one for all N and 1 <k < N
N+1
(8.22) Tenv < Z"+log ]:_ .

LEMMA 8.16.  Let B(t) be given by (2.17). Then for any & > « and each € > 0,
with probability one for all large enough t and uniformly in k < N

exp(£th (T n)¥) “1/a Z*+e
. : < = .
(8.23) B@) <cp:i=k exp| —

PROOF. Similarly to (8.17), we can rewrite (8.23) in the form Ty x < h(7c, (t)T)
[cf. (8.18)]. Furthermore, on account of (8.22) it suffices to check that

(8.24) Z*—logk +log(N + 1) < h(n,()%), k=1,...,N.
Note that with probability one the ratio
Nex (1) Z*+¢ log k
any(t) = =1+ -~
{0000 = atm® T atm(®

is ultimately bounded above and separated from 0, uniformly in & < N. Indeed,
25, (t)F < 501(t)* — 1 as t — oo. On the other hand, using the scaling (6.1) and
relations (5.28), (5.13), and also recalling that & > «, we get

a\* 1\ %
s () > ey ()T — (1 F ~—> > (1 ¥ —) > 0.
ap e
Hence, we can apply Lemma 5.5 and, using inequality (3.9) and the limit (5.31),
obtain, uniformly in £ < N,
h(n) = h(nit) ~ h(n) (5 = 1) 2 Loh(ni) (e — 1)

:M (Z*+€_a (jgk> NZ*_H;_a ogk
atm

We also note that, by (6.1) and (5.29),
(8.26) log(N +1) = h(nif) + o(1) (¢t = oo).

The estimates (8.25) and (8.26) imply that inequality (8.24) will be proved once
we check that

1
Z* —logk +0(1) < (Z* +e-2 ;gk) (1+0(1)),
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where all o(1) are uniform in & < N. Rearranging, this is reduced to the inequality
0<e+ (1 - g + 0(1)) logk + o(1),

which holds as t — oo, sincee >0, 1 —a/& >0 and logk > 0. O

8.5. Limit theorems for sums via order statistics. We are now in a position to
prove the following theorem.

THEOREM 8.17.  Assume that 0 < o < 1. Then, as t — 00,
1 N N o]
+th* ™ (Ty,n)E 2. — ~1l/a,Z/
(8.27) —B(t)ze )T 2SS Y, = Y ke
k=1 k=1
where the last series converges with probability one.

ProoF. Denote v (t) := (1/B(t)) eFth T (Tem)® for | < N(t) and v(t) :== 0
otherwise. By Lemma 8.15, vy, (t) 3 k~1/*eZr/® as t — oo. Let us pick some
€ > 0 and for a given a € (0,1) choose a number & such that o < & < 1. Then,
according to Lemma 8.16 [see (8.23)], with probability one for all ¢ large enough we
have vy (t) < v 1= k=Y &elZ™+e)/@ | =12, ... Since 1/& > 1, the series 3, v} is
convergent, so Lebesgue’s dominated convergence theorem yields

N 0o 0o
ﬁ STt 23 g (1) 25 S ke eBa z Y, (8o oo),
k=1 k=1 k=1

also implying a.s.-convergence of the limiting series. [

REMARK 8.18. The representation of the limit (8.27) can be rewritten as
(8.28) Vo= 7%
k=1
where (73) are defined in Lemma 8.12. Note that convergence of the series (8.28) is
obvious, since a.s. 7, ~ k as k — oo (by the strong LLN) and 3°, k~/¢ < co.

Recalling that Sy (¢) has the same distribution as the sum (8.9), from Theo-
rem 8.17 it follows that the distribution of Sy (t)/B(¢) weakly converges, as ¢ — 0o,
to the distribution of the random variable V,,. Comparing this result with Theo-
rems 6.1 and 6.6, we arrive at the following assertion.

THEOREM 8.19. For 0 < a < 1, the random variable V, defined in (8.27) has
the stable distribution Fo with characteristic function ¢ given by formula (2.21).

This theorem can be viewed as a series representation of the stable distribution
Fo (with 0 < @ < 1 and 8 = 1). However, being rewritten in the form (8.28)
this representation amounts to one of the known formulas [cf. Samorodnitsky and
Taqqu (1994), Theorem 1.4.5, p. 28].
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THEOREM 8.20. For o € (0,1), the ratio Sn(t)/M1 n(t) has a proper limiting
distribution, which can be represented via the random variable

oo k
]_ .
(8.29) Woi=e 2oV, =1+ :exp<a > )

k=1 im1 °
where ((;) is a sequence of independent exponential random variables with mean 1

involved in the representation (8.13).

PRrOOF. As stated after Lemma 8.9, the joint distribution of My n(t) = etX1y
and Sn(t) = ST, Xk~ coincides with that of the pair exp{th* (T, y)*} and
Zﬁzl exp{£th* (Ty.n)*}. In particular,

Sn(t) 4 Sn, exp{tth™ (Tr n)¥)}
M n(2) o exp{:l:th*(TLN)i}
Dividing both the numerator and denominator by the function B(t) defined in

(2.17) and applying Lemma 8.15 (with k¥ = 1) and Theorem 8.17, we deduce that
the right-hand side of (8.30) with probability one converges to

(8.30)

(8.31) Voe /e =14 Z L=l o—(Z1=2y) /o
k=2

From (8.13) it follows that for & > 2

k—1 . k—1
G i+1 Gi
. — E LA = E = —logk.
(8.32) Z1— Zy, (z og ) 2 ; og

)
i=1

Hence, (8.31) is reduced to the expression
[es] 1 k—1 C
1 _Z il
+ Z exp( = Z ; ) ,
k=2 i=1
which is the same as the right-hand part of (8.29). O

REMARK 8.21. The random variable (8.29) can be represented as [cf. (8.28)]

(8.33) W, = i:: (:;) W,

where (73) are defined in Lemma 8.12.

THEOREM 8.22.  The random variable W, defined in (8.29) has the character-
istic function given by

(8'34) fa (u) =
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REMARK 8.23. Remembering that W, has emerged in Theorem 8.20 in relation
to the limit of Sy (¢)/My, n(t), it is worthwhile to compare Theorem 8.22 with the
analogous result by Darling [(1952), Theorem 5.1, p. 103; see also Arov and Bobrov
(1960), Corollary 4, p. 389], asserting that if (Y;) is a sequence of i.i.d. random
variables with distribution belonging to the domain of attraction of a stable law
with exponent 0 < a < 1, then for S, := Y1 +---+Y, and M; p, := max{Y;,...,Y,}
the ratio Sp/M; ,, has the limit distribution with characteristic function (8.34).

PROOF OF THEOREM 8.22. Using the observation in Remark 8.23, we will
prove the theorem’s statement indirectly, via establishing a representation analo-
gous to (8.29) for the limit of the ratio Sy /M; p. Clearly, it suffices to do this with
a suitable choice of random variables Y;. Let us set ¥; = e/, where (§;) is an
i.i.d. sequence of exponentially distributed random variables with mean 1. Note
that Y; > 1 and

P{Y; >z} = P{& > alogz} = e8¢ =z =2 (z>1).

Hence [see Ibragimov and Linnik (1971), Theorem 2.6.1, p. 76], the distribution of
Y; is in the domain of attraction of a stable law F, (with 8 = 1) and
S, efi/e 4.y ebn/a

/e = —a — Fa (n — o0).

Passing to the order statistics &1, > -+ > &u n, in a way similar to the above
we represent the sum S, as

n n
Sn = Zeék’"/a g ZeTk’n/ay
k=1 k=1

where T}, ,, are given by (8.8). Analogously to (8.19) and (8.20), we obtain

n >0

(835)  om L3 eTenhosm/a 25 S 1/acBilo (s o),
k=1 k=1

where a term-by-term passing to the limit can be justified as before, using (8.22).

Similarly, one shows that

(8.36) Ml—l/’n L o(Tin—logn)/a 235, Zi/a (n — o00).
n &
Hence, dividing (8.35) by (8.36) we obtain [cf. (8.29)]
Sn

Ly ety =W,.

1,n
Comparing this with the result by Darling (1952) mentioned above, we conclude
that W, has distribution with the characteristic function (8.34). O

REMARK 8.24. It would be interesting to derive formula (8.34), or otherwise
characterize the distribution of W,, directly from representation (8.29) [or (8.33)].

The following result, being a direct consequence of Theorem 8.22, is of interest
due to the striking simplicity of the answer.
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COROLLARY 8.25. For 0 < a < 1, the expected value of W, is given by

(8.37) E[W.] = ﬁ

Proor. Differentiate formula (8.34) at wu=0. O

REMARK 8.26. In Appendix C, we will give three alternative proofs of the
identity (8.37) based on the direct use of the representations (8.29) and (8.33).

REMARK 8.27. Taking expectation of (8.29) [see (C.1) below] and comparing
with (8.37), we arrive at the following curious identity:

ook -1
1 1
1+ZH<1+M> =i, (O<a<y

k=1i=1

The next assertion highlights an increasingly overwhelming role played by the
maximal term in the sum Sy (¢), as « tends to zero.

PROPOSITION 8.28.  With probability one, Wy, — 1 as o — 0+.

PrOOF. As we know, the series (8.29) is a.s.-convergent for all 0 < o < 1. Since
{; > 0, its terms are non-decreasing functions of «, so that for 0 < o < oy < 1 each
one is dominated by the respective value with a = ap. Moreover, with probability
one each term is o(1) as &« — 0+, so the dominated convergence theorem implies
that the series in (8.29) almost surely vanishes and hence W, — 1. O

Using the series representation provided by Theorem 8.19, one can easily derive
a limit theorem for the stable distribution F, as its parameter « tends to zero.

PROPOSITION 8.29.  Let a random variable {, have the stable distribution F,
determined by (2.21), with parameters 0 < a < 1 and 3 = 1. Then, as a — 0+, the
distribution of alog(, weakly converges to the double exponential distribution,

(8.38) lim P(alog(, < z) = exp(—e™7), zeR
a—0+

REMARK 8.30. A general result of this kind was proved purely analytically by
Zolotarev [(1957), Theorem 5, p. 447-448 and (1986), Theorem 2.9.1, p. 160].

PRrOOF OF PROPOSITION 8.29. By Theorem 8.19, the random variable V,, has
the distribution F,, so it suffices to verify (8.38) for V,. From (8.29) and using
Proposition 8.28 we have alogV, = Z; + logW, 2% 7, as a — 0+. To find the
distribution of Z1, let us note that, according to the definition of 7, in Lemma 8.12,
we have the representation Z; = — log 1, where 1, has the exponential distribution
with mean 1. Hence, P{Z; < 2z} = P{r > 7%} = exp(—¢~®). O

We conclude this section by stating a series representation theorem for the limit
in the case \; < A < A2, analogous to Theorem 8.17.
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THEOREM 8.31. (a) For A\; < A < Az,

1 < (T “(Ton)t 5. o= eZr/a — E[eZr/a]
B(t);(eith (Te.n) 7E[e:|:th (To.n) ]) g; A
(b) For XA = Aq,
1 Y + £
R (Ten B (T
m; (e:I:t (Tw,n)™ _ E[e:tt (Te,n) I{Tk,NSh(nli)}])

X oZe/a _ E[eZk/al{Zkglogk}]

ﬁ) Z kl/e :

k=1

Here the limiting series converge with probability one.

This theorem can be proved along the same lines as in the case 0 < A < \; above.
However, the proof is technically more involved and will be presented elsewhere.

9. Complements and applications. In this section, we derive a few implica-
tions of our limit theorems for Sy (¢) in the context of the two important examples
mentioned in the Introduction —the REM (see Section 1.2.3) and the /,-norms of
positive i.i.d. samples (see Section 1.2.1). We assume throughout that the random
variables (X;) satisfy the Normalized Regularity Assumption of Section 5.1 and N
is subject to the scaling condition (6.1).

9.1. Limit theorems for the ‘free energy’. Our goal here is to study the asymp-
totic behavior of log S (t). More precisely, consider the quantity

Fn(t;A) = %,

which can be called the ‘free energy’, by analogy with the REM [see (1.3)].
9.1.1. The limiting free energy. Using the theorems about weak convergence of
the sums Sy (%), it is easy to show that Fiy(¢; ) is a ‘self-averaging’ quantity.

THEOREM 9.1.  For all A > 0, the limit F()\) := limy_, o Fn(t;\) exists in the
sense of convergence in probability and is given by

_ +1/0
(9.1) F(\) = igl<ﬁ> / (0< X< \).

QI

PROOF. If A > )\, Theorem 2.1 implies that Sy (t) = NetH® (1 4 0,(1)) as

t — 0o. Hence, using (6.1) and the asymptotic equivalence H (t) ~ Hy(t) we get
logSn(t) logN . H(t)
Hy(t) Ho(t) — Ho(t)

+0p(1) = A £ 1+ 0p(1).
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For A = A\, Theorem 2.5 yields Sy (t) = NB1(t)(1+ 0p(1)) as t — oo, and so we
only need to check that

. log Bi(t) _
(9.2) tli}glo T(t) = =+1.
From (7.2) we note that Bi(t) = E[e!"* 1ix<uy,3] < E[efX] = eFH®), whence
+
limsupM < lim H(t) _ +1.

tsoo Ho(t) ~t—oo Ho(t)
On the other hand, by (7.3) we have By (t) = eTHo(®)p, (¢) with by (¢t) — +00. Hence,

.. logBi(t) . . . loghy(2)
llgng(t) =41+ lltII_lHl)glf Hot) > +1,

and (9.2) follows.
If 0 < X < A1, Theorem 6.1 implies that Sy (t) eT#®Ho(®) converges weakly to a
proper random variable. Passing to logarithms and dividing by Ho(t) — oo we get

log Sn(t)
— - =4 .
It remains to note that, according to (5.23) and (2.7),
+1/e
: _ 0 =1 g Q
(93) Jim p(t) = 0'a® 7 =0 (Q,) :

Thus, the theorem is proved. [

REMARK 9.2. It is easy to check that the function F'(A) given by (9.1) is contin-
uous and continuously differentiable everywhere including the critical point A = )\,
but its second derivative has a jump at this point. This corresponds to a phase
transition of ‘third order’ [see Eisele (1983)].

9.1.2. Fluctuations of log Sn(t). First, let us prove a general lemma.

LEMMA 9.3.  Let {S(¢t), t > 0} be a family of positive random variables. Assume
that for some (non-negative) functions A(t) and B(t),

(9.4) S*(t) == S(t)];(t;‘(t) L F (> o0),
and set A*(t) := A(t)/B(¢).
(a) If A*(t) = oo then
A*(t) log% L F (t> o).
(b) If A(t) =0 then
log& i)log]-' (t — 00).

B(t)
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Proor. (a) Note that S(t) can be represented as

9.5) S(t) = A(t) (1 + jﬁg) .
The condition A*(£) > co implies that S*(¢)/A* (£) = op(1) and hence
tog S0} = S) (11 0,1
Therefore,
A(0)1og 5 = 501+ 0y(1),

where the right-hand side has the same weak limit as S*(¢), that is F.
(b) If A(t) =0 then

S(t)
B(t)

log = log 5*(¢) 4, log F,

as claimed. O

Let us now prove a limit theorem for the distribution of log.Sy(t). The cor-
responding result about the fluctuations of the free energy Fix(¢; A) can then be
easily deduced (which is left to the interested reader). Recall that F, is a stable
distribution with characteristic function (2.21).

THEOREM 9.4. (a) For A > )Xo,

N tue Sn(t) 4

where

- . e:I:H(2t) ()\ > A )7
(6-6) Bl = { Bi(t) (A=),

and Bz2(t) is defined in (2.23).
(b) For A1 < A< Ag,

AW 10 50O 4,z o)

B(t) °A(t)
where B(t) is given by (2.17) and

= (N <0<

(9.7) NBi(t) (A=),

with By(t) defined in (2.19).
(c) For 0 < X < Aq,

d
log B{) — log Fyu (t = 00),

where B(t) is given by (2.17).

Sn(t)
(t
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PrOOF. In view of Lemma 9.3, the assertions of the theorem will follow from
the limit theorems for the sum Sy (¢) obtained in Sections 3.2, 6.1 and 7.2, according
as the function A*(t) = A(t)/B(t) tends to infinity or vanishes.

(a) For A > X2, the CLT is valid (see Theorems 2.2 and 2.6), so we have weak
convergence of the form (9.4) with A(t) = NeTH® and B(t) = (NB(t))'/2, where
B(t) is defined in (9.6). Clearly, Bo(t) < E[¢2:X] = e*H(20) and hence for all A > )y

.. . log A*(¢) . . log N +2H(t) ¥ H(2t)
e 2T R
A :
(9.8) =g EiEy

> 4o —1)2¢ T+ 15291
= 402971 (29 - 1) >0,

where the last inequality follows from (3.9) (for ¢’ > 1) or (3.8) (for 0 < ¢’ < 1) with
a=2,b=1and p=p'. Now, (9.8) implies that A*(t) — oo, and the application
of Lemma 9.3(a) completes the proof of part (a).

(b) If A\1 < A < Az then, according to Theorem 2.3, we have (9.4) with A(¢) and
B(t) given by (2.18) and (2.17), respectively. Using (5.13) and (5.28), we obtain

lim log A*(t)

A _Nt1F T
9%  Ho () Tea

=4(p'—1)a? £1F g'a? !

=400 Ha-1)F (e = 1) >0,

where the last inequality follows from (3.9) (for ¢’ > 1) or (3.8) (for 0 < ¢’ < 1)
with a = «, b=1 and p = ¢'. Hence, A*(t) = oo and Lemma 9.3(a) applies.

For A = Ay, we have already checked that A*(t) — oo [see (7.15)], and so again
it remains to use Lemma 9.3(a).

(¢) In the case 0 < A < Aq, the assertion of the theorem readily follows from
Lemma 9.3(b) and Theorem 2.3. O

9.2. Limit theorems for l;-norms of exponential samples. In this section, we
obtain the limit distribution of the random variable Ry (t) := Sy (t)/*.

9.2.1. Fluctuations of Ry(t). By analogy with Section 9.1.2, we first prove a
general lemma tailored to this situation.

LEMMA 9.5.  Let the hypotheses of Lemma 9.3 hold, and set R(t) := S(t)'/t.
(a) If A*(t) = o0 as t — oo, then

tA*(t) (% - 1) L F (- ).

(b) If A(t) =0 then

t(B]ft()?/t - 1) N log F (t = o0).
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ProoF. (a) From (9.5) we get

9.9) R(t) = A(t)V/* exp( log(l + fl*(t) )) .

The condition A*(¢) — co implies that S*(¢)/A*(¢) =

exp( 10g<1+—S*%;>> exp(ii(?)(1+-qxlﬂ)

=1+

Substituting this into (9.9) yields

tA*(t)(AZ()?/t - 1) =S B +0,(1)) LB F  (t = ).

(b) We have S(t) = S*(t) B(t), whence

R(t) log S*(t)\ _ log S*(¢t)
B —exp(—t ) _1+—t (

1+ 0,(1)).

Therefore,

t(Bz()?/t - 1) — log S*(£) (L + 0p(1)),

which converges weakly to log F. O
Applying this lemma to the sums Sy (t), similarly to Theorem 9.4 we obtain

THEOREM 9.6. (a) For A > Xa,

N < Ba() ;
B ¢ “(W—l = N(0,1)  (t— o),

with B(t) given by (9.6).
(b) For A\ <X < Ag,

tA(t) [ R (t)
B(t) \At)'/

where B(t) and A(t) are given by (2.17) and (2.18), respectively.
(¢) For 0 < X\ < Aq,

Ry (t)
t(B(IZ)l/t 1) i)log]-'a (t — o).

—1) L F, (t= o),
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9.2.2. Comparison with Schlather’s (2001) results. Note that Ry (t) = Sy (t)Y/?
can be viewed as an [-norm (of order t) of the vector (e**,...,eX¥) [cf. Schlather
(2001)]. In order to clarify the link with the setting in Schlather (2001), let us show
that under our conditions on X;, the random variables ¥; = e*i belong to the
domain of attraction of the Gumbel (double exponential) distribution A.

PROPOSITION 9.7.  Denote Y; := eXi, Y} , := max{Y,...,Y,}, and set
(9.10) ay, = eth (logm)* b, := ianloﬂ'
eologn
Then
. Yl,n - an —z
(9.11) HILH;OP 5 <z =-exp(—e 7, z €R
n

PRrOOF. It is not difficult to verify available sufficient conditions for convergence
of the maximum’s distribution to A [see Galambos (1978), Theorem 2.1.3, p. 52].
However, it appears even simpler to prove (9.11) directly. Let us denote L, (z) :=
+log(ay, + 2b,)*, then we have

n

(9-12) P{w < CC} = (P{X <log(a, + xbn)})n = (1 - e_h(L"(””))) .

Note that, according to (9.10),
(9.13) L,,(0) = £1og(an)* = h™ (logn) = +00 (n — o)

and

“— +
bn _ j:logan _ h(logn) 0 (n = o0),

an elogn elogn
since k" (z) € Ry, and h* (z)*/z € Ryy/,_1 with £1/0 — 1 < 0. Moreover,
bn =4 ! —0 (n — o0).
an logay, elogn

Therefore, as n — oo

+

L,(0) log ay, anlogay,
Recalling (9.12), it is then easy to see that (9.11) is reduced to
(9.15) h(L,(z)) —logn — = (n = o).

Since h € NR,, a usual inverse h~! exists (see Lemma 5.3) and so (9.13) implies
that h(L,(0)) = logn. Hence, (9.15) takes the form

(9.16) h(Lp(z)) — h(L,(0)) = = (n — 00).
Using Lemma, 5.4, the left-hand part of (9.16) can be represented as

f%) P (g1 e(w)) du = /W) ML) (g 4 e(La(0)u) duy
La(0) ¥ ' !
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via the substitution u = L,,(0)y. The UCT (Lemma 3.1) implies that, uniformly in
y, the function under the last integral is asymptotically equivalent, as n — o0, to
oy® 1h(L,(0)) = oy~ !logn. Hence, using (9.14), we obtain
b,

h(Ln(z)) — R(Ln(0)) ~ (kn(z)? — 1) logn ~ + ologn =z,

aplogay,
according to the choice of b, [see (9.10)]. Thus, (9.16) is proved. O

Let us point out that in the case of attraction to A, Schlather [(2001), Theorem
2.4, p. 867] has obtained only a partial result for a particular case where the random
variables Y; = eX¢ have the unit exponential distribution. More precisely, in our
notation he has shown that under the scaling N = e*, the limit distribution of
Ry (t) is Gaussian if A > 2 and non-Gaussian if 2log2 < A < 2. Note that our
work does not cover this case, since the tail of the form P{X > z} = exp(—e®)
would heuristically correspond to ¢ = oo in (1.2) (case B). However, our results
corroborate a general conjecture by Schlather [(2001), p. 867], asserting (in our
terms) that in the case of attraction to A, there exist functions a(t), b(¢) such that,
under an appropriate scaling ¢ = cp(N), a(t)/b(t) = p(N), the distribution of
(Rn(t) — a(t)) /b(t) weakly converges to a distribution which, in turn, tends to A
as ¢ — +00 and, properly recentered and renormalized, to A(0,1) as ¢ — 0+.

Indeed, comparing this conjecture with our Theorem 9.6(c), one can see that for
0 < A < ) the role of ¢ is played by 1/a, and in particular ¢ — +oco is equivalent
to @ — 0+. In Schlather’s terms, Theorem 9.6(c) should be rewritten as

Rn(t) - B()'/*
B(t)!/t/(at)
where {, has the distribution F,. It remains to note that, by Proposition 8.29,
alog (, A Nasa— 0+, in accord with the above conjecture. On the other hand,
normality in the limit &« — 0o is obvious from Theorem 9.6(a).

Another result being of relevance to our setting is Theorem 2.2 in Schlather
[(2001), p. 864], where the random variables Y; = e*X¢ are bounded above (with, say,
esssupY = 1) and belong to the domain of attraction of the Weibull distribution
¥,. According to the general extreme value theory [see Galambos (1975), Theorem
2.1.2, p. 51], this implies that Fy(z) := P{Y > 1 — 1/z} € R_,, or, equivalently,
Fx(z) == P{X > —1/z} € R_,. Hence, h(z) = —logP{X > —1/z} ~ alogz
(x = o0), which may be heuristically interpreted as having a ‘boundary’ value
¢ =0in (1.2) (case A).

Similar considerations show that for Y; = e in the domain of attraction of the
Fréchet distribution ®, [Schlather (2001), Theorem 2.3, p. 865], we have h(z) =
—logP{X > z} ~ ar (z — o0), which corresponds to another boundary value
¢ = 1in (1.2) (case B). As already mentioned, in this situation the norm order does
not depend on n, p(n) = ¢, which in our terms implies that ¢ does not grow to
infinity. Therefore, the behavior of the sum Sy (t) is determined by a few extreme
terms. Let us point out that the parameter ¢ introduces an appropriate growth
scale at ‘point’ p = 1, which resembles our parameter X in that there are two ‘phase
transition’ with respect to ¢ [see further details in Schlather (2001), p. 865-866].

i>ozlog(a (t = 00),

X,
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APPENDICES

A. Some model examples.

A.1. Functions H and Hy. Let us consider two examples to illustrate the differ-
ence between the cumulant generating function H [see (2.3)] and the rate function
H, provided by the Kasahara—de Bruijn Tauberian theorem [see (3.7)].

ExXAMPLE A.1 (Weibull/Fréchet’s distribution). Suppose that
(A.1) P(X > z) = exp{—h(+z¥)}, 20,

with the log-tail distribution function h(z) = z¢/0 (z > 0), where 1 < ¢ < o0 in
case B (Weibull’s distribution) and 0 < ¢ < oo in case A (Fréchet’s distribution).
The density is given by fx(z) = (£z)*¢~! exp(—(+z)*?/0) (z = 0), and hence

+oo o'}
(A.2) E[X]= :I:/ ¥ fx(z) dz = tL"/ v L exp{t? (xyT — y%/0)} dy,
0 0

using the substitution # = +t¢~1y% and relation (2.4). Note that the function
g(y) := £y* — y2/p has a (unique) regular maximum at point y = 1, with g(1) =
+1—-1/0 = £1/¢', ¢'(1) = 0, ¢"(1) = —(0 ¥ 1) < 0. Therefore, the asymptotic
Laplace method yields

2 2
From equation (2.9), using (2.4), it is easy to find Hy(t) = t¢/¢’.

¢ o 1 2
H(t)::l:logE[etX]:?:I:ilogt:lz—log<gTﬂl> +o(1) (t = ).

ExAMPLE A.2 (Normal distribution). Let X have the standard normal distri-
bution A(0,1). Here ¢ = o’ = 2 and the function h is given by

1 ° 2 1
hiz) = —log<ﬁf eV’ /2 dy) = % +logz + 3 log(2m) + o(1) (2 = o0),

which can be shown to be normalized regularly varying. Note that E[etX] = t'/2,
whence H(t) = t?/2. Equation (2.9) can be solved asymptotically as t — co. For
A # A1, A2 one only needs to find Hy(t) to within o(1),
t? 1
Hy(t) = 5 logt — 3 log(27) + o(1) (t = o).

The case of the critical points is more delicate but is perfectly tractable as well.

A.2. Main results: the model case of the Weibull/Fréchet distribution. As shown
in Example A.1, for the Weibull/Fréchet distribution (A.1) we have Ho(t) = t¢'/¢’,
and it is easy to verify that u(t), the root of equation (2.12), is given by u(t) = oA/«
[cf. (2.13)]. From (2.17) using (2.7) we get B(t) = exp(+a? ~1¢¢'). Furthermore,
according to (2.15) we have

(A.3) m(t) = (at) L.
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If @ = oy = 1 then (A.3) yields n;(¢) = t¢ 1, so for the function Bj(t) defined
in (2.19) we obtain similarly to (A.2)

1
(Ad) Bi(t) = / e fx () du = t¢ [ v exp{t? 2y — y*¢/0)} dy,
z<tte'—1 0

again employing the substitution ¢ = :I:tgl_lyi. As already mentioned in Example
A.1, the function g(y) = +y — y*9/p has a regular maximum at point ¥ = 1, which
happens to be the right endpoint of the integration interval in (A.4). Hence, the
Laplace method implies that, asymptotically, B;(¢) makes up exactly one half of
the full integral (A.2), that is,

(A.5) By (t) ~ %E[etx] (t — o0).
Similarly, from (A.3) with & = a3 = 2 we have n1(t) = (2¢)¢ 1. Hence, the
function Bz (t) defined in (2.23) is represented as

Ba(t) = (20)° [ ye =t exp{(26)? (+y — y*¢/0)} dy

[via the substitution z = +(2¢)¢~1y*], and exactly the same argument as before
shows that
1 1
(A.6) By(t) ~ 3 E[e?*X] ~ 3 Var[etX] (t = 00).
As a result, using (A.5) we can combine the LLN of Theorems 2.1 and 2.5 as
follows: If the random wvariables X; have the Weibull/Fréchet distribution (A.1)
then, as t — 00,

1 ()\ > )\1)3
I IONNNY R
(A7) ElSn(] 0 8 < ii,h)

The last statement in (A.7) (for 0 < A < Aq, i.e., 0 < a < 1) readily follows from
Theorem 2.3 using that E[Sx(2)]/B(t) — oo as t — co. Indeed, we have

E[glzt()t)] = exp{logN + H(t) F oz"l_ltgl},

and we note, using H(t) ~ Ho(t) = t2/¢' and the scaling assumption (6.1), that

=140
lim logN £ H(t) Fa? 1t
t—e0 Ho(t)

=X +1Fo'a? ! >0,

where the last bound follows from the inequality z¢' —1 2 o'(z —1) [ > 1,0 2 1;
see (3.8), (3.9)], by expressing A via (5.13) and using the substitution z = 1/a.

Analogously, Theorems 2.2 and 2.6, using (A.6), yield the following united asser-
tion: If the random variables X; have the Weibull/Fréchet distribution (A.1) then,
as t — 00,

Sn(t) —E[Sn(t)] 4. [MN(0,1) (A> D)),
(Var[Sn (1)) - {N((L 3 (A=2).
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Finally, Theorem 2.3 takes the following form: For X; with the Weibull/Fréchet
distribution (A.1), we have

Sn(t) —A(t)
exp (+ad' ~1te") — Fa (8= 00),

where the stable law F, is described in Theorem 2.3 and A(t) is defined in (2.18),
NeFI® (A <A< \y),
Aty =< NB1(t) (A=A,
0 (0 <A< Ay,
with By (t) given by (A.4).

B. Proof of Lemma 5.16.

B.1. Proof of part (i). 1) We start by showing that

(B.1) Jim TP [P XLy sy ] =0,

where 6 € (0,1). Since E[eP* X 1 xcygx, 3] < e£Pt¥0- it suffices to check that

(B.2) TP 2P0 0, (OF—Dpta+h(nF) 0 (¢t o o0).

Using the limit (5.31) of Lemma 5.13, we have

+(6* — 1)ptn, + h(n
tnT

Since tn,(t) ~ p(t)Ho(t) - +oo as ¢ — oo, the limit (B.2) will follow if there

exists 8 € (0,1) such that the right-hand side of (B.3) is negative. The latter is

guaranteed by the fact that 0 < (1 Fa/pe)* < 1, which can be easily verified using

that p > a > 0 and ¢ > 1 (case B) or ¢ > 0 (case A).
2) Similarly to (5.35), integration by parts yields

tX _ +ptn,—h(nE +ptoEn, —h(6EnE
E[eP™X 1 1gty, o x<iny] = — 5P (7)) 4 TPt nr—h(6% )

B4 +n,
(B4) +ptf ! ept””_h(iwi)d:c.
+6+y,

:I:) a
(B.3) T 40T - 1)p+ " (t — 00).

Using that A(-) > 0, we have
(B.5) PN —h(0FnF) o EptdEn. _ o(1) eEptn-—h(n) (t = 00),
as shown above [see (B.2)]. ,
3) Let us set 7, (t) := 1, (t) F g(t), where g(t) := t~17¢/2, Using that n, € Ry_1,

we get 71, /n, — 1 (t = 00) and so for all ¢ large enough, +0%7, < +7, < +7,.
Let us now show that for any z € [+£6%7,, +7},] and all ¢ large enough,

(B.6) ptz — h(xx¥) < +ptii, — h(7E).
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Setting k. (t) := £2% /7F, we have
o \E
1> k- (t) 20(4) =6  (t—= ),

nr
so by Lemma 5.5 we can write

(B.7) h(£x™) = h(7i7) = h(i7) (k2 = D)1 +0(1))  (t = o),
uniformly in z € [£6%7,, +7,]. Furthermore, inequality (3.9) yields
+eo
tx +x 0 -
B.8 m$—1:<~—> —-1> (Lo <~——1>:~— x Ffir)-
(B.8) 7 (£o) 7 7 ( )

Combining (B.7) and (B.8) and using Lemma 5.13, we obtain that for all ¢ large
enough, uniformly in z,
o h(iE )
) = i) 2 ") oo .01+ of0)

T
B.9 .
(B:9) — at(a F7,)(1 + (1)
> pt (:C + "77’),
since z F 7, < 0 and a < p. Hence, inequality (B.6) follows.

4) We now want to prove that, as t = oo,

+7j; N

(B.10) I(t) := pteFrin-+h(nz) / ePtr—h(Ee™) gy 5 q,
+6+p,

Applying the estimate (B.6) we get

(B.11) I(t) < ptePtOFRD—hED) [1(1 — g%)n — g(1)].

Recalling that g(t) > 0 and 0 < @ < 1, it is easy to check that £(1—6%)n, —g(t) <
7:-(1 — 8)/6. Therefore, from (B.11) it follows
1- _

(B.12) It) < w 0, e—Pta(t)+h(nF)—h(iif)
It remains to observe that the pre-exponential factor in (B.12) grows only polyno-
mially, since ¢, (t) ~ const - Hy(t) € R,, while by Lemma 5.14, —ptg(t) + h(nE) —
h(iE) ~ —(p — a)tg(t), where p — a > 0 and tg(t) = ¢¢/2. Hence the right-hand
side of (B.12) is exponentially small as ¢ — oo, and (B.10) follows.

5) Let us check that

+n-
(B.13)  J(t) := pteFrtn-Thlir) f epto=h(e®) g o P g o).
+i, -
By the substitution 2 = n.(¢) F yg(t) =: 75, 4(t), the left-hand side of (B.13) is

rewritten in the form

1
(B.14) J(t) = ptg(t)/ e~ Pt u+h(E)=h(iT,) gy
0
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Note that by Lemma 5.14, h(n) — h(7i£,) = atg(t)y(1+o(1)) as t — oo, uniformly
in y € [0,1]. Therefore, given any ¢ such that 0 < ¢ < p — «, for all large enough ¢
and all y € [0, 1] we have

(@ —)tg(t)y < h(n7) = h(iiy,) < (a+e)tg(t)y.
Substituting these estimates into (B.14) and computing the integral, we obtain
(1 — e~ (pmo—e)tg(h))

1
J(t) < ptg(t)/ e~ (rmame)talty gy = T
0

and similarly

p—a—¢

p(]_ — e_(p_a"l‘E) tg(t))

1
J(@) > ptalt —(p—ateltg(tly g, —
()_pg()/oe y p—

Using that p — a £ ¢ > 0 and tg(t) = oo, in the limit as t = oo we get

A < liminf J(¢) <limsup J(¢) < L,
p—ate t—oo t—oo p—a—¢
and since € > 0 is arbitrary, it follows that lim; .~ J(¢) = p/(p — @), as required.
6) Finally, gathering formulas (B.1), (B.4), (B.5), (B.10) and (B.13), we obtain

tlim e:Fptnq—-‘rh(??f) E[ethl{XSiﬁr}:I =—-1+ L = @ .
—00 p—« pP—«

B.2. Proof of part (i4). The proof follows the similar steps as above.
1) Let us start by showing that if p < o then for any 6 > 1

(B.15) tliglo PO +h(n7) E[ethI{X>ﬂ:€inf}] =0.

Note that Lemma 4.2 (with k = p, m = o) yields

E[eth]-{X>:|:0i7],-}:| < E[eatX] . e:FOi(a—p)tn,- — e:I:H(at):FOi(a—p)tn,-.

Hence, it suffices to check that

(B.16) e¢ptn7+h(nf) . eiH(atW@i(a—P)tnf = o(1) (t — 00).
To this end, recall that H ~ Hy € R, and use (5.28), (5.31) and (3.4) to obtain

i TH(@8) F (p+ 6% (a —p))tn, + h(n7)
t— o0 Hy(t)

=+af F (p+6%(a - p))g’ozgl_l + %Q’a‘-’l_l

= +(1-6%)(a—-p)o'a? l <0,
since # > 1 and « > p. Hence, the limit (B.16) follows.
2') Similarly to (B.4), integration by parts yields
E["X Lyt cx<ipin,}] = — PO —RET) | dpin-—hin?)

0%y, .
+pt[ ePte—h(E2™) g
£n-



60 G. BEN AROUS, L. V. BOGACHEV AND S. A. MOLCHANOV

Let us check here that

(B.17) EOF—Dptne—honE) RN — 5(1) (£ = o0).
Recalling that i € R, and using the limit (5.31), we obtain
02— o
h(6n7) — h(nF) ~ (62 — 1)h(nF) ~ % i,
Hence,
(B.18) £(6% — Dptn. — [P(0n7) — (7)), ipet _ 1) #=De

tnr 0

Inequality (3.9) gives 82 — 1 = (#F)*2 — 1 > £p(6* — 1), so the right-hand side of
(B.18) is estimated from above by £p(6* — 1) Fa(6* —1) = £(6* - 1)(p—a) < 0,
because 6 > 1 and p < o. Hence, the limit (B.17) follows.

3') Let us set 7, (t) := 1, () £ g(¢), where the function g is as in step 3, and check
that for € [£7,,+6%n,] and all sufficiently large ¢

ptz — h(+a™) < +ptif, — h(7FF).
To this end, similarly to (B.9) we show that
h(£a*) — h(iE) > at(z F7,)(1 + o(1)) > pt(z F 7ir),

using that x 7, > 0 and a > p.
4") The goal here is to prove that, as ¢ — oo,
+

0% n,
I(t) := pte¢ptnf+h(nf)f epte—h(xa®) g . o
+ij-

Using the estimate from step 3/, one obtains

I(t) < pterts TP =R (g%, F45,) < p(8 — 1)tn, et AT —hGE)
One now applies the same argument as in step 4 above, using that

ptg(t) + h(nF) — h(iF) ~ —(a —p)tg(t)  (t — o).
5) Similarly as in step 5 above [cf. (B.13)], one proves that

£,
lim pteﬁ)tnf-i—h(nf)/ eptz—h(te®) 7. _ p .
t—o0 +7, a—-p
In so doing, the suitable substitution in the integral is of the form +2 = . (¢)Lyg(t),
and an auxiliary € involved in the estimation is taken to satisfy 0 < ¢ < a — p.

6') Finally, combining the limit formulas obtained in steps 1’5’ we obtain
lim eFPtn-+h(nE) E[eptXq S
s le (x>0 a—p a-—p
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C. Direct proofs of Corollary 8.25.

C.1. Proof using representation (8.29). From (8.29) it follows

(C) W1—1+ZHE[ ! “’]—HZH —

k=1i=1 k=1i=1

Note that the right-hand side of (C.1) coincides with the hypergeometric function
[see Gradshteyn and Ryzhik (1994), 9.100, p. 1065]

(a+1)(b+1)
F(a,byc;z) :=
(a,b¢:2) i= P ll;[ (c+9)(1+19)
taken at the valuesa =1, b =1, ¢ = 1+ a1, z = 1. Furthermore, it is known [see
Gradshteyn and Ryzhik (1994), 9.122(1), p. 1068] that for z = 1 one has
T(c)T(c — a —b)
I'lc—a)T(c-b)
For the above specific values of the parameters this yields
Fl+a (et -1)
T(a 1) :

F(a,bje;1) = (c>a+b).

(C.2) F(,1;1+a41) =

Using that I'(1 4+ z) = z['(z), we obtain

F(l+aHYT(a ™t ~1) =a'T(a})- 59__1)1 B Pia—_ 22 ’

so substituting this into (C.2) we get (8.37).

C.2. Another proof. The proof above may not seem quite satisfactory, as it
relies substantially on the ‘external’ analytic aid from tables of formulas. Here we
give a simpler, self-contained proof based on another representation of W, given
by equation (8.33). Namely, using Lemma 8.12 and relation (8.15) we deduce from

(8.33) that W, 4 1+>00, Ully/ka, where Uy i, is the minimum of independent random

variables Uy, ..., U with uniform distribution on [0, 1]. Therefore,
(C.3) E[W,] =1+ Z E[U172]-
k=1

Note that P{U; > z} = (1 — z)¥ (0 < = < 1), and hence
1

E[U;4] :/ 2/ k(1 — )b da.
0

Substituting this expression into (C.3), we obtain

1
1
— 1/ k-1 _ 1/a—2 —
E[W,] = 1+/ Ekl z)" " dr = 1+f:c dz - a’

—o
k=1 0

and (8.37) follows.
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C.3. Yet another proof. Finally, we have been able to find a most elementary
proof of the identity (8.37) proceeding directly from representation (C.1). Namely,
for 0 < o < 1 let us set

1 i

= = L > 2),
“ R (=22

k
Ag = Hai (k> 1).
i=1

It is then easy to check that for all & > 1
k

. k
1
HT = Hai . (1 _ak-i-l) =Ap — Arq1.
i:la + i=1

Since A; — 0 as k — o0, it follows that the series on the right-hand side of (C.1)
is reduced to
1

1-«a

1+ (Ap = Ap) =1+a =
k=1

and formula (8.37) is proved.
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