
 1

THE INCREMENTAL RESPONSE OF RANDOM AGGREGATES OF IDENTICAL ROUND 
PARTICLES 

 
J. T. JENKINS§ and M. A. KOENDERS†* 

 
§Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, USA. 

†Department of Mathematics, Kingston University, Kingston upon Thames, Surrey, KT1 2EE, UK. 
 

ABSTRACT 
 

This paper is concerned with a dense, randomly packed, granular material that consists of identical 
spheres or disks with elastic, frictional interactions, that is first isotropically compressed and 
subsequently loaded along an arbitrary stress path. An analytical relationship between the overall stress 
and strain increments is determined for the pre-failure regime. The purpose of the modelling is to 
understand how this relation depends upon the features of the packing and the particle interactions. 
From the outset it is recognised that the packing and interactive properties for these materials may vary 
substantially from grain to grain and the heterogeneity introduced in this manner is fully accounted for. 
Moment equilibrium equations are solved for each particle and force equilibrium equations are solved 
for each neighbourhood. Then, the heterogeneity of the aggregate is taken into account by introducing 
means and fluctuations in the description of the local deformations and the measures of the particles 
and interactions. The general development is illustrated with an example in two dimensions in which 
the packing and contact interactions are approximated by angular distributions and the heterogeneity is 
introduced by variations in these. For an isotropic medium with constant contact stiffnesses the theory 
provides predictions that compare well with results obtained from numerical simulations. 
 
PACS numbers 45.05.+x, 45.70.-n, 83.80.Fg 
 

1. INTRODUCTION 
 
Reliable stress-strain relations for granular materials are necessary for predicting the pre-failure 
behavior and failure of natural aggregates of sand, gravel, or rocks. Behaviour of interest to soils and 
foundation engineering includes wave propagation, stress response, volume change, and localization 
(failure). A better understanding of the mechanics of densely packed granular media will also be of 
benefit to the pharmaceutical and the chemical process industries. In this paper, we develop 
incremental stress-strain relations for the pre-failure response of densely packed, compressed 
aggregates from micro-mechanical considerations. 

The particles are assumed to be essentially rigid and to experience deformation only in the 
immediate area of contacts. Because the relationship between the contact forces and the contact 
displacements are strongly non-linear and path dependent, it is appropriate to use incremental forms for 
the contact forces and displacement measures. Then, when the equilibrium equations for force and 
moment on each particle are phrased in terms of the increments in contact force, they are linear in the 
increments of displacement and rotation. 

In the past, stress–strain relations for periodic packings of identical spheres (Thornton, 1979) 
and discs (e.g. Chang, 1988) that interact through elastic, frictional contacts have been obtained using 
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homogeneous deformations in which the equilibrium of force and moment are satisfied identically. The 
response of random arrays of identical spheres has also been studied, assuming that the deformation is 
homogeneous (Digby, 1981; Walton, 1987; Jenkins and Strack, 1993; Norris and Johnson, 1997). 
However, because the interactive and packing properties may vary widely from grain to grain, so do the 
translations and rotations of the individual particles. Therefore, the assumption of homogeneous 
deformation does not reflect the true physics of the random aggregate. As a consequence, a number of 
quantitative features of granular materials are not well described: the stiffnesses are over predicted, the 
volume change is under predicted, at least along certain important stress paths, and failure is not likely 
to be predicted correctly. The reasons for such shortcomings and methods for overcoming them have 
been put forward by several authors. Makse et al. (2000) attribute the failure of theories based on 
homogeneous deformations to the change in the number of contacts as the material is deformed. Misra 
and Chang (1993) emphasise the heterogeneity of the packing in a calculation of effective moduli 
based upon a self-consistent calculation for a random continuous medium. Koenders (1987, 1994) 
focused on the influence of the heterogeneity of both the packing and interactions on approximate 
solutions of the equilibrium equations that lead to calculations of effective moduli. Jenkins (1997) 
departed from the assumption of a homogeneous deformation and introduced pair fluctuations in an 
effort to solve the equilibrium equation. Cambou et al. (1995) introduce an assumption of a 
homogeneous stress rather than a homogeneous deformation in their attempts to predict the mechanical 
response of idealised aggregates. 

The introduction of heterogeneity is, in part, motivated by the inspection of both physical 
experiments on photoelastic materials (Drescher and De Josselin de Jong, 1972; Konishi, 1978; 
Allersma, 1982) and by numerical simulations (e.g. Cundall and Strack, 1979; Thornton, 2000; 
Moreau, 1994; Williams and Rege, 1997; Zhuang et al., 1995; Koenders and Stefanovska, 1993). In 
these simulations the translations and rotations of the particles are linked to the increments in the 
average strain and rotation of the aggregate through the equilibrium equations. The number of balance 
equations for force and moment on each particle is equal to the number of translational and rotational 
degrees of freedom. Consequently, with information regarding the translations and rotations of the 
bounding particles or information regarding the average strain and rotation of the aggregate, the 
translations and rotations of the individual particles may be determined. Then, with an appropriate 
definition of the stress increment, an incremental relation between the stress and strain may be 
obtained. 

In this paper, we attempt to obtain analytical, incremental stress-strain relations based on the 
equilibrium equations. Because there are a great number of degrees of freedom involved in even the 
smallest assembly for which an increment of strain can reasonably be defined, this must inevitably 
include some approximations. We focus on a relatively small number of particles and express the 
translations and rotations of these particles in terms of a limited number of degrees of freedom. Then 
the equations of force and moment balance are used in an approximate way to determine the degrees of 
freedom in terms of the average strain and rotation of the aggregate. In such an approach, various 
measures of the interactive and packing properties enter into the procedure and these find their way into 
the incremental stress-strain relationship. We follow Koenders (1987) and call such measures structural 
sums; these are specific, well-defined examples of internal state variables. The state variables can only 
be identified in the context of an approximate analytical theory based upon the equilibrium equations. 
Because substantial variability of the contact orientation and the magnitude and direction of the contact 
forces are typical features of random close-packing with elastic, frictional interactions, the state 
variables involve not only averages over particles of the aggregate, but also measures of variability.  
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 A related formulation has been put forward of late, aiming to capture and systematise the 
complexity of force and displacement patterns in small assemblies. In this formulation higher order 
measures of stress and strain are introduced. Examples of papers on this subject, relevant to granular 
mechanics are Suiker et al (2001), Chang et al (2002) and Kruyt (2003). Other authors have attempted 
to approach the assembly as a thermodynamic entity, which may possibly be correct for certain limiting 
cases; Edwards and Grinev (2002) advocate such an approach. Various effects relating to wall effects 
for finite, not too large assemblies have been treated by Zhu and Yu (2002).  

We derive a stress-strain relation for an aggregate of N particles that we take to be the smallest 
collection over which a homogeneous strain may be defined. The derivation is based on the equilibrium 
of the particles in this assembly. We first express the translations and rotations of the particles in the 
neighborhood of a typical particle as a power series in their position from its center. We indicate the 
number of coefficients in this expansion that must be retained in order that a characteristic small 
assembly can be taken to be the central particle and its nearest neighbors. The coefficients for the 
rotational degrees of freedom for the particles of this assembly are then determined in terms of the 
translations by satisfying the individual balances of momentum (e.g. Koenders, 1994). The 
determination of the rotations permits the force balance of a typical particle in the small assembly to be 
expressed in terms of the first and second order coefficients for the displacement power series. 

Incremental stress-strain relations for small neighbourhoods are then put forward. These may be 
deployed to give a first order mean field (volume average) estimate for the incremental response of the 
medium. This estimate is rather inadequate, in that it tends to over-predict the moduli. The force 
balances for each small neighbourhood provide a starting point for improved estimates of overall 
stiffnesses. The fact that small-scale incremental stress-strain relations are available implies that, in 
order to obtain overall incremental stiffnesses, the correlation between the strain increment fluctuations 
and local incremental stiffness fluctuations are required. Using the force balance and assuming 
moderate fluctuations in incremental stiffnesses, an adaptation of Kröner’s (1967) method is developed, 
which yields estimates for the strain increment fluctuations. The associated deviation from the mean 
field stiffness estimate follows. This scheme is elaborated in some detail for an isotropic material, 
giving a prediction of the overall incremental bulk and shear moduli. Benefiting from reported two-
dimensional numerical simulations, the special case of constant contact stiffnesses is investigated, 
leading to a favourable comparison between analytical prediction and (numerical) experiment.  

The theory outlined in this paper may be employed to ask questions of numerical simulations 
that have direct mechanical relevance. For situations in which the fluctuations in the main components 
of the structural sums are large, more development of a suitable homogenisation methodology is 
required.  

 
2. EQUILIBRIUM EQUATIONS, KINEMATICS, OBJECTIVITY AND NOTATION 

 
Equilibrium equations 
 A notation is introduced similar to the one used by Koenders (1987). Particles are distinguished 
by a Greek superscript; they have both translational and rotational degrees of freedom. The relative 
displacement increment at a contact between two particles, the centers of which are connected by a 
vector µν ν µ= −c x x , is expressed in the increment of displacement u and the increment of rotational 
motion (spin increment) ω as 
 

( )1
i i i ijk j k k2u u cµν µ ν µν µ ν∆ = − − ε ω + ω .         (1) 
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The contact force increment µνf  is linear in the incremental contact displacement with proportionality 
tensor K. The actual values of the components of K depend on the details of the contact law for the 
elasto-frictional interaction (e.g., Jenkins and Strack, 1993).  
 The equilibrium equations for the balance of force and moment take the form 
 

( )
N N

1
p pi i i ijk j k k2

1 1
f K u u c 0

µ µ

µν µν µ ν µν µ ν

ν= ν=

 = − − ε ω + ω = ∑ ∑        (2) 

 
and 
 

( )
N N

1
pqr q r pqr q ri i i ijk j k k2

1 1

c f c K u u c 0
µ µ

µν µν µν µν µ ν µν µ ν

ν= ν=

 ε = ε − − ε ω + ω = ∑ ∑ .     (3) 

 
There are as many equations as there are unknowns: for N particles, 3N displacements and 3N particle 
spins, matched by 6N equilibrium equations. The latter are coupled and, as a result, it is expected that 
the equivalent continuum description also contains a coupling to the medium outside the small 
assembly for which the description is sought. 
 
Kinematics 
The displacement and spin increments in the vicinity of the particle labelled µ may be approximated 
with a polynomial. The approximation is fitted in a least-squares sense to the kinematic quantities of 
the relevant particles, labeled by the superscript κ. The polynomials have coefficients U and Ω which 
are arranged as follows: 
 

0, 1, 2,1
i i ij j ijk j k2u U U c U c c .....κ µ µ µκ µ µκ µκ≈ + + +         (4) 

 
and 
 

0, 1, 2,1
i i ij j ijk j k2c c c .....κ µ µ µκ µ µκ µκω ≈ Ω + Ω + Ω + .        (5) 

 
The expansion involves a distance dependence in terms of µνc . In order to give more or less equal 
weight to distant particles the number of particles that participate in the determination of the 
coefficients is taken to be slightly larger than the number that is strictly necessary (the number of 
independent coefficients). This leads naturally to the use of a least squares method of coefficient 
determination, in that the coefficients U and Ω are given by the conditions in a neighbourhood of 
particle µ 
 

( ) 20, 1, 2,1
i i ij j ijk j k2u U U c U c c ..... minimalκ µ µ µκ µ µκ µκ − + + + = κ

∑       (6) 

 
and 
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( ) 20, 1, 2,1
i i ij j ijk j k2c c c ..... minimalκ µ µ µκ µ µκ µκ ω − Ω + Ω + Ω + = κ

∑ .      (7) 

 
 Table 1 illustrates the number of independent coefficients for given order of approximation; the 
numbers in the third and fourth column are obtained by simply counting the coefficients: for example, 
for a first order approximation of the spin in two dimensions the gradient is required, which possesses 
two coefficients. For the latter case the number is equal to the dimension, but for higher orders some 
coefficients are not independent, as there are symmetry relations. In two dimensions, the number of 
independent coefficients for the spins is 1, 2 and 3 in the zero, first and second order terms, 
respectively. For the displacements, the numbers are 2, 4 and 6. A small assembly that is described up 
to a certain order is able to accommodate an exact number of particles in the description. For instance, 
an assembly that is described up to first order in two dimensions has for the spin zeroth and first order 
coefficients. The former contributes one coefficient, the latter adds two more, altogether providing for 
three describing coefficients. So, if an assembly contains exactly three particles, its kinetics may be 
captured by means of this first order description. From the table it is deduced that in two dimensions an 
assembly size of some six particles is fitted using the zero, first and second order approximations for an 
exact fit. In three dimensions, the numbers are the same for the spin and displacement approximations: 
3, 9 and 18 independent numbers for zero, first and second order sets of coefficients. Thus zero and 
first order together would accommodate four particles exactly, while zero, first and second order 
approximations fits the kinematic properties of ten grains. Note, that it is not necessary that the same 
order of displacements and spins be used in the same application. 
 
Table 1 

 Order Displacements Spins Exact number of 
particles 

0 2 1 1 
1 4 2 3 

2 dimensions 

2 6 3 6 
0 3 3 1 
1 9 9 4 

3 dimensions 

2 18 18 10 
 

In two dimensions a small assembly consisting of one particle surrounded by five others is a 
very reasonable representation for a densely packed situation. In three dimensions one particle 
surrounded by nine others is similarly useful for a dense packing. The neighbors need not all touch the 
central particle; they are merely required to fill the space. The smallest useful assembly would then 
consist of one particle and its immediate neighbors, described by the zero, first and second order 
approximation. 
 
Objectivity 
The issue of objectivity is conveniently addressed using the fact that force and moment equilibrium are 
here formulated in terms of displacements and spins. It is shown that the anti-symmetric part of the 
‘distortion’ 1,µU  can be eliminated from the force equilibrium equation. To demonstrate this, the 
displacement difference between two adjacent particles is written as 1,

i i ij ju u U c higher ordersµ ν µ µν− = + . 
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The sums of the spins that appear in the equilibrium equations for each particle are equal to some 
constant vector η plus other terms. The displacement of the contact in the equilibrium equations takes 
the form 
 

( ) ( ){ }1, 1, 1, 1,1 1 1
ij ji ij ji j ijk j k2 2 2U U U U c c other terms .µ µ µ µ µν µν µ+ + − − ε η +      (8) 

 
The anti-symmetric tensor can always be written as  
 

( )1, 1,1
ij ji ijk k2 U Uµ µ− = ε ϖ ,           (9) 

 
where ϖ is a vector. Therefore, only the vector difference k k

µϖ − η  appears in the equilibrium 
equations, thus ensuring objectivity.  
 Thus, the anti-symmetric part of 1,µU  is subtracted from the lowest order term in the spin 
approximation 0,µΩ . The spin approximation corrected in this way is called 0,µΩ . The result is that 
when the displacement difference µ ν−u u  is approximated in the equilibrium equations,  the symmetric 
part of 1,µU , which will be denoted by 1,µE , occurs only in combination with the objective difference in 
the rotations.  
 
Structural sums 
Structural sums involve sums over neighbouring particles of the product of the interactive tensor µνK  
with any number of components of the connecting vectors µνc . They are called A 
 

N

pq pqA K
1

µ

µ µν≡
ν=
∑ , 

N

pqr pq rA K c
1

µ

µ µν µν≡
ν=
∑ , 

N

pqrs pq r sA K c c
1

µ

µ µν µν µν≡
ν=
∑ , etc.     (10) 

 
The summation is over all the nearby particles in the small assembly; the number is of these is µN . 
However, for non-contacting particles the interactive tensor is zero, so that in the evaluation of the 
structural sums, only the number of contacting  neighbours appears. 
 The question that needs to be addressed is, up to what rank of these tensors is reasonable to 
employ? In principle the tensors can be 'measured' in a numerical simulation and there is no upper limit 
to the order that can be determined. However, higher order structural sums contain angular variations 
over arcs that are far smaller than a particle diameter and add little or no useful information on the 
spatial distribution of the interactive tensors.  
 The equilibrium equations for each particle are expressed in the kinematic variables, truncated 
to neglect structural sums representing a moment that is higher than two: 
 

( ) ( )1, 0, 2, 1,1
pij ij ijk k pijk ijk ij k2A E A E 0µ µ µ µ µ µ+ ε Ω + + ε Ω =l l ;       (11)  

 
and 
 

( )1, 0,
pqr rijq ij ijk kA E 0µ µ µε + ε Ω = .          (12) 
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If the order of the structural sum had not have been cut off, then the force equation would remain 
unaltered, but the  moment equation would have had two additional terms, both proportional to the 
third order structural sum; these terms are ( )2, 1,1

pqr rijqs ijs ijk ks2 A Eµ µ µε + ε Ω . Now, both the third order 
structural sum and the two higher order kinematic variables have vanishing mean value and their 
inclusion in the rotation equation needs to be compared with the terms in equation (12). Here, we 
assume that this product of fluctuating terms is small compared to the terms of lowest order.  
 
3. The incremental stress 
 
The force equilibrium equation (11) may be recast by writing the double gradients as derivatives of the 
first gradients. This leads to 
 

( ) ( )1, 0, 1, 0,1
pij ij ijk k pijk ij ij2

k

A E A E 0
x

µ µ µ µ µ µ∂
+ ε Ω + + ε Ω =

∂ l l .      (13) 

 
This form is used to motivate the introduction of a stress increment σ . A stress increment describes 
equilibrium when ij j/ x 0∂σ ∂ = ; furthermore, the stress increment is expected to be symmetric. The 
one-particle equilibrium equation is modified slightly to read 
 

( ) ( )pijk1 0 1, 0,
pijk ij ij pij ij ijk k

k k

A
A E 2A E

x x
µ µ µ ∂∂  + ε Ω = − − + ε Ω    ∂ ∂ 

l l ,     (14) 

 
where all derivatives are evaluated at µx . 
 Because ( )1, 0,

pqr rijq ij ijk kA E 0µ µ µε + ε Ω = , a reasonable symmetric stress increment is 

( ) ( )1, 0,
rq rijq ij i

1
jk kA E(2v)µ µ µ− µσ = + ε Ωx , where v is the volume per particle. This is a local form of the 

generally accepted definition of the particle stress (e.g., Love (1944), Dantu and Weber (1968), 
Drescher and de Josselin de Jong (1972), Lätzel et al (2000)), although other definitions are possible 
(Babic (1997), Goldhirsh and Goldenberg (2002), Zhu and Yu (2002)). However, this local form does 
not necessarily possess the property that ij j/ x 0∂σ ∂ = . The latter form of the equilibrium equation is 
not valid for a single particle, though there may be circumstances in which the right-hand side of (14) 
vanishes.  
 The rotational equilibrium equation is solved for 0Ω  
 

( ) 10, 1,
pqr rijq ijp

A E
−µ µ µ µΩ = − εBl l

, where pk pqr ijk rijqB Aµ µ≡ ε ε .      (15) 

 
The key constitutive tensor is therefore  
 

( ) 1

pkst pstk nqr ij pijk rstqn
Z A A A

−µ µ µ µ µ≡ − ε ε Bl l
.         (16) 
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In this way, the local incremental stress-strain relation takes the form  
 

( ) ( )1
pk pkst st(2v) Z Eµ − µ µσ =x x .          (17) 

 
The equilibrium equation, expressed in the local stiffness Z is, then, 
 

( ) ( )( )1pijk1 1, 1,
pkst st pij ij ij nqr rstq stn

k k

A
Z E 2A E A E 0

x x
−µ µ µ µ µ ∂∂

= − − − ε ε =  ∂ ∂ 
Bl l

.    (18) 

 
 In a perfectly uniform medium, odd structural sums and spatial derivatives of structural sums 
vanish. In this case the stiffness of the medium is simply -1(2v) Z . When the medium is non-uniform 
the mean stress is found from equation (17). Denoting averages by an over bar and fluctuations by a 
prime, the mean stress can be written as  
 

-1 -1
pk pkst st pkst st(2v) Z E (2v) Z E′ ′σ = + .         (19) 

 
The second term on the right-hand side is a vital element in the prediction of the overall stiffness for 
realistic granular medium. Equation (18) may be deployed to find the correlation between the 
fluctuations in the structural sums and the strain fluctuations, but this is not a trivial task. 
 
4. Homogenisation 
  
There are various methods by which the strain fluctuations can be obtained. These include the pair-
fluctuation method (Jenkins (1997)), or more general inclusion methods (Torquato (2002)) and 
cumulant neglect methods (Beran (1968)), such as Kröner's (1967). These methods all result in 
predictions of overall mechanical properties from the statistical distributions of the micro-mechanical 
features.  
 In this paper, we make the rather arbitrary choice to employ an adaptation of Kröner's method. 
In order to do this, the discrete third rank tensor A in equation (14) needs to be expressed as a partial 
derivative of an even structural sum. This is plausible, because the asymmetry that is represented in the 
odd structural sum is closely associated with systematic variation of contact properties across the 
particle. The simplest assumption of this type that can be made is that  
 

mnp mpn1
ijk ijk mn2

p p

A A
A

x xµ µ

µ µ
 ∂ ∂
 = Λ +
 ∂ ∂ x x

l l
l .        (20) 

 
Below, it will be shown that only the aggregate-averaged value Λ  of the tensor µΛ  enters.  
 The simplest possible form for Λ  is now discussed. For elastic interactions, the tensor K  is 
symmetric, implying symmetry in the subscripts (i, j) and (l, m). For an isotropic material the sixth rank 
tensor in equation (20) is reduced to a simple isotropic tensor. Introducing four non-dimensional 
coefficients 1..4λ  this assumption leaves  
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( ) ( ) ( )ijk mn 1 ij m kn 2 ij k mn km n 3 m ik jn jk in 4 kn i jm im jΛ = λ δ δ δ + λ δ δ δ + δ δ + λ δ δ δ + δ δ + λ δ δ δ + δ δl l l l l l l . (21) 
 
 In general, the components of Λ  will evolve with the deviatoric component of the mean total 
strain and, in this way, isotropy is be lost. 
 
5. An example: the isotropic, perfectly random aggregate 
 
Formula (19) may be viewed as a two-step way to estimate the overall incremental stiffness of a 
granular aggregate. The first term on the right hand side gives the mean field approximation; the 
second term represents the correction due to fluctuations in the assembly. In order to illustrate the 
concepts discussed in the previous sections, an example is worked out that demonstrates the effect of 
the latter term. As mentioned before, the method chosen here is an adaptation of Kröner's (1967) 
method, which is done for an isotropic two-dimensional material. This material may be subjected either 
to an increment of deviatoric strain or a further increment of isotropic strain. Refinements to cope with 
anisotropy induced by an applied overall deviatoric strain may be implemented at the cost of 
significantly more algebra. The results are given in equations (33) and (34). 
 In Kröner's method the equilibrium equations are approximated to first order in the fluctuations. 
This is valid while the fluctuations in the stiffness tensor of the problem are small compared to the 
mean value. There is evidence (Gaspar (2001)) that in granular materials that have been subjected to a 
deviatoric strain that is a significant fraction of the isotropic strain, the fluctuations may be sizeable; 
then more sophisticated homogenisation methods than the one discussed here need to be employed. It is 
immediately seen that neglecting the higher order terms in the fluctuations implies that only the 
average of µΛ  is required. 

An estimate for the fluctuation in the deformation is now obtained. The odd structural sum in 
the right hand side of the equilibrium equation – either equation (14) or equation (18) – is expressed as 
a derivative according to equation (20). The connection between the spin tensor and the local strain is 
given by equation (15). Introducing a tensor µT , defined as ( ) 1

ijst is jt ij pqr rstqp
T A

−µ µ µ= δ δ − ε ε Bl l
, the 

equilibrium equation may be written in terms of averages and fluctuations. As noted above, only first 
order terms in the fluctuations are retained; averages are denoted by an overbar and fluctuations by a 
prime. Equation (14) is then cast in the form 
 

/ / //
ijst mnq mqnst

pijk ijst pijk st pij mn ijst st
k k q q

T A AEA T A E T E
x x x x

 ∂ ∂ ∂∂
 = − − Λ +
 ∂ ∂ ∂ ∂ x x

l l
l .    (22) 

 
The gradient of the strain fluctuations is written as double gradients of displacement fluctuations 
 

/ 2 / 2 /
st s t1

2
k t k s k

E u u
x x x x x

 ∂ ∂ ∂
= + ∂ ∂ ∂ ∂ ∂ 

.          (23) 

 
The assumption of isotropy implies that the mean structural sum A  is isotropic. Thus with the 
introduction of two material constants ν  and ε , one may write 
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( )pijk pi kj pk ij pj kiA = νδ δ + ε δ δ + δ δ .         (24) 
 
This form respects the symmetry in the subscripts j and k and also in p and i. The latter implies that the 
interactive tensor is symmetric and therefore represents an elastic interaction. The isotropy assumption 
together with the symmetry property of the strain results in ijst st ijT E E= .  

A tensor /S  is introduced as 
 

/ / / /
pijq pstq stij pij mn mnq mqnS ( ) A T ( ) A ( ) A ( ) ≡ + Λ + x x x xl l l .       (25) 

 
Equation (22) takes the form 
 

( ) ( )
2 / 2 / /

p q pijq1 1
ij2 22

q p q q

u u S
3 E 0

x x x x
∂ ∂ ∂

ν + ε + ν + ε + =
∂ ∂ ∂ ∂

.       (26) 

 
Spatial Fourier transformation of the fluctuating quantities (denoted by a hat) with wave vector 

k yields the following solution for the incremental displacement gradient fluctuation 
 

( )
( )

( )( )
pr p r

s p q s rijq ij2 4

k k 3 ˆˆik u 2k k S E
k 2k 2

 δ ε + ν
= − ε + ν ε + ν ε + ν 

.      (27) 

 
The inverse transform is  
 

( )
( ) ( )

( )
( )( )

/
p ij pr p r2 2 / i

rijq q s2 2 4
s

u 2E k k 3
( ) d y d kS k k e

x k 2k 22

 ∂ δ ε + ν
= + − 

∂ ε + ν ε + ν ε + νπ   
∫ ∫x x y k.y .   (28) 

 
The integrand peaks sharply for 0→y  and the 'local' contribution is obtained by calculating  
 

( )
( ) ( )

( )
( )( )

ij pr p r/ 2 2 i
rijq q s2 2 4

R

2E k k 3
S d y d kk k e

k 2k 22

 δ ε + ν
− ε + ν ε + ν ε + νπ  

∫ ∫x k.y ,    (29) 

 
where R is a small circle. The integrals are evaluated, which leaves the following estimate for the 
displacement gradient fluctuations 
 

( )( )
( )( )

/
ap qb aq pb ab pqap qb/a 1 1

pijq ij2 4
b

32u S ( )E
x 2

 ε + ν δ δ + δ δ + δ δδ δ∂  = − −
 ∂ ε + ν ε + ν ε + ν x

x ;    (30) 

 
The non-local contributions are neglected, which is permitted when the material is perfectly random. In 
this respect Kröner's method resembles inclusion methods.  
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Bearing in mind the impact that with  isotropy ( ) 1

nqr ij pijk rstq stn
A A E 0,

−µ µ µε ε =Bl l
. , a first 

estimate of the overall stress increment is 
 

/1 /
j1 1 / i

rq rijq ij rijq
j i

u(2v) u(2v) A E Z
2 x x

−
−

 ∂∂
σ = + +  ∂ ∂ 

.       (31) 

 
It is seen from this formula that the overall stiffness tensor is a function of the parameters ν  and ε , as 
well as the auto and cross correlation of the components of the tensor /A . The Kronecker deltas in 
formulas (21) and (30) indicate which of the possible correlation combinations are important. They are 
somewhat limited by the symmetry relations of /A : there is symmetry in the last two subscripts and the 
assumption of an elastic contact interaction implies symmetry in the first two subscripts. Furthermore, 

the assumption of isotropy also extends to the correlations, so that, for example, ( ) ( )2 2/ /
1111 2222A A= . 

Taking this into account, the correlation between the following pairs of components need to be 

incorporated: ( )2/
1111A , ( )2/

1212A , ( )/ /
1212 1111A A , ( )2/

1211A , ( )/ /
1112 1211A A , ( )2/

1112A , ( )/ /
2222 1111A A . Thus 

seven extra material parameters are to be provided to describe the effect of heterogeneity on the overall 
behaviour.  

A further simplification is required. The approximation is introduced that the fluctuations in the 
structural sums are themselves generated by isotropic tensors of the form 
 

( )/ / /
pijk pi kj pk ij pj kiA = ν δ δ + ε δ δ + δ δ .         (32) 

 
For this isotropic case the tensor pk pqr ijk rijqB Aµ µ= ε ε  takes a diagonal form and ijst is jt it jsT 2µ = δ δ − δ δ ; the 
latter is a constant and as a consequence the assumption causes the elimination of the first term in the 
definition (25)  of /S . Now, the overall stiffness is expressed in the averages ν  and ε , as well as the 

correlations ( )2/ν , ( )2/ε  and ( )/ /ε ν . The overall bulk and shear moduli are then 
 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1 2 2/ / / /
1 2 3 4 1 2 3 4 1 2 3 4

(2v)K 3
2

(2v) 3 3 2 2 3 2 3 ,
2

−

−

= ε + ν +

    − ε λ + λ + λ + λ + ε ν λ + λ + λ + λ + ν λ + λ + λ + λ    ε + ν  
             (33) 

( )

( )
( )( ) ( ) ( ) ( )( ) ( ) ( )

1

1
2 2/ / / /

1 2 3 4 1 2 3 4 1 2 3 4

(2v)G
2

(2v) 5 3
3 2 2 .

2 2

−

−

= ε + ν +

ε + ν  − ε λ + λ + λ + λ + ε ν λ + λ + λ + λ + ν λ + λ + λ + λ ε + ν ε + ν  

 

     (34) 
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The material properties described by expressions (33) and (34) still require nine parameters. By 
making additional assumptions this number is further reduced.  
 

6. CONSTANT CONTACT STIFFNESSES 
 
The incremental contact stiffness tensor K is a key parameter in the evaluation of the structural sums. 
In general it will depend on the actual total contact force as well as the direction of the contact. The 
direction of the contact unit normal pointing from particle µ to particle ν is called µνn  and this is the 
principal anisotropy direction for the contact stiffness tensor. The components of µνK  are decomposed 
in directions parallel and normal to µνn . Bearing in mind the elastic symmetry of µνK , the general 
form for the tensor is 
 

( )(n) (t )
ij i j ij i jK k n n k n nµν µν µν µν µν µν µν= + δ − .        (35) 

 
This form takes care of the directional aspect of µνK . The coefficients (n)k  and (t )k  may depend on the 
total force across the contact.  
 Two limiting cases are distinguished to illustrate the physical meaning of (35). . When a contact 
has the property that (t )k 0= , no tangential force increment is generated and the contact slides. The 
other extreme is when (t )k  is nonzero; in this condition a tangential force increment may be generated 
and such contacts are here called ‘sticking’ contacts. Generally speaking, of course, a whole range of 
possibilities may occur, depending on the nature of the contact law.  
 Below a number of measures for contact numbers are needed. The two parameters that have 
already been introduced are the total number of particles in the assembly, N, and the number of not 
necessarily touching neighbours of µ, Nµ . The subscript c denotes parameters pertaining to touching 
particles; for example, the number of contacts of particle ν is cNν . The assembly average of Nµ  is 
denoted by N . A local neighbourhood mean in the vicinity of particle µ is indicated by brackets.  
 The parameter N  may be related to the packing properties of the aggregate through the solids 
volume fraction. In two dimensions the mean solids area of a particle plus its neighbours equals 

2ND / 8π , while the total area of the enclosed assembly equals ( )( )21
2 ND sin N 2 / Nπ − ; thus the solids 

volume fraction φ is related to N  as ( )1
4 / sin N 2 / N φ = π π −  . The other parameter that appears in 

the theory is the volume per particle v, which is 21
4v D /= π φ .  

In this section the simplifying assumption is made that the values of (n)k  and (t )k  are constant 
throughout the medium. This situation can only be created by numerical means, as in reality a variable, 
total contact force dependent, contact law applies. However, by making the simplification, an 
impression of the order of magnitude of the various parameters in the theory is obtained. The structural 
sum A  is determined by replacing the sum with an integral, weighted with a mean angular contact 
number distribution p( )θ : 
 

( )
2N

(n) ( t )
pqrs pq r s p q pq p q r s

0

A K c c p( ) k n n k n n c c d
1

µ π
µν µν µν  ≡ → θ + δ − θ 

ν=
∑ ∫ .     (36) 
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In isotropy, p( )θ  is a constant, p, which is related to the mean number of contacts cN  through 

cp N /(2 )= π . As the magnitude of c for small indentations approximates the diameter of the particles 
D, the integral in equation (36) is easily evaluated. The phenomenological coefficients ν  and ε  are 
identified as  
 

( )
2

(n) (t )cD N k 3k
8

ν = +  and 
( )2 (n) (t )

cD N k k
8

−
ε = .        (37) 

 
 For constant contact stiffnesses the coefficients 1..4λ  can also be investigated further;  this leads 
to the expressions for the shear and bulk moduli that are given in equations (50) and (51). To  begin the 
investigation a volume integral over a small assembly with volume Vµ  and area Aµ  is taken of 
expression (20); Gauss' theorem is applied to give 
 

( )1
ijk ijk mn mnp mpn p2

A

A V A A n dA
µ

µ µ = Λ +∫l l lÑ .        (38) 

 
In two dimensions the volume is approximately a circular disc with radius D. Thus, the volume Vµ  
may be replaced by 2Dπ . The integral on the right-hand side of Equation (38) is replaced by a 
summation over the neighbouring particles; the area dA  is substituted with its approximation 
2 D / Nµπ . This gives 
 

( )
N

ijk ijk mn p mnp mpn
1

1DA n A A
N

µ

µ µν ν ν
µ

ν=

= Λ +∑l l l .        (39) 

 
The coefficients of Λ  follow from  
 

( )
2

N N

ijk ijk mn p mnp mpn
1 1

1DA n A A min
N

µ

µ µν ν ν
µ

µ= ν=

 
− Λ + = 

 
∑ ∑l l l       (40) 

 
The intention is to insert the form (21), then differentiate with respect to the coefficients 1..4λ  

and solve the resulting equations. Before carrying this out, ( )
N

p mnp mpn
1

n A A
µ

µν ν ν

ν=

+∑ l l  is modelled. The 

structural sums νA  are approximated as in expression (24); the number of contacts for each sum is cNν , 
which implies cp N /(2 )ν ν= π . In reality the local structural sums may be anisotropic and modelling 
them as isotropic ones is only true in approximation. At the same time, this approximation is analogous 
to the assumption introduced in (32) and therefore consistent with the other assumptions that have been 
made in order to arrive at an isotropic theory. It results in the following: 
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( )( )2 (n) (t ) ( t )1 1
mnp c m np n mp p mn m np2 4A N D k k kν ν  = − δ δ + δ δ + δ δ + δ δ l l l l l .    (41) 

 

Inspection of this form reveals that the quantity ( )
N

p mnp mpn
1

n A A
µ

µν ν ν

ν=

+∑ l l  is essentially dependent on the 

odd angular distribution around particle µ of the contact numbers of the neighbours cNν .  
A first rough approximation is introduced to obtain an impression of the odd angular 

distribution of the contact numbers; it is assumed that it can be represented by a simple vector relation: 

i iV n ( )µ θ . The quantity ( )
N

p mnp mpn
1

n A A
µ

µν ν ν

ν=

+∑ l l  is then approximated as 

 

( ) ( )( )
2N

2 (n) (t ) ( t )1
p mnp mpn m np n mp p mn m np i p i4

1 0

n A A D k k k V n n d
µ π

µν ν ν µ

ν=

 + = − δ δ + δ δ + δ δ + δ δ θ ∑ ∫l l l l l l . (42) 

 
The remaining integral is easily performed and yields ipπδ .  
 The odd structural sum in equation (40) may be modelled in a similar manner. The contacts of 
particle µ have an odd distribution according to a vector relation of the form i iW n ( )µ θ , which leaves 
 

( )( )(n) ( t ) ( t )1
ijk p ij kp ip jk ik jp ij kp4A DW k k kµ µ  = π − δ δ + δ δ + δ δ + δ δ  .     (43) 

 

The product ( ) ( )
N1

ijk mn p mnp mpn
1

N n A A
µ

−µ µν ν ν

ν=

Λ +∑l l l  with the isotropic expression (21) for Λ  gives 

a form that – insofar as its dependence on 1..4λ  is concerned – depends on two quantities only; these are 
called X and Y 
 

( ) ( )(n) ( t )
1 2 3 4 1 3 4X k 2 4 4 3 k 2 4≡ λ + λ + λ + λ + λ + λ + λ ,      (44) 

 
( ) ( )(n) (t )

3 4 3 4Y k 2 k 2≡ λ + λ + λ − λ .         (45) 
 
This does not constitute an under-representation of the problem in that four λs are represented by two 
coefficients X and Y. Next, /A  is calculated using (42), that is, cNν  is replaced with /

cN . It transpires 
that 
 

(n) (t )
/

(n) ( t )
k k
k 3k

/ −
ε = ν

+
,           (46) 

 
and substituting this into the expressions for the bulk and shear modulus - (33) and (34) - the only two 
coefficients that remain (and that have physical significance) are 

( ) ( )(n) ( t )
1 2 3 4 1 3k 2 3 2 k 3λ + λ + λ + λ + λ + λ  for the bulk modulus and 
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( ) ( )(n) (t )
1 2 3 4 1 3 4k 2 kλ + λ + λ + λ + λ + λ + λ  for the shear modulus. These two parameters are easily 

expressed in terms of X and Y as ( )1
2 X Y+  and ( )1

2 X Y− , respectively.  
 The determination of X and Y in terms of the vectors V and W is elementary. The 
approximations (42) and (43) are introduced into the functional (40), as is (21); then, the number of 
neighbours, Nµ , is approximated by its average value N  and differentiation with respect to X and Y is 
carried out, which results in the following two equations 
 

( ) ( ) ( ) ( )
N N2 (n) (t )

i i i
1 1

X Y V N k k V W 0µ µ µ

µ= µ=

− − + =∑ ∑ ,       (47) 

 

( ) ( ) ( )
N N2 (t )

i i i
1 1

X 3Y V 2Nk V W 0µ µ µ

µ= µ=

− − =∑ ∑ .        (48) 

 
The solution is  
 

( )
( )

( )
(n) (t ) N

i iN 2 1
i

1

3k k N
X V W

2 V

µ µ

µ µ=

µ=

+
= ∑

∑
 and 

( )
( )

( )
(n) (t ) N

i iN 2 1
i

1

k k N
Y V W

2 V

µ µ

µ µ=

µ=

−
= ∑

∑
.    (49) 

 
 The bulk and shear moduli - expressions (33) and (34) – are also expressed in the parameters of 
the contact stiffness tensor; they become 
 

( ) ( )
( )

21 2 / (n)1
c2 (n)

c (n) ( t )
c

(2v) D N k X Y(2v)K D N k
4 2N 3k k

−− +
= −

+
,       (50) 

 

( ) ( ) ( )( )
( )

21 2 / (n) ( t )1
c2 (n) (t )

c (n) ( t )
c

(2v) D N 2k k X Y(2v)G D N k k
8 4N 3k k

−− + −
= + −

+
.    (51) 

 

Finally, estimates for the correlations ( )2/ 2
c cN / N  and ( ) ( )

N N 2

i i i
1 1

V W / Vµ µ µ

µ= µ=
∑ ∑  are required. The 

vector µV  describes the asymmetry in the number of contacts of particles that neighbour particle µ. 
This number is correlated with the asymmetry of the number of contacts of particle µ itself. The 
neighbouring particles ν possess three kinds of contacts (not necessarily touching): (1) contacts with 
particle µ, (2) contacts with other neighbours ν and (3) contacts with particles that are neither µ nor 
neighbours of µ. A deterministic correlation between the asymmetry of contacts of µ and the number of 
contacts of the neighbours ν can only be established through contacts of category (1). The latter 
represents one contact per neighbour, that is, a fraction of the number of contacting particles of the 
neighbours ν of c1/ Nν

µ
. Thus, if the correlation were perfect and the two vectors µV  and µW  were 
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perfectly aligned, their magnitudes would be related by the form ( ) 1

cN
−

ν

µ
=V W . However, the 

alignment of the vectors µV  and µW  need not be perfect; on average they will lie in the same 
direction, but there is a probability that they do not.  

Let χ be the angle that µV  makes with the '1' axis and ψ the corresponding angle of the vector 
µW . There is a probability p( )dψ ψ  that the angle ψ lies between ψ and dψ + ψ . This probability has a 

maximum for ψ = χ  and tails off to zero when ψ deviates much from χ. The probability is here 
supposed to have an easily integrable form, for example  
 

( ) 0p d p cos d .ψ − χ ψ ψ = ψ α 
        (52) 

The width of the distribution is such that all the angles ψ lie in the interval / 2χ ± απ . Thus, 

( )0p 1/ 2= α . The correlation ( )
N

i i
1

V Wµ µ

µ=
∑  becomes 

 

( ) ( )
( )

( )
/ 22 2N

1
i i 221 / 2c c

V VV W cos cos sin sin cos d cos
2 N 1 N

χ+απ
µ µ

ν ν
µ= χ−απ

µ µ

ψ − χ → χ ψ + χ ψ ψ = πα α α − α
∑ ∫ .

             (53) 
 
Therefore, using the fact that c cN Nν

µ
=  

 

( )

( )
( )

( )

N

i i 1
1 2
N 22

c
i

1

V W
cos
N 1V

µ µ

µ=

µ

µ=

πα
=

− α

∑

∑
.          (54) 

 
The expectation is that α will be such that there is an excluded region; this region points in the negative 

µV  direction, which essentially indicates that the vector µW  never opposes µV . The order of 
magnitude of this region is roughly the equivalent angular region of one particle 2 / Nπ ; in other 
words, α is of the order of ( )2 1 1/ N− . 

The correlation ( )2/ 2
c cN / N  is a material parameter, which depends on the packing 

characteristics of the material. Simulations by Kuhn (1999, 2000) on disks with an elasto-frictional 
interaction it was found that the isotropic state had a co-ordination number cN 4.1=  and 92% of the 
contacts were sticking; he examined the special case for which (t ) (n)k k=  and an interparticle friction 

angle of 260. Kuhn reports ( )2/ 2
c cN / N 0.35≈  and also the mean field and overall shear and bulk 

moduli; these are given in the table below 
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Modulus Mean value (Nm-1) Effective value (Nm-1) Fraction change 
bulk 2.8e7 2.3e7 0.18 
shear 2.6e7 1.9e7 0.28 

 
Using expressions (50), (51) and (54) the theoretical estimates for these quantities are determined in the 
limit (t ) (n )k k=  
 

( )
( )

( )
( )

2/ 1
c 22 (n)

c 2 2
cc

N cos1 NK D N k 1
8v N 1N

 
πα = − − α

  

 and 
( )
( )

( )
( )

2/ 1
c 22 (n)

c 2 2
cc

3 N cos1 NG D N k 1
8v N 12 N

 
πα = − − α

  

, (55) 

where both v and N  may be related to the solids volume fraction φ. A comparison with the theoretical 
prediction and the numerical experiment shows good agreement for 1.76α =  with N 5= . This is the 
right order of magnitude, as ( )2 1 1/ N 1.6− = . The value N 5=  is obtained from the solids volume 
fraction, which is reported as 0.82. Note that the ratio of the differences between mean and overall 
shear and bulk moduli is exactly correct; from (55) it is seen that it is 3 / 2 , which is also the 
experimental value. 

A parameter that describes the biaxial volume change is ∆, the ratio of the minor principal strain 
increment to the major principal strain increment under loading in which the minor principal stress 
increment is zero. For the isotropic medium ∆ is ( ) ( )G K / G K− + . In the special case for which 

(t ) (n)k k ,=  the effect of heterogeneity is to change this value from zero in the mean field estimate to  
 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2/ 1
c 2

22 2 / 1c cc 2
2 22/ c1 cc 2

2 2
cc

N cosN
N 1 NN cosN

N 12 NN cos5 N2 1
2 N 1N

πα

− α πα
∆ = − ≈ −

  − απα − − α
  

.     (56) 

 
In this case, any volume change observed for the sticking contact limit is entirely due to 
heterogeneity.The mean field parts of expressions (55) have also been obtained by Kruyt and 
Rothenburg (1998, 2002) for assemblies of bonded granulates.  

For frictionless contacts, (t )k 0= , the bulk and shear moduli are 
 

( ) ( )
( )

2/ 1
c 22 (n)

c 2 2
c c

4 N cos1 NK D N k 1
8v 3N N 1

 
πα = − − α

  

 and 
( ) ( )

( )

2/ 1
c 22 (n)

c 2 2
c c

4 N cos1 NG D N k 1
16v 3N N 1

 
πα = − − α

  

. 

             (57) 
 
While no two-dimensional data are available for this limit, the general observation that follows from 
these formulae is that the difference between overall and mean moduli should be of the same order of 
magnitude as that for the all-stick case. Recently, numerical experiments in three dimensions have 
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become available, Makse et al. (2000). These do not conform to the requirement that the interactive 
tensor is a constant throughout the medium, because a Hertzian contact law has been used, the 
incremental value of which depends on the total contact force (Landau and Lifschitz (1982)). These 
numerical experiments demonstrate that the mean field shear modulus is very substantially reduced 
while the mean field bulk modulus is only slightly affected by the heterogeneity. The general point is 
that heterogeneity is a vital ingredient in the understanding of the overall response of a granular 
assembly. A three dimensional analysis that can also accommodate a variable contact law is required 
and will be published in the future. 
 

6. CONCLUSIONS 
 
An analytical relationship between the overall stress and strain increments has been determined in the 
pre-failure regime of a dense, random aggregate of round grains interacting through elastic, frictional 
contacts. The analytical relationship depends upon the means and fluctuations of structural sums. In 
order to arrive at this expression, a kinematic description has been explored that describes the 
displacement and spin variables in a small neighbourhood by means of tensors that are the coefficients 
of a Taylor expansion. Care has been taken not to over-specify the kinematics in terms of the tensor 
components. The result is that the first order spin and second order deformation variables are the 
smallest set sufficient to describe of the motion of a small neighbourhood of particles.  

Neglecting products of fluctuations compared to means of both the kinematic parameters and 
the structural sums, the spin variables have been eliminated from the expression for the contact force. 
The heterogeneity of the small assemblies is then incorporated using a suitable homogenisation 
technique. This heterogeneity is an essential ingredient in the description of granular aggregates.  

In an example for a two-dimensional, isotropic aggregate, the mean and variance in the packing 
characteristics are used to arrive at first order expressions for the incremental stiffness components. A 
favourable comparison with numerical experiments is found. 
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