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Abstract 
The approach of two spheres along their line of centres is analyzed assuming that each 
sphere is covered by a porous layer. The slip of the fluid at the surface of the porous 
layers then permits the spheres to touch without a singularity in the associated force. In 
a corresponding analysis for flat surfaces, an analytical formula for the force is 
obtained. This force is also finite for vanishing gap width. It is shown how the 
properties of the porous layers can be related to the statistics of spatial distributions of 
surface asperities. Finally, it is emphasised that a finite force is associated with a finite 
asperity height. 
 
1. Introduction 
 
When two perfectly smooth spheres are submerged in an incompressible, viscous fluid, 
the force necessary to slowly push them together along their line of centres grows 
inversely proportional to the gap distance between them. However, in experiments on 
spherical particles it has been shown that they can touch (Gelbard et al [1], Zeng et al 
[2]), implying that the gap width can be made zero at finite normal relative velocity. 
While a number of elements in the analysis of two perfectly smooth particles in an 
infinitely extended Newtonian fluid with no-slip boundary conditions may be 
unrealistic, it has long been recognised that the assumption of perfect smoothness is a 
strong approximation and that the singularity in the force is unphysical.  
The interaction of rough particles in a Newtonian fluid is important for a range of 
problems: sedimentation (Davis [3], Zeng et al [2]), viscosity estimates of particle 
aggregates (Wilson and Davis [4]), diffusion (Leighton and Acrivos [5]), Acrivos et al 
[6]) and particle pressure estimates that are useful for the description of migration 
phenomena (McTigue and Jenkins [7], Nott and Brady [8]). 
Da Cunha and Hinch [9] investigated two rough interacting particles in a shear field. 
They employed the smooth hydrodynamic interaction (Kim and Karrila [10]) until the 
particles reach a separation at which two asperities on their surfaces touch. The basic 
assumption they make is that the roughness does not affect the hydraulics. This 
assumption is also stated by Smart and Leighton [11] in their analysis of two 
approaching smooth spheres, scantily covered by small hemispherical asperities. Patir 
and Cheng [12] did a numerical simulation of two rough particles that approach one 
another. Here the hydraulic phenomena are affected by the roughness, however, no 
analytical insight is obtained in this way of approaching the problem. Patir and Cheng 
[12] investigated surfaces that are thickly covered with roughness features with a 
height that is generated with a Gaussian probability density. 
In this paper, a model is put forward that yields a finite interactive force at zero gap 
width. In this model the assumption is made that there is a dense covering of asperities, 
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equivalent to a thin layer of porous material at the surface of each sphere. The presence 
of the layers permits the fluid external to them, the clear fluid, to slip at their outer 
surfaces. The slip velocity is related to the gradient of the radial velocity of the clear 
fluid at the surface of the porous layer in a way determined by Saffman [13]. This 
permits the determination of the radial pressure gradient in the clear fluid at the surface 
of the porous layer and, through it, the determination of the relation between the 
relative velocity along the line of centres and the associated force. The presence of slip 
at the outer surfaces of the porous layers covering the spheres results in a relation 
between relative velocity and the force that is not singular.  
The procedure to link the slip velocity to the gradient of the radial velocity was 
employed by Vasin et al [14] to describe the motion of single particles with a porous 
mantle in an infinite fluid. When the limit of a vanishingly thin thickness of the porous 
layer is taken, the procedure approaches Navier-type slipping boundary conditions with 
a slip-length parameter on the solid surface of the particle. It is shown below that the 
latter type of boundary conditions still result in a singular force as the gap width 
approaches zero, though the singularity is logarithmic for a spherical particle, rather 
than inversely proportional in the gap width. So, in order to obtain a finite force at zero 
gap width, the porous layer must have a finite thickness.  
A check on the model is obtained by a comparison with Patir and Chang’s [12] 
numerical method. When applied to the special case of rough plane surfaces 
approaching along their common normal, the model involving the porous layers 
produces a similar relation between the radial flux and the radial pressure gradient as 
that obtained in numerical solutions of the lubrication equations within and outside of a 
dense field of asperities by Patir and Chang [12], provided that appropriate values are 
taken for the thickness and the permeability of the porous layers.  
 
2. Basic definition of the problem - use of the lubrication limit 

 
Two solid spherical particles are assumed to move relative to one another along their 
line of centres with relative velocity u2 . A porous layer with thickness δ, porosity ε, 
and permeability k covers each sphere. The distance between the surfaces of the 
permeable layers is h2 . Figure 1 gives a sketch of the geometry as the surfaces 
actually are; the dimensions relevant to the model are on the right hand side of the 
figure. Figure 2 illustrates the model; the permeable layer is enclosed between the 
dashed lines.  
The fluid has viscosity µ. The co-ordinate frame is chosen such that z is the co-ordinate 
in the direction of the line of centres and r is the radial direction. The lubrication limit 
is employed for the fluid between the porous surfaces. This requires that (e.g. Landau 
and Lifschitz [15]), 
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In order to take advantage of the symmetry of the problem, the origin of the co-
ordinate frame is chosen at the centre of the system. Then ),(),( zrvzrv rr −=  and 

),(),( zrvzrv zz −−= .  
The equations of motion in the region of clear fluid are 
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while those in the permeable regions are 
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In both types of regions the equation of continuity is 
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In the permeable regions, v is the superficial velocity.  
The boundaries in the problem are described using a function )(rfz = , which 
describes the shape of the surface of the upper particle. At the boundary of the 
permeable medium and clear fluid, ( )hrfz +±= )( , (a) the fluid pressure p is 
continuous, and (b) the normal fluid velocity zv  is continuous. At the particle surface, 

( )δ++±= hrfz )( , (c) the normal fluid velocity relative to the solid matrix vanishes: 
/ 0=mzv uε . 

 
3. Analysis of the problem 

 
The flow in the clear fluid may be solved first. From the first of Equation (2) it follows 
that  
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where )(rvs  is a slip velocity along the interface between the permeable region and the 
clear fluid. Integrating the continuity equation (4) over z between the boundaries of the 
clear fluid gives 
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The second part of the problem is the solution of the permeable medium flow, which 
yields a value for ))(,( hrfrvz + . The continuity equation (4) is integrated over the 
thickness of the permeable layer 
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The integral on the left-hand-side is evaluated using the boundary condition (c). For 
the integral on the right-hand-side the second of the constitutive relation in the 
permeable region, equation (3), is used. It is recalled that the lubrication limit states 
that the pressure gradient in the z-direction approximately vanishes (equation (1)). It 
follows that 
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Combining this with equation (6) to eliminate ))(,( hrfrvz +  yields an equation that 
may be integrated to determine the pressure: 
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Equation (9) differs from that of the traditional lubrication limit in two ways: (a) in the 
traditional analysis there is no slip velocity, and (b) the left hand side is simply u, 
rather than the more complex expression given here. The integration of equation (9) 
results in 
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The constant is evidently zero as all quantities are finite at 0=r , thus 
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To carry the solution further, another connection between the slip velocity and the 
pressure gradient needs to be found. From the Brinkman equation Saffman [13] shows 
that the slip velocity satisfies 
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where α is a coefficient of the order of magnitude of 0.1. From 
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it follows that 
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Then, from equation (11), there results 
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4. Flat surfaces 
 
For flat surfaces the function 0)( =rf  and equation (15) simplifies to 
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Patir and Cheng [12] obtain numerical solutions to the problem of squeeze film 
between a pair of flat plates that are densely covered with asperities with a height that 
is generated with a Gaussian probability density. They phrase the problem in terms of 
the distance between the mean location of the surfaces and focus attention on the 
behaviour of the radial linear flux rq  defined by 
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In their analysis, it is given in terms of a dimensionless flow factor rφ  (see also Wells 
and Tsuji [16]) 
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From their numerical solutions, Patir and Cheng [12] obtain the values of rφ at various 
values of h .  
The question then is whether the simple theory presented here, one that makes use of 
the slip velocity and employs the expression for the slip velocity that results from the 
Brinkman equation, is able to reproduce their numerical data. To answer this question, 

rq  is first evaluated for the flat plates using the simple theory: 
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Secondly, a distance parameter ∆ is introduced such that ∆+≡ 22hh . ∆ is 
approximately the mean asperity height reckoned from the mean location of the 
surface. From equations (18) and (19) and the definition of ∆ it follows that the form 
for rφ  is 
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Patir and Cheng [12] take the two surfaces to have the same statistics and express the 
parameter h  in terms of the combined standard deviation σ of the Gaussian 
distribution of the asperities on the two surfaces. The parameter ∆ may be expressed as 

( )2/ nσ=∆ , where n is an adjustable parameter of order unity that is required to 
make an association between the equivalent porous continuum and the actual asperities 
that are present in the paper by Patir and Chang [12]. The thickness δ of the porous 
layer is approximately equal to twice the asperity height: 2δ = ∆ . The parameters 
relevant to the comparison with the numerical model are illustrated in Figure 1 on the 
left-hand-side of the figure.  
Now, on introducing the dimensionless quantities ( )1/ 2 /y k α≡ ∆  and σ/hH ≡ , 
equation (20), which has been derived from hydraulic considerations, may be mapped 
onto the spatial geometry of random asperities of Patir and Cheng [12] as 
 

( ) ( ) ( )133222161231 222
3322 −++−+−+= nyy

Hn
y

Hn
y

nHr αφ .   (21) 

 
Patir and Cheng [12], themselves fit the value of rφ  to the numerical data as 
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It is easy to see that in order to obtain similar curves, the condition 12/1 << y  must 
hold. Experimentation with the values of n and y indicates that the two functions can 
be made very similar, see Figure 3. A direct estimate of the value of y, which expresses 
the value of the permeability of the rough coating in terms of the characteristic length 
scale of the asperities, is possible using Kozeny-Carman's permeability estimate for a 
porous medium with mean diameter D 
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The values are derived from the Patir and Cheng's [12] method of generating the rough 
surface. They employ a Gaussian distribution, implying that there is as much solid 
material above the mean as there is below the mean; hence the porosity is estimated as 

0.5=ε  and for the length scale D the standard deviation of the distribution is used. For 
such a distribution the parameter n is estimated to be in the order of 2=n . Choosing 

0.1=α , this leaves y in the order of unity. These estimated values are in the same 
order of magnitude as the ones for which a reasonable fit is obtained, as illustrated in 
Figure 3. 
From equation (16), the force between the plates may be calculated. For circular plates 
of radius R the force is  
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This reduces to the classical result (Landau and Lifschitz [15]) when 1/ 2h k>> , 

δ>>h .  
In order to expose the influence of the various length scales in the problem, equation 
(24) is recast in the non-dimensional form 
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where the parameter ζ measures the semi-gap width as a fraction of the thickness of the 
permeable layer: h ζδ=  and the parameter *δ  expresses the permeability in terms of 
the thickness of the permeable layer: * / kδ δ= . A plot of *F  as a function of ζ for 
various values of *δ  is presented in Figure 4. Patir and Cheng’s case corresponds to a 
value of *δ  in the order 25. In order to demonstrate Smart and Leighton’s [11] case for 
two flat plates the function ( ) 31ζ −+  has also been plotted.  
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5. Spherical surfaces 
 
The function )(rf  for a curved surface of a sphere with radius R may be expanded 

around 0=r  as )/(/)( 342
2
1 RrORrrf += . The force the particles exert on one 

another is  
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Introducing )2/(nσ=∆ , ∆≈ 2δ , and ( )1/ 2 /y k α≡ ∆ , making the change the 

integration variable ( )Rhzr −= 22 , and phrasing the result in terms of hzz /=  yields 
an alternative expression for the force: 
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The function 
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is plotted in Figure 5 for various values of n and y for 1.0=α . As ∞→σ/h , G 
approaches 0.5. This is also the classical value for smooth surfaces. As 0/ →σh  G 
behaves as the product of the derivative  G′ and / .h σ  As a result, the force remains 
finite for 0/ →σh . 
 
6. Pure slipping conditions 
 
Navier-type slipping boundary conditions (Lamb [17]) have a similar form as Equation 
(12). These conditions hold on a smooth solid surface and employ a slip length sL , 
such that at the boundary 
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Such boundary conditions are believed to hold for continuum descriptions in gap 
widths that approach the fluid molecular diameter. A recent paper by Thompson and 
Troian [18] gives the result of molecular simulations of liquids in the vicinity of a solid 
wall, purporting to demonstrate the validity of this concept. Experimental results of 
nanometer scale channel flow appear to support this interpretation: Cheng and 
Giordano [19]. In passing it is noted that an alternative continuum formulation of these 
simulations entails a non-local fluid rheology, leaving the no-slip boundary conditions 
concept intact; see Britsanis et al [20] and Travis and Gubbins [21] who simulated 
flow in narrow slits for a variety of choices of wall-wall, wall-fluid and fluid-fluid 
Leonard Jones potentials.  
A point that needs to be made is mere slipping by itself does not lead to a finite force 
for zero gap width. The force between smooth surfaces with slipping boundary 
conditions is found by simply taking the limit 0→δ , 1→ε  and 1/ 2 / → sk Lα  in either 
equations (24) or (31). For the flat plate one obtains 
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For the two spheres the force becomes 
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which for 0→h  behaves as 
 

2 32 ln  
 
 

s

s

LuR
L h

πµ .         (32) 

 
Both expressions (30) and (32) are still singular, though less intensely so than the no-
slip smooth boundary cases, which depend on the gap width as 3−h  (flat plate) and 1−h  
(spheres). 
For a finite force to occur, therefore, the non-zero thickness of the permeable layer 
must be accounted for. However, slip at the surface of the porous layer is not 
necessary. Sherwood [12], for example, solves the flow field for the case of a spherical 
particle approaching a permeable half-space. He determines the flow fields both within 
and outside the porous medium, adopting a no-slip boundary condition at the surface 
and finds the force to be finite.  
 
7. Conclusions 
 
The introduction of porous layers on the surface of two spheres permits their approach 
along their line of centres until contact without a singularity in the associated force. 
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The hydraulic model can be placed in the context of a statistical distribution of surface 
asperities in a relatively straightforward way. The hydraulic model can then be used to 
study, for example, the trajectories, until solid contact, of two spheres that are driven 
together by viscous forces in a sheared fluid. 
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Figure captions 
 
Figure 1. Illustration of two rough surfaces with the dimensions indicating the 
permeability model on the right hand side of the figure and those employed for the 
comparison with Patir and Cheng [12] on the left hand side. 
 
Figure 2. Schematic illustration of the permeability model. 
 
Figure 3. Comparison of Patir and Cheng's [12] numerical determinations of rφ  
compared to those obtained analytically for a few choices of the parameters n and y.  
 
Figure 4. The non-dimensionalised force between two plat plates as a function of the 
non-dimensional semi-gap. 
 
Figure 5. The function G for various values of the parameters. 
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