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Abstract. Since about a decade various fluctuation relations for the entropy production have been de-
rived and analyzed. These relations deal with symmetries of the entropy production under time-reversal
and have been proposed as a non-perturbative generalization of fluctuation–dissipation relations. I de-
scribe a unifying framework for understanding these relations and I present an algorithm to derive
them. The fluctuation relations all follow from the main observation that in great generality the path-
dependent entropy production is the source-term of time-reversal breaking in the Lagrangian over
space-time histories. That is illustrated via a number of examples as well as via a general theoretical
argument. I move these relations away from the strict dynamical background in which they originated
and take them back to the context of statistical mechanics where entropy is understood in the sense of
Boltzmann, as measuring the typicality of a manifest condition. I discuss how a relation between work
and free energy is naturally put in that framework and how the transient and steady state fluctuation
theorems are simple consequences. The fact that fluctuation symmetries for the entropy production are
in general only valid asymptotically for large times, makes them mostly inaccessible for experimental
verification, in contrast with a recent claim that they would usefully quantify second law violations.
Part of the interest in the resulting fluctuation symmetries is that they are so universally valid, a rare
occasion in nonequilibrium statistical mechanics. However they do not provide a systematic perturba-
tion expansion for response functions. For that one needs to go back to the full Lagrangian and also
consider the nonequilibrium modifications to its time-symmetric part.

1 Scales

Our first look at the world does not invite to think of nature as one. Depending on scales of length,
speed, energy and time, new worlds appear that to a large extent can be explored independently.
As a matter of fact, at least when sufficiently excited, man feels quite decoupled from underlying
microscopic laws and realities. It is also largely due to that decoupling between and the apparent
independence of various scales of description that progress in different scientific domains, in par-
ticular in physics, is at all possible. Ignoring microscopic details offers often fast and reliable access
to questions belonging to the mesoscopic or macroscopic domain. Nevertheless, part of scientific
progress is also in the unification of phenomena and in the convergence of explanations into a
limited set of more elementary mechanisms. The extent to which a microscopic theory corresponds
to reality depends on the success of that application of reductionism to a variety of natural phe-
nomena of which we all share the same experiences. From these successes we have learnt to speak
not of independent scales but rather of a hierarchy of scales with interconnected theories through
which we can move and derive one description from another finer level.

Statistical mechanics plays the role of a transfer mechanics between different levels of de-
scription. The microscopic laws get connected with the macroscopic behavior. Obviously, the mi-
croscopic dynamics is important; perhaps not all details but many features of it, like symmetries
and conservation laws, remain visible even on much larger scales. Additional considerations come
from counting; these are the statistical aspects. It is there that entropy appears. Entropy throws
a bridge between the microscopic motion and the thermal phenomena by introducing the notion
of typicality: what can one reasonably expect from a system containing lots of particles and how
big are the fluctuations. Not only energy considerations but also entropy considerations make the
world work. In the words of Boltzmann: The general struggle for existence of living creatures is
therefore not one for the basic elements - the elements of all organisms are present in abundance
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in air, water, and the soil - or for energy, which is unfortunately contained in abundance in any
body in the form of unconvertible heat, but it is a struggle for the entropy that is available through
the passage of energy from the hot Sun to the cold Earth.

In equilibrium statistical mechanics, one usually forgets about the microscopic dynamics and
the central object is the microscopic Hamiltonian. The Gibbs ensembles are constructed and one
shows how thermodynamics is obtained from the resulting formalism. Entropy gets translated in
various other thermodynamic potentials or free energies. The Gibbs formalism also allows stud-
ies of fluctuation and response relations and numerous techniques, computational, perturbative
or variational allow detailed studies of the equilibrium system. The equilibrium phases with the
resulting phase diagram are constructed from weighing the various possible macroscopic regimes
on the energy-entropy balance.
The power of the Gibbs formalism has so far no real counterpart in nonequilibrium physics which
to all appearances, shows an even greater variety of phenomena. Most people would agree that
there is yet no such thing as nonequilibrium statistical mechanics. In recent years however we have
witnessed a renewed interest both in foundational and computational issues from which attempts
have been formulated and results have been obtained which are not restricted to the close to e-
quilibrium regime. One guiding idea of the present contribution is to exploit the Gibbsian aspects
of the space-time distribution for nonequilibrium systems. The main object of study is now the
Lagrangian defined on time-dependent reduced variables and the entropy production will be seen
to coincide with the source term for time-reversal breaking. From there it presides over the system’s
fluctuations and response behavior.

In the next section I specify the key-message of the paper. Sections 3 to 6 contain my personal
look at textbook material regarding entropies and the second law. Sections 4.4 and 6 are more
original but except perhaps for some notation, much of Sections 3–6 can be skipped when one
enjoys running. The rest of the paper substantiates and illustrates the main observation, which is
next.

2 Main observations

Here I summarize what is going to come. To get a quick start, I avoid here the many definitions
and notations and I write about quantities yet to be defined more precisely later.

There are two main observations.
The first one is that in very great generality the physical entropy production can be identified
with the source term of time-reversal breaking in the action governing the space-time distribution.
By that I mean the following. Given some type of dynamics on phase space, we can be interested
in the probability Pρ0(ω) of a trajectory ω of reduced variables. Think about a time-sequence of
values that some macroscopic observable can take, or more generally, about some type of contracted
description of the system’s evolution. The subscript ρ0 gives the initial distribution on phase space.
There is a natural notion of time-reversal which transforms ω into a new trajectory Θω. At some
later time τ , the state of the system is described by the distribution ρτ , its time-reversal is denoted
by ρτπ, and we are interested in the logarithmic ratio

R(ω) = kB log
Pρ0(ω)

Pρτ π(Θω)
(2.1)

The constant kB is Boltzmann’s constant which I will forget when convenient. I claim that, when-
ever a physical interpretation is possible, R(ω) is the physical entropy production over the time-
interval [0, τ ], up to a total time-difference. In other words, writing formally

Pρ0(ω) = ρ0(ω0) e−L(ω) (2.2)

under time-reversal, the antisymmetric term in the Lagrangian L gives

S(ω) = L(Θω)− L(ω) = R(ω) + log ρt(ωt)− log ρ0(ω0) (2.3)
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and is the variable entropy production modulo a temporal boundary term. That is true for time-
dependent or homogeneous dynamics, stochastic or deterministic, in the transient or in the steady
state regime (for which ρ0 = ρτ ) but of course we need a physical context to verify it.
The statement is non-trivial and should be argued. I do that first by giving four examples in
the next subsection. From it, the reader will also better understand what is meant by the state-
ment. A general argument takes more space and some of it will be provided in Section 7 and further.

The second main observation is that the first observation is useful, basically because of two
reasons. First, from that general relation (2.1) between time-reversal and entropy production, a
unification follows for a variety of recently obtained results concerning nonequilibrium fluctuation-
s. I have in mind the transient and stationary fluctuation theorems that have appeared first in
the study of dynamical systems, but also the so called Jarzynski relation relating equilibrium free
energies with irreversible work done. I will discuss these in Sections 8–9. An algorithm appears for
deriving fluctuation symmetries and they reformulate (2.1) in terms of probabilities and expecta-
tions.
A second reason why (2.1) can be useful is that it gives a general way of departure for studying
response relations and for obtaining extensions of fluctuation-dissipation relations. Section 10 gives
a glimpse at it. We will see there how the observation (2.1) and hence the fluctuation symmetries,
are insufficient to go beyond linear order in perturbation theory. One needs also information about
how the time-symmetric term in the Lagrangian gets modified under nonequilibrium condition-
s. The broader perspective is thus that of a Lagrangian statistical mechanics, see below, which
would also include insights about the thermodynamic nature of the time-symmetric part of the
Lagrangian.

2.1 Examples

2.1.1 Heat conduction

Consider a finite graph G = (V,∼) with vertex set V . Every site i ∈ V carries a momentum and
position coordinate (pi, qi) ∈ R2. These oscillators are coupled for a Hamiltonian

H(p, q) =
∑
i∈V

p2
i

2
+ U(q) (2.4)

for some symmetric nearest neighbor potential

U(q) =
∑

i

Ui(qi) +
∑
i∼j

λijΦ(qi − qj) (2.5)

where λij = λji 6= 0 whenever i ∼ j and Φ is even. I refer to [62] for a recent review.
Select a non-empty subset ∂V ⊂ V of boundary sites, that are imagined connected to thermal
baths at possibly different temperatures. The dynamics is Hamiltonian except at the boundary ∂V
where the interaction with the reservoirs has taken the form of Langevin forces as expressed by
the Itô stochastic differential equations

dqi = pidt, i ∈ V (2.6)

dpi = −∂U
∂qi

(q)dt, i ∈ V \ ∂V

dpi = −∂U
∂qi

(q)dt− γpi +
√

2γ
βi
dWi(t), i ∈ ∂V

The βi are the inverse temperatures of the heat baths coupled to the boundary sites i ∈ ∂V ; dWi(t)
are mutually independent, one-dimensional white noises.
Consider a time-interval [0, τ ]; we start the dynamics from the distribution ρ0 on the (pi, qi) ob-
taining a distribution ρτ at time τ . The kinematical time-reversal is π(p, q) = (−p, q). A trajectory
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ω = (pi(t), qi(t)) has time-reversal Θω = (−pi(τ − t), qi(τ − t)). The density (2.1) was computed
in [47] and was found to be (with kB = 1)

R(ω) =
∑

i∈∂V

βiJi(ω) + log ρ0(p(0), q(0))− log ρτ (p(τ), q(τ)) (2.7)

where the Ji are the time-integrated heat currents at the boundary. The definition of these heat
currents follows from applying a global energy balance to the equations (2.6). The change of
entropy in the reservoirs corresponds to that energy dissipated in the environment divided by the
temperature of the reservoirs: S(ω) =

∑
i βi Ji(ω).

When we take the average of R in the steady state ρ0 = ρτ we immediately have from (2.1) that

〈e−R〉 = 1 and hence 〈R〉 ≥ 0

or ∑
i

βi 〈Ji〉 ≥ 0

If the volume V is a linear chain [0, N ] with ∂V = {0, N} the left and right endpoint of the chain,
then by the steady state condition 〈JN 〉 = −〈J0〉. Therefore

(β0 − βN ) 〈J0〉 ≥ 0

which shows that the heat current into the coldest reservoir is positive. By applying the inequalities
at the end of Section 9.2.4 strict inequalities can be obtained. I know of no other method which
shows so easily and in such great generality that thermodynamically elementary result.

The computation that leads to (2.7) is the generalization of a Langevin-type calculation
starting from:

dx(t) = −F (x(t)) dt+ dW (t)

for which the path-space measure (2.2) is formally given by

P (ω) = exp−1
2

∫ τ

0

dt
[ (
ẋ(t) + F (x(t))

)2 −∇F (x(t))
]

The antisymmetric part under time-reversal in the action logP indeed gives the dissipated power
in terms of a stochastic Stratonovich integral of the “force” F (x(t)) times the “velocity” ẋ(t).

2.1.2 Asymmetric exclusion process

I now look at a bulk driven diffusive lattice gas where charged particles, subject to an on-site
exclusion, hop on a ring in the presence of an electric field and in contact with a heat bath at
inverse temperature β. Write ξ(i) = 0 or 1 depending on whether the site i ∈ T is empty or
occupied; T = {1, . . . , `} with periodic boundary conditions. The electric field does work on the
system and the ‘probability per unit time’ to interchange the occupations of i and i + 1 is given
by the exchange rate

c(i, i+ 1, ξ) = eβE/2ξ(i)(1− ξ(i+ 1)) + e−βE/2ξ(i+ 1)(1− ξ(i)) (2.8)

Consider a path ω of the process in which at a certain time, when the configuration is ξ, a particle
hops from site i to i+1, obtaining the new configuration ξi,i+1. Then, the time-reversed trajectory
shows a particle jumping from i + 1 to i. Therefore, our (2.1) is given by summing over all jump
times, contributions of the form

log
c(i, i+ 1, ξ)

c(i, i+ 1, ξi,i+1)
= βE [ξ(i)(1− ξ(i+ 1))− ξ(i+ 1)(1− ξ(i))] (2.9)
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The right-hand side reconstructs the particle current because we get +1 or −1 depending on
whether the particle has jumped at time t in the direction of E or opposite to it:

S(ω) = βE
∑
i,t

Ji,t(ω)

with Ji,t(ω) = ±1 depending on whether a particle has passed i→ i+ 1 or i+ 1 → i. Multiplying
the current with the force E (with charge and distance taken to be 1) we obtain the variable Joule
heating.

The above is not surprising as it is already implicit in the very definition of the model. The
same structure will always be recovered for Markov chains. Here is how it goes:

Suppose that K is a finite set and let (x(t), t ∈ [0, τ ]) be a K−valued stationary Markov
process. The transition rate to go from a to b is denoted by k(a, b), a, b ∈ K and we assume that
k(b, a) = 0 whenever k(a, b) = 0 (dynamic reversibility). Suppose now that

k(a, b)
k(b, a)

=
ko(a, b)
ko(b, a)

eE J(a,b) (2.10)

with the detailed balance condition

ko(a, b)
ko(b, a)

= eU(b)−U(a)

for the reference (equilibrium) process with (driving) E = 0. The time-reversal of a trajectory
ω = (x(t)) is Θω = (x(τ − t)). We can compute (2.1) or (2.3) directly via a so called Girsanov
formula:

S(ω) = U(x(τ))− U(x(0)) + E
∑

t

J(x(t), x(t+))

where we sum over all the jump times t at which x(t) → x(t+). If the model has a physical
interpretation with (2.10) expressing local detailed balance for a driving force E and a current J ,
then S(ω) indeed reproduces the entropy production. One can extend this to spatially extended
systems, so called interacting particle systems, see [49, 50]. One shows there can be no current
without heat, meaning that detailed balance is equivalent with zero mean entropy production, see
also [60, 61, 68].

2.1.3 Strongly chaotic dynamical systems

Here there is a priori no notion of physical entropy production but sometimes, making analogies
with systems described via effective thermostated dynamics, one thinks of the phase space contrac-
tion as entropy production, see also [18, 1]. The trajectory ω is given by an orbit (x, ϕ(x), . . . , ϕτ (x))
in phase space. For so called Anosov diffeomorphisms ϕ, there is a natural stationary distribution
P (x) which turns out to be a Gibbs measure for the potential

U(x) = − log ||Dϕ|Eu(x)||

where Eu(x) is the unstable subspace of the tangent space at the point x (U(x) is the sum of the
positive local Lyapunov exponents). Over a trajectory, the Lagrangian equals

L(ω) =
τ∑

t=0

U(ϕtx)

There is a time-reversal π for which ϕ is dynamically reversible: π ◦ ϕ = ϕ−1 ◦ π and we write
Θ = π ◦ ϕ,Θ2 = id.
For (2.3) we need

U(Θx) = log ||Dϕ|Es(x)||
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where the stable subspace Es(x) of the tangent space at the point x appears. The expansions
and contractions in the unstable and stable directions give together rise to a net contraction rate
(positive or negative) U(Θx)− U(x). Therefore,

S(ω) '
τ∑
0

J(ϕtx)

with J(x) = − log ||Dϕ(x)||, the phase space contraction rate. That is again a version of (2.1) but
now obtaining the phase space contraction rate for S. I refer to [18, 66, 52] for more details and
for an extension, see also further under Section 7.3.

2.1.4 Diffusion in local thermodynamic equilibrium

I consider diffusion processes whose space-time fluctuations in the history ω of the particle density
nt(r) at space-time (r, t) in the volume V are governed by a Lagrangian

L(ω) =
1
2

∫ τ

0

dt

∫
V

dr
(
~w,

1
χ(ns(r))

~w
)

(2.11)

where (·, ·) denotes the scalar product in R3 and

~w = ∇−1(
∂nt(r)
∂t

− 1
2
∇ · (D(nt(r))∇nt(r)))

is the vector whose divergence equals the difference between left-hand side and right-hand side in
the hydrodynamic equation

∂nt(r)
∂t

= ∇ · Jr(nt), Jr(nt) =
1
2
χ(nt(r))∇(−s′(nt(r)))

=
1
2
D(nt(r))∇nt(r))

D(nt(r)) is the diffusion matrix, connected with the mobility matrix χ via

χ(nt(r))−1D(nt(r)) = −s
′′
(nt(r)) Id

for the identity matrix Id and the local thermodynamic entropy s.
Such a quadratic form for L can be derived for (2.2) for a number of stochastic dynamics but it is
believed to be very general for diffusion processes, see e.g. [3].
Clearly, (2.3) equals

S(ω) =
∫ τ

0

dt

∫
V

dr
(
∇−1(

∂nt(r)
∂t

), χ(nt(r))−1D(nt(r))∇nt(r)
)

or

S(ω) = −
∫ τ

0

dt

∫
V

dr
(
∇−1(

∂nt(r)
∂t

),∇s′(nt(r))
)

That is of the form, current∇−1(∂tnt(r)) times a gradient in the local chemical potential −s′(nt(r))
as we are used to find in expressions of entropy production for local thermodynamic equilibrium.
If there is no particle current in or out of the system, we can integrate by parts to find

S(ω) =
∫

V

dr [s(nτ (r))− s(n0(r))] = S(τ)− S(0)

the total change of entropy.
Apart for the nonlinearities in (2.11) that is fully in line with the Onsager-Machlup set-up of 50
years ago, [58].
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2.2 Lagrangian statistical mechanics

In the above examples, the Lagrangian is constructed from a model dynamics. These dynamics
need not be fully microscopic; they are valid, effective and useful in some regimes, under some
approximations and for some purposes. The thought arises therefore whether one could not as
well start the business from specifying the Lagrangian, leaving aside its detailed dynamical origin.
After all, also in equilibrium statistical mechanics one constructs models and theories based on
approximate Hamiltonians, not worrying all the time about the deeply hidden origins. In that
Lagrangian statistical mechanics, far or close to equilibrium, the Gibbs formalism again applies
but now for distributions of space-time histories. One advantage is that the step to quantum
mechanical processes is much easier to make. Another advantage is that the stationary distribution,
the projection to the temporal hyperplane, becomes available for perturbation theory as it is the
exponential of Hamilton’s principle function, see [3, 36].
At this moment, one requirement for the Lagrangian stands out: that the antisymmetric part under
time-reversal be given by the entropy production. The Lagrangian is however more than just its
time-antisymmetric part. For perturbation theory beyond linear order, also the symmetric part
matters, see Section 10.2. As the fluctuation symmetries of Section 9 will just be reformulations
of the main observation (2.1), they cannot be the starting point of a systematic perturbation
expansion. For that we need the full Lagrangian, see e.g. [53].

3 The second law in thermodynamics

In the beginning of the 19th century Sadi Carnot followed his father Lazare in meditating over
perfect machines and efficiency, see e.g. [23, 12, 34]. That abstraction led Sadi Carnot to think of
a generalized heat engine which draws heat from a source and delivers useful work. To operate
continuously, the engine requires also a cold reservoir to which heat can be disposed. The new idea
of Carnot was to think of a reversible machine, one that can be run in the opposite direction thereby
restoring its original thermodynamic state. He realized that no heat engine can be more efficient
than a reversible one operating between the same temperatures. These pure thoughts (Réflexions
sur la puissance motrices du feu, 1824) imply practically useful insights, such as that one need not
worry about working substances other than water in the design of steam engines.
Still room was left for further theoretical reflections. For example, since the reversible efficiency
is a universal function of the reservoir temperatures, by inverting the reasoning, we can define
temperature on a universal scale independent of the particular substance. To that, Kelvin and
Joule added their insights that constitute the first law of thermodynamics, the conservation of
energy in thermal processes as elevated from the principle of conservation of mechanical energy.
Heat and work, naturally appearing in expressions of efficiency, can now be written in the same
units and Carnot’s principle takes the form

J1

T1
+
J2

T2
≥ 0

where J1(J2) is the heat given by the engine to the first (second) reservoir at absolute temperature
T1(T2). Its extension to more reservoirs was given by Kelvin in 1854 but it was Clausius who came
with integrals: ∮

dJ

T
≥ 0 (3.1)

where one now imagines a cyclic process through which the engine makes contact with reservoirs
at temperature T . If the process is reversible, the equality applies in (3.1) and T is also the
(instantaneous) temperature of the system. But since then∮

dJ

T
= 0

for every cycle, we get the path-independence of the line integral∫ α′

α

dJ

T
= S(α′)− S(α) (3.2)
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where we integrate over a reversible path (equilibrium states). Thus Clausius discovered in 1865 a
new function of the thermodynamic state. He called S the entropy (from the Greek τρoπη, turn,
a turning point). As a direct consequence of (3.1)–(3.2), by closing the cycle,∫ α

α′

dJ

T
≥ S(α′)− S(α) (3.3)

for all paths between macrostate α′ and α of the system and processes where the system is in
contact with a reservoir at temperature T and gives it heat dJ . The left-hand side is the total
heat dissipated into the reservoirs and hence, is the change of entropy in the rest of the universe.
Putting everything at the same side, we thus see the familiar

S(final)− S(initial) ≥ 0 (3.4)

for the total entropy of the universe, or, as interpreted by Clausius, Die Entropie der Welt strebt
einem Maximum zu.

The equality (3.2) is the operational definition of entropy. Entropy is only defined here for
certain thermodynamic states, what are called equilibrium states under specified restraints on
composition, energy, etc. They are interconnected via reversible processes.
One does not need to remain with energy exchanges only. If we have an equilibrium system with
energy E and particle numbers Ni in a volume V , the entropy S(E,N, V ) is defined as in (3.2)
from the exact differential

dS =
1
T

(dE + pdV −
∑

µidNi)

where T is the absolute temperature, p is the pressure and µi are the chemical potentials.
That definition of thermodynamic entropy can be extended to systems in local thermodynamic
equilibrium. Thermodynamics teaches that entropy is additive and when surface effects can be
neglected, we also get extensivity: S(E,N, V ) = V s(e, n). We then introduce local energy densities
e(r), particle densities n(r) (for one component) and a velocity profile u(r) for which

∫
V
n(r)u(r) dr

= 0 to write
S(e, n, u) =

∫
V

s
(
e(r)− 1

2
mn(r)v2(r) , n(r)

)
dr (3.5)

One imagines here the system as composed of microscopically very large domains that are still
much smaller than the thermodynamic size of the system.
The inequality (3.4) describes the net result, nothing intermediate, of a process that starts and
ends in equilibrium. One can also apply it to (3.5) with the understanding that during the process
the system remains in local thermodynamic equilibrium. One must then add the macroscopic
evolution equations for the quantities et(r), nt(r) and ut(r) and introduce intensive quantities like
local temperature to obtain the entropy balance equation. For example, if the system is isolated
with local temperature T (r) and constant n(r) and u(r) = 0, the changes in energy satisfy the
conservation law det(r)/dt+divJ(r) = 0 with J the heat current and we have by partial integration

d

dt

∫
V

s(e(r)) dr =
∫

V

J · ∇ 1
T
dr

The linear transport law (here, Fourier’s law) defines the coefficient λ for which J = −λ/T 2∇T
and the entropy production rate equals

d

dt

∫
V

s(e(r)) dr =
∫

V

λ (∇ 1
T

)2 dr ≥ 0

requiring λ ≥ 0. These manipulations serve many different scenario’s, for open or for closed sys-
tems, in a stationary or in a transient regime, and are typical for, or, what is worse, are restricted
to irreversible thermodynamics close to equilibrium.
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The above summary contains the standard propositions of macroscopic phenomenology and
can be found in many textbooks, e.g. [2]. Yet, it is not particularly illuminating when asked
what entropy really is and how to extend it to truly nonequilibrium situations. The microscopic
understanding of entropy and the second law was first present in the works of Maxwell, Boltzmann
and Gibbs. It is in fact the start of statistical mechanics.

4 Second law from microscopic considerations

The relation (3.2) can be studied in quite some detail for an ideal gas. A simple calculation shows
that there the (equilibrium) entropy S(E) can be related to the total phase volume W . More
specifically, up to an additive constant,

S = kB logW (4.1)

where, for an ideal gas of N atoms in volume V , for which the energy lies in (E,E + dE),

W ≡
∫

∑
p2

i /2m'E,qi∈V

dq1 . . . dqN dp1 . . . dpN

The formula (4.1) appears on the tombstone of Boltzmann in Vienna but it was first written down in
that form (and criticized) by Planck who introduced the W as thermodynamic Wahrscheinlichkeit.
It guided the young Einstein to propose experimental verifications of the corpuscular nature of flu-
ids and of radiation. Already by its simplicity we cannot but feel that the first mysteries regarding
entropy should now evaporate. Boltzmann had truly realized that counting is essential for predict-
ing macroscopic behavior and that entropy was just that.

4.1 Counting

The formula (4.1) can be read and generalized as follows. An immense number of microstates be-
long to one and the same macrostate (manifest condition). The entropy counts them.
Counting seems to refer to something discrete and introducing discreteness in classical phase space
has something arbitrary. One can of course refer to quantum mechanics but that introduces again
other problems (more about that later). I give more precise definitions later but in fact, not much
is necessary. Most important however is to treat all microstates, that is every assignment of values
of positions and momenta of the particles, as equivalent. That is the microcanonical distribution
and its relevance is mostly derived from it being left invariant by the Hamiltonian equations of
motion (Liouville’s theorem).

Denote by Ω the phase space of a perfectly closed and isolated mechanical system. The
elements x ∈ Ω represent the microstates, i.e., x = (q1, . . . , qN , p1, . . . , pN ) gives the canonical
variables for a classical system of N particles. The equations of Hamilton produce the flow x 7→
ϕt(x) on Ω and preserve the phase space volume: |dϕt(x)/dx| = 1 for each t; the Liouville measure
dx is time-invariant. We think of a large volume in which the many particles are conserved and
the dynamics also conserves the total energy. We introduce therefore the state space ΩE ≡ Γ,
the energy shell, corresponding to energies within (E,E + dE) and denote by |B| the phase space
volume of a region B ⊂ Γ given by the projection of the Liouville measure into Γ.
Now we change scales. For comparison with experimental situations, we look at variables that
summarize the manifest image of the system. We have in mind a collection of macroscopic variables
Ar(x), mostly approximately additive and locally conserved functions on phase space. We obtain
a subdivision of Γ by cutting it up in phase cells defined by αr < Ar(x) < αr + ∆αr (with some
tolerance ∆αr). As a result, to every x ∈ Γ is associated a region M(x) in phase space consisting
of all microstates that share with x the same manifest image. Boltzmann defines then the entropy
as

S(x) = kB log |M(x)| (4.2)
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where we leave out some irrelevant constants that appear when the number of particles can change.
That is the meaning of (4.1). Most important to remember in scrutinizing definition (4.2) is the
great disparity in sizes of W = |M(x)| and the smallness of Boltzmann’s constant kB = 1.381 ×
10−23 J/K. An entropy difference S′−S of about 0.1 millicalorie at room temperature corresponds
to a phase volume ratio of

W

W ′ = exp−(S′ − S)/kB = e−1020

Since entropy is extensive in the number of particles, any visible change in the entropy per particle
(as measured in units of kB) corresponds to a ratio of phase volumes that is exponential in the
number of particles.

4.2 The hand-waiving part

Equilibrium is the state of maximal entropy; it has the overwhelmingly largest volume in phase
space which makes it the typical endpoint for about every evolution. Equilibrium can thus be
described via a variational principle, maximizing the entropy while keeping some constraints fixed.
If a constraint is lifted, even in a time-dependent way, new macrostates can be explored and the
entropy will increase until a new equilibrium is installed. In that sense, the very definition of
equilibrium as solution of a variational principle is already incorporating the second law of ther-
modynamics.

The microscopic definition (4.2) of entropy allows to move beyond equilibrium thermody-
namics. We can now follow a microstate and its entropy as time runs. Accepting the counting
procedure above and realizing the great difference in scales, that entropy will increase needs no
further explanation. Aside from great conspiracies, it is expected that the dynamics takes the
system into macrostates with a larger number of compatible microstates, [24, 4, 41]. If in a large
collection of black and white balls the number of white balls is about a billion times larger than
the number of black balls, then, when picking a ball by whatever which procedure that treats the
balls equivalently, we would be surprised not to have picked a white one.

Violations of that microscopic version of the second law are now absolutely possible and in
fact ought to be expected when the number of particles and/or the lapse of time over which the
system is monitored gets small. It is only because of the huge amount of particles in one mole of
a gas that we never witness Poincaré recurrencies. That is the answer to the Zermelo paradox.
The second law appears very rigid when applied in the laboratory situation or in the understanding
of macroscopic behavior. After all that is why it is called a law. Nevertheless, its microscopic roots
are statistical. In the end it is a probability statement, a moral certainty as Maxwell put it. Or,
with Gibbs: the impossibility of an uncompensated decrease of entropy seems to be reduced to an
improbability.
Even if we have a large number of particles, one can easily imagine initial conditions for which the
evolution breaks the second law. The second law only applies to typical initial data, microstates
randomly selected from within the phase volume that corresponds to the initial macrostate.

4.3 Time-(a)symmetry

It is in the last sentence of the previous section that appears the truly hard part about the second
law. To state that more precisely let me first recomfort the reader that so far no arrow of time
has appeared. Think indeed of a dynamically reversible time-evolution. By reversing all molecular
velocities, the same equations of motion carry the system back along their very same trajectories
to their initial positions where they end up with their velocities reversed. That is the reversibility
that is present in the microscopic dynamics of a mechanical system. Everything we have said before
to make the second law understandable applies to both directions of time. No a priori sign of the
microscopic time needs to be selected and the change of entropy is then expected to be equal and
positive in both time-directions. Furthermore, for every initial microstate from which the entropy
increases, there is also a microstate from which the Boltzmann entropy decreases. Nevertheless,
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that Loschmidt construction does not give rise to a paradox because the second law applies to a
typical initial condition and the microstates that are obtained after evolution (with reversed molec-
ular velocities) make only a very small fraction of the microstates that are actually corresponding
to the final macrostate.
The deeper question is however why we can have nonequilibrium states in the first place. The
second law can only come in action if the system is initially prepared in a macrostate with a much
smaller phase volume than is reachable by the evolution. That has obviously been done by putting
constraints of some sort but all the same it is again the endpoint of a previous evolution for a bigger
system, perhaps including now ourselves. Iterating this argument an arbitrary number of times,
we soon reach questions of physical cosmology. A healthy attitude, here and elsewhere, seems to
be that instead of trying to (dis)prove the second law, one should use it. In fact, the second law
now guides us to conclude within a particular theory as to the nature of the initial condition of the
universe; it must allow for the huge entropy increases that have occurred ever since. Obviously, the
theory of general relativity and hence gravity play there an all-important role. Within the stan-
dard theory of physical cosmology, that leads to precise mathematical estimates on various aspects
of the initial singularity. We refer to Chapter 7 in [59] and to [35] for a first look at such derivations.

4.4 Shadowing the macrostate evolution

I am adding here some more mathematical relations to the discussion above. The advantage is not
so much precision but generality and recognizing what is less and more essential.

Let Γ be the phase space of a dynamical system. We ask that Γ is equipped as a probability
space with some probability measure ρ. Let ϕt be a map on Γ that leaves ρ invariant.
Since we plan to do statistical mechanics and have in mind systems composed of a huge number
of particles, we specify a number of macroscopic variables

Ar(x) =
1
N

N∑
k=1

ak
r (x) (4.3)

with ak
r a function that only depends say on the state of the k−th particle. For example, we could

divide the six-dimensional one-particle phase space in cells Cr and let ak
r be one or zero depending

on whether the state of the k−th particle xk ∈ Cr or not. Or, the index r can have a purely spatial
interpretation in which case Ar(x) gives the profile of some one-particle observable. We can of
course go beyond one-particle variables and r can then indicate various other macrovariables but
that is not essential here. In short, a macrostate α = (αr) is realized by the microstate x when
Ar(x) = αr plus/minus some tolerance. I write α(x) for it.

The macrostate α can be represented in different mostly equivalent ways. The most funda-
mental way appears to be the microcanonical formulation. We then think of Γ as the constant
energy surface and ρ is the projection of the Liouville measure. We associate with α the phase
volume Mα of all microstates x for which α(x) = α and the entropy of such an x is then, following
(4.2), S(x) = log |Mα|.
It is however often more convenient to imagine that the macrostate α is not given via a phase
volume but via a distribution function ρα. I thus prefer to go to other Gibbs ensembles and we
associate to α a probability measure ρα on Γ having a density with respect to ρ. The probability ρ
is for example the Gibbs measure at some inverse temperature β with respect to some microscopic
interaction and ρα has a density

dρα

dρ
(x) = exp[−N

n∑
r=1

λrAr(x)− ln
Zλ

Z
] (4.4)

with respect to ρ. The Lagrange multipliers λr, conjugate to the Ar, are determined from requiring
the ρα-expectations 〈Ar〉α = αr and ρα is a constrained or, depending on the interpretation of the



40 Ch. Maes Séminaire Poincaré

index r, a local equilibrium measure in the canonical set-up; Zλ and Z are the partition functions
corresponding to ρα and ρ respectively.
It is important to select the pure phases for which Ar(x) = αr with overwhelming ρα−probability.
These satisfy a law of large numbers. In all cases, the negative logarithm of the density

S(x) = − log
dρα(x)

dρ
(x) (4.5)

corresponds to the variable entropy as in (4.2). Indeed, the negative logarithm of (4.4) corre-
sponds exactly to the entropy governing the (equilibrium) fluctuations of ρ. Write WN (α) as the
ρ−probability to see Ar(x) = αr. Then, approximately for large N ,

WN (α) = exp[N
n∑

r=1

λrαr + log
Zλ

Z
], WN (α(x)) = eS(x) (4.6)

The precise formulation (and proof) of (4.6) belongs to the theory of large deviations, see e.g.
[71, 39, 22], but that is just an elaboration of the older Boltzmann-Planck-Einstein relation (4.1):
the entropy governing the macroscopic fluctuations.

We have thus physical interest in considering (4.5) and we would hope that S(ϕt(x)) ≥ S(x)
at least for most of the microstates x that are drawn out of a particular macrostate, represented by
ρα. Expectations with respect to ρα are written as 〈·〉α and without subscript, 〈·〉 is an expectation
in ρ. I now claim that

〈e−S(ϕtx)+S(x)〉α = 1 (4.7)

The reason is simple. For almost all x, under ρα, α(x) = α and hence

〈e−S(ϕtx)+S(x)〉α = 〈e−S(ϕtx)〉 = 〈e−S(x)〉 = 1

by definition and by the invariance of ρ under ϕt. The equality (4.7) implies that

〈S(ϕtx)− S(x)〉α ≥ 0 (4.8)

with strict inequality in all non-trivial cases (if S(ϕtx)−S(x) is really variable, not constant equal
to zero).

Observe that for microstates x,
〈S〉α(x) = S(x)

On the other hand, if we define F (α) = α′ from α′r ≡ 〈Ar ◦ϕt〉α, i.e., the macrostate after evolution
with ϕt, then

〈S ◦ ϕt〉α(x) = S(x′)

for every x′ with α(x′) = F (α(x)). As a conclusion, the inequality (4.8) is for the change in
entropies

S(x′)− S(x) ≥ 0

for all x′ that realize the macrostate that comes out from evolving the macrostate to which x
belongs. The word macrostate is here understood in the Gibbsian sense, i.e., in terms of the
probability distributions ρα introduced before. That implies that we have not succeeded yet in
deriving the microscopic picture and that the entropies in (4.8) remain equilibrium Gibbs entropies.

5 H-theorem

At the end of the previous paragraph, we got somehow an evolution from one macrostate to an-
other one, both equilibrium, almost by definition and not because the dynamics is like that. Not
surprisingly, we did not end up with the stronger Boltzmann formulation of the second law. Yet,
we can obtain more than the second law by requiring that the evolution of macroscopic variables
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is autonomous.

We think again about the microcanonical ensemble. In that case, ρ is the Liouville measure
on a constant energy surface Γ. We make a partition of Γ according to the possible values of
a collection of macroscopic variables Ar(x) as in (4.3). The M(x) of (4.2) is the phase volume
containing all the y ∈ Γ, Ar(y) = Ar(x). A macrostate α specifies one such phase volume, call it
Mα and Mα(x) = M(x). If wished we can proceed as in the previous section and speak about the
distribution ρα, now concentrated on one phase volume Mα and random within.

Suppose that at a certain moment, along the trajectory, x is our microstate with corresponding
macrostate α = α(x). If we now apply the dynamics ϕt, a priori ϕt(x) can fall in various different
macrostates even when we know, as we do, that x ∈ Mα initially. In other words, we get a non-
trivial statistics on at least some macroscopic values and it seems we fall back in the framework of
section 4.4, the canonical Gibbs formalism. One can proceed along these lines but let me however
deviate here and instead make an additional assumption. I assume that the macroscopic partition
is so well chosen for the dynamics ϕt that (at least approximately for systems composed of many
particles) in fact the dynamics is autonomous on the macroscopic variables. That means that from
knowing the macrostate α at some (arbitrary) time, we also know the macrostate at a later time:
almost all y ∈ Mα satisfy ϕt(y) ∈ Mα′ for the same macrostate α′. Then, clearly, the image of
macrostate α under ϕt is concentrated within the phase volume Mα′ , ϕt(Mα) ⊂ Mα′ or better
|ϕt(Mα)| ≤ |Mα′ |. As a consequence, by Liouville’s theorem

|Mα| = |ϕt(Mα)| ≤ |Mα′ |

and thus, the entropy (4.2) is typically non-decreasing. We have now obtained something even
stronger than the second law, along a microscopic trajectory S(ϕt(x)) ≥ S(ϕsx), t ≥ s from a
typical initial microstate, i.e., one that realizes macrostates according to the autonomous equation.

Observe that the previous argument, first given in [33] and recently described in [25, 26] cap-
tures very well the intuitive meaning of a constant increase in entropy but it delegates the problem
to establishing an autonomous equation for the macrovariables. That macroscopic reproducibility
is well-documented in experience but few are the examples where we can actually achieve it starting
from microscopic models. The most famous one is the Boltzmann equation where the H−theorem
was first proven for dilute gases. In contrast to what is often claimed, one does not need an extra
assumption of randomization or Stoßzahlansatz, see [40]. In general, it remains to be seen what
are the essential conditions on the dynamics that produce an H−theorem. Certainly, the chaotic
nature of the microscopic dynamics can help, as adding stochasticity helps to prove it. Yet that
may not be necessary.
A formulation of what an H−theorem means in a quantum context is at the end of the next section.

6 Quantum entropies

The logic and usefulness of the ideas above are not at all restricted to classical statistical mechan-
ics. In quantum mechanics, one can go quite a bit in the same direction. Literally a bit, because
in some sense the quantum situation is more discrete (quantized) and therefore seems more a-
menable to counting. Yet there are problems. One has to do with the nature of the microstates
for a quantum system, the phase space. We have to make sure that we know what exactly there is
to count and what we mean by a quantum history. Secondly, there is the problem of macroscop-
ic measurements. One can always say that macroscopic variables are classical variables because
they commute and we can measure them simultaneously. Yet, before taking the thermodynamic
limit, they do not commute. Thirdly, there is no well-established theory of large deviations. The
basic relation between entropy and fluctuations of macroscopic quantities, even in equilibrium, has
not been satisfactorily settled. I will not discuss these problems here, only mention them again in
context, and I restrict myself to giving some definitions which appear to be no longer very standard.
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One would like to say that quantum entropy is the logarithm of the dimension of the subspace
in the Hilbert space H of the system, that corresponds to the manifest condition. I suppose that
H is finite dimensional (but very large). Given a microstate ψ ∈ H one then follows von Neumann
[57] in writing

S(ψ) ≡
∑
α

(ψ, Pαψ) log dα −
∑
α

(ψ, Pαψ) log(ψ, Pαψ) (6.1)

corresponding to the decomposition
H =

⊕
Hα (6.2)

into linear subspaces. The manifest condition (or macrostate) is represented by the projections Pα

on Hα, PαPβ = δα,βPα,
∑

α Pα = id. We write dα for the dimension of Hα; it is the analogue of
the phase space volume in the classical case.
A problem here is that if we have more than one macroscopic observable, say the magnetization
in the z− and in the x−direction for a collection of spin 1/2-particles, in general not commuting
before the thermodynamic limit is taken, then they do not have a joint eigenspace decomposition
and we are in the dark as to what to write for Pα.

The sum in (6.1) reflects that the wavefunction can still correspond to different (mutually ex-
clusive) macrostates (here labeled by the running index α). That feels like the description starting
from the wavefunction as microstate is not complete. That discussion would take me way too far.
Part of the problem is what we mean by statistical ensembles. As an example, the identification of
probabilities on wavefunctions and density matrices does not seem one-to-one.

One can move definition (6.1) to the level of density matrices and call

S(ρ) ≡
∑
α

Tr[Pα ρ] log dα −
∑
α

Tr[Pα ρ] log Tr[Pα ρ] (6.3)

the entropy of the state represented by ρ. Note that (6.3) (just like (6.1)) only depends on ρ through
its projection p(ρ) (a probability measure) on the macroscopic states:

p(ρ)(α) ≡ Tr[Pα ρ] (6.4)

Underlying is the variational principle

S(ρ) = sup
p(ρ′)=p(ρ)

− Tr[ρ′ log ρ′] (6.5)

with the supremum reached at

ρ′ =
∑
α

p(ρ)(α)
dα

Pα (6.6)

The above mimics rather well the situation in classical statistical mechanics and the relation
there between Boltzmann and Gibbs entropies and how (constrained) equilibrium is characterized
by a variational principle. So we can move beyond (6.5) and construct the quantum equilibrium
entropy just as one does in the Gibbs formalism, see section 4.4. The constraints are then in the
form of specifying expectations like Tr[ρ′Ar], for a class of macroscopic observables Ar, and we
obtain the quantum equilibrium states, generalizing (6.6) to the standard Gibbs form. The problem
is however that we do not have the fluctuation formula (4.6) so important for (4.1). In fact, I even
believe it is not true in general. For example, suppose we have a collection of N spin 1/2-particles
with a local Hamiltonian H at inverse temperature β. The equilibrium reference state has thus a
density matrix exp[−βH]/Z. Suppose now the additional constraint that

Tr[Mz] = αz

where Mz =
∑N

i=1 σ
z
i /N is the magnetization in the z−direction. The constrained state has density

exp[−βH − λNMz]/Zλ for suitable Lagrange multiplier λ = λ(αz). Its free energy is

1
N

log Tr[e−βH−λNMz ] (6.7)
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On the other hand, the probability in equilibrium that the magnetization is about αz is

1
Z

Tr[e−βH Pαz
] (6.8)

where Pαz
is the projection on the space Hαz

with eigenvalues of Mz around αz. Now, in contrast
with (4.6), the logarithm of (6.8) will not be given by the Legendre transform of the free energy
(6.7) but rather by Legendre transforming

1
N

log Tr[e−βH e−λNMz ] (6.9)

and these might give different results even in the limit N ↑ +∞ when the commutator [H,Mz] is
of order one.

Let me finally present the logic of any H−theorem that also works in a quantum set-up, [10].
To a density matrix ρ, we associate a macrostate α = α(ρ) that collects the values of expectations
under ρ for a selection of macroscopic observables. To a macrostate α is associated a constrained
equilibrium state ρα which maximizes

−Tr [ρ′ log ρ′], α(ρ′) = α

The maximum is the entropy S(α) = -Tr[ρα log ρα] of α. I write S(ρ) = S(α(ρ)) for the entropy
corresponding to the state represented by ρ.
Now dynamics comes; let ρ(s) denote the density matrix at time s under a unitary evolution
starting from ρ. We have, by Liouville-von Neumann,

S(ρ(s)) = S(α(ρ(s))) = S(ρα(ρ(s))) (6.10)
= S(ρα(ρ(s))(t− s))

The macroscopic autonomy-assumption of Section 5 is written as follows:

if α(ρ(s)) = α(ρ′(s)), then α(ρ(t)) = α(ρ′(t)), t ≥ s

In (6.10), under that autonomy-assumption,

α(ρα(ρ(s))(t− s)) = α(ρ(t))

and hence, by the variational characterization of the entropy

S(ρα(ρ(s))(t− s)) ≤ S(ρ(t))

That gives the quantum H−theorem

S(ρ(s)) ≤ S(ρ(t)), s ≤ t

when combined with (6.10). As for classical dynamics, the main problem remains to understand
when the autonomy is established.

In the rest of the paper, I will not come back to quantum aspects. It does not mean that there
are no quantum versions of what follows. The relation between time-reversal and quantum entropy
is discussed in [5]. The simplest example of relaxation to equilibrium for a unitary evolution on
quantum spins, with an associatedH−theorem can be found in [11]. An extension to some quantum
versions of a fluctuation relation that connects irreversible work with free energy or to so called
transient fluctuation theorems is in [38, 9, 70, 54, 55, 69, 74].

7 Time-reversal and entropy

In the present section, I give a general argument for believing in the main observation under (2.1).
It is a compact upgrade of what was written in [46] in collaboration with K. Netočný. Those that
are happy with examples are referred to Section 2.1 and to [48] for even more examples.
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7.1 Mathematical set-up

I start with formalities that generate a quite broad class of possible scenarios. Illustrations come
in the next subsection.
As we have seen before in Sections 4.3–4.4, it is not necessary for the second law that the microscopic
dynamics be time-reversal invariant. From now on however, I will only consider the case that the
microscopic dynamics is reversible; an extension to microscopically irreversible dynamics is in [45].

Let Γ be the phase space. There are dynamics on Γ, invertible transformations ft, possibly
depending on t, and I write

ϕt = ft ◦ ft−1 ◦ . . . f1, t = 1, . . . , τ

for the time-inhomogeneous updating after τ steps. If we reverse the order (for fixed τ), we get the
reversed dynamics

ϕ̃t = fτ−t+1 ◦ . . . ◦ fτ−1 ◦ fτ

I skip the continuous time version.
The phase space Γ supports a measure ρ that is left invariant by ϕτ : ρ(ϕ−1

τ B) = ρ(B). Γ is further
equipped with an involution π that also leaves ρ invariant. I assume dynamical reversibility in the
sense that for all t,

ft ◦ π = π ◦ f−1
t

As a consequence, πϕ̃t
−1π = fτ ◦ . . . fτ−t+1.

The statistical physics begins from considering a collection A = {Ar} of functions Ar : Γ → R
indexed via subscript r. It divides Γ in volumes Mα containing all x ∈ Γ with Ar(x) = αr,
plus/minus some tolerance that I ignore here. The label α runs the contracted description.
A statistics µ on A, µ : A → R assigns a real number to every function Ar.
It is also understood that the collection A is globally invariant under π so that we can define
π(Ar(x)) = Ar(πx) = Aπr(x) and πα. The time-reversal of a statistics µ is written µ̃ with
µ̃(Ar) = µ(πAr).

To a statistics µ I associate a probability measure on Γ. That is done via a variational principle
(which I assume is well-posed).
The entropy of a statistics µ is the supremum

S(µ) = sup−
∫

Γ

g(x) log g(x) ρ(dx) (7.1)

over all probability densities g ≥ 0 with∫
g(x)Ar(x) ρ(dx) = µ(Ar),

∫
g(x) ρ(dx) = 1

That entropy governs the fluctuations of ρ.
I denote by gµ the density that reaches the supremum in (7.1) and ρµ is the probability measure
on Γ with density gµ with respect to ρ. The variable and µ-dependent entropy of x is

Sµ(x) = − log gµ(x) (7.2)

The probability ρµ evolves under the dynamics and gives rise to a new statistics

µτ (Ar) =
∫
Ar(ϕτ (x)) gµ(x) ρ(dx)

at later time τ .

Consider now a trajectory ω = (α(0), α(1), . . . , α(τ)) collecting all x ∈ Γ for which Ar(x) =
αr(0), . . . , Ar(ϕτ (x)) = αr(τ) for all r. Its time-reversal is Θω = (πα(τ), πα(τ−1), . . . , πα(0)). The
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probability to see ω under the dynamics ϕt started from ρµ is denoted by Pµ(ω). The probability
to see Θω under the reversed dynamics ϕ̃t started from ρµ̃τ

is denoted by P̃µ̃τ
(Θω). Observe that

it is natural to run the reversed dynamics because if for some x ∈ Γ, y0 = x, . . . , yn = ϕτx, then
(πyτ , πyτ−1, . . . , πy0) is an orbit for the reversed dynamics.

Now comes the major claim that constitutes a part of the first observation in Section 2. Take
x ∈M0, i.e., with the Ar(x) = αr(0) and suppose that ϕτ (x) ∈Mτ , i.e., with the Ar(ϕτx) = αr(τ).
Then,

Sµτ (ϕτx)− Sµ(x) = log
Pµ(ω)

P̃µ̃τ
(Θω)

(7.3)

It is only a part of the first claim in 2 because (7.3) really talks about a transient behavior and
not a steady state situation of a driven system maintained in a nonequilibrium state. Nevertheless,
(7.3) is the mother of all further relations, see below in Section 7.3, but let us first see why (7.3)
is true. Observe that

Pµ(ω) = e−Sµ(x) ρ[∩τ
t=0ϕ

−1
t Mt]

while
P̃µ̃τ

(Θω) = e−Sµτ (ϕτ x) ρ[∩τ
t=0ϕ̃t

−1πMτ−t]

But the last factor can be rewritten by using that ρ(B) = ρ(ϕ−1
τ πB),

ρ[∩τ
t=0ϕ̃t

−1πMτ−t] = ρ[∩τ
t=0ϕ

−1
τ πϕ̃t

−1πMτ−t]

Finally use that ϕ−1
τ πϕ̃t

−1π = ϕ−1
τ−t to conclude (7.3).

7.2 Illustrations

A simple illustration of the above notation is to take for Γ the phase space of constant energy for N
particles in a volume V . The dynamics f1 = . . . = fτ , ϕτ = fτ is a discretization of a conservative
Hamiltonian dynamics with ρ the projection of the Liouville measure on Γ : ρ(B) = |B|. One can
imagine a finite partition of Γ corresponding to values of some set of macroscopic variables and each
phase volume Mα collects the microstates that show the same manifest condition or macrostate α.
A statistics µ gives an initial probability measure on the macrostates, µ(α) and the constrained
equilibrium ρµ, that solves the variational principle (7.1) is

ρµ(B) =
∑
α

µ(α)
ρ(B ∩Mα)

|Mα|

Its density with respect to ρ is thus gµ(x) = µ(α)/|Mα| when x ∈ Mα. The entropy (7.2) then
equals Sµ(x) = log |Mα(x)| − logµ(α(x)). Its expectation under ρµ is

〈Sµ〉µ =
∑
α

µ(α) log |Mα| − µ(α) logµ(α)

If µ is concentrated on just one macrostate α, then 〈Sµ〉µ = log |Mα| which corresponds to the
Boltzmann entropy if that macrostate is selected from a microstate x as αr = Ar(x).

A second illustration is obtained if we write ρµ in the Gibbs form. Say,

gµ(x) =
1
Z
e−

∑
r λrAr(x)

which solves the variational principle (7.1) for a suitable choice of λr made from the µ(Ar). The
entropy S(µ) is the usual equilibrium Gibbs entropy in the ensemble determined by the Ar. The
variable entropy Sµ(x) has ρµ−expectation exactly equal to S(µ). That is generally true; taking
expectations of (7.3) under ρµ gives the change of the Gibbs entropy in terms of the expected
breaking of time-reversal symmetry.
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7.3 Open and driven

Just like in equilibrium statistical mechanics, it is useful to consider reservoirs that interact with
the system and to derive a thermodynamics in terms of quantities that depend solely on the sys-
tem’s state. In other words, we want to integrate out the degrees of freedom of reservoirs, heat or
particle baths, and introduce variables that describe what is going on in terms of the evolution
of the system. In nonequilibrium statistical mechanics, there are plenty of effective models that
describe just that. We have seen two examples of that, one a Markov diffusion process and the
other a Markov jump process in Section 2.1. It is however interesting to see whether the extensions
of (7.3) that were obtained there, have a more general validity. The goal is therefore to integrate
out the reservoirs from the right-hand side in (7.3) and to obtain an expression which is again of
the same form (as the right-hand side of (7.3)) but now in terms of probabilities for a history of the
system only. That question was discussed in [46, 45] and I give here a summary of the positive result.

I consider now a system in contact with k reservoirs. The microstate x is decomposed as
x = (xS , x1, . . . , xk) with xS representing the system variables and xv stands for the microstate of
the v−th reservoir. The macrostates α will now only be macroscopic in so far as the reservoirs are
concerned; the system remains described by xS . So we have macroscopic observables Av

r(xS , xv)
whose values are determined from knowing the state xS of the system and the state xv of the v−th
reservoir. An α is given if we know xS and also Av

r(xS , xv) for all r and v. In the course of time xS

and xv can change and hence the Av
r(xS , xv) are variable in time. That is how we get non-constant

trajectories ω.
Yet, the intensive variables that characterize each reservoir are kept steady. Otherwise, I would
not call them reservoirs. That is the steady approximation: the temperature, pressure or the elec-
tro/chemical potentials of each reservoir remain fixed and unchanged over the time. It does not
mean that there can be no time-dependent force acting on the system making the dynamics inho-
mogeneous as we had it before. For example, the Hamiltonian of the system can change while it is
in contact with a heat bath at fixed temperature, see Section 8.

A second specification, besides the fact that the intensive variables of the reservoir remain
fixed during the evolution, is that the reservoirs are spatially separated and locally coupled to
the system. What I want is that from knowing the trajectory γ = (η(0), η(1), . . . , η(τ)) of the
system, I know exactly what currents Jv

r (γ) have been flowing in what reservoir. So, to the change
η(t) → η(t+ 1) at time t corresponds a displacement Av

r(η(t+ 1), xv(t+ 1))−Av
r(η(t), xv(t)) that

can be calculated from the couple (η(t), η(t + 1)) alone. In physical realizations, that is obtained
from local conservation laws.

As a consequence of the previous hypothesis, trajectories ω as we had them before in (7.3) for
the total system, are of the form ω = ((η(0), U(η(0)), . . . , (η(τ), U(η(0)) + J(γ)) where U(η(0))
specifies the values Av

r(η(0), xv(0)) = Uv
r (η(0)) depending on η(0) and from then on, all the

Av
r(η(t), xv(t)), t ≥ 1 are completely determined by the trajectory γ = (η(0), η(1), . . . , η(τ)) of

the system only. In particular, we know

Av
r(η(τ), xv(τ)) = Uv

r (η(0)) + Jv
r (γ)

where Jv
r (γ) is the time-integrated flux of type r flowing into the v−th reservoir.

For the reference measure ρ I take the product dx = dxS dx1 . . . dxk over all momenta and
positions of the particles. The initial statistics µ determines the intensive variables of the reservoirs
and a probability distribution for the microstate xS of the system. Denote by h(xS) the probability
density of the system. That means that the initial density g0 = gµ can be written as

g0(x) = gµ(x) = h(xS)
k∏

v=1

e−
∑

r λv
rAv

r(η,xv)

Zv(η)
(7.4)

The h and the Lagrange multipliers λv
r sit in µ. gµ corresponds to an equilibrium state of the
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environment conditioned on the state of the system, as distributed via h.

The dynamics defines the statistics µ̃τ at time τ as we had it before. The only thing that
changes with respect to (7.4) for the new gµ̃τ

is that we now get a distribution hτ instead of h
for the system and, in general, new λv

r . As I have mentioned before however, we want to model
reservoirs with fixed intensive quantities. Therefore, introduce

gτ (x) = hτ (xS)
k∏

v=1

e−
∑

r λv
rAv

r(η,xv)

Zv(η)
(7.5)

where, compared with (7.4), I have changed the distribution of the system and left the λv
r un-

touched. It is that density (7.5) that I will use to start the reversed dynamics.

Let us first look at Pµ(ω) of (7.3). According to our set-up,

Pµ(ω) =
∫
dx g0(x)

τ∏
t=0

δ(xS(t)− η(t))
∏
r,v

δ(Av
r(xS , xv)− Uv

r (η(0)))

or

Pµ(ω) = h(η(0))
e−

∑
r,v λv

rUv
r (η(0))

Zv(η(0))
×∫

dx
τ∏

t=0

δ(xS(t)− η(t))
∏
r,v

δ(Av
r(xS , xv)− Uv

r (η(0)))

depends only on the trajectory γ = (η(0), η(1), . . . , η(τ)) of the system. In the same way, for Θω
under the reversed dynamics (indicated with a tilde),

P̃µ̃τ
(Θω) = hτ (η(τ))

e−
∑

r,v λv
r [Uv

r (η(0))+Jv
r (γ)]

Zv(η(τ))
×∫

dx
τ∏

t=0

δ(x̃S(t)− πη(τ − t))
∏
r,v

δ(Av
r(xS , xv)− Uv

r (η(0)− Jv
r (γ)))

By the same reasons that led us to (7.3), upon dividing, we get that the remaining integrals in
Pµ(ω) and P̃µ̃τ

(Θω) cancel each other to yield

log
Pµ(ω)
P̃µ̃τ

(Θω)
=

∑
v

log
h(η(0)Zv(η(n))
hτ (η(τ)Zv(η(0))

+
∑
r,v

λv
rJ

v
r (γ) (7.6)

The last term is the time-integrated dissipation into the reservoirs (the change of entropy in the
environment), which is a function of the trajectory γ of the system. Only that term can be exten-
sive in time, the other terms are temporal boundary terms. Of course, when the system does not
get frustrated by the presence of more reservoirs that tell it opposite things, that term becomes
also a total time-derivative. For example, suppose there is just one heat bath coupled to the system
and no work is done: conservation of energy requires J(γ) = H(η(0)) − H(η(τ)) where H is the
Hamiltonian of the system.
The term logZv(η(0))/Zv(η(τ)) is the difference in equilibrium free energy of the v-th reservoir for
boundary conditions η(τ) and η(0) as imposed by the system. These terms in (7.6) are not only
boundary terms in time but also in the boundary of the system. One can then expect that they
are typically vanishing under weak coupling assumptions, see also in Sections 8.1 and 8.2.

The identity (7.6) complements (7.3) and fulfills the first observation in Section 2. If we allow
the steady state condition hτ = h and we take the expectation of (7.6), we get the mean steady
state entropy production in the world. We can however now also study its fluctuations. That brings
us to the second main observation alluded at in Section 2.
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8 Jarzynski relation

Thermodynamic potentials are everywhere in applications of thermodynamics. They are tabulated
and predict what processes are workable, under what conditions. For example, for a system that
can extract heat from an environment at constant temperature T , the energy that is available to
do work is exactly the free energy F ≡ U −TS, that is its energy U minus the heat term TS where
S is the entropy of the system. Turning it around, it suffices to measure the work done under
isothermal conditions in changing the parameters of the system and it will be equal to the free
energy difference. That however is only valid if the thermodynamic process involved is sufficiently
slow, quasi-static, a scenario that cannot be hoped for in many cases. It was therefore very welcome
that an extended relation between free energy and work was proposed and exploited in a series of
papers since the pioneering work of Jarzynski in 1997, [28]. That identity reads

e−β∆F = 〈e−βW 〉 (8.1)

In the left-hand side ∆F is what we want to measure, the difference in free energies between two
equilibria, say with parameter values κτ and κ0 in the system Hamiltonian. That parameter could
for example correspond to a spring constant. The right-hand side is an average over all possible
paths that take the system in equilibrium for parameter value κi in its initial Hamiltonian to a
state where that parameter is changed into κf . The work done W depends on the path if the
process is not adiabatic (i.e., without heat transfer) or if it is not quasi-static. The protocol, i.e.,
the sequence of forcing in the time-dependent Hamiltonian, is always kept fixed.

Derivations of the Jarzynski relation (8.1) have been made in various ways and in various
approximations, see [8, 28, 29, 30, 31, 32, 48, 46]. From such a relation free energy differences
can be measured even in situations where the process of changing the parameters is not so well-
controlled. That has already been experimentally realized in e.g. molecular systems [27, 43, 65].
An important statistical problem there is to estimate how many runs one needs to estimate the
right-hand side in (8.1). After all, one would like to see trajectories for which the dissipated work is
negative. Assuming a Gaussian shape for the (so called second law breaking) tail of the distribution
of the dissipated work (as for example done in [65]) is practically useful but theoretically, remains
unmotivated.
I will not discuss the various applications and restrict myself to showing how relation (8.1) can
directly be obtained from (2.1) or from (7.6).

8.1 In Markov approximation

I start by giving the derivation in the context of a Markov jump dynamics. It is originally due to
Crooks, in [8], but can be directly transformed into an illustration of (2.1).

One imagines a time-dependent Hamiltonian Ht for a system in contact with a heat bath at
inverse temperature β. An effective dynamics can for example be obtained from a weak coupling
limit, where then the driving protocol has to vary on the same time scale as the dissipation
processes. At any rate, we start here from a discrete time-inhomogeneous Markov chain on a finite
state space with transition probabilities pt(η, η′) for η → η′. That governs the thermal transitions
in exchanging heat with the reservoir. There is detailed balance with respect to Ht: for any pair
of states η, η′,

pt(η, η′)
pt(η′, η)

= e−β[Ht(η
′)−Ht(η)] (8.2)

If we start the system in equilibrium for H0, the probability to see a trajectory
γ = (η(0), η(1), . . . , η(τ)) is

Pβ(γ) =
e−βH0(η(0))

Z0
p1(η(0), η(1)) . . . pτ (η(τ − 1), η(τ))

Expectations, needed for the right-hand side of (8.1), are denoted by 〈G〉β =
∑

γ G(γ)Pβ(γ). Ob-
viously, that process does not instruct us about the dynamics of changing the parameters in the
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Hamiltonian. One can think of an instantaneous change in which Ht is modified into Ht+1 after
every thermal transition.

The total change in energy is ∆U = Hτ (η(τ)−H0(η(0)) and the total heat that flows in the
heat bath in the thermal transitions (8.2) is

J(γ) = −
τ∑

t=1

[Ht(η(t))−Ht(η(t− 1)) ] (8.3)

The total work is therefore defined as

W (γ) = J(γ) + ∆U =
τ−1∑
t=0

[Ht+1(η(t))−Ht(η(t))] (8.4)

The claim is now that
〈e−βW 〉β = e−β∆F (8.5)

where ∆F = −1/β logZτ/Z0 is the difference in free energies corresponding to Hτ and H0 respec-
tively.

The simplest way to prove (8.5) is to use the relations (7.6) or (2.1) between entropy pro-
duction and time-reversal. The reversed dynamics just reverses the protocol and starts from the
equilibrium distribution for Hτ . So we let

P̃β(γ) =
e−βHτ (η(0))

Zτ
pτ (η(0), η(1)) . . . p1(η(τ − 1), η(τ)) (8.6)

and compute the promising

R(γ) = log
Pβ(γ)

P̃β(Θγ)
(8.7)

A simple computation that uses (8.2) gives

R(γ) = β[Hτ (η(τ))−H0(η(0))] + log
Zτ

Z0
− β

τ∑
t=1

[Ht(η(t))−Ht(η(t− 1))]

Hence, from the definitions (8.3)–(8.4), one arrives at

R = β∆U − β∆F + βJ = βW − β∆F (8.8)

Now comes the first time to profit from the form of R as in (2.1) or here in (8.7). The point is that
we have the normalization condition 〈exp(−R)〉β = 1 or, explicitly,

∑
γ

Pβ(γ)
P̃β(Θγ)
Pβ(γ)

= 1

Inspection learns however that upon substituting (8.8) for (8.7), that normalization is exactly
equivalent with (8.5) and we are done.

8.2 As application of Section 7.3

As I have illustrated in the previous lines, in our scheme, the Jarzynski relation follows essentially
from a normalization condition. Let us see what that means in a more general context.

The main point is to arrive at (8.8) for the source term of time-reversal breaking. But simply
look back at (7.6) and apply it for one heat bath:

R(γ) = log
h(η(0)Z(η(τ))
hτ (η(τ))Z(η(0))

+ βJ(γ) (8.9)
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We choose h(η) = exp[−βH0(η)]/Z0 and we choose hτ (η) = exp[−βHτ (η)]/Zτ (we are absolutely
free to do that) and by the very construction we have

〈e−R〉β = 1 (8.10)

Hence, when we suppose that Z(η(τ))/Z(η(0)) ' 1 (which is a weak coupling condition), then

〈e−β∆U+β∆F−βJ〉β = 1

and (8.1) follows from the first law, ∆U + J = W .

There are other and mathematically even simpler derivations of (8.1). In fact, we already
had it in (4.7). In the present section I wanted to relate it more closely to the relation between
time-reversal and entropy production. What really happens is in (2.1). First use the observation
that R is the total entropy production when the system starts and ends in equilibrium at the same
temperature but for a different Hamiltonian. Since that total entropy production is the change of
entropy in the system = β∆U − βF plus the entropy production in the environment = βJ , we get
R = βW−β∆F . Next use that R is the logarithm of a probability density over trajectory-space and
apply the normalization condition (8.10). Observe however that in the experimental realizations or
verifications of the Jarzynski relation βW −β∆F is not equal to the total entropy production since
one does not wait to equilibrate the system. Therefore, the observation that for some trajectories
γ, βW (γ)− β∆F < 0 does not imply transient violations of the second law.

9 Fluctuation relations

One of the ever returning themes in statistical mechanics is to find the right balance between
dynamical and statistical considerations. Since the start of kinetic gas theory, there was a fruitful
exchange of ideas between the theory of heat and the theory of dynamical systems. The thermody-
namic formalism has become a standard chapter for studies in dynamical systems and, ever since
Clausius, heat is understood as motion.

More recently, there has been a fruitful revival of connecting the two theories. In particular,
programs are running for understanding the effect of nonlinearities on transport coefficients and
for defining nonequilibrium ensembles in terms of Sinai-Ruelle-Bowen measures, [13, 21, 66]. A
decade ago, [14] found numerically a remarkable symmetry in the fluctuations of the phase space
contraction of a dynamical system. That phase space contraction played the role of entropy pro-
duction within the effective set-up. The context is that of simulation via molecular dynamics and
of thermostated dynamics, see [67]. Of course, even though they resemble Newtonian equations,
these models are not microscopic and it is not clear how to derive them in some effective regime.
They are mostly numerically interesting. There is also the inconvenience that different thermostats
may give rise to different rates of phase space contraction under the same macroscopic conditions
so that one needs very specific thermostats to get the phase space contraction coincide with the
physical entropy production, see e.g. [72]. Nevertheless, Gallavotti and Cohen went on to prove a
fluctuation symmetry for the steady distribution of the time-averages of the phase space contrac-
tion rate in some strongly chaotic dynamics and they hypothesized that this symmetry is much
more general and relevant also for the construction of nonequilibrium statistical mechanics and
the fluctuations of the entropy production in particular, [18]. That was confirmed by the results
in [37, 42] for physically inspired stochastic dynamics but, ideologically, it could add to the feeling
that intrinsic randomness, the stochastic or chaotic character of the dynamics, is essential for ob-
taining a universal fluctuation behavior around a strictly positive entropy production. Moreover,
the suggested identification of phase space contraction with entropy production, or in other con-
texts, between physical entropy and various dynamical entropies, seems to reduce the concept of
entropy and of the second law to a purely dynamical context. One is reminded of the words of
Maxwell where he criticizes Clausius and Boltzmann for trying at one moment to derive the second
law from dynamics, as if any pure dynamical statement would submit to such an indignity.
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In [44] it was emphasized that the fluctuation symmetry of Gallavotti-Cohen results from the
Gibbs formalism and that it is not so much the chaotic nature of the dynamics that should be held
responsible but rather the Gibbsian nature of the space-time distribution. That is most easy to see
in stochastic models where the method of [44] as applied in [48], not only simplifies the treatments
in [42, 37] but also extends the study to non-Markovian dynamics and to the much more physical
local fluctuation theorems, see [51].
Also for deterministic chaotic dynamics, the Gibbsian idea extends the results of [18] to the larg-
er class of expansive homeomorphisms with the specification property, where the technology of
Markov partitioning and symbolic dynamics are not available, see [52]. It was found that phase
space contraction obtains its formal analogy with the physical entropy production as source term
in the potential for time-reversal breaking, as already explained under example 2.1.3.

The subject of the present section is to show how the observation in Section 2, in particular
equations (2.1), and how its confirmations in (7.3) and (7.6) in a statistical mechanical context,
are related to and extend previously obtained fluctuation symmetries.

9.1 General idea

I explain here what a fluctuation symmetry is and how it formally arises in great generality.

Let ω be a variable distributed according to some probability measure P (dω). Have in mind
that ω is a trajectory for reduced variables and that P is the steady state distribution. Suppose
that R(ω) is a real function of ω that satisfies, formally,

Prob[R(ω) = Q]
Prob[R(ω) = −Q]

= eQ (9.1)

at least for a range of Q’s. The symmetry expressed by (9.1) is the so called fluctuation symmetry.
It is easy to find a distribution for which (9.1) holds exactly true. As an example take R a real
variable with distribution

P (dR) = p(R) dR = g(R) exp[−(R− 1)2/4] dR

where g(R) = g(−R) is symmetric. Then, the probability density p(R) satisfies

p(Q)
p(−Q)

= eQ

which means that (9.1) is satisfied for all Q. In particular, a proper rescaling of an arbitrary Gaus-
sian random variable satisfies (9.1). The opposite is of course not true: the fluctuation symmetry
does not at all imply that the (large) fluctuations of the entropy production are Gaussian.
There are various modifications of (9.1). Most interesting is to consider in (9.1) not one R but a
sequence Sτ indexed by τ and to require that

lim
τ↑+∞

1
τ

log
Prob[Sτ (ω) = τq]

Prob[Sτ (ω) = −τq]
= q (9.2)

Suppose for example that Sτ = R + bτ where bτ (ω)/τ goes to zero (uniformly) with τ and R
satisfies (9.1) exactly. Then, Sτ will satisfy (9.2).
One can also make versions where the probabilities are τ−dependent or where the probabilities
in the numerator and in the denominator of (9.1) and (9.2) are not quite the same. These have
obtained names in the literature as detailed or transient versus steady, global versus local fluctu-
ation symmetries. Let me however leave that zoology for a moment and discuss how fluctuation
symmetries might arise.

I start with the exact symmetry (9.1). Suppose indeed that

R(ω) = log
p(ω)
p(Θω)

(9.3)
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where P (dω) = p(ω)dω and where Θ is some involution, Θ2 = id. That is close to what we had
before, e.g. in (2.1) or in (7.3) and (7.6). Observe that R(Θω) = −R(ω). As a consequence∫

G(ω) dP (ω) =
∫
G(Θω)e−R(ω) dP (ω) (9.4)

for all functions G. In particular,∫
G(R(ω)) dP (ω) =

∫
G(−R(ω))e−R(ω) dP (ω) (9.5)

Since we can take here G to be the indicator function of the event that R(ω) = Q, we recover (9.1)
as a special case of (9.5). Here is another special case: take G(R) = exp[−zR] for some complex
number z, ∫

e−zR(ω) dP (ω) =
∫
e−(1−z)R(ω) dP (ω) (9.6)

expressing a symmetry in the generating function for the distribution of R. In fact, in the sense of
Legendre transforms, (9.1) is dual to (9.6).
Clearly, the asymptotic symmetries like in (9.2) can also be obtained from modifications of (9.3)
yielding an asymptotic version of e.g. (9.6).

The translation of the above formalities to the framework of the rest of the paper is easy.
The R has already appeared in Section 2 and it has reappeared in Section 7. The physical entropy
production Sτ over a time-span τ equals R, essentially, and hence, a fluctuation symmetry is
immediate. In conclusion, we see that once we have understood that the entropy production is
the time-reversal breaking part of the Lagrangian, then we understand that its fluctuations are
governed as in (9.5).

9.2 Examples of fluctuation symmetries

9.2.1 Steady state fluctuation theorem

The story began with the numerical work of [14] and was firmly brought into the context of dy-
namical systems by the fluctuation theorem of Gallavotti and Cohen, see [18, 66]. It asserts that
for a class of dynamical systems the fluctuations in time of the phase space contraction rate obey
a general law. That means the following:

One is asked to consider a reversible smooth dynamical system x 7→ ϕ(x), x ∈ Γ. The phase
space Γ is in some sense bounded carrying only a finite number of degrees of freedom (a compact
and connected manifold). The transformation ϕ is a diffeomorphism of Γ. Reversibility means
that there is a diffeomorphism π on Γ with π2 = 1 and πϕπ = ϕ−1. It is assumed that the
dynamical system satisfies some chaotic (uniformly hyperbolic) condition: it is a transitive Anosov
system. It ensures a Markov partition (and the representation via some symbolic dynamics) and the
existence of a natural stationary probability measure ρ, the so called Sinai-Ruelle-Bowen measure
of the dynamics, with expectations

ρ(G) = lim
τ

1
τ

τ∑
0

G(ϕtx) (9.7)

corresponding to time-averages for almost every randomly chosen initial point x ∈ Γ.
Consider now minus the logarithm of the Jacobian determinant D which arises from the change
of variables implied by the dynamics; write J = − logD, J(x) is the phase space contraction rate
and is suggested to play here the role of entropy production, see [1]. One assumes (and sometimes
proves) dissipativity: the expected contraction

ρ(J) > 0 (9.8)
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is strictly positive.
One is interested in the fluctuations of

wτ (x) =
1

ρ(J)τ

τ∑
0

J(ϕt(x)), (9.9)

for large time τ . The fluctuation theorem then states that wτ (x) has a distribution Pτ (w) with
respect to the stationary state ρ such that

lim
τ

1
τρ(J)w

log
Pτ (w)
Pτ (−w)

= 1 (9.10)

always. Less precise and more clear,

Prob[
∑τ

0 J(ϕtx) = qτ ]
Prob[

∑τ
0 J(ϕtx) = −qτ ]

= exp τq

for large τ . In other words, the distribution of entropy production (read: phase space contraction)
over long time intervals satisfies the symmetry (9.2).
I have already explained in Section 2.1.3 how that fluctuation symmetry can be explained from our
general perspective: the phase space contraction rate is the source-term for time-reversal breaking
in the action. Detailed proofs are to be found in [18, 66, 52] and [20] contains the continuous time
version.

Kurchan pointed out that this fluctuation theorem also holds for certain diffusion process,
finite systems undergoing Langevin dynamics, [37]. That was extended by Lebowitz and Spohn in
[42] to quite general finite Markov processes. The method based on (2.1) is however simpler and
more powerful. I have illustrated that already with example 2.1.2. There is a family of stationary
distributions ρu with u specifying the density. They are Bernoulli measures with density u. The
R can be easily calculated along the lines of (2.9). It is exactly equal to the physical entropy pro-
duction, the variable Joule heating, and we get an exact steady fluctuation symmetry (9.1). There
are many more illustrations of that scheme, see e.g. [48]. The first analytically hard steady state
fluctuation theorem was proven in a model of heat conduction by Rey-Bellet and Thomas, [63, 62]
whereas the physical heuristics follows exactly what was written under example 2.1.1.

The fluctuation theorem wants to speak about the fluctuations of the entropy production. To
make it observationally accessible, in particular for bulk driven systems, we better not consider
the global fluctuations as they will be damped exponentially in the size of the system. We are
therefore interested in spatially localized fluctuations. To explain, I give an example which is not
immediately related to a dynamics.
Consider the standard two-dimensional Ising model in a lattice square V with say periodic boundary
conditions. Its Hamiltonian is

HV (σ) = −
∑

|i−j|=1

σiσj − h
∑

i

σi

The last term (with bulk magnetic field h 6= 0) breaks the spin flip symmetry σ → −σ. We want to
find out whether the magnetization in some subsquare Λ which is much smaller than the volume
V satisfies a fluctuation symmetry. The object of study is thus

MΛ =
∑
i∈Λ

σi

with distribution obtained from the Gibbs measure PV ∼ exp[−βHV ]. The idea is that we first let
V be very very large and only afterwards consider growing Λ. Thus, we want to show a symmetry
q → −q in the behavior of

pΛ(q) = lim
V
PV [MΛ ' q|Λ|]
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as Λ gets larger.
Here is how to get it in complete analogy with the suggestions of Section 2 but with spin config-
urations replacing space-time trajectories, spin flip replacing time-reversal, the Ising Hamiltonian
replacing the space-time Lagrangian and two dimensions being thought of as 1 spatial and 1 tem-
poral dimension. Let ΘΛ apply a local spin flip: (ΘΛσ)i = −σi if i ∈ Λ and (ΘΛσ)i = σi otherwise.
It is immediate that

RΛ(σ) = log
PV (σ)

PV (ΘΛσ)
(9.11)

= βHV (ΘΛσ)− βHV (σ) = 2hβ
∑
i∈Λ

σi +O(|∂Λ|)

where the last term is of the order of the boundary of Λ. Observe that the volume V has disappeared.
As always, R satisfies an exact fluctuation symmetry (9.1), for every V , hence also in the limit:

〈e−zRΛ〉β,h = 〈e−(1−z)RΛ〉β,h

From here, we substitute (9.11), and see, by easy manipulations that also MΛ satisfies a fluctuation
symmetry up to corrections of order |∂Λ|/|Λ|:

lim
Λ

1
|Λ|

log
pΛ(q)
pΛ(−q)

= 2hβ q

(The prefactor 2hβ can of course be scaled away by a proper normalization of MΛ.) That is called
a local fluctuation theorem.
In a dynamical context it was obtained in [15, 19] for coupled chaotic maps and in [51] for reaction-
diffusion processes. Instead of considering the full spatial volume, one looks at a finite space-time
window which only afterwards is growing larger. The underlying idea remains the fact that on
space-time the distribution of trajectories is Gibbsian-like and we can apply exactly the same
ideology as above for the Ising model. Even though these local fluctuation relations are more
physical, we are still waiting for convincing experimental realizations, see however [6].

9.2.2 Transient fluctuation theorem

The transient case is exactly similar to the steady case except that the dynamics is started from
a distribution that changes with time. Within the set-up of dynamical systems, that can make
a great difference. Singularities in the stationary measure present extra mathematical difficulties
that are not present in the transient case, see e.g. [7]. For statistical mechanical purposes, it makes
no great difference. The idea remains the same, is easier to prove but rests again on the formula
(2.1). In a way, a transient fluctuation theorem is an extension of the Jarzynski relation. Just look
at (9.6) for z = 1 and take R not starting from the steady state but from a transient state: one
sees the relation (8.10). Instead of spelling out the mathematical details, let me instead turn to a
recent experiment.

9.2.3 Experimental verification

An experimental test and to some extent, verification of a transient fluctuation symmetry is con-
tained in [73]. The authors consider a colloidal particle captured in an optical trap that is translated
relative to the surrounding water. The particle is micron-sized, the force is of order of pico-Newton
and about 500 particle trajectories were recorded for times up to 2 seconds after initiation. The
particle Hamiltonian is time-dependent

Ht(p, q) =
p2

2m
+
κ

2
(q − a(t))2 (9.12)

with a(t) the time-dependent position of the trap, approximated as the position of the minimum in
a harmonic potential with spring constant κ. The force exerted on the particle is Ft(q) = −κ(q−at).
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The motion of a(t) is rectilinear. The total work W done on the system over a time τ is

W (γ) =
∫ τ

0

dt ȧt Ft(q(t)) (9.13)

depending on the trajectory γ = (q(t)) of the particle and the protocol (at). It is useful to check
that (9.13) satisfies the decomposition in (8.4), here in continuous time,

W (γ) = κ
(aτ − q(τ))2 − (a0 − q(0))2

2
− κ

∫ τ

0

dt v(t) (q(t)− at) (9.14)

with v(t) = q̇(t). The total work need of course not equal the entropy production. As can be seen
in (8.8) or as I have written already under Section 8.2, the entropy produced in the world is (β
times) the total work minus the mechanical work.

Let us see what fluctuation symmetry we can expect from our main observation (2.1), or more
specifically for our purpose here, from (8.7):

R(γ) = log
Pβ(γ)

P̃β(Θγ)
(9.15)

where Pβ gives the probability of the trajectory γ over a time τ , when starting from the particle
in equilibrium with H0 and for the protocol (at); P̃β gives the probabilities when starting from
the particle in equilibrium with Hτ and for the reversed protocol (aτ−t); Θ reverses the particle-
trajectory. For the reversed protocol I write

R̃(γ) = log
P̃β(γ)
Pβ(Θγ)

so that
R(Θγ) = −R̃

I repeat the standard computation in much detail: for a function G of R(γ),

〈G(R)〉β =
∑

γ

G(R(γ))
Pβ(γ)

P̃β(Θγ)
P̃β(Θγ)

=
∑

γ

G(R(γ)) eR(γ) P̃β(Θγ)

=
∑

γ

G(R(Θγ)) eR(Θγ) P̃β(γ)

=
∑

γ

G(−R̃(γ)) e−R̃(γ) P̃β(γ) (9.16)

Taking in (9.16) the function G(R) as 1 or 0 depending on whether R = Q or R 6= Q, we get

Pβ [R = Q]

P̃β [R̃ = −Q]
= eQ

Obviously, the R̃ for the reversed protocol has under P̃β the same distribution as has our original
R under Pβ :

P̃β [R̃ = −Q] = Pβ [R = −Q]

and hence,
Pβ [R = Q]
Pβ [R = −Q]

= eQ (9.17)
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Observe that that is an exact fluctuation symmetry valid for all times τ no matter how small.
On the other hand, we know that R = β(W − ∆F ), see e.g. (8.8). For the time-dependence in
the Hamiltonian (9.12), the difference in Helmholtz free energies ∆F = 0 and therefore R =
β(W −∆F ) = βW . We conclude

Pβ [βW = Q]
Pβ [βW = −Q]

= eQ (9.18)

again, valid for all times τ , which is what Wang et al have verified experimentally in [73].
The problem remains that R of (9.15) or, what is the same, βW of (9.13) are not exactly equal
to the physical entropy production. It would be that when τ is so large that after starting the
particle in equilibrium for H0, the particle gets in equilibrium with Hτ , after pulling it through the
medium with the optical trap. Then indeed, the entropy production is β(W −∆F ) = βW . That
would however require a relaxation of the particle in the trap after it has stopped moving and that
takes time.
The real entropy production over a trajectory γ is given by the second term in (9.14). Indeed,
as nearly always, it differs from R and hence, here, from βW by a temporal boundary term. It
remains true therefore that the (true) entropy production, the dissipated work

S(γ) = −βκ
∫ τ

0

dt v(t) (q(t)− at)

satisfies a fluctuation symmetry but only its asymptotic version (9.2). The fluctuation symmetry of
S(γ) is therefore only valid for large enough τ but, here as in other cases, remains unobservable since
the fluctuation symmetry is exactly implying that the occurrence of negative entropy production
over time τ is exponentially damped in τ ! Quite to the contrary of what Wang et al claim, they
do not observe second law violations through the fluctuation symmetry; for small times τ there
is no fluctuation symmetry for the entropy production and for large times τ , it is precisely the
fluctuation symmetry that tells us how unlikely (and unobservable) are second law violations.

9.2.4 Integrated fluctuation symmetries

For completeness I introduce here yet some other forms of the basic fluctuation symmetry (9.1) or
of its asymptotic forms. Most interesting is perhaps to see how conditioning on a negative entropy
production makes the time run backward. I start from the exact expression (9.4) to make it simpler
and take G(ω) = F (ω)δ(R(ω)−Q):∫

R=Q

F (ω) dP (ω) = eQ

∫
R=−Q

F (Θω) dP (ω) (9.19)

Divide that by the exact fluctuation symmetry for F = 1 to get conditional expectations:

〈F |R = Q〉 = 〈F ◦Θ|R = −Q〉

Conditioning on the opposite entropy production is cancelled by applying the time-reversal Θ.
We can also start from (9.5): take G(R) = F (R) if R > 0 and G = 0 otherwise:∫

R>0

F (R(ω)) dP (ω) =
∫

R<0

F (−R(ω))e−R(ω) dP (ω)

Combining the choice F (R) = 1 with the choice F (R) = exp−R leads directly to the integrated
fluctuation symmetry

Prob[R < 0]
Prob[R > 0]

= 〈e−R|R > 0〉

which is sometimes easier to examine. Of course, the asymptotic fluctuation symmetries (only valid
in some limit τ ↑ +∞, as in (9.2)) have similar integrated versions.
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Less known but useful are a number of inequalities for R and hence (be it in asymptotic form)
for the entropy production. We can divide (9.4) by 〈G〉 for some G > 0 and obtain, via the Jensen
inequality,

〈RG〉 ≥ 〈G〉 log
〈G〉

〈G ◦Θ〉
which shows that 〈Rn〉 ≥ 0 for all powers n. In the same direction, since 〈exp−R〉 = 1, by applying
a Chebyshev inequality,

〈R〉 ≥ (e−δ − 1 + δ)Prob[|R| ≥ δ]

for all δ ≥ 0. If we take here δ = qτ > 0 with τ ↑ +∞, we get

lim
τ

Prob[|R|/τ ≥ q] ≤ 1
q

lim
τ
〈R
τ
〉

where the right-hand side gives the mean entropy production rate.
The above two inequalities imply that breaking of the detailed balance condition (of time-reversal
invariance) implies a strictly positive entropy production. In most physically relevant cases that
will imply that currents will flow in the direction as expected from the second law of thermodynam-
ics. The opposite statement, whether one can have a maintained current even when time-reversal
invariance is not broken, is referred to as spontaneous breaking of time-reversal invariance. An
example of that is heat conduction in harmonic chains where the heat current does not vanish
when taking the thermodynamic limit (no Fourier law), see [64, 56]. Such superconductors are in
general excluded in classical particle systems with realistic interactions, see e.g. [49, 50], but in
quantum mechanics, where the quantum statistics introduces a global and hence nonlocal effec-
tive interaction, they make some of the most interesting phenomena in nonequilibrium statistical
mechanics.

10 Response relations

The relations (9.4) are a form of Ward identities (but for a discrete symmetry) since they generate
correlation function identities by differentiation with respect to z and with respect to parame-
ters present in the distribution P (dω). In that sense, (9.1) or its dual (9.5) are speaking about
fluctuation-dissipation relations.

10.1 In linear order

Let us take again (9.4) for an antisymmetric G,G(Θω) = −G(ω). An important example is G(ω) =
Jr(ω) a current of type r. By its antisymmetry under time-reversal∫

G(ω) dP (ω) =
1
2

∫
G(ω)(1− e−R(ω)) dP (ω) (10.1)

The integral over dP can be realized as a steady state expectation in a nonequilibrium state driven
by thermodynamic fields E = (Er). Equilibrium corresponds to E = 0 = R. Close to equilibrium,
when the Er are very small, R is also small and we can expand to first order in the Er:

∂

∂Er′
[
∫
G(ω) dP (ω)]E=0 =

1
2

∫
G(ω)[

∂R(ω)
∂Er′

]E=0 dPE=0(ω) (10.2)

That is a generalized Green-Kubo relation. If we have

R =
∑
r′

Er′Jr′

and take G = Jr, then (10.2) becomes

∂

∂Er′
[
∫
Jr(ω) dP (ω)]E=0 =

1
2

∫
Jr(ω)Jr′(ω) dPE=0(ω) (10.3)
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giving the usual expression for the linear transport coefficients with the Onsager reciprocity.
That structure is not rigorously valid for R equal to the entropy production because of the tempo-
ral boundary terms but asymptotic forms are obtained when dividing by τ and letting τ ↑ +∞. I
refer to [44] for a rigorous version of the argument in a context where everything is under control.
Whether the linear response theory of irreversible thermodynamics can be rigorously derived from
statistical mechanical models along the general formalism above is a technical question. The heuris-
tics is clear and Green-Kubo relations follow from expanding to first order the fluctuation symmetry,
see also in [16, 17, 42]. The question whether the space-time correlation functions present in the
linear transport coefficients (10.3) are really integrable and under what conditions is an impor-
tant physical question (about equilibrium dynamics) but the fluctuation symmetry is silent about
that. Before worrying about rigorously deriving linear response theory, let us see what message the
fluctuation symmetry perhaps holds for higher order response.

10.2 Second order

For that we look again at (9.4) but now we need it for a symmetric G,G(Θω) = G(ω), in particu-
lar for G(ω) = Jr(ω)Jr′(ω). Inspection of the resulting formula is disappointing: we cannot move
beyond linear order. The fluctuation symmetry for the entropy production in all its versions is just
a way of rewriting the basic observation (2.1) and it tells us nothing about the symmetric part
under time-reversal of the Lagrangian L. That part also is possibly non-trivially modified by the
nonequilibrium driving. Let us take the example of heat conduction, see Section 2.1.1.

Consider the reversible reference process Pκ
β corresponding to the dynamics

dqi = pi dt, i ∈ V (10.4)

dpi = −∂U
∂qi

(q)dt, i ∈ V \ ∂V

dpi = −∂U
∂qi

(q)dt− γκipidt+
√

2γ
βi
dWi(t), i ∈ ∂V

Taking κiβi = β, ∀i ∈ ∂V , makes the process (10.4) reversible, as may be easily checked. As a
consequence, for that choice, Pκ

β = Pκ
β Θ where (Θω)t = πωτ−t with ω = ((pt, qt), t ∈ [0, τ ]) a

trajectory and π reverses the sign of the momenta. The stationary density is the Gibbs measure
ρβ ∼ exp−βH with respect to (2.4).
Let Pρ denote the steady state path-space measure obtained from the dynamics (2.6), with sta-
tionary measure ρ. We compute the density of the process Pρ with respect to Pκ

β . This makes (2.2)
more precise. Writing the Radon-Nikodym derivative in the form

dPρ(ω) = e−Aρ(ω) dPκ
β (ω)

the action functional Aρ is simply found by application of a Girsanov formula, see [47]:

−Aρ(ω) =
∑

i∈∂V

1
2
[
∫ τ

0

(β − βi)pi(t)dpi(t)

+
∫ τ

0

(β − βi)
∂U

∂qi
(q(t))pi(t)dt

+
∫ τ

0

γ(βκi − βi)p2
i (t)dt]

+ log ρ(ω0)− log ρβ(ω0)

The source of time-reversal breaking is Rρ(ω) = Aρπ(Θω)− Aρ(ω) and equals (2.7) (with here in
the steady state, ρ0 = ρτ = ρ). That is the entropy production. The symmetric part is Yρ(ω) =
Aρπ(Θω) +Aρ(ω), here equal to

Yρ(ω) = log
ρβ(ωτ ) ρβ(ω0)
ρ(ωτ ) ρ(ω0)

− γβ
∑

i∈∂V

εi(εi + 2)
εi + 1

∫ τ

0

p2
i (t)dt
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where I have written β/βi = κi = 1 + εi. We conclude that there is a term, extensive in time,
which also depends on the different driving εi 6= 0. That will need to be taken into account when
computing higher order response functions.
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