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Abstract. For a wide class of problems in continuum mechanics like those involving phase
transitions or finite elastoplasticity, the governing potentials tend to be not quasiconvex.
This leads to the occurrence of microstructures of in principle arbitrarily small scale, which
cannot be resolved by standard discretization schemes. Their effective macroscopic proper-
ties, however, can efficiently be recovered with relaxation theory.

The paper introduces the variational framework necessary for the implementation of re-
laxation algorithms with emphasis on problems with internal variables in a time-incremental
setting. The methods developed are based on numerical approximations to notions of gen-
eralized convexification. The focus is on the thorough analysis of numerical algorithms and
their efficiency in applications to benchmark problems. An outlook to time-evolution of
microstructures within the framework of relaxation theory concludes the paper.

1. Introduction and Overview

The variational model of finite elasticity involves concepts such as material objectivity
and invertibility which contradicts convexity of the energy density. Rubber-like materials,
for instance, lead to polyconvex energy densities that are known to allow classical solutions
in Sobolev spaces due to the work of J.M. Ball [B1]. The direct method of the calculation of
variations is in fact based on growth, coercivity, and a generalized convexity condition. This
latter quasiconvexity due to C.B. Morrey [Mo] is essentially equivalent to the weak lower
semicontinuity of the energy functional. It is a nonlocal notion and extremely difficult to an-
alyze in theory and computation. Therefore, the modern mathematical theory of generalized
convexity deals with other, easier notions depicted in the following diagram:

(1.1) convexity ⇒ polyconvexity ⇒ quasiconvexity ⇒ rank-1-convexity.

To illustrate the degree of difficulty, we mention that all the aforementioned inclusions are
strict and counterexamples are known in general. The fact that rank-1-convexity is not
equivalent to quasiconvexity was found after decades in [Sv] and is still left as an open
question in 2D! This work is forced to address the aforementioned convexity notions in
order to approximate a quasiconvex function numerically within an inner loop over all finite
elements for a macroscopic simulation.

Indeed, it appears that time-evolving nonlinear material in finite geometry and a natural
time-discretization contradicts the quasiconvexity of the effective energy density [CHM]. This
yields to nonexistence of solutions in terms of Sobolev functions. Within each time-step, a
minimization problem arises in which infimizing sequences (i.e. sequences of deformations
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which lower the energy but do not approach a minimum in the strong sense) exist but develop
enforced higher and higher oscillations on finer and finer length-scales. The weak (but not
strong) limit of such infimizing sequences is not a classical solution and does not minimize
the given energy at all.

This paper advertises the use of stabilization, i.e., the introduction of a strictly convex term
scaled with a small parameter, for the effective solution of the nonlinear highly-dimensional
systems of discrete equations for a strong convergence of the macroscopic strains. This is
of particular interest in finite elastoplastic problems where internal variables and their time
evolution require a pointwise update via nonlinear update formulae such as those needed to
model hysteresis [CP3].

The evaluation of W qc(Dy(x)) is considered via

(A) Mathematical Analysis (provides explicit analytical formulae for W qc)
(B) Numerical Polyconvexification
(C) Finite-Order Lamination

For each of those approaches, the numerical treatment is investigated with respect to a
proper discretization and an effective solution of the discrete problem. Benchmark examples
illustrate computational progress in and difficulties with (A), (B), and (C).

Sections 2 to 5 are concerned with approach (A) as stated above. Section 2 concerns a
scalar 2-well problem and a benchmark example with analytically known generalized solution
[CJ] and adaptive algorithms. A potential with a vectorial 2-well structure,which can be
related to the modeling of phase–transitions, follows in Section 3. The numerical solution
of the two convexified problems leads to a high-dimensional discrete system of equations.
Section 4 is devoted to the analysis of a damped quasi-Newton-Raphson solver and states
sufficient conditions for global convergence.

As an example the results of a numerical simulation of a model for phase-transitions in a
single-crystal are discussed in Section 5. Here the approach (A) is applicable due to explicit
formulae from [K].

Section 6 introduces the general framework associated with approaches (B) and (C) cited
above. For this purpose we discuss other notions of convexifications related but different
from W qc, which turn out to be more suitable for the application of numerical procedures.
Algorithmic issues are discussed and geometrical and mechanical interpretations of the con-
cepts are explained. In Section 7 an application of approach (B) to a two-dimensional
Ericksen-James potential is given.

Starting with Section 8 the paper is devoted to inelastic problems related to history-
dependent time-evolving material behavior. In the context of inelasticity, relaxation methods
have recently been studied in [LMD, ML, OR, AFO, HH]. In this paper, internal variables
model the inelastic behavior and monitor the material’s intrinsic state. Since relaxation
theory was originally developed within the elastic context, the proper treatment of internal
variables is a priori less clear.

We put the time-incremental approach from [CHM] into a more concise variational frame-
work suggested in [Mi1, Mi2]. In Section 9, this concept is applied to a benchmark-problem
of single-slip elastoplasticity. We report on efficient procedures of global optimization which
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allows to calculate relaxations with respect to higher-order laminates. Performing a two-
dimensional shear-test we discover a surprising new pattern of higher–order laminated mi-
crostructures. A comparison of approaches (B) and (C) applied to the single–slip problem
concludes Section 9.

Section 10 finally gives an outlook to the treatment of fully time-dependent evolution of
microstructures. Here the update-problem of microstructures and thus measure-valued inter-
nal variables has to be solved. We suggest a variational approach involving the Wasserstein-
distance between two Young-measures.

2. Non-Quasiconvexity, Microstructure, and Effective Energy Density

The section addresses microscopic and macroscopic phenomena to explain the relaxation
approach and averaged quantities in a simple context; we study the effect of nonconvex
energy minimization with an energy density W as shown in Figure 1.

2.1. Non-Rank-1-Convex Minimization Problems Enforce Microstructure. In Fig-
ure 1, the strain F (an m×n matrix) is a convex combination of two matrices A and B, i.e.
for some volume fraction λ there holds

(2.1) F = λA + (1− λ)B for 0 < λ < 1,

while, and this is the essential point, the energy W (F) is the pointwise minimum of two
quadratic functions and is above the straight line segment at λ, i.e.

(2.2) λ W (A) + (1− λ) W (B) < W (F).

The picture in Figure 1 is essentially one-dimensional but it is meant as some section of a
higher-dimensional situation where F and A,B belong to Rm×n. We assume a compatibility
condition

(2.3) A = B + a⊗ b ∈ Rm×n,

where a and b are vectors with their dyadic product a⊗b. In this case, A and B are said to
be rank-1-connected. (Rank-1-connectivity is trivial if either m = 1 or n = 1 because, then,
any two distinct vectors are rank-1-connected; (2.3) is a severe restriction for m, n ≥ 2.)

The non-rank-1-convexity of W means that we can find A,B,F with (2.1)-(2.3).
According to the diagram (1.1), we observe that the present conditions are sufficient for

non-quasiconvexity. Hence we may have non-attainment of minimizers in the model problem

Minimize E(y) :=

∫
Ω

W (Dy) dx among y ∈ A, where

A := {y ∈ W 1,p(Ω; Rm) : y(x) = Fx for a.e. x ∈ ∂Ω}.
(2.4)

The exact definition of the Sobolev space W 1,p(Ω) is not important here and the reader might
think of Lipschitz continuous deformations y; in general, W 1,p(Ω) consists of all weakly
differentiable functions whose first-order partial derivatives are Lebesgue measurable and
integrable in its power p. For those functions, the affine boundary condition y(x) = Fx
makes sense for almost every boundary point x ∈ ∂Ω.
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Figure 1. Nonconvex Energy Density With Microstructures Depicted in
Figure 2: A hyperplane is tangential at the epigraph of the energy density
W : Rm×n → R at the points with the rank-1-connected arguments A and B
and is strictly below the function at the proper convex combination F.

Theorem 2.1. Suppose (2.1)-(2.4) and let |Ω| denote the volume of Ω. Then there holds

E0 := inf
y∈A

E(y) ≤ (λ W (A) + (1− λ) W (B)) |Ω| < W (F)|Ω| = E(Fx)

(where Fx also denotes the affine function x 7→ Fx in Ω prescribed by the boundary values).

To explore the finer structure in a simple exposition, we consider n = 2, Ω = (0, 1)2,
and b = (0, 1) in Figure 2. Given any very small positive parameter ε, let yε be defined
such that the gradient Dyε assumes the values A and B according to a layered pattern of
Ωε := (ε, 1− ε)2 depicted in Figure 2 and some intermediate zone in the small frame Ω \Ωε

to match the boundary conditions to achieve yε ∈ A. One can check that this is in fact
possible and that Lip(yε) is bounded from above by an ε-independent constant and that
the distance of yε to the linear function Fx tends to zero (in maximum norm) as ε → 0.
It is important to observe that such a construction would be impossible if (2.3) is violated
according to Hadamard’s jump condition [BJ].

It is not hard to see that limε→0 E(yε) equals (λ W (A) + (1− λ) W (B)) |Ω| and this con-
cludes the proof of Theorem 2.1. �

2.2. Ill-Posed Problem. In the absence of exterior forces or other lower order terms, The-
orem 2.1 asserts that, the energy is not minimized by the linear function x 7→ Fx prescribed
by the affine boundary values and, in fact, has no (classical) solution at all!
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A

B

λε

(1− λ)ε

yε(x) = Fx for x ∈ ∂Ω

Ω \ Ωε

Figure 2. Domain with Microstructure Pattern of Length-Scale ε: The
deformation y : Ω → R2 is globally Lipschitz continuous and is piecewise
affine in the interior square Ωε := (ε, 1− ε)2 with piecewise constant gradients
which equal B on the depicted dark layers of thickness (1 − λ)ε and A on
the others. In the outer frame Ω \ Ωε, y interpolates between the boundary
conditions and values on ∂Ωε.

Theorem 2.2. Suppose (2.1)-(2.4) and that there exists an affine function W̃ which assumes
the values W (A) and W (B) at A and B and is elsewhere a strict lower bound of W ,

W̃ (M) < W (M) for all M ∈ Rm×n \ {A,B} while

W̃ (A) = W (A) and W̃ (B) = W (B).
(2.5)

Then, the minimum in (2.4) is not attained, i.e. E0 < E(y) for any y ∈ A.

As a consequence of this non-attainment result, finite element approximations cannot
converge strongly (because any strong limit of an infimizing sequence would indeed be a
minimizer). Instead, finite element solutions develop oscillations on some scale of the minimal
mesh-size and thereby either miss the microstructure (and then are completely misleading)
or often become mesh-depending (and are then difficult to compute and quite depending on
the solution algorithm). We refer to [L, ChM, BP] for a rigorous analysis of related finite
element schemes with a precise characterization of numerical oscillations.

The proof of Theorem 2.2 is by contradiction — so let us consider some y ∈ A with
E0 = E(y). The boundary conditions and an integration by parts show∫

Ω

Dy(x) dx =

∫
∂Ω

Dy(x)ν(x) dsx =

∫
∂Ω

(Fx)⊗ ν(x) dsx =

∫
Ω

F dx = |Ω|F.
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Since the application of the affine W̃ commutes with integration and since W̃ ≤ W , this and
Theorem 2.1 leads to

E(y) = E0 ≤
(
λW (A)+(1−λ)W (B)

)
|Ω| = W̃ (F) =

∫
Ω

W̃ (Dy) dx ≤
∫

Ω

W (Dy) dx = E(y)

and hence equality of W (Dy) and W̃ (Dy). Because of this and since W̃ (Dy(x)) ≤ W (Dy(x))
holds for almost all x ∈ Ω, we deduce

W̃ (Dy(x)) = W (Dy(x)) for almost every x ∈ Ω.

This and the assumptions (2.5) show that

Dy(x) ∈ {A,B} for almost every x ∈ Ω,

that is, the gradient Dy of a Sobolev function y assumes only two values A or B. By a
result in [BJ], this is possible only if A and B are rank-1-connected (or either Dy ≡ A or
Dy ≡ B) and there are layers where Dy(x) = A and those where Dy(x) = B separated
by parallel straight lines with normal b. In other words, the situation has to be as depicted
in Figure 1. However, there is a problem with the boundary conditions. In fact, on those
sides of the domain where the boundary is not perpendicular to the direction b = (1, 0),
the aforementioned results of [BJ] show that the (piecewise) constant matrix Dy is rank-1-
connected to F with respect to the direction of the normal ν = (0,±1). Since Dy allows
the values A and B along such boundary, it follows that A and B equal A = F + α⊗ (0, 1)
and B = F + β ⊗ (0, 1). This and (2.3) for b = (1, 0) lead to the announced contradiction.
Hence the infimal energy E0 is not attained. �

2.3. Gradient Young Measures (GYM). The infimizing sequence yε is enforced to de-
velop oscillations which are described in terms of mathematical statistics and have a limit
which is a measure. In the model example at hand, characteristic statistical variables are A
and B as well as the volume fraction λ (i.e. the convex coefficient in (2.1)). This defines a
(homogeneous) gradient Young measure, abbreviated GYM, which reads

(2.6) ν = λ δA + (1− λ) δB

with a Dirac measure δA supported at the atom A, i.e. the action of ν on a continuous
function reads

< ν, g >= λ g(A) + (1− λ) g(B) for all g ∈ C0(Rm×n).

[g ∈ C0(Rm×n) means g : Rm×n → R is continuous with lim|M|→∞ g(M) = 0 — this technical
detail is not important here.]

Theorem 2.3. Suppose (2.1)-(2.3) and let yε be a Lipschitz continuous function as depicted
in Figure 2 and defined in the proof of Theorem 2.1. Then any subsequence of (yε)ε>0

generates the Gradient Young Measure (2.6) in the sense that the following holds: If ω is a
subdomain of Ω and if g ∈ C0(Rm×n) then

lim
ε→0

|ω|−1

∫
ω

g(Dyε(x)) dx =< ν, g > .
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The proof is simple as for ε → 0 the domain ω is essentially inside the interior domain Ωε

and, since the layers of Figure 2 become finer and finer, leads to g(Dyε(x)) ∈ {g(A), g(B)}
for almost every x ∈ ω ∩ Ωε. Moreover, the measure of all x with g(Dyε(x)) = g(A) and
g(Dyε(x)) = g(B) approaches λ|ω| and (1 − λ)|ω|, respectively. This explains the name
volume fraction of λ and concludes the proof. �

The theorem motivates the definition of a Gradient Young Measure generated by a se-
quence (yε)ε>0. The reader may consult the literature [B2, T, Ro, MS] for further details,
proofs and properties of GYMs.

The GYM gives rise to other quantities and relations by evaluation for the test functions g
as the energy density, each component of the identity or the derivative of the energy density:
The first example yields the macroscopic energy density

W qc(F) :=< ν,W > .

The center of mass (or expected value) of the GYM leads to the macroscopic deformation
gradient

F :=< ν, Id > where Id denotes identity .

The continuous derivative DW of the energy density defines the macroscopic stress

σ :=< ν, DW > .

The deformations yε(x) are easily seen to converge strongly to the limit y(x) = Fx,
the macroscopic deformation, its gradient F = Dy is in fact the macroscopic deformation
gradient.

In conclusion: The deformation, the macroscopic strain, the stress field, and the GYM
are well-defined macroscopic variables we can hope to compute reliably. Other aspects of
the microscopic oscillations are not well-posed and we have to expect mesh-depending finite
element solutions with defects.

Remark 2.1. The GYM describes some aspects of the oscillations but not all aspects. Figure 2
illustrates that A, B, and λ are clearly visible, but also the normal b is important and visible
in the figure but not displayed in the GYM. (In this simple model example, however, b is
implicitly visible from the calculation (2.3)). Nevertheless, the GYM is one macroscopic
quantity on the microscopic oscillations.

2.4. Effective Energy Density and Quasiconvexification. The macroscopic energy,
also called effective or relaxed energy density, is written in terms of the GYM ν as

lim
ε→∞

|Ω|−1 E(yε) =< ν, W >=: W qc(F).

Since yε is an infimizing sequence, this can be reformulated as

(2.7) W qc(F ) := inf
y(x)=Fx for a.e. x∈∂Ω

|Ω|−1

∫
Ω

W (Dy(x)) dx

(in the infimum, y is an arbitrary Lipschitz continuous function with the linear boundary
values prescribed by Fx). The aforementioned function W qc is called the quasiconvex en-
velope of W . A function is called quasiconvex if it coincides with its quasiconvex envelope.
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In general, the notion of quasiconvex functions is subtle with various difficulties. The ques-
tion of enforced microstructure is directly linked to the notion of quasiconvexity: Problem
(2.4) has a linear solution Fx if and only if W (F) = W qc(F) and there is attainment of
microstructure if and only if W qc(F) < W (F).

It is an important observation that the stress fields σε := DW (Dyε) of the infimizing
sequence yε with GYM ν have a limit

σ := DW qc(F ) =< ν,DW > .

In fact, Figure 1 illustrates that, since W is smooth at A and B, the tangential hyperplane
through (A, W (A)) and (B, W (B)) yields the same stress σ = DW (A) = DW (B) =
DW qc(F).

This holds true for more general situations [BKK] and so justifies σ as the macroscopic
stress field as a local function of the averaged strain F. This also underlines the role of the
quasiconvex envelope W qc as the effective energy density.

2.5. Well-Posed Problem. The effective problem on the macroscopic scale reads

(2.8) Minimize Eqc(y) :=

∫
Ω

W qc(Dy(x)) dx among y ∈ A

and has a classical solution, namely the linear function y(x) = Fx.
In contrast to this, given any macroscopic strain F = Dy(x) at a material point x, the

microscopic problem consists in the calculation of W qc(F) via (2.7).
In the presence of lower-order terms and more complicated boundary conditions, the rule

of thumb is that one needs to quasiconvexify only in the variable of the strain and leaves any
other detail as it reads in the original problem to define an effective problem with a classical
solution which equals the generalized solution.

More details on the concepts of relaxation theory can be found in [Da, Mo, Ro]. In this
work we focus on a few examples and establish the relaxation and the numerical approxima-
tion thereof.

3. Scalar 2-well problem

An anti-plane shear model of phase transitions via the Ericksen-James energy leads to a
scalar variational problem with a fourth-order growth energy density W : Rn → R.

3.1. 2-Well Benchmark Problem. Given distinct wells F1,F2 ∈ Rn, define the scalar
2-well energy density

W (F) = |F− F1|2|F− F2|2 for F ∈ Rn.

The benchmark problem on the bounded Lipschitz domain Ω ⊆ Rn reads: Given y, f ∈ L2(Ω)
and yD ∈ W 1−1/p,p(∂Ω),

Minimize E(y) :=

∫
Ω

W (∇y) dx + ‖y − y‖2
L2(Ω) +

∫
Ω

fy dx among y ∈ A,

where A := {v ∈ W 1,4(Ω) : v|∂Ω = yD}.
(3.1)
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Given A = (F2 − F1)/2 and B = (F1 + F2)/2, the quasiconvex envelope of W equals the
convex hull W ∗∗ of W and is analytically computed in [CP1],

W ∗∗(F) = max{|F−B|2 − |A|2, 0}2 + 4(|A|2|F−B|2 − [A · (F−B)]2) for F ∈ Rn.

It can be shown that the minimum is not attained and that there is a unique generalized
solution y with an associated stress field σ for which analytic formulae are given in [CJ].

3.2. Finite Element Discretization. A discretization of a relaxation of (3.1) is based on
a regular triangulation T of Ω and an approximation yD,h ∈ S1(T )|∂Ω of yD to associate the
lowest-order finite element space

Ah = {vh ∈ S1(T ) : vh|∂Ω = yD,h}.

Here, S1(T ) denotes the first-order finite element space on T (i.e. the set of all elementwise
affine, globally continuous functions defined on Ω). The resulting discrete problem is a
finite-dimensional convex problem:

(3.2) Minimize E∗∗(yh) =

∫
Ω

W ∗∗(∇yh) dx + ‖yh − y‖2
L2(Ω) +

∫
Ω

fyh dx among yh ∈ Ah.

The numerical analysis of (3.2) given in [CP1] proves convergence yh → y in L2 for h → 0
and a priori and a posteriori error estimates for the distance between the exact unique stress
σ = DW ∗∗(∇y) and the discrete stress σh = DW ∗∗(∇yh),

‖σ − σh‖L4/3(Ω) ≤ C1 infvh∈Ah
‖y − vh‖W 1,4(Ω), and

c2ηM − h.o.t. ≤ ‖σ − σh‖L4/3(Ω) ≤ c2η
1/2
M + h.o.t.

The minimal averaging error estimator ηM is defined by

ηM =
(∑

T∈T

η
4/3
T

)3/4
for ηT = ‖σh − σ∗

h‖L4/3(T )

with the σ∗
h ∈ S1(T )n that minimizes

‖σh − τ h‖L4/3(Ω) among τ h ∈ S1(T )n.

3.3. Stabilized Finite Element Method. Strong convergence of finite element strain
approximations is possible for smooth generalized solutions (e.g. y ∈ H3/2+δ(Ω) for some
δ > 0) [BCPP]. Given a regular triangulation T of mesh-size h = max{diam (T ) : T ∈ T }
with a finite element space Ah the stabilized finite element method reads:

(3.3) Minimize E∗∗
h (yh) := h‖∇yh‖2

L2(Ω) +

∫
Ω

W ∗∗(∇yh) dx + ‖yh − y‖2
L2(Ω) +

∫
Ω

fyh dx

among yh ∈ Ah.

There exist unique finite element solutions yh of (3.3) which can be calculated with a Newton-
Raphson scheme of Section 4.
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3.4. Adaptive Finite Element Method. Self-adapting mesh-refining strategies can be
employed for the relaxed minimization problem (3.2) based on the aforementioned a poste-
riori error control.

To approximate the macroscopic quantities in (3.1) we propose the following algorithm
with adaptive (λ = 0) or uniform (Θ = 1/2) mesh refinement and which starts on a coarse
initial triangulation T0 of Ω.

Algorithm 1 (Adaptive Algorithm). Input is an initial triangulation T = Tj for j = 0.
(a) Solve Problem (3.2) (with a Newton-Raphson or Quasi-Newton method).
(b) Compute indicators ηT for all T ∈ T .
(c) Mark element T ∈ T (for red-refinement) iff Θ max{ηT : T ∈ T } ≤ ηT . (Θ = 0 for
uniform and Θ = 1/2 for adaptive mesh refining.)
(d) Refine further elements (red-green-blue refinement) to obtain a regular triangulation Tj+1

as a refinement of Tj.
(e) Set j = j + 1, update T and go to (a).

3.5. Benchmark Example. To illustrate the performance of Algorithm 1 run for the bench-
mark from [CJ] with n = 2, Ω := (0, 1) × (0, 3/2), F1 = −F2 := −(3, 2)/

√
13, f ≡ 0,

y(x, y) = f2(s(x, y) + 1/2) for s(x, y) = (3(x− 1) + 2y)/
√

13, and

y(x, y) =

{
f1(s(x, y) + 1/2) for s(x, y) ≥ 0,
f2(s(x, y) + 1/2) for s(x, y) ≤ 0,

for f1(s + 1/2) = −3s5/128 − s3/3, f2(s + 1/2) = s3/24 + s, and yD = y|∂Ω. Then y is the
unique solution of the convexification of (3.1) and the unique weak limit of any infimizing
sequence for (3.1).

Figure 3 displays the numerical solution on T10 generated by Algorithm 1. The adaptive
strategy refines a region in which the exact solution has a discontinuity in the gradient.
Figure 4 shows various errors and the error estimator ηM for uniform and adaptive mesh
refinement. We observe that the adaptive refinement strategy leads to significantly reduced
errors and improved experimental convergence rates.

3.6. Conclusions and Open Problems. The a posteriori error control suffers from the
reliability-efficiency gap: The predicted upper and lower error bounds (valid up to multi-
plicative constants and higher-order terms) are supported by the numerical results. The two
bounds, however, converge with different rates and so leave an open scissor in Figure 3 in
the sense that the domain for the true error (i.e. the region between the lower and upper
bound) becomes larger with smaller mesh-sizes. It remains as an open question whether and
how this might be improved.

A numerical observation from [CJ] is supported for stabilized calculations as well: The
averaging error estimator is a very accurate error guess for the true stress error.

The strong convergence of the discrete solutions of the stabilized discrete problem is estab-
lished in [BCPP] for smooth solutions and (quasi-) uniform meshes. It is an open question
whether and how to generalize those results to singular solutions on highly graded (unstruc-
tured) meshes.

A numerical method with guaranteed convergence will be presented in the subsequent
section. The result, however, is derived exclusively for convex minimization problems.
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Figure 3. Numerical solution yh and modulus of the stress field
|DW ∗∗(∇yh)| (in gray shading) on the adaptively refined triangulation T10

in the scalar 2-well problem defined in Example 3.5. The adaptive strategy
refines the mesh toward a line along which the gradient of the exact solution
has a discontinuity.

4. Convergence of Quasi-Newton Iteration

This section is devoted to the effective solution of the discrete relaxed problem utilizing
a Newton-Raphson scheme with stabilization. The main result is global convergence for a
stabilized Quasi-Newton iteration first presented in an abstract framework and then applied
to a discrete convexified minimization problem.

4.1. Abstract Framework. To keep notation as general as possible we start with an ab-
stract description and analysis of the Quasi-Newton iteration.

Let V be a Hilbert space with induced norm ‖ · ‖ and with a family of scalar products
aj : V × V → R, j = 1, 2, 3, . . ., which define equivalent norms ‖ · ‖aj

in the sense that there
exist positive constants αj and Mj such that

αj‖v‖2 ≤ aj(v, v) and(4.1)

aj(u, v) ≤ Mj‖u‖ ‖v‖ for all u, v ∈ V.(4.2)

Suppose ϕ : V → R is C1 and uniformly convex and its derivative Dϕ is Lipschitz in the
sense that there exists positive constants α and L such that

α‖u− v‖2 + Dϕ(u; v − u) ≤ ϕ(v)− ϕ(u) and(4.3)

(Dϕ(u)−Dϕ(v))(u− v) ≤ L‖u− v‖2 for all u, v ∈ V.(4.4)
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Figure 4. Experimental convergence rates and error estimators ηM and η
1/2
M

plotted against degrees of freedom N with a logarithmic scaling for uniform and
adaptive mesh refinement in the scalar 2-well problem defined in Example 3.5.
The efficient estimator ηM serves as a good approximate of the stress error

‖σ − σh‖L4/3(Ω). The reliable error estimator η
1/2
M shows significantly slower

convergence behavior. Adaptive mesh refinement improves the experimental
convergence rate of ‖σ − σh‖L4/3(Ω) ∝ h0.6 to ‖σ − σh‖L4/3(Ω) ∝ h1.2.

Given an initial deformation u0 ∈ V , the quasi-Newton-Raphson scheme defines a sequence
(uj)j in V recursively through

(4.5) aj(uj − uj+1, ·) = Dϕ(uj) for j = 0, 1, 2, . . .

Theorem 4.1. Suppose that u0 and u are arbitrary in V such that (4.5) defines a sequence
(uj)j and so defines δj := ϕ(uj) − ϕ(u). Suppose that one iteration index j satisfies 0 ≤
δj, δj+1 and 0 < α + αj − L. Then there holds

δj+1 ≤ (1− 4α(α + αj − L)M−2
j )δj and ‖u− uj‖2 ≤ M2

j α−2(α + αj − L)−1(δj − δj+1).

Remark 4.1. The side restriction L−α < α0 ≤ αj for some uniform α0 and all j indicates a
small damping parameter in a quasi-Newton-Raphson scheme.

Remark 4.2. Assuming L− α < αj for all j, the minimizer u of ϕ in V satisfies δj ≥ 0 and
the theorem guarantees limj→∞ δj = 0 and limj→∞ ‖u− uj‖ = 0.

Remark 4.3. At first glance it may irritate in the theorem that u is not supposed to be the
solution of Dϕ(u) = 0. In fact, the theorem provides some stability of the solution u as well:



EFFECTIVE RELAXATION FOR MICROSTRUCTURE SIMULATIONS 13

Any u ∈ V with ϕ(u) ≤ ϕ(uj), ϕ(uj+1) satisfies ‖u− uj‖2 ≤ M2
j α−2(α + αj −L))−1(ϕ(uj)−

ϕ(uj+1)).

4.2. Proof of Theorem 4.1. With (4.3) and ϕ(u) ≤ ϕ(uj), ϕ(uj+1) there holds

α‖u− uj‖2 −Dϕ(uj; u− uj) ≤ ϕ(u)− ϕ(uj) = −δj.

This and (4.5) followed by (4.2) and Young’s inequality show

α‖u− uj‖2 + δj ≤ Dϕ(uj; uj − u)

= aj(uj − uj+1, uj − u)

≤ Mj‖u− uj‖ ‖uj − uj+1‖
≤ M2

j /(4α) ‖uj − uj+1‖2 + α‖u− uj‖2,

whence

(4.6) δj ≤
(
M2

j /(4α)
)
‖uj+1 − uj‖2.

A similar argument with (4.3) yields

α‖uj+1 − uj‖2 + Dϕ(uj+1; uj − uj+1) ≤ ϕ(uj)− ϕ(uj+1) = δj − δj+1.

This and (4.4)-(4.5) followed by (4.1) leads to

δj+1 − δj + α‖uj+1 − uj‖2

≤ (Dϕ(uj)−Dϕ(uj+1))(uj − uj+1) + Dϕ(uj; uj+1 − uj)

≤ L ‖uj+1 − uj‖2 − aj(uj+1 − uj, uj+1 − uj)

≤ (L− αj)‖uj+1 − uj‖2,

whence

(4.7) (α + αj − L)‖uj+1 − uj‖2 ≤ δj − δj+1.

The combination of (4.6)-(4.7) proves the first assertion. The second assertion follows from
a modification of the aforementioned proof of (4.6) by utilizing (4.7) and Young’s inequality:

α‖u− uj‖2 + δj ≤ Mj‖u− uj‖ ‖uj − uj+1‖

≤
[
Mj/(α + αj − L)

1
2

]
‖u− uj‖(δj − δj+1)

1/2

≤ α/2‖u− uj‖2 + M2
j (α + αj − L)−1/(2α)(δj − δj+1). �

4.3. Application. The following algorithm realizes the quasi-Newton-Raphson scheme and
aims to minimize a functional ϕ : Ah → R, where for simplicity we assume that Ah involves
Dirichlet boundary conditions on the whole boundary ∂Ω. We suppose that ϕ satisfies the
assumptions of Theorem 4.1 with V = S1

0 (T ) and the norm ‖ · ‖ induced by the scalar
product

(u, v) =

∫
Ω

∇u · ∇v dx

and define

(4.8) aj(u, v) = αj

∫
Ω

∇u · ∇v dx

with a parameter αj that satisfies L− α < αj.
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Algorithm 2 (Quasi-Newton-Raphson Iteration). Input: tolerance TOL > 0, triangulation
T , initial value y0 ∈ Ah, j := 0.
(a) Compute αj and solve for yj+1 ∈ Ah:

αj(yj − yj+1, v) = Dϕ(yj; v) for all v ∈ S1
0 (T ).

(b) Stop if
(∑

z∈K |Dϕ(yj+1, ϕz)|2
)1/2 ≤ TOL, where ϕz are the nodal basis functions asso-

ciated to the free nodes z ∈ K.
(c) Set j = j + 1 and go to (a).

If we replace αj(yj−yj+1, v) by D2ϕ(yj; yj−yj+1, v) in Step (a) of the preceding algorithm
we recover the classical Newton-Raphson scheme.

Algorithm 3 (Classical Newton-Raphson Iteration). Input: tolerance TOL > 0, triangulation
T , initial value yj ∈ Ah for j = 0.
(a) Solve for yj+1 ∈ Ah:

D2(ϕj; yj − yj+1, v) = Dϕ(yj; v) for all v ∈ S1
0 (T ).

(b) Stop if
(∑

z∈K |Dϕ(yj+1, ϕz)|2
)1/2 ≤ TOL.

(c) Set j = j + 1 and go to (a).

4.4. Numerical Experiment. Theorem 4.1 proves convergence for the quasi Newton-
Raphson scheme to the minimizer of ϕ under general assumptions, i.e. uniform convexity of
ϕ and uniform Lipschitz continuity of Dϕ as well as an appropriate choice of the parameters
αj. In the stabilized scalar 2-well problem (3.3), where

ϕ(y) =

∫
Ω

W ∗∗(∇y) dx + ‖y − y‖2
L2(Ω) + h‖∇y‖2

L2(Ω) −
∫

Ω

fy dx,

assumption (4.3) is satisfied with α = h. Uniform Lipschitz continuity (4.4) of Dϕ does not
hold in this example but ϕ is continuously differentiable and Lipschitz continuous on every
bounded subset of Ah. We employed

αj = 50

in (4.8). The parameter α in (4.1) is proportional to the (small) mesh-size h so that the error
after the j-th iteration is ‖∇(y − yj)‖2

L2(Ω) ≤ Ch−2θj where y is the minimizer of ϕ = E∗∗
h

in Ah and θ ∈ (0, 1). The functional ϕ is uniformly convex but not twice continuously dif-
ferentiable so that (quadratic) convergence of classical Newton-Raphson schemes is unclear.
The following numerical comparison shows however that nested Newton-Raphson schemes
are most efficient in the case of Example (3.3).

Table 1 displays the number of iterations needed to achieve a residual less than 3% of the
initial residual on the respective triangulation, i.e. we chose

TOL := 0.3
(∑

z∈K

|Dϕ(yj+1, ϕz)|2
)1/2

in Algorithms 2 and 3.
We used uniform meshes with mesh-sizes h = 1/4, 1/8, 1/16, 1/32 and we employed a

nested iteration technique which means that given an approximate solution Y on a mesh
Tk the starting value y0 for the iteration in Algorithms 2 and 3 on a finer mesh Tk+1 was
obtained from a linear prolongation of Y onto Tk+1.
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h Quasi-Newton-Raphson Classical Newton-Raphson

1/4 4 2
1/8 4 2
1/16 5 2
1/32 6 2

Table 1. Iteration numbers for the (nested) quasi-Newton-Raphson and the
(nested) classical Newton-Raphson scheme in the stabilized 2-well problem
(3.3) for different mesh-sizes and uniform meshes. The number of iteration
steps remains bounded for the classical Newton-Raphson scheme and grows
slowly in the quasi-Newton-Raphson scheme.

5. Elastic 2-well problem

This section is devoted to the numerical approximation of a two-dimensional model which
is motivated by the mathematical description of phase transitions for crystalline solids,
namely for the high temperature super-conducting TB2Cu3O6+x material which undergoes
an austenite-to-martensite phase-change.

5.1. Non-Convex Energy Density and its Quasiconvexification. We model the phase-
transition in two dimensions as being cubic-to-tetragonal, which constitutes a simplification
compared to the behavior of the actual material. The nonconvex minimization problem then
involves eigen-strains

E1 = −0.0113m⊗m− 0.0102n⊗ n and E2 = −0.0102m⊗m− 0.0113n⊗ n,

for m = (cos(π/3), sin(π/3)) and n = (− sin(π/3), cos(π/3)), and the material tensor C
defined for cubic anisotropy by

CE = λtr(E) Id + 2µE + α (n⊗ (En) + (En)⊗ n)

with material parameters λ = −67, µ = 137, and α = 40. In a geometrically linearized
setting, the energy density W is modeled as the infimum of two elastic energies

Wj(E) =
1

2
C(E− Ej) : (E− Ej) for j = 1, 2,

corresponding to the two energy minima E1,E2 ∈ Rn×n and with the scalar product A : B
in Rn×n,

W (E) := min{W1(E), W2(E)}.
The quasiconvex envelope is explicitly known [K]

W qc(E) =


W1(E) for W2(E) + α ≤ W1(E),
1
2
(W2(E) + W1(E))
− 1

4γ
(W2(E)−W1(E))2 − 4

α
for |W1(E)−W2(E)| ≤ α,

W2(E) for W1(E) + α ≤ W2(E),

for some α > 0 defined in terms of C, E1, and E2. The aforementioned Green strains E1

and E2 are compatible in the sense that

E1 − E2 = (a⊗ b + b⊗ a)/2 holds for some a,b ∈ Rn.
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Then, α = 1
2
(E1 − E2) : C(E1 − E2) and the quasiconvex hull is convex: W qc = W ∗∗.

It is stressed that this might not be the case for other materials.

5.2. Relaxed Minimization Problem and Its Discretization. Given a displacement
y, the linear Green strain tensor is the symmetric part of the displacement gradient,

ε(y) =
(
Dy + (Dy)T

)
/2.

Then, given f ∈ L2(Ω; R2), g ∈ L2(ΓN ; R2) where Ω := (0, 1)2, ΓD = [0, 1] × {0}, ΓN =
∂Ω \ ΓD, and the admissible displacements

A = {v ∈ W 1,2(Ω; R2) : v|ΓD
= 0}

the relaxed minimization problem reads:

(5.1) Minimize Eqc(y) =

∫
Ω

W qc(ε(y)) dx +

∫
Ω

f · y dx +

∫
ΓN

g · y ds among y ∈ A.

With the finite element approximation space

Ah := {vh ∈ S1(T )2 : vh|ΓD
= 0},

the discrete problem reads:

(5.2) Minimize Eqc(uh) =

∫
Ω

W qc(ε(yh)) dx +

∫
Ω

f · y dx +

∫
ΓN

g · y ds among yh ∈ Ah.

5.3. A Priori and A Posteriori Error Control. In the compatible case, it has been shown
in [CP2] that the discrete stresses σh = DW ∗∗(ε(yh)) converge strongly in L2(Ω; R2×2) to
the exact unique stress σ = DW ∗∗(ε(y)) in L2 for h → 0,

‖σh − σ‖L2(Ω) ≤ C inf
vh∈Ah

‖y − vh‖L2(Ω).

Moreover, a posteriori error estimates similar to (3.3) can be established and used for adaptive
mesh refinement

ηM :=
(∑

T∈T

η2
T

)1/2
and ηT = ‖σh − σ∗

h‖L2(T )

where σ∗
h minimizes ‖σh − τ h‖L2(Ω) among τ h ∈ S1(T )2.

These refinement indicators lead to the same strategy as described in Algorithm 1.

5.4. Numerical Experiment. We consider the following mechanical example: set f = 0
and

g(s) =

{
(0,−10) for s ∈ [1/4, 3/4]× {1},
(0, 0) for s ∈ ΓN \

(
[1/4, 3/4]× {1}

)
.

Figure 8 below illustrates the physical problem and Figure 5 displays the numerical solution
on T10 generated by Algorithm 1 for Θ = 1/2. Figure 6 shows the numerical solution on
the uniformly refined mesh T2. Notice that owing to the anisotropy in C the solution is not
symmetric though the loads and the boundary conditions are symmetric.
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Figure 5. Numerical solution yh and modulus of the induced stress field for
adaptive mesh refinement in Example 5.2. The deformation is amplified by a
factor 10.
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Figure 6. Numerical solution yh and modulus of the induced stress field for
uniform mesh refinement in Example 5.2. The deformation is amplified by a
factor 10.

5.5. Conclusions. The relaxation of the mechanical problem described in this section leads
to a convex minimization problem which can be approximated very efficiently. Nested
Newton-Raphson schemes (without stabilization) perform very well in practice and adapted
meshes lead to significantly reduced energies. We stress however, that in this example the
(convex) relaxed energy admits a regular second derivative almost everywhere in R2×2 which
is not the case in general and then stabilization is a must. Moreover, the remarks on the
reliability-efficiency gap and the open question of a more effective solution algorithm from
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Subsection 3.6 apply here as well. More difficult open problems include the efficient nu-
merical treatment of (5.2) in case of incompatible zero strains, in which case there holds
W ∗∗ 6= W qc.

6. Numerical Approximation of Effective Energy Densities

For all problems we considered so far the quasiconvex envelope W qc has been available
in analytical form. For most practical problems, however, this will not be the case and one
has to resort to numerical approximations. But a direct approximation of W qc is still very
hard to do because its definition involves minimization over a large class of functions. More
suitable for numerical schemes are either the polyconvex or the rank–1–convex envelope.

6.1. Numerical Polyconvexification. The polyconvex envelope W pc of the energy density
function W : Rm×n → R is given by the formula

W pc(F) = min
{ Td+1∑

j=1

λjW (Fj) : λj ≥ 0, Fj ∈ Rd×d,

Td+1∑
j=1

λj = 1,

Td+1∑
j=1

λj Minors(Fj) = Minors(F)
}

.

Here Minors(F) denotes the set of all Minors of F, i.e Minors(F) = (F, detF) for n = 2 and
Minors(F) = (F, Cof F, detF) for n = 3, and Tn = dim Minors(F). The polyconvex envelope
is polyconvex and hence quasiconvex as desired. In some situations, however, W pc(F) and
W qc(F) can differ significantly.

The definition of W pc(F) involves the solution of a global optimization problem, which
may turn out to be difficult. It can be transformed into a linear optimization problem by
the following approximation:

W pc
d,r(F) = min

{ ∑
A∈Nd,r

λAW (A) : λA ≥ 0,
∑

A∈Nd,r

λA = 1,

∑
A∈Nd,r

λAMinors(A) = Minors(F)
}

.

Here, for parameters 0 ≤ d ≤ r we define

Nd,r := {A ∈ Rn×n ∩ dZn×n : max
j,k

|Ajk| ≤ r}

where Z denotes the set of all integers. The direct calculation of W pc
d,r(F) is however difficult

as it involves a large number of degrees of freedom, approximately (r/d)n2
. Employing

optimality conditions, one may design multilevel schemes with adaptive grid refinement and
coarsening that iteratively compute the minimum (typically within less than a second of
CPU-time for n = 2 and an accuracy of 10−4). Moreover, the combination of the optimality
conditions with growth conditions on W allows for an a posteriori estimate which indicates
whether the “diameter” r is chosen large enough to lead to an accurate approximation of
W pc(F). For details on the algorithm, error estimates, and related numerical experiments
we refer to [Ba].
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6.2. Finite Lamination. The relaxation with respect to first–oder laminates of an energy
density W reads (where frequently and without loss of generality |b| = 1 is assumed)

(6.1) R1W (F) = min
0≤λ≤1a,b∈Rn

{
(1− λ)W (F− λa⊗ b︸ ︷︷ ︸

F1

) + λW (F + (1− λ)a⊗ b︸ ︷︷ ︸
F2

}
.

The vectors a and b form the rank–one matrix a⊗ b and the scalar λ describes the volume
fraction of the two phases with deformation gradients F1 and F2, respectively. This means
that we minimize with respect to all microstructure patterns as depicted in Figure 2. Thus
obviously, if W is rank–one–convex we have R1W = W .

It is well established that, in general R1W is not rank-one-convex [Sv]. The situation
improves by iterating the procedure, R1R1W for example denoting the envelope with respect
to second–order laminates. The limit R1W = lim`→∞R1

`W is the rank–one–convex envelope.
Although R1W is still not quasiconvex it is rank–one–convex or elliptic, i.e. satisfies the
Cauchy–Hadamard–conditions. For many cases R1W yields a close approximation to W qc,
see [L, Ro, HH].

The relaxations R1
`W offer instructive information concerning the underlying microstruc-

ture, which we are going to describe now in detail. Following [Da, Ro, Do] we consider sets
of pairs {λj,Fj}, j = 1, . . . , N , 2 ≤ N ≤ 2` of probabilities λj and deformation gradients Fj,
with N accounting for the number of different gradients present.

Definition 6.1 (rank-one connectivity, HN). The pairs {λj,Fj} are called rank-one connected

(written {λj,Fj} ∈ HN) if λj ≥ 0,
∑N

j=1 λj = 1 and the following holds. (i) if N = 2, then

rank(F2 − F1) ≤ 1 ;
(ii) if N > 2, then, up to a permutation, rank(F2 − F1) ≤ 1 and if

µ1 = λ1 + λ2, GN−1
1 =

1

λ1 + λ2

(λ1F1 + λ2F2)

µj = λj+1, GN−1
j = Fj+1, j = 2, . . . , N − 1

then (µj,G
N−1
j ) ∈ HN−1.

The geometric interpretation of the definition above is given by a graph G(λj,Fj) with
leaves Fj, inner nodes Gj and edges that are rank–one lines as in Fig. 7(a). For computational
purposes the graph is often represented as a binary tree as in Fig. 7(b).

The relaxation R1
`W is now given by

(6.2) R1
`W (F) = min

{
N∑

j=1

λjW (Fj) : N ≤ 2`, (λj,Fj) ∈ HN , F =
N∑

j=1

λjFj

}
.

We refer to Subsection 9.7 for a numerical comparison of these notions of convexity.

7. Numerical Approximation of the Polyconvexification of An Energy
Density

There exists no general technique to find a closed formula for the quasiconvex envelope
of a given energy density. The direct approximation is of the form discussed in Section 2
and hence extremely difficult. Instead of an inaccurate approximation of W qc this section
addresses the accurate approximation of the polyconvex envelope W pc of the energy density
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Figure 7. Representations of rank–one connected deformation gradients
{λj,Fj} ∈ H3. The graph representation (a) consists of leaf nodes (defor-
mation gradients Fj) which are connected by edges (solid lines) representing
rank–one families of matrices. The inner nodes (Gj) are placed on the barycen-
ter of the edges corresponding to the probabilities λj.

function W : Rn×n → R described in Section 6.1 which leads to a lower bound of W qc. The
approximate polyconvex envelope can be employed for effective simulations:

(7.1) Minimize Epc
d (yh) =

∫
Ω

W pc
d (Dyh) dx +

∫
Ω

f · yh dx +

∫
ΓN

g · yh ds among yh ∈ Ah.

Error estimates can only be expected for the convergence of the energies, i.e. for
|minv∈AEpc(v)−minvh∈Ah

Epc
d (vh)|, but require additional regularity of the exact solution.

Since it would be inefficient to compute W pc
d in the whole (or a large subset of) R2×2

we employ the following iterative algorithm which realizes a steepest descent method to
approximate a local minimizer of Epc

d .

Algorithm 4 (Outer Loop in Numerical Polyconvexification). Input: initial y
(0)
h ∈ S1

D(T )2,
tolerance δ > 0, parameter d > 0, and j := 0.

(a) Run Algorithm 5 to compute σh := DW pc
d (Dy

(j)
h ).

(b) Let rh ∈ S1
D(T )2 be such that, for all vh ∈ S1

D(T )2,∫
Ω

Drh : Dvh dx = −
∫

Ω

σh · ∇vh dx−
∫

Ω

f · vh dx−
∫

ΓN

g · vh ds.

(c) Compute an approximation t∗δ of a local minimizer t∗ ∈ [0, 1] of e(t),

e(t) =

∫
Ω

τh(t) dx +

∫
Ω

f · (y(j)
h + trh) dx +

∫
ΓN

g · (y(j)
h + trh) ds.

Therein, Algorithm 5 is run to compute for given t τh(t) = W pc
d

(
D(y

(j)
h + trh)

)
.

(d) Stop if t∗δ ≤ δ := 0.01.

(e) Set y
(j+1)
h := y

(j)
h + t∗δrh, j := j + 1, and go to (a).

Output: an approximation of a local minimizer of Epc
d,h.

Remark 7.1. The numerical minimization of e(t) in (c) was realized with a simple search
routine which starts with t1 = 0 and t4 = 1:
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(i) Choose t2, t3 such that t1 < t2 < t3 < t4 and compute sj = e(tj).
(ii) If s3 ≤ s2 set t1 = t2. Otherwise, set t4 = t3.
(iii) Stop if t4 − t1 ≤ δ and go to (i) otherwise.
A good choice of the values t2 and t3 in (c) may lead to very efficient numerical schemes.

The computation of W pc
d and DW pc

d is done in a loop over all finite elements and employs
the following algorithm.

Algorithm 5 (Inner Loop in Numerical Polyconvexification). Input: function W : R2×2 → R,
F ∈ R2×2, parameters d, r > 0.
(a) Solve the linear optimization problem

α := min
{ ∑

A∈Nd,r

λAW (A) : λA ≥ 0,
∑

A∈Nd,r

λA = 1,
∑

A∈Nd,r

λAT(A) = T(F)
}

where T(A) = (A, detA) and Nd,r = {A ∈ R2×2 ∩ dZ2×2 : maxj,k |Ajk| ≤ r}. This gives
α and a Lagrange multiplier λ ∈ R5 for the constraint

∑
A∈Nd,r

λAT(A) = T(F). (The

numerical solution of the linear optimization problem was realized in an adaptive multilevel
scheme employing interior point solvers.)
(b) Check if r was large enough using optimality conditions and growth conditions of W (see
[Ba] for details). Set r := 2r and go to (a) if not and stop otherwise.
Output: τ := α = W pc

d (F) and σ := λ ·DT(F) = DW pc
d (F).

Remark 7.2. To avoid deformation gradients with negative determinant, the numerical ex-
periments in Section 7.1 employed a nonlinear stabilization by adding

0.001

∫
Ω

˜log(det(1 + D(y
(j)
h + trh)))

2 dx

where ˜log(s) = log(s) if s > 0 and ˜log(s) := ∞ if s ≤ 0.

7.1. Numerical Polyconvexification of a 2D Ericksen-James Energy. Algorithm 4
ran for a 2D version of the Ericksen-James energy [NWW]. Here, given any deformation

gradient F ∈ R2×2 with Cauchy strain tensor C =

(
C11 C12

C21 C22

)
:= FTF the frame-

indifferent energy density reads

W (F) := (C11 + C22 − 2)2 + 0.3C2
12 + (C11 − 1.1)2(C22 − 1.1)2.

A phase transition is considered in a quadratic body Ω := (0, 1)2 with homogeneous dis-
placements along the Dirichlet boundary ΓD := [0, 1] × {0}, no volume forces (f ≡ 0, but
loaded by a symmetric applied surface pressure g ∈ L2(ΓN)2 defined by g(s, 1) = −(0, 1/25)
for 1/4 < s < 3/4 along one half on top and g ≡ 0 elsewhere as indicated in Figure 8.

For a uniform triangulation of Ω with 256 elements shown in the right plot of Figure 8,

the initial choice y
(0)
h ≡ 0, the algorithm terminated for j = 6. We thereby obtained the

numerical approximation yh = y
(6)
h ∈ S1

D(T )2 of (7.1) displayed in Figure 9 together with its
induced discrete stress field DW pc

d (Duh). Quantitatively, the discrete deformation appears
reasonable although we still assume a relatively large approximation error.
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Figure 8. Schematic description of the physical problem (left) and initial
triangulation of Ω with 256 elements (right).
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Figure 9. Discrete deformation yh of Ω (the displacement field is amplified
by a factor 100 for illustrative purposes) together with the modulus of the

induced discrete stress field DW pc
d (Dy

(6)
h ).

8. Time-evolution for inelastic materials

In this section we will discuss a variational setting for inelastic materials which allows to
discuss the occurrence of microstructures in a rational way. We would like to do this in a
finite–deformation setting.

8.1. Variational Formulation. For inelastic materials the (specific Helmholtz free) energy
W (F,K) on the deformation gradient F = ∇y and on a set of internal variables K. The
latter measure the intrinsic state of the material produced by plastic deformation, hardening,
damage or phase-transformations [Mi1, Mi2], cf. this work for more details.

In elasticity theory the deformation y constitutes the independent variable of the bound-
ary value problem at hand and is determined via balance of momentum and appropriate
boundary conditions. Now there is an additional set of independent variables K and we
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need an additional set of equations for our problem to be well–posed. Since the internal
variables K describe the history of the material; their evolution equations are of the type
(with ẋ := dx/dt)

(8.1) f(F, Ḟ,K, K̇) = 0..

Any inelastic material is characterized by dissipation, which is nonrecoverable energy ex-
pended via change of the internal variables, as described by the rate K̇. We capture this effect
by introducing a dissipation–functional ∆(K, K̇). As shown in [Mi1, Mi2] the time–evolution
of the material body Ω under consideration is now governed by the Lagrange–functional

(8.2) L(t,y(t),K(t), K̇(t)) =

∫
Ω

[
d

dt
W (∇y,K) + ∆(K, K̇)

]
dV − d

dt
`(t,y).

Here `(t,y) is the potential of external forces. Moreover y has to satisfy boundary conditions

(8.3) y(t) = y0(t) on Γ0 ⊂ ∂Ω.

Static equilibrium and boundary conditions as well as evolution–equations for K can now
be obtained via the least–action principle

(8.4)
{y(s) ≡ y(t), K(s) ≡ K(t)} = arg min

{ ∫ 1

0

L(s,y(s),K(s), K̇(s)) ds :

y(s),K(s),y(s) = y0(t) on Γ0,y(0) = y(t), K(0) = K(t)
}
.

This means the “constant” solutions (in s) {y(s) ≡ y(t), K(s) ≡ K(t)} are minimizers of
the action–integral above, or, otherwise stated, it is not possible to lower the sum of stored
and dissipated energy by any (virtual) perturbation of the state {y(t), K(t)}. The principle
(2) especially yields the evolution law

(8.5) Q ∈ ∂∆

∂K̇
,

which constitutes an implicit relation of the form 8.1 for K̇ (Subdifferentials are required for
example in the case of plasticity, see [CHM]). Here Q = −∂W

∂K
is the conjugate quantity to K

and the differential inclusion accounts for law of inequality–type as encountered for example
in plasticity.

8.2. Reduction to the Elastic Case. The advantage of the formulation above is, that in
a time–incremental setting it reduces to a pure minimization problem which can be analyzed
by variational calculus. To this end we introduce the dissipation–distance

(8.6) D(K0,K1) = inf
{ ∫ 1

0

∆(K(s), K̇(s)) ds : K(0) = K0,K(1) = K1

}
which gives the energy dissipated if the internal variables are changed from a state K0 to
K1. Note that the minimization performed in the definition of D(K0,K1) follows from the
principle (2).

Let us consider a finite time–increment [t0, t1] and let the values of the internal variables
K0 = K(t0) be known at the beginning of the increment. Then with the notion given above
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we obtain deformation y1 = y(t1) and internal variables K1 = K(t1) at the end of the
increment from the following minimum–principle:

(8.7)
{y1,K1}
= arg min

{ ∫
Ω
{W (∇y,K) + D(K0,K)} dV − `(t1,y) : y,K,y = y0(t1) on Γ0

}
.

This principle gives the exact equilibrium and boundary conditions at the end of the incre-
ment as well as an approximation of the evolution–equation for K depending on the size of
the increment. Minimization over K can now be performed independently giving a reduced
potential

(8.8) W red
K0

(F) = min
{

W (F,K) + D(K0,K) : K
}
,

along with the update formula

(8.9) K1 = arg min
{

W (F,K) + D(K0,K) : K
}
.

This reduced potential, however, depends on K0 only as a parameter and can otherwise
considered to be a purely elastic energy. We obtain the usual principle of minimum of
energy:

(8.10) y1 = arg min
{ ∫

Ω

W red
K0

(∇y) dV − `(t1,y) : y,y = y0(t1) on Γ0

}
.

Thus any inelastic problem can be decomposed into a sequence of elastic by solving 8.10,
updating K via 8.9 and continuing with the next time–increment.

For many inelastic materials W (F,K) is taken to be quasiconvex in F whereas ∆(K, K̇)

is even convex in K̇. Still W red
K0

(F) very often turns out not to be quasiconvex, leading
to the evolution of microstructures as for example explained in [CHM]. Within a single
time–increment we are now able to apply all the methods developed before to the reduced
potential W red

K0
(F).

9. An Application to Single–Slip Elastoplasticity

In this section we will closely investigate a model of finite-strain elastoplasticity with a
single slip–system which was introduced in [CHM] and proving to lead to a non–quasiconvex
reduced potential.

9.1. Constitutive Model and Reduced Potential. We start with assuming the well–
established multiplicative split of the deformation gradient into an elastic and a plastic part:
F = FeFp. The set of internal variables K = {γ, p} consists of the scalar plastic slip γ and
a hardening variable p. The plastic deformation Fp is entirely determined by γ, i.e.

(9.1) Fp = I + γso ⊗ no,

where so and no denote the referential tangent and normal vector to the slip plane, respec-
tively. We choose a free energy density function of a compressible neo-Hookean type, which
in accordance with plastic indifference depends on F only via Fe:

W (F, γ, p) = U(j) +
µ

2
tr(FT

e Fe) +
a

2
p2, U(j) =

Λ

4
(j)2 − Λ + 2µ

2
ln(j),
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in which the symbols µ, Λ and a denote material parameters. The set of forces conjugated
to K is T = {τ, q}, with τ denoting the resolved shear stress. The yield function Φ and its
corresponding characteristic function J read

(9.2) Φ(τ, q) = |τ | − r − q. J(γ, p, τ, q) =

{
0 for Φ(τ, q) ≤ 0
∞ else

By Legendre transform (for details we refer to [CHM]) we obtain the dissipation–function

(9.3) ∆(γ, p, γ̇, ṗ) =

{
r|γ̇| if |γ̇|+ ṗ ≤ 0
∞ else

,

for which the dissipation–distance D can be constructed explicitly as

(9.4) D(γ0, p0, γ1, p1) =

{
r|γ1 − γ0| if |γ1 − γ0|+ p1 − p0 ≤ 0
∞ else

.

Moreover, the minimization with respect to the internal variables can be carried out explicitly
in this example and results in a closed expression for the reduced potential

(9.5) W red
γo,po

(F) = U(detF)

+
µ

2

[
trFTF− 2γo s · n + γ2

os · s−
(max{0, |s · n− γo s · s| − τcrit−apo

µ
})2

s · s + a/µ

]
,

where s = Fs0 and n = Fn0 are the slip-system vectors in the deformed configuration.
energy density functions in finite elasticity and will be analyzed for its convexity properties.

(Ave. Crit.: 75%)
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(a) 6400 elements
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(b) 10000 elements

Figure 10. FE simulation, contour: plastic slip γ, deformation=F12 = 0.1,
results are mesh–dependent but effective properties, for example volume ratios,
are not.

9.2. Direct Finite Element Simulation. The occurrence of microstructures can be demon-
strated by finite element analysis. We consider a plane shear deformation of a representative
volume element (RVE) consisting of standard 4-node plane strain elements subjected to pe-
riodic boundary conditions. The RVE models the micro–scale behavior of a single material
point for a given macro–deformation F. The material parameters (Λ = 15000 MPa, µ=
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10000 MPa, τcrit= 10 MPa, φ= −45.0o, a = 1000 MPa) are chosen to obtain significant
microstructure formation.

The loss of quasiconvexity is a global phenomenon. Hence microstructures will already
be possible as a global minimizer at a point where the potential is locally still elliptic and
thus has the homogeneous solution as local minimizer. Therefore we have to stimulate the
formation of microstructures. Two different methods have been applied for this purpose:
(A) Static perturbation: A randomly oriented field of distributed forces of a small magnitude
is applied to the structure in order to perturb the initial stable state of the material. With
an appropriate choice of the perturbation load, microstructures will form up and the initial
perturbation load can be released. The macro deformation gradient F is kept fixed during
the perturbation process, which forces the structure to accommodate solely by internal fluc-
tuations.
(B) Dynamic perturbation: A randomly oriented velocity field is used to initiate internal
fluctuations while the macro deformation gradient F is kept fixed. Then the magnitude of
the velocity is reduced continuously by structural damping. With an appropriate choice of
the intensity, orientation and damping of the velocity field the material will find a new rest
state of lower energy and microstructures will show up.

Essentially, both methods lead to the same results. Figure 10 shows contour plots of the
plastic slip γ for FE simulations with different mesh sizes. The equilibrium state exhibits a
laminar structure composed of opposite plastic slip. The number of oscillations (laminates)
is mesh–dependend. Macroscopic quantities like volume ratios or orientation of the lami-
nates, however, are preserved for different meshes. Those are the quantities which enter into
relaxation theory.

9.3. Finite Lamination. We will calculate the relaxations R1W
red and R1

2W red for the
reduced potential as introduced in Section 6.2. The computation can be formulated as
a restricted optimization problem. For the 2–dimensional case and n = 1 the objective
function

(9.6) W̃ red(x,F) := (1− λ)W red(F− λa⊗ b︸ ︷︷ ︸
F1

) + λW red(F + (1− λ)a⊗ b︸ ︷︷ ︸
F2

)

depends on 4 optimization variables

(9.7) x = (λ, ρ, α, β), a = ρ

(
cos(α)
sin(α)

)
, b =

(
cos(β)
sin(β)

)
.

The vectors a and b form the rank–one matrix a⊗ b and the scalar λ describes the volume
fraction of the two phases with deformation gradients F1 and F2, respectively. The relaxed
energy is obtained by solving the minimization problem

(9.8) R1W
red(F) = min

x∈B
W̃ red(x,F)

for a given F, where the domain B of x is

B = {x ∈ R4 | 0 ≤ λ ≤ 1, 0 ≤ ρ, 0 ≤ α ≤ π, 0 ≤ β ≤ 2π, det(Fi) > 0}.(9.9)
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Figure 11. Multiple minima (white) in contour plots of the objective function
(9.6) projected on the α–β–plane. Parameters λ=0.1, ρ = 0.6 (left) and ρ = 2.1
(right).

9.4. Global Minimization Algorithms. The task of global optimization is to find a so-
lution in the solution set B for which the objective function (9.6) obtains its smallest value,
the global minimum. The contour plots Fig. 11 show that the objective function (9.6) has
several local extrema and the domain B may be bounded non-simply, [Pi, TZ], because of
the constraints detFi > 0.

We have used different methods (e.g. branch and bound, clustering, interval, see [Pi] ) to
solve the optimization problem (9.8). Probabilistic global search procedures like multi-start
and clustering algorithms have shown to be efficient and sufficiently robust. The basic idea
of the family of multi-start methods is to apply a local search procedure several times and
evaluate the function (9.6) at each of those points. A drawback of this method is that when
many starting points are used the same local minimum may be identified several times. This
leads to an inefficient global search. Clustering methods attempt to avoid this inefficiency
by carefully selecting points at which the local search is initiated.

Algorithm 6 (Global Optimization). Input: F, initial population xi ∈ B of n points (n ≈
100 . . . 10000) in a feasible domain B, tolerance δ > 0.
(a) Sampling and Reduction: Sample W̃ red(xi,F) for xi ∈ B and reduce the population by
choosing the m best points.
(b) Clustering: Identify clusters, such that the points inside a cluster are ”close” to each
other, and the clusters are ”far” from each other. If the clusters do not separate sufficiently,
repeat step 1 with a bigger population in the whole domain or in specific regions.
(c) Center of attraction: Identify a center of attraction in each cluster: This could be the
best point or the centroid of the subset of best points.
(d) Local search: Start a local search from the center of attraction, stop when minimum min
is achieved with tolerance δ.
Output: R1

l(F) = min.



28 S. BARTELS, C. CARSTENSEN, K. HACKL, AND U. HOPPE

Clustering algorithms are effective for low dimensional problems, where the evaluation of
the objective function is inexpensive. Constraints can be taken into account by removing
sampling points which lie outside of the feasible domain. The final local search step is
done by a quasi-Newton algorithm (unconstrained) or a sequential quadratic programming
algorithm [Sp]. The latter was used to handle nonlinear constraints near the boundary of
the feasible domain.

(Ave. Crit.: 75%)
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(a) FE simulation using 6400 elements (b) numerical relaxation using
R1W

Figure 12. 1st order laminar microstructure, contour: plastic slip γ, macro-
scopic properties are recovered by relaxation method

9.5. Recovery of Macroscopic Properties. Figure 12b shows the result of a numerical
relaxation for the simple shear problem described above. The corresponding finite element
solution is given in Fig. 12a. Note that Fig. 12a was computed with a finite element mesh
consisting of 6400 quadrilateral elements consisting of altogether 4*6400 material points,
whereas Fig. 12b is obtained at a single material point. The direction and distribution of
the laminates can be computed from the optimization variables λ, ρ, α, and β. We like to
point out that the relaxed energy approach predicts the volume fractions and the interface
orientation but does not predict the number of laminates unless a phase boundary energy is
included.

9.6. Evolution of Higher-Order Laminates. Figure 13a shows the evolution of the vol-
ume fraction λ for the first order laminate. At each timestep the initial internal parameters
γ0 = p0 = 0 had been used, what corresponds to an algorithm with a single–step update
of the internal variables. Initially, the material is in a homogeneous elastic state. Then a
plastic phase shows up and grows until it reaches 50% volume fraction. At that state the
remaining elastic phase becomes plastic, too, but with an opposite plastic slip. Both plastic
phases then progress with slowly varying volume fractions. A detailed inspection of the
corresponding stress–strain diagram (Fig. 14a) reveals that the stress curve has a slightly
negative slope for shear deformations beween 0.0 and 0.1. This indicates an unstable be-
havior and may be caused by an unsatisfying result of the relaxation algorithm using first
order laminates. Indeed, solving the problem with second order laminates being enabled
removes the unsatisfactory negative stress slope: Now, a N = 3–type laminate shows up in
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Figure 13. Volume fractions λ, usage of second–order laminates gives signif-
icantly different results

the first stage of the deformation, comprising an elastic state and a mixture of two opposite–
slip plastic states, (Fig. 13b). The volume fraction of the elastic phase starts at 100% and
then decreases continuously until it vanishes at a deformation of 0.13. The further process
coincides with the results of the first order laminate relaxation. Figure 14b,c compares the
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(b) FE simulation using 6400 ele-
ments, contour: plastic slip γ

(c) numerical relaxation using
R1

2W

Figure 14. 2nd-order laminar microstructure, relaxation theory recovers
macroscopic properties, first-order laminates give too high energy and stresses

result of the 2nd order rank–one relaxation with the FE simulation. We observe that both
results coincide obviously. It is one of the advantages of the rank–one relaxation that not
only an approximate quasiconvex energy, but also information about the volume fraction
and shape of the microstructures is obtained.

9.7. Application of Two Numerical Relaxation Schemes to W red
γ0,p0

(F). For compari-
son we apply both numerical approximations introduced in Section 6 to the reduced potential
given in 9.5.

Using the algorithm of [Ba] we iteratively computed the approximation W pc
d,r(Fξ) (for

d = 1/16 and r = 4) of W pc(Fξ) and the approximation R1
2W (Fξ) of W rc(Fξ) for W = W red

γ0,p0
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and

Fξ =

(
1.0 ξ
0.0 1.0

)
with x = j 0.05 and j = 0, 1, ..., 50. Figure 15 (a) displays the the unrelaxed energy density
W (Fξ) and the approximations of the relaxed energies. We observe that W pc

d,r(Fξ) and

R1
2W (Fξ) almost coincide and significantly lower the energy. Therefore, we are tempted to

conclude that W pc(Fξ) = W rc(Fξ) and hence W qc(Fξ) = W pc(Fξ) = W rc(Fξ) for ξ ∈ [0, 2.5].
Figure 15 (b) also indicates good agreement of the first Piola–Kirchhoff shear stress obtained
from the two numerical relaxations.

It seems surprising that R1
2W (Fξ) leads to slightly smaller values than W pc

d,r(Fξ) since
there holds W pc(Fξ) ≤ W rc(Fξ). The relative difference is however less than 0.01% so that
we may assume that this discrepancy is only caused by discretization errors. Notice that
the error estimate given in [Ba] proves that |W pc

d,r(Fξ)−W pc(Fξ)| ≤ Cd2‖D2W‖L∞(Br(0)) and
that the discrete polyconvex envelope is a reliable upper bound for the exact polyconvex
envelope, i.e. W pc

d,r(Fξ) ≥ W pc(Fξ).
Although the approximate values of the relaxed energies almost coincide, the related Young

measures may differ significantly: For ξ = 0.1 we obtained the value

W pc
d,r(F0.1) =

∑
A∈Nd,r

λAW (A) = 13, 791.19

with convex coefficients (which are larger than 1.0E − 05) and gradients

λA1 = 0.1000, A1 =

(
1.1250 −0.0625
0.1875 0.8750

)
,

λA2 = 0.1250, A2 =

(
0.8125 0.3750
−0.1250 1.1875

)
,

λA3 = 0.0250, A3 =

(
0.7500 0.5000
−0.1250 1.2500

)
,

λA4 = 0.2750, A4 =

(
1.0625 0.0625
0.0000 0.9375

)
,

λA5 = 0.4750, A5 =

(
1.0000 0.0625
0.0000 1.0000

)
while the computation of R1

2W (F0.1) led to the approximation

R1
2W (F0.1) = 13, 790.53

where the volume fractions and gradients are given by

λA1 = 0.4789, A1 =

(
0.9853 0.1031
−0.0458 1.0096

)
,

λA21 = 0.2451, A21 =

(
0.8536 0.2570
−0.1066 1.1399

)
,

λA22 = 0.2760, A22 =

(
1.1554 −0.0447
0.1741 0.8591

)
,



EFFECTIVE RELAXATION FOR MICROSTRUCTURE SIMULATIONS 31

which constitutes a second order laminate. Notice that the value of the unrelaxed energy is

W (F0.1) = 13, 799.88

so that the difference between W pc
d,r(F0.1) and R1

2W (F0.1) is much smaller than the reduction
of the energy obtained by relaxation.
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Figure 15. Energy (a) and first Piola–Kirchhoff shear stress (b) plots for a
a simple shear deformation Fξ for the energy W red

γ0,p0
. Both plots show good

agreement of the two relaxation methods.

10. Outlook

This paper presents effective algorithms in relaxation theory for the modeling of mi-
crostructure evolution. For specific (convex) relaxed potentials a full error control is achieved
for numerical solutions of the associated boundary value problems. In more general situa-
tions numerical approximations of specific envelopes are calculated using different algorithms.
These are demonstrated to be accurate and efficient enough in order to solve realistic prob-
lems in continuum mechanics.

The field of numerical relaxation, however, is still in its infancy. This section reports here
on a a few pressing questions for future experimental and theoretical investigations.

10.1. Error Control in FEM for Non-Convex Minimization Problems. The error
control mentioned in this paper relies on the convex situation. In fact, for general polyconvex
materials, only weak convergence is known (and follows almost immediately from the direct
method of the calculus of variations). The only convergence estimate for global solutions
is for uniformly convex energy densities [CD]—far too restrictive to model a relaxed energy
density. This is a wide open and important field for further research.

10.2. Guaranteed Convergence of Effective Solution Algorithms. The positive result
of Theorem 4.1 on the convergence of a damped or stabilized Newton-Raphson scheme of
Section 4 is limited to the convex case as well. It is in fact essential to have sufficient
conditions for global convergence of an outer loop (e.g. from Algorithm 4).



32 S. BARTELS, C. CARSTENSEN, K. HACKL, AND U. HOPPE

10.3. Existence of Solutions in Time-Evolution Problems. A natural implicit time-
step discretization is known to allow for generalized solutions. The convergence for smaller
and smaller time-steps is less clear. Positive results for Young-measure-valued solutions are
reported in [Ri, CR]; the question of Sobolev-valued solutions remains open for non-monotone
hyperbolic systems.

10.4. Update of Microstructured Internal Variables. In Sections 8 and 9 we have
studied relaxations of the reduced potential W red

K0
(F), being able to predict the onset and

morphology of microstructures by the algorithms introduced. This, procedure, however,
makes sense only for a given single time-increment. At the beginning of the subsequent
increment, the internal variables K0 are now results of the relaxation performed in the
preceding time-increment. Thus they are given in the form Young-measures now, and it
is not clear how they should be updated. Let us now look into this problem a little more
closely, see also [Mi2] for mathematical details. Let the internal variables K be elements
of a measurable space K ∈ RM and let a probability-distribution of internal variables at
the beginning of the time-increment be given by a Young-measure µ0 ∈ YM(Ω,K), where
YM(Ω,K) denotes the set of all Young-measures on the domain Ω with values in K.

If µ1 ∈ YM(Ω,K) represents the probability-distribution at the end of the time-increment,
then 8.4 requires the total dissipation to be minimized by the transition from the first distri-
bution into the second one. This is mathematically expressed by the so–called Wasserstein–
distance

(10.1)
Dwass(µ0, µ1) = inf

{ ∫
K×K D(K0,K1) σ(dK0, dK1) :

σ ∈ YM(Ω,K ×K),
∫
K σ(·, dK1) = µ0,

∫
K σ(dK0, ·) = µ1

}
.

For a given µ ∈ YM(Ω,K) we define the cross-quasiconvex envelope by
(10.2)

W qc(F, µ) = inf
{ ∫

GL+(d)×K W (F̄,K) γ(dF̄, dK) : γ ∈ YM(Ω, GL+(d)×K),

∫
K γ(·, dK) ∈ GYM(Ω, GL+(d)),

∫
GL+(d) γ(dF̄, ·) = µ,

∫
GL+(d)×K F̄ γ(dF̄, dK) = F

}
,

GYM(Ω, GL+(d)) denoting the set of all Gradient-Young-measures on the domain Ω with
values in GL+(d).

With this notation it is now possible to generalize the definition of reduced potential given
in 8.8 and the update-formula 8.9 in a canonical way to the measure-valued case. We obtain

(10.3) W red
µ0

(F) = inf
{

W qc(F, µ) + Dwass(µ0, µ) : µ ∈ YM(Ω,K)
}
,

and

(10.4) µ1 = arg inf
{

W qc(F, µ) + Dwass(µ0, µ) : µ ∈ YM(Ω,K)
}
.

By construction W red
µ0

(F) is quasiconvex. Hence, we are once again in the well-posed regime
concerning the associated boundary value problems. For the purpose of numerical imple-
mentation, of course, the general Young-measures above have to be replace by discrete con-
structions which mostly will have to rely on point-measures. One possible procedure could
involve the approximation of W qc(F, µ) by a cross-polyconvex envelope.
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10.5. Beyond Young-Measures. Even the approach outlined above has its limitations.
Young-measures essentially model probability-distributions, i.e. volume-ratios between dif-
ferent components. Some microstructures, however, require more information to be appro-
priately described, an example being evolving microcrack-fields in damage-mechanics, where
orientation plays a crucial role. A concept to capture such properties would be so-called
H-measures [T], defined by Fourier-expansions of deformation-fields; this is restricted to
quadratic potentials.
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