
Expansion in n−1 for percolation critical values
on the n-cube and Zn: the first three terms

Remco van der Hofstad∗ Gordon Slade†

December 22, 2003

Abstract

Let pc(Qn) and pc(Zn) denote the critical values for nearest-neighbour bond percolation
on the n-cube Qn = {0, 1}n and on Zn, respectively. Let Ω = n for G = Qn and Ω = 2n for
G = Zn denote the degree of G. We use the lace expansion to prove that for both G = Qn

and G = Zn,

pc(G) = Ω−1 + Ω−2 +
7
2
Ω−3 + O(Ω−4).

This extends by two terms the result pc(Qn) = Ω−1 + O(Ω−2) of Borgs, Chayes, van der
Hofstad, Slade and Spencer, and provides a simplified proof of a previous result of Hara and
Slade for Zn.

1 Main result

We consider bond percolation on Zn with edge set consisting of pairs {x, y} of vertices in Zn with
‖x−y‖1 = 1, where ‖w‖1 =

∑n
j=1 |wj| for w ∈ Zn. Bonds (edges) are independently occupied with

probability p and vacant with probability 1− p. We also consider bond percolation on the n-cube
Qn, which has vertex set {0, 1}n and edge set consisting of pairs {x, y} of vertices in {0, 1}n with
‖x− y‖1 = 1, where we regard Qn as an additive group with addition component-wise modulo 2.
Again bonds are independently occupied with probability p and vacant with probability 1−p. We
write G in place of Qn and Zn when we wish to refer to both models simultaneously. We write Ω
for the degree of G, so that Ω = 2n for Zn and Ω = n for Qn.

For the case of Zn, the critical value is defined by

pc(Zn) = inf{p : ∃ an infinite connected cluster of occupied bonds a.s.}. (1.1)

Given a vertex x of G, let C(x) denote the connected cluster of x, i.e., the set of vertices y such
that y is connected to x by a path consisting of occupied bonds. Let |C(x)| denote the cardinality
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of C(x), and let χ(p) = Ep|C(0)| denote the expected cluster size of the origin. Results of [1, 20]
imply that

pc(Zn) = sup{p : χ(p) < ∞}. (1.2)

is an equivalent definition of the critical value.
For percolation on a finite graph G, such as Qn, the above characterizations of pc(G) are

inapplicable. In [8, 9, 10] (in particular, see [10]), it was shown that there is a small positive
constant λ0 such that the critical value pc(Qn) = pc(Qn; λ0) for the n-cube is defined implicitly by

χ(pc(Qn)) = λ02
n/3. (1.3)

Given λ0, (1.3) uniquely specifies pc(Qn), since χ(p) is a polynomial in p that increases from
χ(0) = 1 to χ(1) = 2n.

Our main result is the following theorem.

Theorem 1.1. (i) For G = Zn,

pc(Zn) =
1

2n
+

1

(2n)2
+

7

2

1

(2n)3
+ O

( 1

(2n)4

)
as n →∞. (1.4)

(ii) For Qn, fix constants c, c′ independent of n, and choose p such that χ(p) ∈ [cn3, c′n−62n] (e.g.,
p = pc(Qn; λ0)). Then

p =
1

n
+

1

n2
+

7

2

1

n3
+ O

( 1

n4

)
as n →∞. (1.5)

The constant in the error term depends on c, c′, but does not depend otherwise on p.

By Theorem 1.1, the expansions of pc(G) in powers of Ω−1 are the same for Qn and Zn, up to
and including order Ω−3. Higher order coefficients could be computed using our methods, but the
labour cost increases sharply with each subsequent term. Although we stop short of computing
the coefficient of Ω−4, we expect that the coefficients for Qn and Zn will differ at this order. In
[18], for both Qn and Zn, we prove the existence of asymptotic expansions for pc(G) to all orders
in Ω−1, without computing the numerical values of the coefficients.

ForQn, it was shown by Ajtai, Komlós and Szemerédi [3] that pc(Qn) > n−1(1+ε) for every fixed
ε > 0 (although the above definition of pc(Qn) did not appear until [8]). Bollobás, Kohayakawa

and ÃLuczak [7] improved this to pc(Qn) ∈ [1−e−o(n)

n−1
, 1

n
+ 60 (log n)3

n2 ]. Theorem 1.1 extends the very
recent result pc(Qn) = n−1 + O(n−2) of [8, 9] by two terms. Bollobás, Kohayakawa and ÃLuczak [7]
raised the question of whether the critical value might be equal to 1

n−1
, but we see from (1.5) that

pc(Qn) = 1
n−1

+ 5
2
n−3 + O(n−4).

For Zn, Theorem 1.1 is identical to a result of Hara and Slade [16, 17]. Earlier, Bollobás
and Kohayakawa [6], Gordon [13], Kesten [19] and Hara and Slade [15] obtained the first term
in (1.4) for Zn with error terms O((log n)2n−2), O(n−65/64), O((log log n)2(n log n)−1) and O(n−2),
respectively. Recently, Alon, Benjamini and Stacey [4] gave an alternate proof that pc(Zn) is
asymptotic to (2n)−1 as n →∞. The expansion

pc(Zn) =
1

2n
+

1

(2n)2
+

7

2(2n)3
+

16

(2n)4
+

103

(2n)5
+ · · · (1.6)
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was reported in [12], but with no rigorous bound on the remainder.
We remark that for oriented percolation on Zn, defined in such a way that the forward degree

is n, it was proved in [11] that the critical value obeys the bounds

1

n
+

1

2

1

n3
+ o

(
1

n3

)
≤ pc(oriented Zn) ≤ 1

n
+

1

n3
+ O

(
1

n4

)
. (1.7)

Our method is based on the lace expansion and applies the general approach of [16, 17] that
was used to prove Theorem 1.1(i) for Zn, but our method here is simpler and applies to Zn and
Qn simultaneously.
Remark. For Qn, it is a direct consequence of [18, Proposition 1.2] that if there is some sequence
p (depending on n) with χ(p) ∈ [cn3, c′n−62n] such that p = n−1 + n−2 + 7

2
n−3 + O(n−4), then

the same asymptotic formula holds for all such p. Thus it suffices to prove (1.5) for a single such
sequence p. We fix some sequence fn such that limn→∞ fnn−M = ∞ for every positive integer
M and such that limn→∞ fne−αn = 0 for every α > 0. We define p̄ by χ(p̄) = fn, and observe
that eventually χ(p̄) ∈ [cn3, c′n−62n]. For G = Qn, it therefore suffices to prove that p̄ has the
expansion (1.5). We will use the notation

p̄c = p̄c(G) =





p̄ (G = Qn),

pc(Zn) (G = Zn).
(1.8)

2 Application of the lace expansion

For Qn or Zn with n large, the lace expansion [15] gives rise to an identity

χ(p) =
1 + Π̂p

1− Ωp[1 + Π̂p]
, (2.1)

where Π̂p is a function that is finite for p ≤ pc(G). Although we do not display the dependence

explicitly in the notation, Π̂p does depend on the graph Qn or Zn. The identity (2.1) is valid for
p ≤ pc(G). For a derivation of the lace expansion, see, e.g., [9, Section 3]. It follows from (2.1)
that

Ωp =
1

1 + Π̂p

− χ(p)−1. (2.2)

The function Π̂p has the form

Π̂p =
∞∑

N=0

(−1)N Π̂(N)

p , (2.3)

with (recall (1.8))

|Π̂(N)

p | ≤
(

C

Ω

)N∨1

uniformly in p ≤ p̄c. (2.4)

For Qn, the formula (2.1) and the bounds (2.4) are given in [9, (6.1)] and [9, Lemma 5.4], re-
spectively (with our Π̂p written as Π̂p(0)). In more detail, [9, Lemma 5.4] states that Π̂(N)

p ≤
[const(λ3 ∨ β)]N∨1, where λ = χ(p)2−n/3 ≤ fn2−n/3 for p ≤ p̄c(Qn). By definition, fn2−n/3 is
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exponentially small in n. In addition, it is shown in [9, Proposition 2.1] that β can be chosen
proportional to n−1. It follows from (2.2) that

np̄c(Qn) =
1

1 + Π̂p̄c(Qn)

+ O(f−1
n ). (2.5)

The second term on the right hand side of (2.5) can be neglected in the proof of Theorem 1.1.
Equations (2.3)–(2.5) give p̄c(Qn) = n−1 + O(n−2).

For Zn, (2.1) and (2.4) follow from results in [15, Section 4.3.2]. (Note the notational difference
that in [15] what we are calling here Π̂(N)

p is called ĝN(0) and that Π̂(N)
p in [15] is something different.)

Since χ(pc(Zn)) = ∞, it follows from (2.2) that

2npc(Zn) =
1

1 + Π̂pc(Zn)

. (2.6)

With (2.3)–(2.4), this implies that pc(Zn) = (2n)−1 + O(n−2).
The identities (2.5) and (2.6) give recursive equations for p̄c. To prove Theorem 1.1 using this

recursion, we will apply the following proposition. In its statement, we write

Ω′ =





n− 1 for Qn

2n− 2 for Zn.
(2.7)

Proposition 2.1. For G = Zn and G = Qn, uniformly in p ≤ p̄c(G),

Π̂(0)

p =
3

2
ΩΩ′p4 + O(Ω−3), (2.8)

Π̂(1)

p = Ωp2 + 4ΩΩ′p4 + O(Ω−3), (2.9)

Π̂(2)

p = Ωp3 + Ω(Ω− 1)p4 + O(Ω−3), (2.10)
∞∑

N=3

Π̂(N)

p = O(Ω−3). (2.11)

We show now that Proposition 2.1 implies Theorem 1.1. It follows from Ωp̄c(G) = 1 + O(Ω−1)
(as noted below (2.5) and (2.6)), (2.3), and Proposition 2.1 that

Π̂p̄c(G) = − 1

Ω
+ O(Ω−2). (2.12)

With (2.5)–(2.6), this implies that

Ωp̄c(G) = 1 +
1

Ω
+ O(Ω−2). (2.13)

Using this in the bounds of Proposition 2.1, along with (2.3), gives

Π̂p̄c(G) =
3

2Ω2
− Ω(

1

Ω
+

1

Ω2
)2 − 4

Ω2
+

1

Ω2
+

1

Ω2
+ O(Ω−3)

= − 1

Ω
− 5

2Ω2
+ O(Ω−3). (2.14)
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Substitution of this improvement of (2.12) into (2.5)–(2.6) then gives

Ωp̄c(G) = 1 +
1

Ω
+

7

2Ω2
+ O(Ω−3). (2.15)

Thus, to prove Theorem 1.1, it suffices to prove Proposition 2.1. Since (2.11) is a consequence
of (2.4), we must prove (2.8)–(2.10). Precise definitions of Π̂(N)

p , for N = 0, 1, 2, will be given in
Section 4.

3 Preliminaries

Before proving Proposition 2.1, we recall and extend some estimates from [9, 15].
Let D(x) = Ω−1 if x is adjacent to 0, and D(x) = 0 otherwise. Thus D(y− x) is the transition

probability for simple random walk on G to make a step from x to y. Let τp(y − x) = Pp(x ↔ y)
denote the two-point function. For i ≥ 0, we denote by

{x ←−→
i

y} (3.1)

the event that x is connected to y by an occupied (self-avoiding) path of length at least i, and
define

τ (i)

p (x, y) = P(x ←−→
i

y). (3.2)

We define the Fourier transform of an absolutely summable function f on the vertex set V of
G by

f̂(k) =
∑

x∈V
f(x)eik·x (k ∈ V∗), (3.3)

where V∗ = {0, π}n for Qn and V∗ = [−π, π]n for Zn. We write the inverse Fourier transform as

f(x) =
∫

f̂(k)e−ik·x, (3.4)

where we use the convenient notation

∫
ĝ(k) =





2−n ∑
k∈{0,π}n ĝ(k) (G = Qn)

∫
[−π,π]n ĝ(k) dnk

(2π)n (G = Zn).
(3.5)

Let
(f ∗ g)(x) =

∑

y∈V
f(y)g(x− y) (3.6)

denote convolution, and let f ∗i denote the convolution of i factors of f .
Recall from [2] that τ̂p(k) ≥ 0 for all k. For i, j non-negative integers, let

T (i,j)

p =
∫
|D̂(k)|iτ̂p(k)j, (3.7)

Tp = sup
x

(pΩ)(D ∗ τ ∗3p )(x). (3.8)

We will use the following lemma, which provides minor extensions of results of [9, 15]. The lemma
will also be useful in [18].
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Lemma 3.1. For G = Zn and G = Qn, there are constants Ki,j and K such that for all p ≤ p̄c(G),

T (i,j)

p ≤ Ki,jΩ
−i/2 (i, j ≥ 0), (3.9)

Tp ≤ KΩ−1, (3.10)

sup
x

τ (i)

p (x) ≤




KΩ−1 (i = 1)

2iKi,1Ω
−i/2 (i ≥ 2).

(3.11)

The above bounds are valid for n ≥ 1 for Qn, and for n larger than an absolute constant for Zn,
except (3.9) also requires n ≥ 2j + 1 for Zn.

Proof. We prove the bounds (3.9)–(3.11) in sequence.

Proof of (3.9). We first prove that for Zn and Qn, and for positive integers i, there is a positive
ai such that ∫

D̂(k)2i ≤ ai

Ωi
. (3.12)

The left side is equal to the probability that a random walk that starts at the origin returns to
the origin after 2i steps, and therefore is equal to Ω−2i times the number of walks that make the
transition from 0 to 0 in 2i steps. Each such walk must take an even number of steps in each
coordinate direction, so it must lie within a subspace of dimension ` ≤ min{i, n}. If we fix the
subspace, then each step in the subspace can be chosen from at most 2` different directions (for
Qn, from ` directions). Thus, there are at most (2`)2i walks in the subspace. Since the number of

subspaces of fixed dimension ` is given by
(

n
`

)
≤ n`/`!, we obtain the bound

i∑

`=1

1

`!
n`(2`)2i ≤ nii2i

i∑

`=1

1

`!
22i (3.13)

for the number of walks that make the transition from 0 to 0 in 2i steps. Multiplying by Ω−2i to
convert the number of walks into a probability leads to (3.12). This proves (3.9) for j = 0, so we
take j ≥ 1.

Fix an even integer s = s(j) such that t = s/(s− 1) obeys jt < j + 1
2
. By Hölder’s inequality,

T (i,j)

p ≤
(∫

D̂(k)is
)1/s (∫

τ̂p(k)jt
)1/t

. (3.14)

By (3.12), it suffices to show that
∫

τ̂p(k)jt is bounded by a constant depending on j. We give
separate arguments for this, for Zn and Qn.

For Zn, the infrared bound [15, (4.7)] implies that τ̂p(k) ≤ 2[1 − D̂(k)]−1 for sufficiently large
n, uniformly in p ≤ pc(Zn). Thus,

∫
τ̂p(k)jt ≤ 2jt

∫ 1

[1− D̂(k)]jt
. (3.15)

For A > 0 and m > 0,
1

Am
=

1

Γ(m)

∫ ∞

0
um−1e−uAdu, (3.16)
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so that ∫ 1

[1− D̂(k)]jt
=

1

Γ(jt)

∫ ∞

0
du ujt−1

( ∫ π

−π
e−un−1(1−cos θ) dθ

2π

)n

. (3.17)

The right side is non-increasing in n, since ‖f‖p ≤ ‖f‖q for 0 < p ≤ q ≤ ∞ on a probability space.
Since

1− D̂(k) =
n∑

j=1

(1− cos kj) ≥ 2

π2

|k|2
n

, (3.18)

and since 2jt < 2j + 1, the integral on the left hand side of (3.17) is finite when n = 2j + 1. This
completes the proof for Zn.

For Qn, we use the fact that τ̂p(0) = χ(p) to see that

∫
τ̂p(k)jt = 2−nχ(p)jt + 2−n

∑

k∈{0,π}n:k 6=0

τ̂p(k)jt. (3.19)

The first term on the right hand side is at most 2−nχ(p̄c(Qn))jt = 2−nf jt
n , which is exponentially

small. For the second term, we recall from [9, Theorem 6.1] that τ̂p(k) ≤ [1+O(n−1)][1− D̂(k)]−1,
so it suffices to prove that

2−n
∑

k∈{0,π}n:k 6=0

1

[1− D̂(k)]jt
(3.20)

is bounded uniformly in n ≥ 1.
For this, we let m(k) denote the number of nonzero components of k. We fix an ε > 0 and

divide the sum according to whether m(k) ≤ εn or m(k) > εn. An elementary computation
(see [9, Section 2.2.1]) gives 1 − D̂(k) = 2m(k)/n. Therefore, the contribution to (3.20) due to
m(k) > εn is bounded by a constant depending only on ε and j. On the other hand, for k 6= 0,
we use 1− D̂(k) = 2m(k)/n ≥ 2/n to see that

2−n
∑

k∈{0,π}n:0<m(k)≤εn

1

[1− D̂(k)]jt
≤ 2−jtnjt2−n

∑

k∈{0,π}n:0<m(k)≤εn

1

= 2−jtnjt2−n
εn∑

m=1

(
n

m

)

≤ 2−jtnjtP(X ≤ εn), (3.21)

where X is a binomial random variable with parameters (n, 1/2). Since E[X] = n/2, the right side
of (3.21) is exponentially small in n as n → ∞ if we choose ε < 1

2
, by standard large deviation

bounds for the binomial distribution (see, e.g., [5, Theorem A.1.1]). This completes the proof for
Qn.

Proof of (3.10). We repeat the argument of [9, Lemma 5.5] for Qn, which applies verbatim for Zn.
It follows from the BK inequality that if x 6= 0 then

τp(x) ≤ pΩ(D ∗ τp)(x). (3.22)

Using this, we conclude that

pΩ(D ∗ τ ∗3p )(x) ≤ pΩD(x) + 3(pΩ)2(D∗2 ∗ τ ∗3p )(x), (3.23)
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where the first term is the contribution where each of the three two-point functions τp(u) in τ ∗3p

is evaluated at u = 0, and the second term takes into account the case where at least one of the
three displacements is nonzero. Since p ≤ p̄c = Ω−1 + O(Ω−2) ≤ 2Ω−1 for large Ω, this gives

Tp ≤ 2Ω−1 + 12T (2,3)

p ≤ (2 + 12K2,3)Ω
−1 = KΩ−1, (3.24)

where in the first inequality we used (3.4) to rewrite the second term of (3.23).

Proof of (3.11). For i ≥ 1, the BK inequality can be applied as in the proof of (3.22) to obtain

τ (i)

p (x) ≤ (pΩ)i(D∗i ∗ τp)(x). (3.25)

It follows from (3.4) and (3.25) that

sup
x

τ (i)

p (x) ≤ sup
x

(pΩ)i
∫

D̂(k)iτ̂p(k)e−ik·x ≤ (pΩ)iT (i,1)

p ≤ 2iKi,1Ω
−i/2, (3.26)

where we have used the fact that pΩ ≤ 2 for Ω sufficiently large. For i = 1, this can be improved
by observing that, for Ω sufficiently large,

τ (1)

p (x) ≤ pΩD(x) + τ (2)

p (x) ≤ 2Ω−1 + 2K2,1Ω
−1. (3.27)

4 Proof of Proposition 2.1

We now complete the proof of Proposition 2.1, by proving (2.8), (2.9), (2.10) in Sections 4.1, 4.2,
4.3, respectively. Throughout this section we fix p ≤ p̄c(G).

4.1 Expansion for Π̂(0)

p

Given a configuration, we say that x is doubly connected to y, and we write x ⇔ y, if x = y or if
there are at least two bond-disjoint paths from x to y consisting of occupied bonds. For ` ≥ 4, an
`-cycle is a set of bonds that can be written as {{vi−1, vi}}1≤i≤` with v` = v0 and otherwise vi 6= vj

for i 6= j, and a cycle is an `-cycle for some ` ≥ 4. By definition,

Π̂(0)

p =
∑

x 6=0

Pp(0 ⇔ x) =
∑

x6=0

Pp(∃ occupied cycle containing 0, x). (4.1)

We decompose the summand into (a) the probability that there exists an occupied 4-cycle contain-
ing 0, x, plus (b) the probability that there exists an occupied cycle of length at least 6 containing
0, x and no occupied 4-cycle containing 0, x.

The contribution to Π̂(0)
p due to (a) is bounded above by summing p4 over x 6= 0 and over

4-cycles containing 0, x. The number of 4-cycles containing 0 is 1
2
ΩΩ′, and each such cycle has

three possibilities for x. Therefore

contribution due to (a) ≤ 3

2
ΩΩ′p4. (4.2)
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For a lower bound, we apply inclusion-exclusion and subtract from this upper bound the sum of
p7 over x 6= 0 and over pairs of 4-cycles, each containing 0, x. In this case, x must be a neighbour
of 0, and p7 is the probability of simultaneous occupation of the two 4-cycles. There are order Ω3

such pairs of 4-cycles. Since we already know that p̄c(G) ≤ O(Ω−1), this gives

contribution due to (a) =
3

2
ΩΩ′p4 + O(Ω3p7) =

3

2
ΩΩ′p4 + O(Ω−4). (4.3)

For the contribution due to (b), we use Lemma 4.1 below. Given increasing events E, F , we use
the standard notation E ◦F to denote the event that E and F occur disjointly. Roughly speaking,
E ◦ F is the set of bond configurations for which there exist two disjoint sets of occupied bonds
such that the first set guarantees the occurrence of E and the second guarantees the occurrence
of F . The BK inequality asserts that P(E ◦ F ) ≤ P(E)P(F ), for increasing events E and F . (See
[14, Section 2.3] for a proof, and for a precise definition of E ◦ F .)

Lemma 4.1. Let p ≤ p̄c(G). Let Π(0,`)
p (x) denote the probability that there is an occupied cycle

containing 0, x, of length ` or longer. Then for ` ≥ 4 and for Ω sufficiently large (not depending
on `), ∑

x6=0

Π(0,`)

p (x) ≤ (`− 1)2`K`,2Ω
−`/2. (4.4)

Proof. Let ` ≥ 4, and suppose there exists an occupied cycle containing 0, x, of length ` or longer.
Then there is a j ∈ {1, . . . , ` − 1} such that {0 ←−→

j
x} ◦ {0 ←−−→

`−j
x} occurs. Therefore, by the BK

inequality,

Π(0,`)

p (x) ≤
`−1∑

j=1

τ (j)

p (x)τ (`−j)

p (x). (4.5)

By (3.25), by the fact that pΩ ≤ 2 for Ω sufficiently large, and by (3.9), it follows that

∑

x6=0

Π(0,`)

p (x) ≤ (`− 1)2`(D∗` ∗ τ ∗2p )(0) ≤ (`− 1)2`T (`,2)

p ≤ (`− 1)2`K`,2Ω
−`/2, (4.6)

as required.
The contribution due to case (b) is therefore at most

∑
x6=0 Π(0,6)

p (x) ≤ O(Ω−3), and hence

Π̂(0)

p =
3

2
ΩΩ′p4 + O(Ω−3), (4.7)

which proves (2.8).

4.2 Expansion for Π̂(1)

p

To define Π̂(1)
p , we need the following definitions.

Definition 4.2. (i) Given a bond configuration, vertices x, y, and a set A of vertices of G, we say

x and y are connected through A, and write x
A↔ y, if every occupied path connecting x to y has

at least one bond with an endpoint in A.
(ii) Given a bond configuration, and a bond b, we define C̃b(x) to be the set of vertices connected
to x in the new configuration obtained by setting b to be vacant.
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(iii) Given a bond configuration and vertices x, y, we say that the directed bond (u, v) is pivotal for
x ↔ y if (a) x ↔ y occurs when the bond {u, v} is set occupied, and (b) when {u, v} is set vacant
x ↔ y does not occur, but x ↔ u and v ↔ y do occur. (Note that there is a distinction between
the events {(u, v) is pivotal for x ↔ y} and {(v, u) is pivotal for x ↔ y} = {(u, v) is pivotal for
y ↔ x}.)

Let

E ′(v, x; A) = {v A↔ x} ∩ {6 ∃ pivotal (u′, v′) for v ↔ x s.t. v
A↔ u′}. (4.8)

We will refer to the “no pivotal” condition of the second event on the right hand side of (4.8) as
the “NP” condition.

By definition,

Π̂(1)

p =
∑
x

p
∑

(u,v)

E0

[
I[0 ⇔ u]P1(E

′(v, x; C̃(u,v)
0 (0)))

]
, (4.9)

where the sum over (u, v) is a sum over directed bonds. On the right hand side, the cluster C̃
(u,v)
0 (0)

is random with respect to the expectation E0, so that C̃
(u,v)
0 (0) should be regarded as a fixed set

inside the probability P1. The latter introduces a second percolation model which depends on the
original percolation model via the set C̃

(u,v)
0 (0). We use subscripts for C̃ and the expectations,

to indicate to which expectation C̃ belongs, and refer to the bond configuration corresponding to
expectation j as the “level-j” configuration. We also write Fj to indicate an event F at level-j.
Then (4.9) can be written as

Π̂(1)

p =
∑
x

p
∑

(u,v)

P(1)
[
{0 ⇔ u}0 ∩ E ′(v, x; C̃(u,v)

0 (0))1

]
, (4.10)

where P(1) represents the joint expectation of the percolation models at levels-0 and 1.
We begin with a minor extension of a standard estimate for Π̂(1)

p (see [9, Section 4] for related

discussion with our present notation). Making the abbreviation C̃0 = C̃
(u,v)
0 (0), we may insert

within the square brackets on the right hand side of (4.10) the disjoint union

(
{u = 0} ∩ {x ∈ C̃0}

) •⋃ (
{u = 0} ∩ {x 6∈C̃0}

) •⋃ {u 6= 0}. (4.11)

The first term is the leading term and the other two produce error terms.
We first show that the term {u 6= 0} produces an error term. We define the events

F0(0, u, w, z) = {0 ↔ u} ◦ {0 ↔ w} ◦ {w ↔ u} ◦ {w ↔ z}, (4.12)

F1(v, t, z, x) = {v ↔ t} ◦ {t ↔ z} ◦ {t ↔ x} ◦ {z ↔ x}. (4.13)

Note that F1(v, t, z, x) = F0(x, z, t, v). Recalling the definition of {x ←−→
j

y} from (3.1), we also

define

F (j)

0 (0, u, w, z) =
⋃

j1+j2+j3=j

{0 ←−→
j1

u} ◦ {0 ←−→
j2

w} ◦ {w ←−→
j3

u} ◦ {w ↔ z}, (4.14)

F (j)

1 (v, t, z, x) =
⋃

j1+j2+j3=j

{v ↔ t} ◦ {t ←−→
j1

z} ◦ {t ←−→
j2

x} ◦ {z ←−→
j3

x}. (4.15)
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For u 6= 0, it can be seen from the fact that u and 0 are in a level-0 cycle of length at least 4
that

{0 ⇔ u 6= 0}0 ∩ E ′(v, x; C̃0)1 ⊂
⋃

t,w,z

(
F (4)

0 (0, u, w, z)0 ∩ F1(v, t, z, x)1

)
, (4.16)

and hence this contribution to Π̂(1)
p is at most

p
∑

x,(u,v),t,w,z

Pp(F
(4)

0 (0, u, w, z))Pp(F1(v, t, z, x)). (4.17)

Let

A3(t, z, x) = τp(x− t)τp(z − t)τp(z − x), (4.18)

A(j)

3 (t, z, x) =
∑

j1+j2+j3=j

τ (j1)

p (x− t)τ (j2)

p (z − t)τ (j3)

p (z − x), (4.19)

B1(w, u, z, t) = (pΩD ∗ τp)(t− u)τp(z − w). (4.20)

By the BK inequality, (4.17) is at most

∑
u,w

A(4)

3 (0, u, w)
∑

t,z

B1(w, u, z, t)
∑
x

A3(t, z, x). (4.21)

Replacing w, z, t, x by w = w′ + u, z = z′ + u, t = t′ + u, x = x′ + u, and using symmetry, this is
equal to

∑

u,w′
A(4)

3 (0, u, w′)
∑

t′,z′
B1(w

′, 0, z′, t′)
∑

x′
A3(t

′, z′, x′). (4.22)

We note that B1(w
′, 0, z′, t′) = B1(−t′,−t′, z′ − w′ − t′, 0), and set z′′ = z′ − t′, x′′ = x′ − t′ and

then t′′ = −t′ to rewrite (4.22) as

∑

u,w′
A(4)

3 (0, u, w′)
∑

t′′,z′′
B1(t

′′, t′′, z′′ − w′, 0)
∑

x′′
A3(0, z

′′, x′′)

≤

∑

u,w′
A(4)

3 (0, u, w′)




(
sup

a

∑

t′′
B1(t

′′, t′′, a, 0)

) 
 ∑

z′′,x′′
A3(0, z

′′, x′′)


 . (4.23)

By (3.8) and the fact that τp(u) ≤ (τp ∗ τp)(u),

sup
a

∑

t′′
B1(t

′′, t′′, a, 0) = sup
a

(pΩD ∗ τp ∗ τp)(a) ≤ Tp. (4.24)

Also, ∑

z′′,x′′
A3(0, z

′′, x′′) = (τp ∗ τp ∗ τp)(0) = T (0,3)

p , (4.25)

and, using (3.25) and pΩ ≤ 2,

∑

u,w′
A(4)

3 (0, u, w′) =
∑

j1+j2+j3=4

(τ (j1)

p ∗ τ (j2)

p ∗ τ (j3)

p )(0) ≤ O(T (4,3)). (4.26)
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0 v

x1

0

Figure 1: Depiction of the event appearing in (4.28). Line 0 corresponds to a connection in level-0
and line 1 to a connection in level-1.

Therefore, (4.23) is bounded above by O(T (4,3)
p TpT

(0,3)
p ), which is O(Ω−3) by (3.9) and (3.10).

Similarly, an upper bound O(Ω−3) can be obtained for the contribution due to {u = 0}∩{x 6∈C̃0},
starting from the observation that

{u = 0} ∩ {x 6∈C̃0} ∩ E ′(v, x; C̃0)1 ⊂
⋃

t,w,z:z 6=x

(
F0(0, 0, 0, z)0 ∩ F (4)

1 (v, t, z, x)1

)
. (4.27)

The inclusion (4.27) follows from the fact that if x 6∈C̃0, then to obtain a non-zero contribution to
P1(E

′(v, x; C̃0)), x must be in a level-1 occupied cycle of length at least 4 which contains a vertex
z ∈ C̃0.

We are left to consider the leading term

∑
x

p
∑

(0,v)

P(1)
(
{x ∈ C̃(0,v)

0 (0)} ∩ E ′(v, x; C̃(0,v)
0 (0))1

)
. (4.28)

See Figure 1 for a depiction of the event appearing in (4.28).
The event in (4.28) is a subset of the event {x ∈ C̃0} ∩ {v ↔ x}1. Thus, either there is a

level-0 connection from 0 to x (not using the bond {0, v}0) of length `0 and a level-1 connection
from v to x of length `1, with `0 + `1 ≤ 4, or {0 ←−→

i0
x}0 ∩ {v ←−→

i1
x}1 occurs with i0 + i1 = 5.

This decomposition is not disjoint, as the latter possibility does not imply that the former does
not occur, but this is fine for an upper bound. By (3.25) and (3.9), the contribution due to the
latter case is bounded above by

5∑

i0=0

∑
x

p
∑

(0,v)

τ (i0)

p (x)τ (5−i0)

p (x− v) =
5∑

i0=0

(pΩD ∗ τ (i0)

p ∗ τ (5−i0)

p )(0)

≤ 6(pΩ)6T (6,2)

p = O(Ω−3), (4.29)

so this is an error term.
Since v and 0 have opposite parity, if there is a level-0 connection from 0 to x of length `0 and

a level-1 connection from v to x of length `1, then `0 + `1 must be odd. Thus, we are left to deal
with the cases `0 + `1 = 1 and `0 + `1 = 3, and we consider these separately.

Case that `0 + `1 = 1. If `1 = 0, then x = v ∈ C̃
(0,v)
0 (0), which forces `0 ≥ 3. This is inconsistent

with `0 + `1 = 1 and therefore need not be considered here. We may therefore assume that `0 = 0
and `1 = 1, so that x = 0, {0, v}1 is occupied, and, to satisfy the NP condition of (4.8), v 6∈C̃

(0,v)
0 (0).

We use inclusion-exclusion on the latter, writing

I[v 6∈C̃(0,v)
0 (0)] = 1− I[v ∈ C̃(0,v)

0 (0)]. (4.30)
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The first term contributes
p

∑

(0,v)

p = Ωp2. (4.31)

The second term requires a level-0 connection from 0 to v of length 3 or more, which has probability
τ (3)
p (v), so that by (3.25) and (3.9), the second term contributes

p
∑

(0,v)

pτ (3)

p (v) = p(pΩ)(D ∗ τ (3)

p )(0) ≤ p(pΩ)4T (4,1) = O(Ω−3), (4.32)

and hence is an error term. Thus, the case `0 + `1 = 1 contributes

Ωp2 + O(Ω−3). (4.33)

Case that `0 + `1 = 3. There are four possibilities: `1 = 0, 1, 2, 3. If `1 = 0 then x = v, the NP
condition is trivially satisfied, and there is an occupied level-0 path from 0 to v of length 3. This
contribution is

ΩΩ′p4 + O(Ω3p7) = ΩΩ′p4 + O(Ω−4), (4.34)

where we have used inclusion-exclusion in a manner similar to that of the argument around (4.2)–
(4.3). In more detail, the first term in (4.34) accounts for the sum of the probability of an
occupied level-0 path of length 3 from 0 to v, while the second term accounts for overcounting due
to simultaneous occupation of more than one such path.

For `1 = 1, 2, 3, we note that

{x ∈ C̃0} ∩ E ′(v, x; C̃0)1 = {x ∈ C̃0} ∩ {v ↔ x}1 ∩ NP, (4.35)

and use I[NP] = 1− I[NPc], to conclude that

I[x ∈ C̃0]I[E ′(v, x; C̃0)1] = I[x ∈ C̃0]I[{v ↔ x}1]− I[x ∈ C̃0]I[{v ↔ x}1]I[NPc]. (4.36)

We first consider the first term on the right hand side of (4.36). In the following, we write e to
denote a neighbour of 0 that is not ±v, and which will ultimately be summed over. We again apply
an inclusion-exclusion argument similar to that used for (4.34), but do not discuss its details.

The case `1 = 1 corresponds to `0 = 2, so that x = v + e, with the three bonds {0, e}0, {e, x}0,
{x, v}1 each occupied. This contributes ΩΩ′p4. Note that in the related configuration in which
{0, v}0, {v, x}0, {x, v}1 are each occupied, the level-0 path {0, v}0, {v, x}0 from 0 to x uses the
bond {0, v}0, and therefore need not be considered. For Zn, the configuration with x = 2v and
with {0, v}0, {v, 2v}0, {v, 2v}1 each occupied need not be considered for the same reason. (Also,
it contributes O(Ωp4) = O(Ω−3) which is an error term.)

The case `1 = 2 corresponds to `0 = 1, so that x = e, either with the three bonds {0, x}0,
{x, x+v}1, {x+v, v}1 each occupied, or with the three bonds {0, x}0, {0, x}1, {0, v}1 each occupied.
This contributes 2ΩΩ′p4. For Zn, the configuration with x = −v and with {0,−v}0, {0, v}1,
{0,−v}1 each occupied contributes O(Ωp4) = O(Ω−3) and thus is an error term.

The case `1 = 3 corresponds to `0 = 0, so that x = 0, with the three bonds {0, e}1, {e, e + v}1,
{e + v, v}1 each occupied. This contributes ΩΩ′p4.

In summary, the first term on the right hand side of (4.36), with `1 = 1, 2, 3, contributes

5ΩΩ′p4 + O(Ω−3). (4.37)
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Next, we consider the effect of the second term in (4.36), for `1 = 1, 2, 3.
For `1 = 1, we have seen above that, to leading order, {0, e}0, {e, x}0, {x, v}1 are each occupied.

The only possible pivotal bond for the level-1 connection from v to x is therefore (v, x)1, and thus
the failure of NP requires v ∈ C̃0. This requires a level-0 connection, disjoint from the bonds
{0, e}0 and {e, x}0, which joins either 0 to v, e to v, or x to v. This adds an additional factor
O(Ω−1) and hence produces an error term.

For `1 = 2, we have seen above that there are two cases to consider. Suppose first that
{0, x = e}0, {x, x + v}1, {x + v, v}1 are each occupied. The only possible pivotal bonds for the
level-1 connection from v to x are (v, x + v)1 and (x + v, x)1. Violation of NP therefore requires
either (v, x + v)1 is pivotal and v ∈ C̃0, or (x + v, v)1 is pivotal and x + v ∈ C̃0. In either of these
cases, the condition that C̃0 contain an additional vertex is a higher order effect and leads to an
error term O(Ω−3).

The remaining case for `1 = 2 has {0, x = e}0, {0, x}1, {0, v}1 each occupied. The only possible
pivotal bonds for the level-1 connection from v to x are (v, 0)1 and (0, x)1. Violation of NP therefore
requires either (v, 0)1 is pivotal and v ∈ C̃0, or (0, x)1 is pivotal and 0 ∈ C̃0. The first of these
cases leads to an error term as above. For the second case, 0 ∈ C̃0 is automatic, and inclusion-
exclusion applied to the requirement that (0, v)1 is pivotal leads to a net contribution for `1 = 2
of −ΩΩ′p4 + O(Ω−3).

Finally, we consider `1 = 3. In this case, x = 0, and {0, e}1, {e, e + v}1, {e + v, v}1 are each
occupied. The only possible violations of NP are: (v, v + e)1 is pivotal for the connection from
v to x = 0 and v ∈ C̃0, or (v + e, e)1 is pivotal and v + e ∈ C̃0, or (e, 0)1 is pivotal and e ∈ C̃0.
In any of these three cases, the condition that C̃0 must contain the additional vertex requires
extra connections that produce an error term O(Ω−3) overall, using reasoning analogous to that
employed above.

We have thus shown that the case `0 + `1 = 3 yields a net contribution

5ΩΩ′p4 − ΩΩ′p4 + O(Ω−3) = 4ΩΩ′p4 + O(Ω−3). (4.38)

In summary, combining (4.33) and (4.38), we have proved (2.9), namely

Π̂(1)

p = Ωp2 + 4ΩΩ′p4 + O(Ω−3). (4.39)

4.3 Expansion for Π̂(2)

p

By definition,

Π̂(2)

p =
∑
x

∑

(u0,v0)

∑

(u1,v1)

p2E0

[
I[0 ⇔ u0]E1

[
I[E ′(v0, u1; C̃0)]E2I[E ′(v1, x; C̃1)]

]]
, (4.40)

where we have made the abbreviations C̃0 = C̃
(u0,v0)
0 (0) and C̃1 = C̃

(u1,v1)
1 (v0). A standard estimate

for Π̂(2)
p is

0 ≤ Π̂(2)

p ≤ 2T (0,3)

p (TpT
(0,3)

p )2 (4.41)

(see, e.g., [9, Section 4.2]; one factor 2 in [9, Proposition 4.1] is easily dropped for N = 2). This
estimate arises from the upper bound for Π̂(2)

p depicted in Figure 2. The factor 2 is due to the fact
that there are two terms in the upper bound. The two factors Tp in each term arise from the two
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0 0+
x

x

u0 u0v0 v0

u1 u1v1 v1

Figure 2: The standard diagrams bounding Π(2)
p . All vertices other than 0 are summed over the

vertex set V of G, lines represent factors of τp, and vertical bars represent factors pΩD.

0 v0

x1 2

z

0

3

4

v1u1

Figure 3: Diagrammatic representation of the event (4.43). Line 0 corresponds to a connection in
level-0, lines 1, 2, 3 correspond to connections in level-1 and line 4 to a connection in level-2.

diagram loops containing lines with vertical bars, and the three factors T (0,3)
p arise from the other

three diagram loops.
We claim that contributions to Π̂(2)

p in which u0 6= 0, or u1 6∈C̃0, or x 6∈C̃1 produce an error term
of order O(Ω−4). This follows from routine estimates, along the lines of those used in Section 4.2
to conclude that we could assume there that u = 0 and x ∈ C̃0. These estimates, which we do
not write down here in detail, show for example that if u0 6= 0, then the factor T (0,3)

p , arising from
the leftmost diagram loop can be replaced by a constant multiple of T (4,3)

p . By (3.9) and (3.10),

this leads to a bound O(Ω−4), which is an error term. Similarly, if u1 6∈C̃
(0,v0)
0 (0), then the event

E ′(v0, u1; C̃
(0,v0)
0 (0)) requires that u1 must be in an occupied level-1 cycle of length at least 4. In

this case, we may again use standard estimates to replace a factor T (0,3)
p in (4.41), arising from the

diagram loop in Figure 2 containing u1, by a constant multiple of T (4,3)
p , and again this contribution

is O(Ω−4). Finally, the same situation arises when x 6∈C̃
(u1,v1)
0 (v0), in which case we can replace

the factor T (0,3)
p arising from the rightmost diagram loop by a constant multiple of T (4,3)

p , and again
this contribution is O(Ω−4). Thus, we are now left to analyze

∑
x

∑

(0,v0)

∑

(u1,v1)

p2P(2)

(
{u1 ∈ C̃0} ∩ {x ∈ C̃1} ∩ E ′(v0, u1; C̃0)1 ∩ E ′(v1, x; C̃1)2

)
, (4.42)

where we write P(2) for the joint probability of levels 0, 1 and 2. Let G denote the intersection of
events on the right hand side of (4.42).

The event G on the right hand side of (4.42) is contained in the event

{0 ↔ u1}0 ∩
⋃

z∈G

{
{v0 ↔ z} ◦ {z ↔ v1} ◦ {z ↔ x}

}
1
∩ {v1 ↔ x}2, (4.43)

which is depicted in Figure 3. For any choice of j0, j1, j2, j3, j4, a subset of (4.43) is the event

{0 ←−→
j0

u1}0 ∩
⋃

z∈G

{
{v0 ←−→

j1
z} ◦ {z ←−→

j2
v1} ◦ {z ←−→

j3
x}

}
1
∩ {v1 ←−→

j4
x}2. (4.44)
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Since v0 has odd parity, and since u1 and v1 have opposite parity, we may assume that j0 + j1 + j2

and j2 + j3 + j4 are both odd. If j0 + j1 + j2 ≥ 3, then a standard diagrammatic estimate gives
O(T (4,3)

p Tp) = O(Ω−3) for the contribution of (4.44). Similarly, if j2 + j3 + j4 ≥ 3, then again a
standard diagrammatic estimate gives an upper bound O(TpT

(4,3)
p ) = O(Ω−3). Note that if u1 6= 0,

then we may assume that j0 + j1 + j2 ≥ 3, which gives an error term.
Thus, we may assume that G occurs, that u1 = 0, and that there is a z such that the connections

of Figure 3 occur with lines of length `0 = 0, `1, `2, `3, `4, where

`1 + `2 = 1, (4.45)

`2 + `3 + `4 = 1. (4.46)

This gives three possibilities for (`0, `1, `2, `3, `4), namely

(0, 0, 1, 0, 0), (0, 1, 0, 1, 0), (0, 1, 0, 0, 1), (4.47)

and it suffices to compute the contribution from each of these cases.

Case of (0, 0, 1, 0, 0). In this case, u0 = u1 = 0, z = x = v1 = v0, and the bond {v0, u1}1 is occupied.
We examine the constraints imposed by the event G of (4.42). The events {u1 ∈ C̃0} and {x ∈ C̃1}
occur trivially. For the event E ′(v0, u1; C̃0)1, we note that {v0

C̃0↔ u1}1 = {v0
C̃0↔ 0}1 occurs.

Violation of the NP condition requires {0 ←−→
3

v0}0, and this contributes at most
∑

(0,v0) p3τ (3)
p (v0) ≤

p2(pΩ)4T (4,1) ≤ O(Ω−4). Thus, up to an error term, we may assume that E ′(v0, u1; C̃0)1 occurs.
Finally, the event E ′(v1, x; C̃1)2 occurs trivially, since v1 = x ∈ C̃1. This case contributes

Ωp3 + O(Ω−3). (4.48)

Case of (0, 1, 0, 1, 0). In this case, u1 = 0, z = u1, v1 = x. Also, the fact that x ∈ C̃1 implies that
there must be an occupied level-1 path from v0 to z = u1 to x = v1 that does not use the bond
(u1, v1)1. This implies that the event {u1 ←−→

3
v1}1 occurs, and hence this case contributes an error

term because it corresponds to (4.44) with j3 = 3.

Case of (0, 1, 0, 0, 1). In this case, x = z = u1 = u0 = 0, and the bonds {0, v0}1, {0, v1}2 are
occupied. We denote the neighbours of 0 by el (l = 1, . . . , Ω), so that v0 = ei and v1 = ej for
some i, j. We examine the constraints imposed by the event G of (4.42). The event {u1 ∈ C̃0}
is satisfied trivially, since u1 = 0. For the event {x ∈ C̃1}, we consider separately the cases i = j
(i.e., v0 = v1) and i 6= j (i.e., v0 6= v1). If i = j, then {x ∈ C̃1} requires that {v0 ←−→

3
x}1, so this

is an error term in which (4.44) occurs with j1 + j2 + j3 ≥ 3 and j4 = 1 (in more detail, these
inequalities imply either that j1 = 2, in which case j0 + j1 + j2 ≥ 3 since the sum must be odd, or
that j1 ≤ 1, which implies that j2 + j3 + j4 ≥ 3). If i 6= j, then {x ∈ C̃1} is achieved by the bond
{x, v0}1 = {0, v0}1. Thus, we assume henceforth that i 6= j.

For the E ′ events, we first note that {v0
C̃0↔ u1}1 occurs, since u1 = 0, {0, v0}1 is occupied, and

0 ∈ C̃0. Also, {v1
C̃0↔ x}2 occurs, since x = 0, {0, v1}2 is occupied, and 0 ∈ C̃1 (when i 6= j). We

will argue below that the NP condition in each E ′ event can be neglected, up to an error term.
Assuming this, this case contributes

p
∑

(0,v0)

p
∑

(0,v1): v1 6=v0

p2 + O(Ω−3) = Ω(Ω− 1)p4 + O(Ω−3). (4.49)
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If the NP condition is violated for E ′(v0, u1; C̃0)1 = E ′(v0, 0; C̃0)1, then the bond (v0, 0)1 must

be pivotal for the level-1 connection from v0 to 0, and moreover v0 ∈ C̃0 = C̃
(0,v0)
0 (0) must occur.

The latter gives an additional factor τ (3)
p (v0) ≤ O(Ω−3/2), and hence this contributes to an error

term.
If the NP condition is violated for E ′(v1, x = 0; C̃1)2, then the bond (v1, 0)2 must be pivotal for

the level-2 connection from v1 to 0, and also v1 ∈ C̃1 = C̃
(0,v1)
1 (v0) must occur. The latter gives an

additional factor τ (2)
p (v1 − v0) ≤ O(Ω−1), and hence this contributes to an error term.

Combining (4.48)–(4.49), we have

Π̂(2)

p = Ωp3 + Ω(Ω− 1)p4 + O(Ω−3), (4.50)

which is (2.10).

5 Conclusions

We have used the lace expansion to prove that pc(G) = Ω−1 + Ω−2 + 7
2
Ω−3 + O(Ω−4) for G = Zn

and G = Qn. This extends by two terms the result pc(Qn) = n−1 + O(n−2) of [9], and gives a
simplified proof of a result of [16, 17] for Zn.

Our proof is essentially mechanical, and with sufficient labour could be directly extended to
compute higher coefficients. In particular, it would be interesting to compute the coefficient of
Ω−4, which we expect will be different for Zn and Qn.

We expect that our method can also be applied to other finite graphs for which the lace
expansion has been proved to converge in [9]. A specific example is the Hamming cube, which has
vertex set {0, 1, . . . , s}n with s ≥ 1 fixed, and edge set consisting of pairs of vertices which differ
in exactly one component. For s = 1, the Hamming cube is the n-cube. For s ≥ 2, the Hamming
cube contains cycles of length 3 (in contrast to Zn and Qn), and it would be interesting to study
their effect on the expansion coefficients.
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