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Abstract

It is known that convex polygonal lines on Z2 with the endpoints fixed at
0 = (0, 0) and n = (n1, n2) and with edges of non-negative slope, have limit
shape under the scaling Z2 7→ n−1

1 Z2 as n →∞. If n2/n1 → c then the limit
shape is identified as a parabolic arc with equation

√
c(1− u) +

√
v =

√
c.

In probabilistic terms, this result amounts to a functional Law of Large
Numbers under the uniform distribution on the set Ln of such polygons. In
the present paper, we consider a converse problem, i.e. that of approximation
of convex curves by convex lattice polygons. Let γ be the graph of a strictly
convex, increasing C3-function on [0, 1], having non-degenerate curvature.
We show that for any such γ, one can construct a probability measure Pγn
on the space Ln so that under the law Pγn, the curve γ is indeed the limit
shape of polygons from Ln as n →∞.
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1. Introduction

Consider a convex polygonal line Γ with vertices at sites of the integer lattice Z2,

starting at the origin and such that the slope of each of its edges is non-negative and

does not exceed the angle of 90◦. Convexity means that the slope of consecutive edges

is strictly increasing. Denote by L the collection of all such polygons having finitely

many edges, and by Ln the subset of polygons Γ ∈ L with the right endpoint fixed at

n = (n1, n2).

Asymptotic properties of the ensemble Ln as n→∞ (more precisely, as n1, n2 →∞
and n2/n1 → c, where 0 < c < ∞) were studied by Vershik (1994), Sinai (1994) and

Bárány (1995). In particular, it was shown that the limit shape of polygons in Ln
is given by the parabolic arc γ0 determined by the equation

√
c(1− u) +

√
v =

√
c

(0 ≤ u, v ≤ 1). In probabilistic terms, this result amounts to a functional Law of

Large Numbers under the uniform distribution Pn on Ln, in that scaled polygons n−1
1 Γ

converge in Pn-probability to γ0, as n → ∞. The arguments in Vershik (1994) and

Bárány (1995) were of combinatorial-functional and geometric nature, and were based

on the analysis of the corresponding generating function using the multi-dimensional

saddle-point method for Cauchy integrals (Vershik 1994) or an appropriate Tauberian

theorem (Bárány 1995).

Sinai (1994) suggested a probabilistic approach to the statistics of convex lattice

polygons. The idea of the method is to treat the probability distribution Pn on the space

Ln as a conditional distribution induced by a suitable probability measure Q defined

on the space L of all convex lattice polygons. In turn, the measure Q = Qz depending

on a two-dimensional parameter z = (z1, z2) is constructed as the distribution of a

certain random field ν = {ν(x)} defined on the set X of all pairs of co-prime natural

numbers x = (x1, x2) (i.e., such that their greatest common divisor equals 1). One can

check that if the random variables ν(x) are taken to be independent of each other and

have geometric distribution with parameter zx1
1 z

x2
2 , then the corresponding conditional

distribution Pn on Ln does not depend on z and moreover, appears to be uniform. Using

such a construction, limit theorems about polygons (e.g., a Law of Large Numbers) may

first be proved for Qz on L and then transferred onto Pn on Ln using a suitable local

limit theorem. In so doing, it is natural to choose the parameters z1, z2 from the

condition that the ‘expected’ right endpoint of a random polygon Γ ∈ L would lie at

the point n = (n1, n2) (see Sinai 1994).

As pointed out by Sinai (1994), the idea of such an approach is in fact well known

in Statistical Mechanics (see Khinchin 1960). In the statistical-mechanical language,

the sets Ln and L endowed with the (Gibbs) measures Pn and Qz are nothing else but

the canonical and grand canonical ensembles, respectively, describing a perfect lattice
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Bose gas (of indistinguishable particles) on the phase space X. A deep link between

asymptotical combinatorial problems for scalar and vector partitions and problems of

statistical physics is discussed in detail in Vershik (1996, 1997).

In this work, we consider a converse problem, i.e. that of approximation of convex

curves by polygons Γ ∈ Ln as n → ∞. To be more precise, let γ be the graph of

an increasing, strictly convex function gγ on [0, 1] such that gγ(0) = 0. Using Sinai’s

approach, we show that for any sufficiently smooth γ, one can construct a probability

measure Pγn on the space Ln (such measure being in general non-uniform), so that under

the probability law Pγn the arc γ indeed provides the limit shape of polygons Γ ∈ Ln. In

other words, a functional Law of Large Numbers holds (see Theorem 8.2), stating that

normalized polygons n−1
1 Γ converge to γ in Pγn-probability. The measure Pγn is again

constructed as a conditional distribution induced on the space Ln by a suitable ‘global’

probability measure Qγ
z on L. It turns out, however, that the parameter z = (z1, z2),

which specifies the geometric distribution of the auxiliary random field ν(x), now needs

to allow for dependence on x ∈ X. We derive the suitable parametric functions z1(x)

and z2(x), assuming that they depend on x through the ratio x2/x1 only, which is

particularly convenient in conjunction with the parametrization of the curve γ using

its tangent slope t = g′γ(u). As one would expect, if the curve γ is taken to be the

aforementioned parabolic arc γ0 then the parametric functions z1(x) and z2(x) are

reduced back to constants and our method recovers the uniform distribution on Ln.
Let us point out that in order to be able to pass over from the measure Qγ

z to the

conditional distribution Pγn, the crucial part is played by an appropriate local Central

Limit Theorem (see Theorem 7.1), which is of interest in its own right (see Zarbaliev

1998; cf. also Vershik et al. 1999).

2. Approximating polygons

Let g be a bounded function defined on some interval [0, a], such that g(0) = 0, and

suppose that g is non-decreasing and (in general, non-strictly) convex in [0, a]. Fur-

thermore, assume that the function g is continuous on [0, a] and its derivative g′ is

continuous everywhere except at a finite set of points. Here we allow the derivative

g′(a) to be infinite, g′(a) ≤ +∞. Note that the function t = g′(u) is non-negative and

non-decreasing in its domain, and so 0 ≤ t0 ≤ g′(u) ≤ t1 ≤ ∞, where

t0 := inf
u
g′(u), t1 := sup

u
g′(u). (2.1)

Denote by γg ≡ γ the graph of a function g with the above properties, and let G

be the collection of all such curves. Note that for the above defined spaces Ln, L of
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convex lattice polygons, we have Ln ⊂ L ⊂ G. If a polygon Γ ∈ Ln is taken as the

‘curve’ γ, then the corresponding function g = gΓ is a piecewise linear function defined

on [0, n1] and one has gΓ(n1) = n2.

Let us now equip the space G with a suitable metric. If the function g = gγ

determines a convex curve γ ∈ G, we set

uγ(t) := sup{u : g′γ(u) ≤ t}, 0 ≤ t ≤ ∞, (2.2)

with the convention that sup ∅ = 0. That is to say, uγ(t) is a generalized inverse of the

derivative t = g′γ(u) (cf. Bingham et al. 1989, Sect. 1.5). It follows that the function

uγ(·) is non-decreasing and right-continuous on [0,∞], with values in [0, a]. Moreover,

if t0, t1 are the extreme values of the derivative g′γ (see (2.1)) then uγ(t) ≡ 0 for all

t < t0 and uγ(t) = a for all t ≥ t1.

Let us now denote by `γ(t) the length of the part of γ where the tangent slope does

not exceed t:

`γ(t) =

∫ uγ(t)

0

√
1 + g′γ(u)

2 du, 0 ≤ t ≤ ∞. (2.3)

Note that according to our assumptions, every curve γ ∈ G is rectifiable, that is, its

length is well defined and finite:

`γ(∞) =

∫ uγ(∞)

0

√
1 + g′γ(u)

2 du ≤
∫ a

0

(1 + g′γ(u)) du = a+ gγ(a) <∞.

Finally, we define the function d1 : G×G → R+ by setting

d1(γ1, γ2) := sup
0≤t≤∞

|`γ1(t)− `γ2(t)|, γ1, γ2 ∈ G. (2.4)

Proposition 2.1. The function d1(·, ·) satisfies all the properties of distance.

Proof. Obviously, d1(γ1, γ2) = d1(γ2, γ1), and d1(γ, γ) = 0. The triangle axiom follows

from the inequality

|`γ1(t)− `γ2(t)| ≤ |`γ1(t)− `γ3(t)|+ |`γ3(t)− `γ2(t)|, 0 ≤ t ≤ ∞.

So it remains to check that if d1(γ1, γ2) = 0 then γ1 = γ2.

Approximating the given curves γ1, γ2 ∈ G by C2-smooth strictly convex curves γk1 ,

γk2 , respectively, we reduce the problem to checking that if γk1 , γk2 are close to each other

in the sense of d1, then they are also close in the usual Euclidean metric d. That is to

say, if d1(γ
k
1 , γ

k
2 ) → 0 as k →∞, then d(γk1 , γ

k
2 ) → 0.

Note that for a strictly convex, increasing function gγ ∈ C2[0, a], the function uγ(t)

defined in (2.2) is given by

uγ(t) =


0, 0 ≤ t ≤ t0,

(g′γ)
−1(t), t0 ≤ t ≤ t1,

a, t1 ≤ t ≤ ∞,

(2.5)
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where (g′γ)
−1(t) is the (ordinary) inverse of the derivative g′γ(u). In particular, the

equations u = uγ(t), v = gγ(uγ(t)) determine a parametrization of the curve γ via the

derivative t = g′γ(u). Differentiating formula (2.3) with respect to t, we find

d`γ
dt

=
√

1 + t2
duγ
dt

, (2.6)

whence

duγ
dt

=
1√

1 + t2
d`γ
dt

. (2.7)

Therefore,

dvγ
dt

=
dgγ
du

· duγ
dt

=
t√

1 + t2
d`γ
dt

. (2.8)

Integrating equations (2.7), (2.8) and using the initial conditions uγ(0) = 0, vγ(0) = 0,

we obtain

uγ(t) =

∫ t

0

1√
1 + s2

d`γ(s),

vγ(t) =

∫ t

0

s√
1 + s2

d`γ(s).

Integration by parts yields

uγ(t) =
`γ(t)√
1 + t2

+

∫ t

0

s`γ(s)

(1 + s2)3/2
ds, (2.9)

vγ(t) =
t`γ(t)√
1 + t2

−
∫ t

0

`γ(s)

(1 + s2)3/2
ds. (2.10)

Note that these equations are linear in `γ. Hence, setting for γk1 , γk2

∆uk(t) := uγk
1
(t)− uγk

2
(t), ∆vk(t) := vγk

1
(t)− vγk

2
(t),

∆`k(t) := `γk
1
(t)− `γk

2
(t),

from (2.9) and (2.10) we get

∆uk(t) =
∆`k(t)√
1 + t2

+

∫ t

0

s∆`k(s)

(1 + s2)3/2
ds,

∆vk(t) =
t∆`k(t)√

1 + t2
−
∫ t

0

∆`k(s)

(1 + s2)3/2
ds.
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This implies that if ∆`k(t) → 0 as k → ∞, uniformly in t ∈ [0,∞], then ∆uk(t) → 0,

∆vk(t) → 0, also uniformly on [0,∞]. Indeed, if supt |∆`k(t)| ≤ ε then

|∆uk(t)| ≤
ε√

1 + t2
+ ε

∫ t

0

s

(1 + s2)3/2
ds

=
ε√

1 + t2
− ε

∫ t

0

(
1√

1 + s2

)′

ds

=
ε√

1 + t2
− ε

(
1√

1 + t2
− 1

)
= ε.

Analogously,

|∆vk(t)| ≤
εt√

1 + t2
+ ε

∫ t

0

1

(1 + s2)3/2
ds

=
εt√

1 + t2
+ ε

∫ t

0

(
s√

1 + s2

)′

ds

=
2εt√
1 + t2

≤ 2ε.

As a result, for all t ∈ [0,∞] we have |∆uk(t)|2 + |∆vk(t)|2 ≤ 5ε2, and hence d(γk1 , γ
k
2 ) ≤√

5ε. This completes the proof of the proposition. �

From the proof of Proposition 2.1, one can see that the following result holds.

Corollary 2.2. The metrics d1 and d are equivalent to each other, and in particular

d1(γn, γ) → 0 if and only if d(γn, γ) → 0, as n→∞.

A general problem of approximation of convex arcs by convex lattice polygons can

now be set as follows.

Definition 2.1. Let us be given a convex curve γ ∈ G determined by a function gγ(u),

0 ≤ u ≤ 1. We shall say that a polygon Γ ∈ Ln, n = (n1, n2), is an ε-approximation

to γ if under the scaling transformation with respect to the origin with the coefficient

1/n1, the polygon Γ gets into an ε-vicinity (in the metric d1) of the curve γ, that is,

d1(Γ̃n, γ) < ε, where Γ̃n := n−1
1 Γ.

Our goal is to study the statistics of approximating polygons Γ ∈ Ln as n→∞ with

respect to a suitable family of probability measures Pγn on Ln. More precisely, we intend

to construct a probability measure Pγn in such a way that in the limit n → ∞, with

respect to Pγn the overwhelming majority of polygons from Ln are ε-approximations to
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the γ (for any ε > 0). In other words, a functional Law of Large Numbers should be

valid in the form

lim
n→∞

Pγn
{
d1(Γ̃n, γ) < ε

}
= 1. (2.11)

Assumption 2.2. Note that the right endpoint of the scaled polygon Γ̃n has the

coordinates (1, cn), where cn := n2/n1, whereas the right endpoint of the arc γ lies at

the point (1, cγ), where cγ := gγ(1) (0 < cγ < ∞). This suggests that, in order for

the relation (2.11) to be true, we need to pass to the limit n→∞ in such a way that

cn → cγ. In what follows, we will always be assuming that this condition is fulfilled.

Let us point out that the classical result on the limit shape of lattice polygons

with uniform distribution on Ln (see Vershik 1994, Sinai 1994 and Bárány 1995) can

be viewed as an approximation result for the particular curve γ0 determined by the

equation √
c(1− u) +

√
v =

√
c, 0 ≤ u ≤ 1. (2.12)

In the present work, we solve the approximation problem for a subclass of G consisting

of C3-smooth strictly convex arcs γ ∈ G with non-degenerate curvature.

3. Construction of the measures Qγ
z and Pγ

n

Let us first describe the construction of the global measure Qγ
z on the space L. The

measure Pγn on the space Ln is then obtained as a conditional distribution induced by

fixing the right end of polygons Γ ∈ L at point n = (n1, n2).

Consider the set X of all pairs of co-prime non-negative integer numbers,

X := {x = (x1, x2) ∈ Z2 : x1 > 0, x2 ≥ 0, and g.c.d.(x1, x2) = 1}.

In particular, the pair (1, 0) is included in this set, while (0, 1) is not. In what follows,

we denote by τ(x) := x2/x1 the slope of the vector x = (x1, x2).

Let Φ(X) := {ϕ : X → Z+} = (Z+)X be the space of functions on X with non-

negative integer values. Denote by suppϕ := {x ∈ X : ϕ(x) > 0} the support of the

function ϕ ∈ Φ(X) and consider the subspace Φ0(X) := {ϕ ∈ Φ(X) : #(suppϕ) <∞}
of functions with a finite support. It is easy to see that functions ϕ ∈ Φ0(X) are in

a one-to-one correspondence with finite polygons Γ ∈ L. Indeed, let us arrange the

points x = (x1, x2) ∈ suppϕ according to the increase of their slope τ(x). Multiplying

the vector (x1, x2) by the corresponding value ϕ(x) > 0, we obtain a collection of

consecutive edges of some convex finite polygon Γ. The converse mapping is constructed

similarly. Note that the function ϕ(x) ≡ 0 formally corresponds to the ‘trivial’ polygon

with coinciding endpoints. In the sequel, we will identify the spaces L and Φ0(X).
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Following Bogachev and Zarbaliev (1999a), let us introduce on Φ0(X) a probability

measure Qγ
z by setting

Qγ
z (ν) :=

∏
x∈X

(zx1
1 z

x2
2 )ν(x) (1− zx1

1 z
x2
2 ) =

∏
x∈X

(zx1
1 z

x2
2 )ν(x)

∏
x∈X

(1− zx1
1 z

x2
2 ), (3.1)

where z1 = z1(x), z2 = z2(x) are parameters (parametric functions), such that 0 ≤
zi(x) < 1 (x ∈ X). Their explicit form, determined by the given curve γ ∈ G, will be

specified later on. So far, we only assume that the following condition is satisfied:∏
x∈X

(1− zx1
1 z

x2
2 ) > 0, (3.2)

which guarantees that the normalization in (3.1) is well defined.

Let us point out that according to (3.1), the random variables {ν(x)}x∈X are inde-

pendent of each other and have geometric distribution with parameter zx1
1 z

x2
2 :

Qγ
z{ν(x) = k} = (zx1

1 z
x2
2 )k(1− zx1

1 z
x2
2 ), k = 0, 1, 2, . . . (3.3)

Note that the measure Qγ
z can be extended in a standard way to a measure on

the space Φ(X) of all non-negative integer-valued functions on X (cf. Bogachev and

Zarbaliev 1999b, 2003). However, Qγ
z is in fact concentrated on the subset Φ0(X) ⊂

Φ(X) consisting of all finite configurations ν(·).

Lemma 3.1. Condition (3.2) is necessary and sufficient in order that

Qγ
z{ν ∈ Φ0(X)} = 1.

Proof. According to (3.3), we have Qγ
z{ν(x) > 0} = zx1

1 z
x2
2 . Hence,∑

x∈X

Qγ
z{ν(x) > 0} =

∑
x∈X

zx1
1 z

x2
2 .

Note that convergence of this series is equivalent to convergence of the infinite product

(3.2). Therefore, Borel–Cantelli’s lemma implies that, with Qγ
z -probability 1, there

occur only finitely many events {ν(x) > 0}. That is, Qγ
z (Φ0(X)) = 1, and the lemma

is proved. �

As a result, with Qγ
z -probability 1 a realization of the random field ν determines a

(random) convex polygon Γ ∈ L. Denote by ξ = (ξ1, ξ2) the right endpoint of Γ, so

that its coordinates ξ1, ξ2 are given by

ξ1 =
∑
x∈X

x1ν(x), ξ2 =
∑
x∈X

x2 ν(x). (3.4)
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The space Ln of polygons ending up at a fixed point n = (n1, n2) is then represented

as a ‘slice’ of L obtained by the condition ξ = n. Accordingly, the probability measure

Qγ
z induces the conditional distribution Pγn on Ln by the formula

Pγn(Γ) := Qγ
z{Γ | ξ = n} =

Qγ
z (Γ)

Qγ
z{ξ = n}

, Γ ∈ Ln. (3.5)

4. The choice of the parametric functions z1(x), z2(x)

Consider a fixed convex curve γ ∈ G, represented as the graph of an increasing, convex

function gγ, which for definiteness is assumed to be defined on the interval [0, 1]. To be

more specific, in this section we will be working under the following

Assumption 4.1. The function gγ is strictly increasing and strictly convex on [0, 1],

and gγ ∈ C2[0, 1]. In particular, g′γ(u) ≥ 0, g′′γ(u) ≥ 0 for all u ∈ [0, 1]. Moreover, the

curvature κγ of the curve γ, given by the formula

κγ(u) =
g′′γ(u)

(1 + g′γ(u)
2)3/2

, 0 ≤ u ≤ 1, (4.1)

is uniformly bounded from below by a positive constant,

inf
u∈[0,1]

κγ(u) ≥ K0 > 0. (4.2)

The meaning of the latter assumption is that the curve γ is required to be not ‘too

flat’.

As mentioned in the proof of Proposition 2.1, the graph γ of the function gγ can be

parametrized by the derivative t = g′γ(u) via the equations u = uγ(t), v = gγ(uγ(t)),

where uγ(t) is given by (2.5). Note that the expression (4.1) for the curvature is then

reduced to

κγ(t) =
g′′γ(uγ(t))

(1 + t2)3/2
, t0 ≤ t ≤ t1, (4.3)

where t0 = infu g
′
γ(u), t1 = supu g

′
γ(u) (see (2.1)).

In the above construction, the measure Pγz depends on the parameters z1(x), z2(x)

(x ∈ X). So far, these functions were only assumed to guarantee convergence of the

infinite product (3.2). Let us now adjust them to the given curve γ.

Recall that cn = n2/n1, cγ = gγ(1) (see Assumption 2.2), and set ρ ≡ ρn := cγ/cn.

According to Assumption 2.2 we have cn → cγ and hence ρ → 1 as n → ∞. For

x = (x1, x2), let us set x̃ := (x1, ρx2). We will seek the functions z1(x), z2(x) in the

form

z1(x) = exp {−αδ1(τ(x̃))} , z2(x) = exp {−αρδ2(τ(x̃))} , (4.4)
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where

α ≡ αn := (ρn1)
−1/3 → 0 (n→∞) (4.5)

and τ(x̃) = x̃2/x̃1 = ρx2/x1. Here δ1(·) and δ2(·) are certain functions on [0,∞] such

that

inf
0≤t≤∞

δi(t) ≥ δ∗ > 0, i = 1, 2. (4.6)

Let Γ(t) denote the part of the polygon Γ such that the slope of each of its edges does

not exceed t ∈ [0,∞]. Set X(t) := {x ∈ X : τ(x) ≤ t}. Recalling the association Γ ↔ ν

described in Section 3, the polygon Γ(t) is determined by the truncated configuration

1X(t)(x)ν(x). Denote by `Γ(t) the length of Γ(t):

`Γ(t) =
∑
x∈X(t)

|x|ν(x), (4.7)

where |x| =
√
x2

1 + x2
2. Note that under the scaling transformation Γ 7→ Γ̃n ≡ n−1

1 Γ we

have

`Γ̃n
(t) = n−1

1 `Γ(t), 0 ≤ t ≤ ∞.

The condition we are going to impose on the choice of z1, z2 is that the expected

value of the function `Γ̃n
(t) in the limit n→∞ coincides with the corresponding value

of the function `γ(t) associated with the given curve γ:

lim
n→∞

n−1
1 Eγ

z [`Γ(t)] = `γ(t), 0 ≤ t ≤ ∞, (4.8)

where Eγ
z stands for expectation with respect to the measure Qγ

z .

Theorem 4.1. Suppose that the functions δ1(t), δ2(t) satisfy the condition (4.6). Then,

in order that the limiting relation (4.8) is fulfilled for all t ∈ [0,∞], it is necessary and

sufficient that

δi(t) ≡ +∞ (i = 1, 2), t < t0, t > t1, (4.9)

δ1(t) + tδ2(t) = κg′′γ(uγ(t))1/3, t0 < t < t1, (4.10)

where κ := (2ζ(3)/ζ(2))1/3, ζ(s) :=
∑∞

k=1 1/ks is the Riemann zeta-function, and the

function uγ(t) is given by (2.5).

Proof. Let us evaluate the expectation of the random function `Γ(t). Recalling that

the random variable ν(x) has the geometric distribution (3.3), we obtain

Eγ
z [ν(x)] =

zx1
1 z

x2
2

1− zx1
1 z

x2
2

=
∞∑
k=1

(zx1
1 z

x2
2 )k.
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Hence, by (4.4) and (4.7) this yields

Eγ
z [`Γ(t)] =

∑
x∈X(t)

∞∑
k=1

|x|(zx1
1 z

x2
2 )k =

∞∑
k=1

∑
x∈X(t)

|x|e−αk〈x̃,δ(τ(x̃))〉, (4.11)

where δ(t) := (δ1(t), δ2(t)) and 〈y, y′〉 := y1y
′
1+y2y

′
2 denotes the inner product of vectors

y = (y1, y2), y
′ = (y′1, y

′
2).

Let us now set

f(h) :=
∑
x∈X(t)

h|x|e−αh〈x̃,δ(τ(x̃))〉, (4.12)

so that, according to (4.11), we have

Eγ
z [`Γ(t)] =

∞∑
k=1

f(k)

k
. (4.13)

Furthermore, note that

F (h) :=
∞∑
y1=1

∑
0≤y2≤ty1

h|y|e−αh〈ỹ,δ(τ(ỹ))〉

=
∞∑
m=1

∑
x∈X(t)

hm|x|e−αhm〈x̃,δ(τ(x̃))〉

=
∞∑
m=1

f(hm).

(4.14)

By the Möbius inversion formula (see Hardy and Wright 1960, Sect. 16.5, Theo-

rem 270), the function f(h) can be expressed as

f(h) =
∞∑
m=1

µ(m)F (hm), (4.15)

where µ(m) is the Möbius function defined as follows: µ(1) = 1, µ(m) = (−1)q if m is

a product of q different prime numbers, and µ(m) = 0 if m is a multiple of the square

of a prime number (see Hardy and Wright 1960, Sect. 16.3.)

For validity of the formula (4.15) it is sufficient that for all h > 0

∞∑
k=1

∞∑
m=1

f(hkm) <∞. (4.16)
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To check this condition, note that by (4.6), (4.12) and (4.14) we have, uniformly in h,

0 ≤ f(h) ≤ F (h) ≤ h

∞∑
y1=1

∞∑
y2=0

(y1 + y2)e
−αhδ∗(y1+ρy2)

≤ h

∞∑
j=1

j2e−αhδ∗j/2

= h
e−αhδ∗/2 + e−αhδ∗

(1− e−αhδ∗/2)3

= O(1)α−3h−2,

(4.17)

where we used that y1 +ρy2 ≥ (y1 +y2)/2 for all n large enough, since ρ→ 1 as n→∞.

Therefore, f(hkm) = O(1)α−3(hkm)−2, uniformly in k and m, hence the series (4.16)

is convergent, as required.

Returning to the representation (4.13) and using that n−1
1 = ρα3, from the formula

(4.15) with h = k we get

n−1
1 Eγ

z [`Γ(t)] = ρ
∞∑
k=1

∞∑
m=1

mµ(m)
α3F (km)

km

= ρ

∞∑
k=1

∞∑
m=1

mµ(m)
∞∑
y1=1

∑
0≤y2≤ty1

α3|y|e−kmα〈ỹ,δ(τ(ỹ))〉. (4.18)

Taking into account the estimate (4.17) and using that |µ(m)| ≤ 1, we see that the

general term in the double sum over k,m in (4.18) admits a uniform bound of the

form O(1) k−3m−2, which is a term of a convergent series. Therefore, we can apply

Lebesgue’s dominated convergence theorem to pass to the limit in (4.18) as n→∞.

In order to find this limit, note that the internal double series over y1, y2 in (4.18)

is a Riemann sum for the integral∫ ∞

0

∫ ty1

0

√
y2

1 + y2
2 e

−km(y1δ1(y2/y1)+y2δ2(y2/y1)) dy1dy2. (4.19)

Moreover, this sum does converge to the integral (4.19) as α → 0, since the integrand

function in (4.19) is directly Riemann integrable, as follows from an estimation similar

to (4.17).

The integral (4.19) can be easily evaluated by the substitution y1 = u, y2 = us. The

Jacobian of this transformation equals

det

(
1 0

s u

)
= u,
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hence the integral (4.19) is reduced to∫ ∞

0

u2 du

∫ t

0

√
1 + s2 e−kmu(δ1(s)+sδ2(s)) ds

=

∫ t

0

√
1 + s2(

δ1(s) + sδ2(s)
)3 ds∫ ∞

0

u2
1e

−kmu1 du1

=
2

(km)3

∫ t

0

√
1 + s2(

δ1(s) + sδ2(s)
)3 ds,

where we used the obvious substitution u1 = u(δ1(s) + sδ2(s)). Substituting this into

(4.18) we obtain

lim
n→∞

n−1
1 Eγ

z [`Γ(t)] = 2
∞∑
k=1

1

k3

∞∑
m=1

µ(m)

m2

∫ t

0

√
1 + s2(

δ1(s) + sδ2(s)
)3 ds

=
2ζ(3)

ζ(2)

∫ t

0

√
1 + s2(

δ1(s) + sδ2(s)
)3 ds.

Here the expression for the sum over m can be obtained using the Möbius inversion

formula (4.15) with f(h) = h−2 and F (h) =
∑∞

m=1(hm)−2 = h−2ζ(2) (cf. Hardy and

Wright 1960, Sect. 17.5, Theorem 287).

Therefore, recalling the condition (4.8) we obtain

κ3

∫ t

0

√
1 + s2(

δ1(s) + sδ2(s)
)3 ds = `γ(t), 0 ≤ t ≤ ∞. (4.20)

Note that, according to the definitions (2.2), (2.3), we have `γ(t) ≡ 0 for t ∈ [0, t0) and

`γ(t) ≡ `γ(∞) for t ∈ (t1,∞], while for t ∈ (t0, t1) the derivative `′γ(t) is given by the

formula (2.6). Differentiating the identity (4.20) with respect to t, we obtain equations

(4.9), (4.10). �

Let us now check that the equation (4.10) has a suitable solution.

Proposition 4.2. For t ∈ [t0, t1] let us set

δ1(t) := κκγ(t)1/3 cγ
√

1 + t2

cγ + t
,

δ2(t) := κκγ(t)1/3

√
1 + t2

cγ + t
≡ δ1(t)

cγ
,

(4.21)

where cγ = gγ(1) and the curvature κγ is given by (4.3). Then the functions δ1(t), δ2(t)

satisfy the assumption (4.6) and the equation (4.10).
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Proof. It is straightforward to verify that the equation (4.10) is satisfied. A lower

bound of the form (4.6) follows from the assumption (4.2). �

Remark 4.2. In the ‘classical’ case, where the curve γ = γ0 is determined by the

equation (2.12), it is easy to check that the curvature (4.1) is given by

κ0(t) =
c(1 + t/c)3

2(1 + t2)3/2
, 0 ≤ t ≤ ∞.

Hence, the expressions (4.21) take the form

δ1(t) = κ
( c

2

)1/3 1 + t/c√
1 + t2

· c
√

1 + t2

c+ t
= κ

( c
2

)1/3

,

δ2(t) =
δ1(t)

c
= κ

(
1

2c2

)1/3

(cf. Sinai 1994 and Bogachev and Zarbaliev 1999b).

5. Asymptotics of the expectation

In this section, we derive a few corollaries following from the choice of z1(x), z2(x) that

we have made. Our first goal is to show that convergence in (4.8) is uniform in t.

Theorem 5.1. Let the parameters z1(x), z2(x) (x ∈ X) be chosen according to formulas

(4.4), where the functions δ1(t), δ2(t) are given by the expressions (4.9), (4.21). Then

convergence in (4.8) is uniform in t ∈ [0,∞], that is,

lim
n→∞

sup
0≤t≤∞

|n−1
1 Eγ

z [`Γ(t)]− `γ(t)| = 0. (5.1)

We will use the following simple criterion of uniform convergence (see Bogachev and

Zarbaliev 2003).

Lemma 5.2. Let us be given a sequence of functions {fn} defined on a finite interval

[a, b], such that for each n the function fn is non-decreasing on [a, b] and fn(t) → f(t)

as n → ∞ for each t ∈ [a, b], where f is a continuous function. Then fn(t) → f(t)

uniformly on [a, b].

Proof of Theorem 5.1. Note that for each n the function

fn(t) := n−1
1 Eγ

z [`Γ(t)] =
1

n1

∑
x∈X(t)

|x|Eγ
z [ν(x)]
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is non-decreasing in t and that the limiting function f(t) := `γ(t) given by (2.3) is

continuous on [0,∞]. Hence, by Lemma 5.2 convergence (5.1) is uniform in t on every

finite interval [0, t∗]. To complete the proof, it suffices to check that for any ε > 0 and

for large enough n, there exists t∗ <∞ such that for all t ≥ t∗

n−1
1 Eγ

z [`Γ(∞)− `Γ(t)] ≤ ε. (5.2)

Similarly to (4.11) and (4.17) we can write

Eγ
z [`Γ(∞)− `Γ(t)] =

∞∑
k=1

∑
x/∈X(t)

|x|e−αk〈x̃,δ(τ(x̃))〉

≤
∞∑
k=1

∑
x/∈X(t)

(x1 + x2)e
−αkδ∗(x1+ρx2)/2

≤
∞∑
k=1

∞∑
y1=1

∑
y2>ty1

(y1 + y2)e
−αkδ∗(y1+y2)/2. (5.3)

Note that the number of integer pairs (y1, y2) (with y1 ≥ 1, y2 ≥ 0) satisfying the

conditions y1 + y2 = j and y2 > ty1 does not exceed j/(t + 1). Hence, again using the

uniform estimate (4.17), we see that the right-hand side of (5.3) is bounded from above

by
∞∑
k=1

∞∑
j=1

j2

t+ 1
e−αkδ∗j/2 =

1

t+ 1

∞∑
k=1

O(1) (αk)−3 = O(1)
1

α3(t+ 1)
.

Recalling that α3 = 1/(ρn1) ∼ n−1
1 , this implies the estimate (5.2) for all t large enough,

and the proof is complete. �

Denote by ξ1(t), ξ2(t) the coordinates of the right endpoint of Γ(t):

ξi(t) =
∑
x∈X(t)

xiν(x) (i = 1, 2). (5.4)

In particular, for t = ∞, the formulas (5.4) are reduced to (3.4) and yield the coordi-

nates ξi = ξi(∞) of the right end of the entire polygon Γ.

It is natural to expect that with the parameters z1(x), z2(x) chosen in the previous

section, expectation of the functions n−1
1 ξ1(t), n

−1
1 ξ2(t) in the limit n → ∞ should

coincide, respectively, with the functions uγ(t), gγ(uγ(t)) associated with the given

curve γ.

Theorem 5.3. Suppose that the parameters z1(x), z2(x) (x ∈ X) are chosen according

to formulas (4.4), where the functions δ1(t), δ2(t) are given by (4.9), (4.21). Then,

uniformly in t ∈ [0,∞],

lim
n→∞

n−1
1 Eγ

z [ξ1(t)] = uγ(t), lim
n→∞

n−1
1 Eγ

z [ξ2(t)] = gγ(uγ(t)). (5.5)
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In particular, for t = ∞ this yields

lim
n→∞

n−1
1 Eγ

z [ξ1] = 1, lim
n→∞

n−1
1 Eγ

z [ξ2] = cγ. (5.6)

Proof. Like in the proof of Theorem 4.1, one can show that

n−1
1 Eγ

z [ξ1(t)] = ρ

∞∑
k=1

∞∑
m=1

mµ(m)
∞∑
y1=1

∑
y2≤ty1

α3y1e
−kmα〈ỹ,δ(τ(ỹ))〉. (5.7)

By the estimate (4.17) it follows that the general term of the double series (5.7) (over

k,m) admits a uniform bound of the form O(1) k−3m−2, so Lebesgue’s dominated con-

vergence theorem applies. Assuming that t0 ≤ t ≤ t1 and passing to the limit similarly

as in the proof of Theorem 4.1, we see that

lim
n→∞

n−1
1 Eγ

z [ξ1(t)] =
∞∑
k=1

∞∑
m=1

mµ(m)

∫ ∞

0

∫ ty1

0

y1 e
−km〈y,δ(τ(y)) dy1dy2

=
∞∑
k=1

∞∑
m=1

mµ(m)
2

(km)3

∫ t

t0

1(
δ1(s) + sδ2(s)

)3 ds
= 2

∞∑
k=1

1

k3

∞∑
m=1

µ(m)

m2

∫ t

t0

ds

κ3g′′γ(uγ(s))

=
2ζ(3)

ζ(2)κ3

∫ uγ(t)

0

dg′γ(u)

g′′γ(u)

= uγ(t).

(5.8)

Similarly, we obtain for t0 ≤ t ≤ t1

lim
n→∞

n−1
2 Eγ

z [ξ2(t)] =
∞∑
k=1

∞∑
m=1

mµ(m)

∫ ∞

0

∫ ty1

0

y2 e
−km〈y,δ(τ(y)) dy1dy2

=
∞∑
k=1

∞∑
m=1

mµ(m)
2

(km)3

∫ ty1

0

s(
δ1(s) + sδ2(s)

)3 ds
=

2ζ(3)

ζ(2)

∫ uγ(t)

t0

s

κ3g′′γ(uγ(s))
ds

=

∫ uγ(t)

0

g′γ(u) dg
′
γ(u)

g′′γ(u)

= gγ(uγ(t)).

Uniform convergence in (5.5) can be proved similarly as in Theorem 5.1. �

For the future applications, we need to estimate the rate of convergence in (5.6)

with sufficient accuracy. To be able to do so, we have to require more smoothness of

the function gγ.
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Assumption 5.1. In addition to Assumption 4.1, we now suppose that gγ ∈ C3[0, 1].

Theorem 5.4. For i = 1, 2, one has Eγ
z [ξi]− ni = O(n

2/3
1 ) as n→∞.

Proof. Consider the case i = 1. As shown in (5.7), we have

Eγ
z [ξ1] =

∞∑
k=1

∞∑
m=1

mµ(m)
∞∑
y1=1

∞∑
y2=0

y1e
−kmα〈ỹ,δ(τ(ỹ))〉

=
∞∑
k=1

∞∑
m=1

µ(m)

kα
F1(kmα),

where

F1(h) :=
∞∑
y1=1

∞∑
y2=0

f1(hy1, hy2), f1(y1, y2) := y1e
−〈ỹ,δ(τ(ỹ))〉. (5.9)

Repeating the calculations as in (5.8), we note that∫ ∞

0

∫ ∞

0

f1(hy1, hy2) dy1dy2 =
2

ρh2κ3
,

so that
∞∑
k=1

∞∑
m=1

µ(m)

αk

(∫ ∞

0

∫ ∞

0

f1(hy1, hy2) dy1dy2

)∣∣∣∣
h=αkm

=
2

ρα3κ3

∞∑
k=1

∞∑
m=1

µ(m)

k3m2
=

1

ρα3
= n1.

(5.10)

Hence, we obtain the representation

Eγ
z [ξ1]− n1 =

∞∑
k=1

∞∑
m=1

µ(m)

αk
∆1(αkm), (5.11)

where

∆1(h) := F1(h)−
∫ ∞

0

∫ ∞

0

f1(hy1, hy2) dy1dy2.

Using that δi(t) ≥ δ∗ > 0 and ρ ≤ 1/2, we have

F1(h) ≤
∞∑
y1=1

∞∑
y2=0

hy1e
−h(y1+y2)δ∗/2 =

he−hδ∗/2

(1− e−hδ∗/2)3
.

Hence, F1(h) = O(h−2) as h → 0 and F1(h) = O(h−β) for all β > 0 as h → +∞.

Therefore, the function F1(h) is well defined for all h > 0 and its Mellin transform

M1(s) :=

∫ ∞

0

hs−1F1(h) dh (5.12)
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(see Titchmarsh 1986, § 1.5) is a regular function for Re s > 2. From a two-dimensional

version of the Muntz lemma (see Bogachev and Zarbaliev 2003), it then follows that

the function M1(s) is in fact meromorphic in the semi-plane Re s > 1 and has the single

(simple) pole at point s = 2. Moreover, for all 1 < Re s < 2 the following formula is

valid:

M1(s) =

∫ ∞

0

hs−1∆1(h) dh. (5.13)

The inversion formula for the Mellin transform (Widder 1946, Ch. VI, § 9, Theorem 9a)

yields

∆1(h) =
1

2πi

∫ c+i∞

c−i∞
h−sM1(s) ds, 1 < c < 2. (5.14)

In order to make use of the formula (5.14), we need to find explicitly the analytic

continuation of the function (5.12) to the strip 1 < Re s < 2. Let us use the Euler–

Maclaurin summation formula (e.g., see Bhattacharya and Ranga Rao 1976, p. 264)

∞∑
y=0

f(y) =

∫ ∞

0

f(y) dy +
1

2
f(0) +

∫ ∞

0

B1(y) f
′(y) dy, (5.15)

where B1(y) := y − [y] − 1/2 and [y] is the integer part of y. In view of Assumption

5.1 and equations (4.3), (4.21), we can apply this formula to the sum over y2 in (5.9).

Using the substitution y2 = ty1/ρ, we obtain

F1(h) =
∞∑
y1=1

hy1

∫ ∞

0

e−h〈ỹ,δ(τ(ỹ))〉 dy2 +
1

2

∞∑
y1=1

hy1e
−hy1δ1(0) +O(1)

e−const·h

h

=
h

ρ

∞∑
y1=1

y2
1

∫ ∞

0

e−hy1ψ(t) dt+O(1)
e−const·h

h
,

(5.16)

where

ψ(t) := δ1(t) + tδ2(t). (5.17)

Keeping track of only the main term in (5.16) and writing dots for functions that

are regular for Re s > 1, the Mellin transform of F1(h) can be represented as follows:

M1(s) =
1

ρ

∫ ∞

0

hs

(
∞∑
y1=1

y2
1

∫ ∞

0

e−hy1ψ(t) dt

)
dh+ · · ·

=
1

ρ

∞∑
y1=1

y2
1

∫ ∞

0

(∫ ∞

0

hs e−hy1ψ(t) dh

)
dt+ · · ·

=
1

ρ

∞∑
y1=1

1

ys−1
1

∫ ∞

0

Γ(s+ 1)

ψ(t)s+1
dt+ · · ·

=
1

ρ
ζ(s− 1) Γ(s+ 1) Ψ(s) + · · ·

(5.18)
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where

Ψ(s) :=

∫ ∞

0

1

ψ(t)s+1
dt.

Recalling (4.1) and (4.10), the function (5.17) is rewritten in the form

ψ(t) = κκ1/3
γ

√
1 + t2, t0 ≤ t ≤ t1,

and Assumption 4.1 implies that the function Ψ(s) is regular if Re s > 0.

Furthermore, it is well known that the gamma-function Γ(s) is analytic for Re s > 0,

whereas the zeta-function ζ(s) has the single pole at point s = 1 (see Titchmarsh

1939, § 4.41, 4.43). It follows that the right-hand side of (5.18) is regular in the strip

1 < Re < 2 and hence provides the required analytic continuation of the function M1(s)

originally defined by (5.12).

Setting h = αkm and returning to formulas (5.11) and (5.14), we get for 1 < c < 2

Eγ
z [ξ1]− n1 =

∞∑
k=1

∞∑
m=1

µ(m)

αk

1

2πi

∫ c+i∞

c−i∞

M1(s)

(kmα)s
ds

=
1

2πi

∫ c+i∞

c−i∞

M1(s)ζ(s+ 1)

αs+1 ζ(s)
ds.

(5.19)

Using that ζ(s) 6= 0 for Re s ≥ 1, we can transform the contour of integration Re s = c

in (5.19) to the union of a small semi-circle s = 1 + reit (−π/2 ≤ t ≤ π/2) and two

vertical lines, s = 1± it (t ≥ r). Furthermore, studying the resolution (5.18), one can

show that M1(1 ± it) = O(|t|−2) as t → ∞. As a result, the right-hand side of (5.19)

is bounded by O(α−2). This proves Theorem 5.4 for i = 1.

The case i = 2 is considered along the same lines, by setting

F2(h) :=
∞∑
y1=1

∞∑
y2=0

f2(hy1, hy2), f2(y1, y2) := y2e
−〈ỹ,δ(τ(ỹ))〉.

A crucial point is then to check that∫ ∞

0

∫ ∞

0

f2(hy1, hy2) dy1dy2 =
2cγ

ρ2h2κ3
,

which implies the identity

∞∑
k=1

∞∑
m=1

µ(m)

αk

∫ ∞

0

(∫ ∞

0

f2(hy1, hy2) dy1dy2

)∣∣∣∣
h=αkm

=
2cγ

ρ2α3κ3

∞∑
k=1

∞∑
m=1

µ(m)

k3m2
=

cγ
ρ2α3

=
cnn1

cn
= n2.

(5.20)

The latter calculation, along with (5.10), explains the specific choice of the parameter

α made in (4.5). �
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6. Asymptotics of the second order moments

For the random variable ν(x) with geometric distribution (3.3), its variance is given by

Varγz [ν(x)] =
zx1
1 z

x2
2

(1− zx1
1 z

x2
2 )2

=
∞∑
k=1

k(zx1
1 z

x2
2 )k.

Using that the random variables ν(x) are independent for different x ∈ X, from (3.4)

we have

σ2
i := Varγz [ξi] =

∑
x∈X

x2
i Varγz [ν(x)] =

∞∑
k=1

∑
x∈X

kx2
i (z

x1
1 z

x2
2 )k. (6.1)

Similarly, the covariance is given by

σ12 := Covγz (ξ1, ξ2) =
∑
x∈X

x1x2 Varγz [ν(x)] =
∞∑
k=1

∑
x∈X

kx1x2(z
x1
1 z

x2
2 )k. (6.2)

Theorem 6.1. Suppose that the parameters z1(x), z2(x) (x ∈ X) are chosen subject

to formulas (4.4), with δ1(t), δ2(t) defined in (4.9), (4.21). Then, as n→∞,

σ2
1 ∼

3n
4/3
1

κ

∫ 1

0

du

g′′γ(u)
1/3

, σ2
2 ∼

3n
4/3
1

κ

∫ 1

0

g′γ(u)
2du

g′′γ(u)
1/3

,

σ12 ∼
3n

4/3
1

κ

∫ 1

0

g′γ(u) du

g′′γ(u)
1/3

.

(6.3)

Proof. Consider the case i = 1. Substituting (3.4) into (6.1) and using the Möbius

inversion formula (see (4.15)), we obtain

σ2
1 =

∞∑
k=1

∑
x∈X

kx2
1e

−kα〈x̃,δ(τ(x̃)〉

=
∞∑
k=1

∞∑
m=1

km2µ(m)
∞∑
y1=1

∞∑
y2=0

y2
1e

−kmα〈ỹ,δ(τ(ỹ)〉.

(6.4)

Arguing as in the proof of Theorem 4.1, we obtain

lim
n→∞

α4

∞∑
y1=1

∞∑
y2=0

y2
1e

−kmα〈ỹ,δ(τ(ỹ)〉 =

∫ ∞

0

∫ ∞

0

y2
2e

−km(y1δ1(y2/y1)+y2δ2(y2/y1)) dy1dy2

=

∫ ∞

0

u3 du

∫ ∞

0

e−kmu(δ1(t)+tδ2(t)) dt

=
6

(km)4

∫ ∞

0

1

(δ1(t) + tδ2(t))4
dt .
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Returning to (6.4) and using (4.9), (4.10), we get

lim
n→∞

α4σ2
1 = 6

∞∑
k=1

1

k3

∞∑
m=1

µ(m)

m2

∫ ∞

0

1

(δ1(t) + tδ2(t))4
dt

=
6ζ(3)

ζ(2)

∫ t1

t0

1

κ4g′′γ(uγ(t))
4/3

dt

=
3

κ

∫ 1

0

1

g′′γ(u)
1/3

du,

and the first formula in (6.3) follows, since α = (ρn1)
−1/3 and ρ→ 1 as n→∞.

Similar considerations in the case i = 2 yield

lim
n→∞

α4σ2
2 =

6ζ(3)

ζ(2)

∫ t1

t0

t2

κ4g′′γ(uγ(t))
4/3

dt

=
3

κ

∫ 1

0

g′γ(u)
2

g′′γ(u)
1/3

du.

Finally, applying similar arguments to the representation (6.2) we get

lim
n→∞

α4σ12 =
6ζ(3)

ζ(2)

∫ t1

t0

t

κ4g′′γ(uγ(t))
4/3

dt

=
3

κ

∫ 1

0

g′γ(u)

g′′γ(u)
1/3

du.

The proof Theorem 6.1 is complete. �

7. Local limit theorem

Recall that the random variables {ν(x)}x∈X , with respect to the distribution Qγ
z , are

independent and have geometric distribution with parameter zx1
1 z

x2
2 . In particular,

Eγ
z [ν(x)] =

zx1
1 z

x2
2

1− zx1
1 z

x2
2

, Varγz [ν(x)] =
zx1
1 z

x2
2

(1− zx1
1 z

x2
2 )2

. (7.1)

Moreover, the characteristic function of ν(x) is given by

fν(x)(t) =
1− zx1

1 z
x2
2

1− zx1
1 z

x2
2 e

it
, (7.2)

and hence the characteristic function of the vector ξ =
∑

x∈X xν(x) is given by

fξ(λ) =
∏
x∈X

fν(x)(〈x, λ〉) =
∏
x∈X

1− zx1
1 z

x2
2

1− zx1
1 z

x2
2 ei(x,λ)

. (7.3)
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Let f ∗ν(x)(t) be the characteristic function of the centered random variable ν0(x) :=

ν(x) − Eγ
z [ν(x)]. Let us set az := Eγ

z [ξ], then the characteristic function of the vector

ξ − az is given by

f ∗ξ (λ) = Eγ
z

[
ei〈λ, ξ−az〉

]
=
∏
x∈X

f ∗ν(x)(〈λ, x〉). (7.4)

Let Kz be the covariance matrix of ξ,

Kz = Covγz (ξ, ξ) =

(
Varγz [ξ1] Covγz (ξ1, ξ2)

Covγz (ξ1, ξ2) Varγz [ξ2]

)
=

(
σ2

1 σ12

σ12 σ2
2

)
. (7.5)

Furthermore, let Vz be a symmetric positive definite matrix such that

V 2
z = K−1

z , Kz = V −2
z (7.6)

(the inverse matrix K−1
z does exist since Kz is non-degenerate by Theorem 6.1).

Let φ(y) denote the probability density function of the standard two-dimensional

normal distribution (with zero mean and identity covariance matrix), that is,

φ(y) =
1

2π
e−|y|

2/2, y ∈ R2. (7.7)

Let us also denote by φz(y) the probability density function of the normal distribution

with mean az and covariance matrix Kz,

φz(y) := (detKz)
−1/2φ((y − az)Vz) (7.8)

We are now in a position to state a local limit theorem for the asymptotics of the

probability Qγ
z{ξ = n} as n→∞. This theorem will play a crucial role in order to pass,

using equation (3.5), from the unconditional distribution Qγ
z to the conditional one, Pγn.

Let us point out that the random variables ξ1, ξ2 are given by equations (3.4), so we

deal here with a two-dimensional local limit theorem for independent, non-identically

distributed summands.

Theorem 7.1. Suppose that the parameters z1(x), z2(x) (x ∈ X) are chosen subject

to formulas (4.4), with δ1(t), δ2(t) defined in (4.21). Let m = (m1,m2) be a two-

dimensional vector with non-negative integer components, and set ym,n := (m− az)Vz.

Then, uniformly in m,

Qγ
z{ξ = m} − φz(m) = O(n

−5/3
1 ). (7.9)

For the proof of this theorem, we will need some (mostly well known) auxiliary facts

about the matrix norm (for details, see Bogachev and Zarbaliev 2003).
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Lemma 7.2. Let A and B be symmetric matrices such that A = B2. Then

‖A‖ = ‖B‖2.

Lemma 7.3. If A is a symmetric non-degenerate matrix of order 2, then

‖A−1‖ =
‖A‖
| detA|

.

Lemma 7.4. Let A = (aij) be a matrix of size d× d. Then

‖A‖2 ≤
d∑

i,j=1

a2
ij.

Lemma 7.5. Let A = (aij) be a matrix of size d× d with non-negative entries. Then

‖A‖2 ≥ 1

d

d∑
j=1

a2
jj.

The next lemmas contain some useful analytic estimates. In what follows, the

notation an � bn means that

0 < lim inf
n→∞

an
bn
≤ lim sup

n→∞

an
bn

<∞.

Lemma 7.6. For all λ ∈ R2,

|f ∗ξ (λ)| ≤ e−Jα(λ), (7.10)

where

Jα(λ) :=
∑
x∈X

e−α〈δ, x〉1{cos〈λ,x〉≤0}. (7.11)

Proof. We have

|f ∗ξ (λ)| = |fξ(λ)| =
∏
x∈X

|fν(x)(〈λ, x〉)|.

From (7.2) it is seen that

|fν(x)(t)| =
1− zx

|1− zxeit|
.

Note that

|1− zxeit|2 = (1− zxeit)(1− zxe−it) = 1− 2zx cos t+ z2x ≥ 1,

if cos t ≤ 0. Therefore,

|fξ(λ)| ≤ exp

{∑
x∈X

ln |fν(x)(〈λ, x〉)| · 1{cos〈λ,x〉≤0}

}
≤ exp

{∑
x∈X

ln(1− zx) · 1{cos〈λ,x〉≤0}

}
≤ exp

{
−
∑
x∈X

zx 1{cos〈λ,x〉≤0}

}
.

23



Recalling expressions (4.4) we obtain (7.10). �

Lemma 7.7. As n→∞,

detKz ∼
(

3

κ

)2
(∫ 1

0

du

g′′γ(u)
1/3

∫ 1

0

g′γ(u)
2 du

g′′γ(u)
1/3

−
(∫ 1

0

g′γ(u) du

g′′γ(u)
1/3

)2
)
n

8/3
1 . (7.12)

Proof. From the definition (7.5) we have detKz = σ2
1 σ

2
2 − σ2

12, so (7.12) follows from

Theorem 6.1. �

Lemma 7.8. The norm of the matrix Kz is of order n
4/3
1 ,

‖Kz‖ � n
4/3
1 (n→∞).

Proof. Using Lemma 7.4 and Theorem 6.1 we get

‖Kz‖2 ≤ σ4
1 + 2σ2

12 + σ4
2 = O(n

8/3
1 ). (7.13)

On the other hand, by Lemma 7.5 and Theorem 6.1

‖Kn‖2 ≥ 1

2
(σ4

1 + σ4
2) ≥ σ2

1 σ
2
2

∼
(

3

κ

)2

n
8/3
1

∫ 1

0

du

g′′γ(u)
1/3

·
∫ 1

0

g′γ(u)
2 du

g′′γ(u)
1/3

.

and the lower bound follows. �

Lemma 7.9. As n→∞, we have ‖Vz‖ � n
−2/3
1 .

Proof. Since V 2
z = K−1

z , Lemma 7.2 implies ‖Vz‖2 = ‖K−1
z ‖. Furthermore, Lemma 7.3

yields

‖K−1
z ‖ =

‖Kz‖
detKz

,

and it remains to apply Lemmas 7.7 and 7.8 to complete the proof. �

For the proof of Theorem 7.1, we will need to estimate the so-called Lyapunov

quotient defined as

Lz := ‖K−1
z ‖3/2

∑
x∈X

|x|3 Ez |ν0(x)|3. (7.14)

By Lemma 7.3, this expression can be rewritten as follows

Lz =

(
‖Kz‖
detKz

)3/2∑
x∈X

|x|3 Ez |ν0(x)|3. (7.15)
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Lemma 7.10. Suppose that the parameters z1 and z2 are chosen subject to (4.4), (4.21).

Then the Lyapunov quotient (7.14) is of order n
−1/3
1 , that is,

Lz � n
−1/3
1 . (7.16)

Proof. According to Lemma 7.7 and 7.4, we have

detKz � n
8/3
1 , ‖Kz‖ = O(n

4/3
1 ). (7.17)

Note that by Jensen’s inequality

|x|3 = (x2
1 + x2

2)
3/2 ≤

√
2 (x3

1 + x3
2),

and similarly to the proof of Theorem 6.1 one obtains∑
x∈X

|x|3 Ez |ν0(x)|3 = O(1)
∑
x∈X

(x3
1 + x3

2) Ez[ν(x)
3]

= O(α−5
1 ) = O(n

5/3
1 ). (7.18)

Substituting estimates (7.17) and (7.18) into (7.15), we get the upper bound for Lz:

Lz = O
(
n
−4/3
1

)3/2
n

5/3
1 = O(n

−1/3
1 ).

To obtain the lower bound, note that by Lemma 7.5 and Theorem 6.1

‖Kz‖ ≥
1√
2

(
σ4

1 + σ4
2

)1/2 ≥ (σ2
1σ

2
2)

1/2 ∼ 2

(δ1δ2)1/2
n

4/3
1

(cf. (7.13)). Furthermore, using the Lyapunov inequality we have

Eγ
z |ν0(x)|3 ≥

(
Eγ
z |ν0(x)|2

)3/2
=
(
Varγz [ν(x)]

)3/2
,

so that ∑
x∈X

|x|3 Eγ
z |ν0(x)|3 ≥

∑
x∈X

x3
1

(
Varγz [ν(x)]

)3/2
.

Arguing similarly as in the proof of Theorem 6.1, one can show that, as n → ∞, the

last sum is asymptotically equivalent (up to a positive constant) to α−5, which is of

order of n
5/3
1 (cf. (7.18)).

To conclude, the lower bounds for all the terms involved in the expression (7.15)

prove to be consistent with the upper bounds, and therefore the lemma is proved. �

The proof of the next lemma can be found in Bogachev and Zarbaliev (2003).

Lemma 7.11. Let λ = (λ1, λ2) be such that |λ| ≤ L−1
z . Then∣∣∣f ∗ξ (λVz)− e−|λ|

2/2
∣∣∣ ≤ 16Lz|λ|3e−|λ|

2/3. (7.19)
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We can now proceed to the proof of Theorem 7.1.

Proof of Theorem 7.1. By the Fourier inversion formula, we can write

Qz{ξ = m} =
1

(2π)2

∫
T

e−i〈λ,m〉fξ(λ) dλ

=
1

(2π)2

∫
T

e−i〈λ,m−az〉f ∗ξ (λ) dλ,

(7.20)

where T := {λ = (λ1, λ2) : |λi| ≤ π, i = 1, 2}. On the other hand, the characteristic

function corresponding to the probability density φz(y) is given by

fz(λ) = eiazλ−|λV −1
z |2/2, λ ∈ R2.

Hence, by the inversion formula we obtain

φz(m) =
1

(2π)2

∫
R2

e−i〈λ,m−az〉−|λV −1
z |2/2 dλ. (7.21)

Note that if |λV −1
z | ≤ L−1

z then, according to Lemmas 7.9 and 7.10,

|λ| ≤ |λV −1
z | · ‖Vz‖ ≤ L−1

z ‖Vz‖ = O(n
−1/3
1 ) = o(1), (7.22)

which implies that λ ∈ T . Using this observation, from (7.20) and (7.21) we get∣∣Qn{ξ = m} − φz(m)
∣∣ ≤ I1 + I2 + I3, (7.23)

where

I1 :=
1

(2π)2

∫
|λV −1

z |≤L−1
z

∣∣f ∗ξ (λ)− e−|λV
−1
z |2/2∣∣ dλ,

I2 :=
1

(2π)2

∫
|λV −1

z |>L−1
z

e−|λV
−1
z |2/2 dλ,

I3 :=
1

(2π)2

∫
T∩{|λV −1

z |>L−1
z }

|f ∗ξ (λ)| dλ.

By the substitution λ = λ̃Vz, the integral I1 is reduced to

I1 =
(detKz)

−1/2

(2π)2

∫
|λ̃|≤L−1

z

∣∣f ∗ξ (λ̃Vz)− e−|λ̃|
2/2
∣∣ dλ̃

= O(n
−4/3
1 )Lz

∫
R2

|λ̃|3e−|λ̃|2/6 dλ̃ = O(n
−5/3
1 ), (7.24)

on account of Lemmas 7.7, 7.10 and 7.11.

To estimate I2, we again use the substitution λ = λ̃Vz and pass to polar coordinates

to get

I2 =
1

(2π)2

∫
|λ|>L−1

z

e−|λ|
2/2 dλ =

1

2π

∫ ∞

L−1
z

ρ e−ρ
2/2 dρ = (2π)−1e−L

−2
z /2, (7.25)
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which is o(n−β1 ) for any β > 0, as follows from Lemma 7.10.

For I3 we obtain, using Lemma 7.6,

I3 = O(1)

∫
T∩{|λV −1

z |>L−1
z }

e−Jα(λ) dλ. (7.26)

The condition |λV −1
z | > L−1

z implies that |λ| >
√

2 cα and hence max{|λ1|, |λ2|} > cα,

where c > 0 is a suitable (small enough) constant. Indeed, assuming the contrary, from

(4.4) and Lemmas 7.2, 7.8 and 7.10 it would follow that

1 < Lz|λV −1
z | ≤

√
2 cαLz‖Kz‖1/2 = O(c),

which leads to a contradiction if we let c ↓ 0. Hence, the estimate (7.26) is reduced to

I3 = O(1)

(∫
|λ1|>cα

+

∫
|λ2|>cα

)
e−Jα(λ) dλ, (7.27)

where Jα(λ) is given by (7.11).

Note that, by Assumption 4.1 and formulas (4.21), the functions δ1(t), δ2(t) are

bounded above, supt δi(t) ≤ δ∗<∞. Hence, we obtain the estimate

Jα(λ) ≥
∑
x∈X

e−αδ
∗(x1+x2)1{cos〈x,λ〉≤0}. (7.28)

In estimation of the first integral in (7.27), we may assume without loss of generality

that λ1 > 0 (the other cases are considered similarly). Keeping in the sum (7.28) only

pairs of the form x = (x1, 1), we get

Jα(λ) ≥
∞∑

x1=1

e−αδ
∗(x1+1)1{cos(λ1x1+λ2)≤0}. (7.29)

It is easy to see that cos(λ1x1 + λ2) ≤ 0 for all k ≥ 0 such that

2πk +
π

2
≤ λ1x1 + λ2 ≤ 2πk +

3π

2
. (7.30)

In turn, these inequalities are valid for all integers x1 such that x∗ < x1 ≤ x∗, where

x∗ = x∗(k) :=

[
2πk

λ1

+
3π

2λ1

− λ2

λ1

]
,

x∗ = x∗(k) :=

[
2πk

λ1

+
π

2λ1

− λ2

λ1

] (7.31)

(the square brackets denote the integer part of a number). Hence, (7.29) yields

Jα(λ) ≥
∞∑
k=0

x∗∑
x1=x∗+1

e−αδ
∗(x1+1) ≥ e−αδ

∗
∞∑
k=0

(x∗ − x∗) e
−αδ∗x∗ . (7.32)
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Using the elementary inequality [a + b] ≥ [a] + [b] and also that [b] ≥ b/2 for b ≥ 1,

from (7.31) we get

x∗ − x∗ ≥
[
π

λ1

]
≥ π

2λ1

,

and (7.32) amounts to

Jα(λ) ≥ π

2λ1

e−αδ
∗

∞∑
k=0

e−αδ
∗x∗ . (7.33)

Recalling that λ2 ≥ −π and λ1 > cα, we have

αx∗ ≤ α

λ1

(
2πk +

3π

2
− λ2

)
≤ 2παk

λ1

+
5π

2c
.

Substitute this into (7.33) to obtain

Jα(λ) ≥ C

λ1

e−αδ
∗

∞∑
k=0

e−2πkαδ∗/λ1 =
Ce−αδ

∗

λ1(1− e−2παδ∗/λ1)
≥ Ce−αδ

∗

2παδ∗
� n

1/3
1 ,

since α � n
1/3
1 . As a result, the first integral on the right-hand side of (7.27) is bounded

from above by O(1) exp(−const · n1/3
1 ) = o(n

−5/3
1 ), in accord with the statement of the

theorem.

The second integral in (7.27) where |λ2| > cα, is estimated similarly by reducing

summation in (7.11) to that over x = (1, x2) only (cf. (7.29)). Therefore, I3 = o(n
−5/3
1 ),

and this completes the proof of the theorem. �

Corollary 7.12. The probability Qγ
z{ξ = n} satisfies the following asymptotic bound :

lim inf
n→∞

n
4/3
1 Qγ

z{ξ = n} ≥ 0. (7.34)

Proof. In Theorem 7.1, let us take m to be n = (n1, n2), then yn,n = (n − az)Vz.

According to Theorem 5.4, az = n+O(n
2/3
1 ). Together with Lemma 7.9 this implies

|yn,n| ≤ |n− az| · ‖Vz‖ = O(1) (n→∞).

Hence, from (7.8) and (7.12) we get

lim inf
n→∞

n
4/3
1 φz(yn,n) =

1

2π
lim inf
n→∞

n
4/3
1 (detKz)

−1/2e−|yn,n|2/2 ≥ const > 0. (7.35)

On the other hand, (7.9) and (7.35) imply

lim inf
n→∞

n
4/3
1 Qγ

z{ξ = n} = lim inf
n→∞

(
n

4/3
1 φz(yn,n) +O(n

−1/3
1 )

)
= lim inf

n→∞
n

4/3
1 φz(yn,n) > 0,

and (7.34) is proved. �
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8. Law of Large Numbers

Our next result states that with respect to the distribution Qγ
z , the given curve γ is the

limit of polygons Γ under the scaling with the coefficient n−1
1 .

Theorem 8.1. Let the parametric functions z1(x), z2(x) (x ∈ X) be chosen according

to formulas (4.4), with δ1(t), δ2(t) defined in (4.21). Then for any ε > 0

lim
n→∞

Qγ
z

{
d1(n

−1
1 Γ, γ) ≤ ε

}
= 1.

Proof. In view of Theorem 5.1, we only need to check that for each ε > 0

lim
n→∞

Qγ
z

{
sup

0≤t≤∞

∣∣∣∣ 1

n1

`Γ(t)− 1

n1

Eγ
z [`Γ(t)]

∣∣∣∣ > ε

}
= 0. (8.1)

Note that the random process

˜̀
Γ(t) := `Γ(t)− Eγ

z [`Γ(t)] (0 ≤ t ≤ ∞) (8.2)

has independent increments and zero mean, hence it is a martingale with respect to

the natural filtration Ft := σ{ν(x), x ∈ X(t), t ∈ [0,∞]}. From the definition of

`Γ(t) (see (4.7)), it is also clear that ˜̀
Γ(t) is a cadlag process, that is, its paths are

everywhere right-continuous and have left limits. Therefore, applying Kolmogorov–

Doob’s submartingale inequality (see Yeh 1995, Corollary 2.1) we obtain

Qγ
z

{
sup

0≤t≤∞

∣∣˜̀
Γ(t)

∣∣ > n1ε

}
≤ 1

(n1ε)2
sup

0≤t≤∞
Varγz [`Γ(t)]

≤ 1

n2
1ε

2
Varγz [`Γ]

≤ 1

n2
1ε

2

(
Varγz [ξ1] + Varγz [ξ2]

)
= O(1)n

−2/3
1 → 0,

according to Theorem 6.1. Hence, (8.1) is proved. �

Let us now prove a conditional version of a Law of Large Numbers, which states

that polygons Γ ∈ Ln converge, as n→∞, to the curve γ under the measure Pγn.

Theorem 8.2. For all ε > 0

lim
n→∞

Pγn
{
d1(n

−1
1 Γ, γ) ≤ ε

}
= 1. (8.3)
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Proof. Similarly to the proof of Theorem 8.1, it suffices to show that for each ε > 0

lim
n→∞

Pγn
{

sup
0≤t≤∞

∣∣∣∣ 1

n1

˜̀
Γ(t)

∣∣∣∣ > ε

}
= 0,

where the random process ˜̀
Γ(t) is defined in (8.2). According to formula (3.5),

Pγn
{

sup
0≤t≤∞

∣∣˜̀
Γ(t)

∣∣ > εn1

}
=

Qγ
z

{
sup

0≤t≤∞

∣∣˜̀
Γ(t)

∣∣ > εn1, Γ ∈ Ln
}

Qγ
z{Γ ∈ Ln}

≤
Qγ
z

{
sup

0≤t≤∞

∣∣˜̀
Γ(t)

∣∣ > εn1

}
Qγ
z{ξ = n}

. (8.4)

As was mentioned in the proof of Theorem 8.1, the random process (˜̀Γ(t),Ft)t∈[0,∞] is

a cadlag martingale, hence by Kolmogorov–Doob’s submartingale inequality we get

Qγ
z

{
sup

0≤t≤∞

∣∣˜̀
Γ(t)

∣∣ > n1ε

}
≤ 1

(n1ε)6
sup

0≤t≤∞
Eγ
z

∣∣˜̀
Γ(t)

∣∣6
≤ 1

n6
1ε

6
Eγ
z

∣∣`Γ − Eγ
z [`Γ]

∣∣6
=

1

n6
1ε

6
Eγ
z

∣∣∣∣∑
x∈X

|x|
(
ν(x)− Eγ

z [ν(x)]
)∣∣∣∣6. (8.5)

The expectation on the right-hand part of (8.5) can be estimated using the following

lemma (see Bogachev and Zarbaliev 2003).

Lemma 8.3. For each k ∈ N and i = 1, 2

Ez

(
ξi − Ez[ξi]

)2k
= O(n

4k/3
1 ) (n→∞).

Applying this lemma with k = 3, from (8.5) we obtain

Qγ
z

{
sup

0≤t≤∞

∣∣˜̀
Γ(t)

∣∣ > n1ε

}
= O(n−2

1 ). (8.6)

On the other hand, by Corollary 7.12 the denominator of the fraction (8.4) decays

no faster than at order n−4/3. Combining this with the estimate (8.6), we conclude that

the right-hand part of (8.4) can be written as O(n
−2/3
1 ), which tends to zero as n→∞.

Therefore, Theorem 8.2 is proved. �
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