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Abstract. First we establish explosion criteria for jump processes with an
arbitrary locally compact separable metric state space. Then these results are
applied to two stochastic coagulation-fragmentation models - the direct sim-
ulation model and the mass flow model. In the pure coagulation case, there
is almost sure explosion in the mass flow model for arbitrary homogeneous
coagulation kernels with exponent bigger than 1. In the case of pure multiple
fragmentation with a continuous size space, explosion occurs in both models
provided the total fragmentation rate grows sufficiently fast at zero. How-
ever, an example shows that the explosion properties of both models are not
equivalent.
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1. Introduction

Coagulation-fragmentation models are used in different application fields ranging from
chemical engineering (reacting polymers, soot formation) or aerosol technology to astro-
physics (formation of stars and planets). These models describe the behaviour of a system
of particles that are characterized by their sizes and move in a certain medium. The size
of a particle changes either by coagulation (merging with another particle) or by frag-
mentation (breakage, splitting into pieces). We refer to the survey paper [Ald99] for more
details and references.

Deterministic coagulation-fragmentation models are nonlinear evolution equations gov-
erning the macroscopic behaviour of the particle system. In the case of a discrete size
variable and spatial homogeneity, the coagulation equation takes the form

a 1 z—1 [>%]
Ec(tam) §y:1 K(:Ii—y,y) c(t,m—y) C(t,y)— ;K(may) C(t,:IJ) C(t,y), (11)
where t > 0 and z = 1,2,.... Equation (1.1) goes back to Smoluchowski [vS16] and

describes the time evolution of the particle number density (relative number of particles
of a given size). The coagulation kernel K is determined by the physics of the driving
medium. It was observed that a certain kind of phase transition occurs when K grows
sufficiently fast in its arguments. This phenomenon is called gelation and corresponds to
a loss of mass in the macroscopic equation. The gelation point is defined as

tgel = Inf {t >0: mi(t) < ml(O)}, where my(¢) = imc(t,az). (1.2)

z=1

Gelation is interpreted as the formation of infinitely large clusters in finite time. The
presence of such clusters is not reflected in equation (1.1).

Stochastic coagulation models go back to [Mar68], [Gil72], [Lus78]. They are based

on systems of particles
M), i=1,..,N®@),  NO0)=n, (1.3)

which coagulate according to appropriate rates determined by the kernel K . These sys-
tems approximate the solution of the coagulation equation (1.1) in the sense

o0 N ()
Y ple)eltz) = im = 3 p(e@), 20, (1.4)

for appropriate test functions ¢ (sequences in the discrete case). We refer to [Jeo98],
[Nor99], [Nor00], [EWO00] concerning rigorous results. An alternative stochastic coagula-
tion model is related to the mass flow equation

_y Elemwy) (t,m—we(t,y)—zK(jy)at,m)ea,y), (15)



where é(t,z) = z ¢(t,z). Equation (1.5) describes the time evolution of the particle mass
density (relative mass of particles of a given size). A corresponding mass flow process is
represented by a system of particles

5;1('")(14,)7 i=1,.. .,N(")(t), N(”)(O) =n, (1.6)

with an appropriately modified evolution rule so that the solution to equation (1.5) is
approximated. Due to the equivalence of the equations the mass flow model provides
an alternative approximation to the solution of the original coagulation equation (1.1),
namely

o0 oo (")(t) ~(n)
‘P(“’) ~ 1 ‘P(mi (t))
t = t = lim — t>0. 1.7
;:1 go(a:)C( ,m) EE:1 - c( ,m) nl n 2 5:1(-") ) = ( )

We refer to [EWO01] concerning a rigorous proof. A time-discrete version of the mass flow
process was introduced and studied in [Bab99].

In the direct simulation model (1.3) the mass of the system is conserved so that (1.4)
implies

- 1
Zazc(t,az) ~ = mz(-")(t) =
n

z=1 =1 =1

Thus, there is no way to approximate the gelation point following the definition (1.2).
Instead, the gelation effect is related to the formation of a very big cluster (order of
the whole system) in finite time. In the mass flow model (1.6) the situation is different.
According to (1.7), one obtains

?

ch(t,m)wN( )(t), t>0

z=1 n
i.e. the mass of the solution to equation (1.1) is approximated by the normalized number
of particles in the mass flow system. Since the particles grow, there is a chance that their
number drops due to some explosion phenomenon (infinitely many jumps in finite time).
It was conjectured in [EWO01] that in case of gelling kernels the mass flow process explodes
and that the gelation time (1.2) is the limit (as n — o0) of the (random) explosion times
of the approximating finite particle systems.

The paper contains three main results. First some rather general explosion criteria for
pure jump processes are obtained. Using ideas from [KK95], [KK96], previously known
results for one-dimensional processes are generalized to processes with a locally compact
state space. This allows one to treat many stochastic coagulation-fragmentation models.
Second we prove that the mass flow process explodes almost surely for a very wide
class of gelling kernels in the case of pure coagulation. This result confirms the first
part of the conjecture mentioned above. Its simple proof illustrates the usefulness of the
general explosion criteria. Third we study the case of pure multiple fragmentation for a
continuous size space. Applying the general criteria, we prove explosion results for both
the direct simulation model and the mass flow model, when the fragmentation rate at
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zero grows sufficiently fast. These results correspond to another kind of phase transition
- a loss of mass to zero (while gelation corresponds to a loss of mass to infinity). This
phenomenon was studied a long time ago in [Fil61] and named “transformation into dust”.
Later it was called “shattering” in the physical literature [ZM86], [MZ87].

The paper is organized as follows. In Section 2 we introduce the minimal jump
process with an arbitrary locally compact separable metric state space and prove several
sufficient criteria for explosion of this process. We give some examples and reproduce
the previously known conditions for the one-dimensional case. In Section 3 we define
the direct simulation model and the mass flow model. These models are extended to
include both coagulation and multiple fragmentation, as well as source and efflux terms,
which are important in many applications. The relation of the stochastic models to the
corresponding macroscopic equations is sketched heuristically, referring to convergence
results available in the literature. In Section 4 we apply the explosion criteria from
Section 2 to the stochastic coagulation-fragmentation models introduced in Section 3.
First we consider the direct simulation model and prove a simple non-explosion criterion
in the general case as well as an explosion result in the pure fragmentation case. Then we
consider the mass flow model. In the pure coagulation case, we prove that there is almost
sure explosion for arbitrary homogeneous coagulation kernels with exponent bigger than
1. Finally we derive an explosion result in the pure fragmentation case and show that
the explosion properties of both models are not equivalent. Section 5 contains some
concluding remarks.

2. Explosion criteria for jump processes

2.1. The minimal jump process

Let E and E' be separable metric spaces. The sets of measurable and continuous functions
on E are denoted by M(E) and C(E), respectively. Furthermore, My(E) and P(E) are
the sets of bounded Borel measures and of probability measures on the Borel-o-algebra
B(E) . Finally, let 15 denote the indicator function of a set B, and é¢ be the Dirac measure
on ¢ € E. A kernel from E to E' (on E if E = E') is a function g : E x B(E') — [0, 00)
such that

q(-,B)e M(E) VBeB(E" and q(§,") € My(E') VEEE.
A kernel q is called compactly bounded if

zug q((, E') < oo, for any compact C C E.
€

Let g be a compactly bounded kernel on a locally compact separable metric space F .
Let (o, (1, .. be a Markov chain in E with initial distribution vy € P(E) and transition
function p : E x B(E) — [0, 1] defined by

a(¢,B) .
p(¢,B) = {1;(&) ME) >0, (2.1)

SN’
S
N
(aas
SN’
Il
o
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where

M) =4ql¢,E), (Ec€E. (2.2)

Let Ty, Ty, ... be independent and exponentially distributed random variables with mean
1 that are also independent of ((x), all defined on some probability space (2, F,P).
Introduce the jump times

where T} /0 := 0o, and the explosion time

= T
Too = M 73 = Z )\—k (2.3)

> 00

The minimal jump process, corresponding to the kernel g and the initial distribution
Vo, is defined as (cf. [EK86, p.263], [Nor98, p.69])

CA(t) _ {Cl : TlSt<Tl+1 tZO

A > T ’ (2.4)

?

where A ¢ E determines the one-point compactification of E (cf. [Bau78, p.205]). The
process is called regular, if

P70 = 00) = 1. (2.5)

Otherwise, the process is called explosive. Concerning the history of the subject we refer
to [Chu70, Prologue].

Regularity and explosion of the minimal jump process can be studied using the prop-

erties (cf. [Nor98, p.71])
1 — Tk
- P = =1 2.
E <o = (g ” < oo) (2.6)
and
— 1 — T
dog=e @ (Z ” oo) , (2.7)

for any non-negative sequence (ax). The independence of (T%) and ((x) allows one to

conclude from (2.6), (2.7) that (cf. (2.3))

P(Too<oo‘ ;A(lgk):oo>: (TOOZOO‘ ;A(lgk)<oo>:0,

which implies

{Too < oo} = {i A(lgk) < oo} almost surely.
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In particular, a necessary and sufficient condition for regularity (2.5) is (cf. [Bre68, p.337])

1
P(;A(Ck):oo) =1.

Correspondingly, the process is explosive if and only if

P (k; A(lgk) < oo) >0. (2.8)

Note that boundedness of the waiting time parameter A implies regularity, and that

= 1
—— < = li =A. 2.9
kz:; NGy < Jim G (2.9)
Thus, a necessary condition for explosion is

P (/}i_)rglo G = A) >0. (2.10)

2.2. Explosion criteria

First we formulate a general result concerning explosion of the minimal jump process
defined in the previous subsection.

Theorem 2.1 Let q be a compactly bounded kernel on a locally compact separable metric
space E and ((x) be the corresponding Markov chain (cf. (2.1), (2.2)). Consider the sets

B = {ecn: [ [ate) - n(e)]atede) > (.11
and
Qe(n) = {w € Q: G(w) € En), Vk>k(w), forsome l_c(w)}, (2.12)

where n is a bounded measurable function on E and e > 0. Then

=1
< o0 a.s. on $.(n), Ve>0, 2.13
kz:% NG (n) (2.13)

1.e. the minimal jump process, corresponding to the kernel q, explodes almost surely on
the set of all trajectories staying in E.(n) for sufficiently large k and some € > 0.

Remark 2.2 According to Theorem 2.1, a sufficitent condition for ezplosion is the exis-
tence of some bounded measurable function n such that

P(Q(n)) >0 for some € >0. (2.14)
It follows from (2.9) and (2.13) that
lim ( = A a.s. on Q.(n), Ve>0.
k—oo

Thus, condition (2.14) puts some restriction on the possible structure of the set (2.11).
In particular, this set can not be contained in any compact.
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Before proving Theorem 2.1, we derive several corollaries providing sufficient conditions
for explosion.

Corollary 2.3 Suppose that

| [rer-n@)ate.de) = e veerr, (215)

for some bounded measurable function n, some subset E* C E and some ¢ > 0. Then

)
k=0

Z A(lgk) < o0 a.s. on {Ck cET, Vk},

1.€. the minimal jump process explodes almost surely on the set of all trajectories living
in ET.

Proof. Assumption (2.15) implies E* C E.(n) and {( € E*, Yk} C Q.(n) so that
the assertion follows from (2.13). [ |

A particularly simple criterion for explosion is obtained in the case ET = E .

Corollary 2.4 Suppose there exists some bounded measurable function n such that

[ [en-n@latcde) > e, veer, (2.16)

for some e > 0. Then

1
P(;A(Ck)<oo) =1,

1.€. the minimal jump process explodes almost surely, for any initial distribution.

Remark 2.5 Under the assumptions of Corollary 2.4, it follows from (2.9) that

IP’(klika:A) —1.
—00
Corollary 2.6 Suppose there exists a bounded measurable function n such that

/E[??(fl)—n(f)]q(f,d&) > &, VE¢O, (2.17)

for some compact C C E and some ¢ > 0. Then

)
k=0

1 .
Z ) < 00 a.s. on {klgilo e = A}, (2.18)

1.€. the minimal jump process explodes almost surely on the set of all trajectories tending
to the compactification point.



Proof. Assumption (2.17) implies E\ C C E.(n) and {limg— 0 (¢ = A} C Qe(7) so that
the assertion follows from (2.13). [ |

Remark 2.7 Under the assumptions of Corollary 2.6, it follows from (2.9) and (2.18)

that
{k:() A(lfk) < oo} - {kli,rf,lo Gk = A} a.s.

so that the necessary condition (2.10) is also sufficient for explosion of the minimal jump
process. Note that trajectories may stay in the compact set C' forever.

The proof of Theorem 2.1 is prepared by the following lemma.

Lemma 2.8 Letn be a bounded measurable function on E. Then

3 Z[ (Cet1) k) — ((k)] finite a.s. on Qo(n),

i.e. the infinite sum is finite for almost all w € Qo(n) (cf. (2.12)).

Proof. The sequence

3
—

Wo= 3" [E0(G)lG) = (G| —n(G),  n>1,  Wo=-n(G),  (219)

0

£
Il

is a martingale with respect to the filtration of ((x). Representing it in the form

Wo = > [Em(G)I) —n(6)] +

k=0,...,n—1:(xEEq(n)

> [E(n(CkH)ICk) — n(Ck)] —n(¢a) (2.20)

k=0,...,n—1:{x¢ Bo(n)
and introducing the sequence of stopping times
oN = inf{k>UN_1 : (kgéE'o(n)}, N>2,
oy = inf{k >0: (¢ Eo(n)},
one concludes that
Wanin(non) 2 ~sup n(€)] [2 #{k =0,...,min(n,on) —1 : G ¢ Eo(n)} + 1]

> —(2N—-1)supp(§)[, Vn,N=1.
¢€E

Since the stopped process Wiin(n,sy) 15 @ martingale and bounded from below, it has a.s.

finite limits (cf., e.g., [RW94, Sections 11.49,57]), i.e

P (3 lim Wininnow) finite) =1 VN

n—oo
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Consequently, one obtains

3 lim W, finite a.s. on {ony = oo} VN. (2.21)

n—oo

Note that the first sum at the right-hand side of (2.20) increases, while the second sum
has at most N — 1 elements (if oy = oo) and the last term is bounded. Thus, (2.21)
implies

3 lim n(¢{,) finite a.s. on {oy = oo} VN. (2.22)

n—oo

Finally, one concludes from (2.19), (2.21) and (2.22) that

3 Z [ (Cet1) k) — ((k)] finite a.s. on {ony = oo} VN,

k=0

and the assertion follows from the fact that Qo(n) = Uy{ony = o} . [ |
Proof of Theorem 2.1. Note that

[ nté) =€) até, ) = MO [Bln(cunn) 6 = &)~ n(e)]

and
1 1
MG ~ g[ (m(Ce+1)1Ck) — n(C )] if (€ E.(n).
Since
00 1 - k-1 | & )
kz:; (O P )\ + e kz:; [ (Ce+1)ICe) — (¢ )] on (n)
the assertion follows from Lemma 2.8. -

2.3. Examples

Example 2.9 Consider the case
E:{1727}7 q(fadfl) :A(é-)é-f-l—l(dfl)) COZ]-

The trajectory of the Markov chain is deterministic, ( = k+1, k> 0, and the necessary
and sufficient condition for ezplosion (2.8) takes the form

> AL (2.23)

First we show that the sufficient condition (2.16) of Corollary 2.4 can always be satisfied.
Indeed, choosing the function

1

n(¢) NOR



which is bounded if (2.23) holds, one obtains

e+ 1) —n(@]re) = 1, veen.

Furthermore, for A\(£) = € and any strictly increasing bounded function n, this ezample
llustrates that the condition

/E[n(fl)—n(f)]q(f,dgl) > 0, VEeE,

instead of (2.16), would not be sufficient. Finally, for n(€) = & and constant A(§), this
ezample illustrates that condition (2.16) for unbounded n would not be sufficient.

Example 2.10 Consider the one-dimensional case E = [1,00) and the bounded measur-
able function

n(é) = —-€°, Eek, for some a > 0.

Condition (2.17) takes the form

wos(o- (&)

With the notations

)

condition (2.24) transforms into

ME)Enoa(€) > f(6),  for sufficiently large ¢,

so that the result of [KK95, Theorem 3] is basically reproduced by Corollary 2.6.

(o= f) > €, for sufficiently large &.  (2.24)

@:5) and  f(€) = e,

3. Deterministic and stochastic coagulation-fragmen-
tation models

In this section we introduce two stochastic coagulation-fragmentation models that are
covered by the framework of Section 2. Explosion phenomena in these models will be
studied in Section 4.

The two models are related to each other in the sense of (1.4) and (1.7). In order
to demonstrate this, we let them depend on a parameter n = 1,2,... and illustrate
heuristically their relation (when n — o) to corresponding macroscopic equations of
the type (1.1), (1.5). Rigorous convergence results and more references can be found,
e.g., in [EW03]. The treatment of the macroscopic equations in the general setting (in-
cluding coagulation, multiple fragmentation, source and efflux terms) is of independent
interest, since many equations known from the literature (weak and strong, discrete and
continuous) are covered in a unified way.
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We consider stochastic processes with the state space

| X
{—E 0z; © N2>20, =z €eX, izl,...,N}, (3.1)
n
=1

where X is a locally compact separable metric space. A state ¢ € E(™ is interpreted as a
system of particles with types from X and weights % . Standard examples are

X =A{12,...} or X = (0,00), (3.2)

corresponding to discrete and continuous particles sizes, respectively. However, many of
the constructions of this section are valid in the general setup, which allows one to cover
particles consisting of several species, and other cases of practical interest.

Remark 3.1 The space E™ | endowed with an appropriate metric of weak convergence,
18 locally compact and separable (cf. Remark 2.10 and Lemma 5.1 in [EW03]). Note that
& — A in E® ’Lf etther N — oo or zx; — Ax for some v, where Ax denotes the
compactification point of X .

3.1. The direct simulation model

Consider the kernel

qW@annAth@,»ﬂ o)+ (3.3)
ZlB(Je(f Z JF 57272)) (m“dz)—l_

1 o n n
2_ Z 1B(JK(§7'L;J))K(:E1'7$J')7 é-EE( )7 BEB(E( ))7
1<i£j<N
with the jump transformations

Tslez) = £+ 5,

Je(fai) = 5_ %5:1:«;7 (34)

Te(£i,z) = 5—%@,+ P“+ +&J,
Jk(&,1,7) = €— ;[5“ + 5Ej] + ;5zi+zj .

Here S € My(X) is some source measure. The non-negative function e € C'(X) denotes
the eflux intensity. The compactly bounded fragmentation kernel F' from X to

Z:oxk (3.5)
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is assumed to satisfy the mass conservation property
F(z,Z\ Z(z)) = 0, Vee X, (3.6)

where Z(z) = {2 € Z : 21 + ... + 2z = z}. The non-negative function K € C(X x
X) denotes the coagulation kernel. Under the above assumptions, the kernel (3.3) is
compactly bounded (cf. [EW03, Lemma 5.1]). The corresponding minimal jump process
is called direct simulation process.

Note that
AP (&) = (¢, EM)) = (3.7)
nlS(X)—l—/ e(m)f(dm)—l—/ F(m,Z)f(dm)—l—# > K(azi,azj)]
X X 1<i#j<N
and

[ [ e@atn- [ de)]dede) - [ orsa- @
/Xso(w)e(w)f(de X/Z[90(21)—|—...—|—<,0(zk)—go(m)]F(m,dz)f(dm)

toz 3 et z) — el@) - o(e)] K(o:25),

for any ¢ € E(™ and appropriate test functions ¢ . Dynkin’s formula and (3.8) suggest that
the direct simulation process corresponds (for n — c0) to the macroscopic coagulation-
fragmentation equation

d [ (e ult, i) = /

X

dt
/X /Z [‘P(zl) +...F+ () — 90(31)] F(z,dz) u(t,dz) + (3.9)

5 [ ol +u) - ele) - o] Kt st i), ¢>0,

o(z) 5(dz) — / o(2) e(z) p(t, do) +

X

with the initial condition u(0,dz) = po(dz), where po is the limit of the initial state of
the process.

Let F*) denote the restrictions of the fragmentation kernel F to the sets X* (cf. (3.5)).
Define the symmetrized fragmentation kernel Fi;,, by its corresponding restrictions

1
Fs(fgl(m,dzl,...,dzk) = HZF(k)(m,dzw(l),...,dzw(k)), E=2,3,..., (3.10)
where the sum is taken over all permutations of {1,...,k}. Introduce the 1-marginals of
the kernels (3.10)

F(kll)(a;,dy) = Fs(fgl(m,dy,X,...,X) (3.11)

sym

12



and the kernel
(z,dy) = ZkFS;“IE (z,dy). (3.12)

Then one obtains

/Z [90(21) + ...+ cp(zk)] F(z,dz) = (3.13)
i_o: /Xk [‘P(zl) + .+ (P(Zk)] Fs(fgl(a:, dz1,...,dzg)

o0

Zk/ sfﬁ)(m,dy)z/xso(y) F{) (2, dy).

Using the symmetrized coagulation kernel
Kaym(,y) = %[K(az,y) + K(y,z) (3.14)
one obtalns
5 ][ [t +0) = o(e) — o] K (et ds) e, d) =
5 ][ [t +9) = 0(0) = o] Kam(a,v) i, do) e, dy)
= [ ] [3et@+9) = 60)] Kumlov) utt,de)ute, o). (3.15)

Remark 3.2 According to (8.13), (8.15), the macroscopic equation (3.9) does not change
if the fragmentation and coagulation kernels of the direct simulation process are replaced
by their symmetrizations.

Preparing the transition from (3.9) to an equation for the densities
p(t, dz) = c(t, z) dz,

we assume in the continuous case X = (0, co0) that

S(dz) = s(z) dz (3.16)
and (cf. (3.12))
FQ)l(z,dy) = fGh(z,y) dy . (3.17)

Note the identity

/Ooo/()oo¢($,y)dydm:/Ooo/ozq/J(az—y,y)dydaz, (3.18)

13



where 1 is an appropriate test function. Using (3.13), (3.15) and (3.18), one obtains the
continuous coagulation-fragmentation equation with source and efflux terms

0

% c(t,:j) = s(z) —e(z) c(t,z)+ (3.19)
/0 Tl (@ +y,2) oft,z + y) dy — c(t, z) F(z, Z)

+% /0z Koym(z —y,y) c(t,z —y) c(t,y) dy — /Ooo Koym(z,y) c(t,z) c(t,y) dy .

In the discrete case X = {1,2,...} an equation analogous to (3.19) is obtained, with
integrals replaced by sums.

Remark 3.3 According to (3.13), the kernel (3.12) can be ezpressed in the form

Fih(esdy) = [ [8ud) + ..+ 6.(d0)] Fla,d2). (3.20)
z
Thus, the quantity
] k
B ) — A
F(:IJ, Z) Fsym($7 (07 y)) E$ Zz:; 1(07'.11)(27') E$ i:zzi;y 1

represents the average number of fragments with size less than y, resulting from the frag-
mentation of a particle of size x. In particular, the average number of fragments is ex-
presses as

1
F) (2, X). 3.21
F(:IJ, Z) Sym(m7 ) ( )
Note that FS(;,)n(a:, [€,2)) < o0, Ye€ (0,z), due to mass conservation (8.6). Thus, for

test functions @ with compact support, the corresponding term in (8.9) is finite even if
the average number of fragments is infinite. Finally, we mention that mass conservation

implies
z FB) (g, X*) = /k(zl o4 z) FB (2 dzy, ... 2) = k/ yFS(;“IE)(a:,dy)
X X
and
Flz,Z) = %AyFS(;gl(m,dy). (3.22)

Example 3.4 Consider the binary fragmentation case
1
F(z,dz) = F(z)(a:, dz1,dzy) = 5 F(l)(az, dz1) 0z, (d2a), (3.23)

where F() is a kernel on X such that
FO(z, X\ (0,2)) =0, VzeX.

14



One obtains (cf. (3.10)-(3.12))

FO (g, dzy, dzy) = %[F(U(m, d22) Bams,(d22) + FO (2, d22) 6oy (d2)]

sym

so that
(211) _ e 1)
Fsym (:E7 dy) - Z F (111, dy) —I_ F (:E7 dml) 5$—‘E1 (dy)
X
and
FO) (2, dy) = % [F(U(m,dy) + / FO)(g, dzy) 5_,,;_z1(dy)] . (3.24)
X
Assuming

FO(z,dy) = Liom)(y) fM(z,y) dy

one obtains from (8.17) and (3.24) that

S[0@ ) + 1,2 )],

1 /= 1 [=
_ 1 (1) duy — = (1) d
2/0 iz, y) dy 2/0 foym(z,y) dy,

the fragmentation term in (8.19) takes the usual form. Note that (3.22) implies

f) (z,y) =

Since

1 1
§F(1)(w,X) /yFs(yil(w,dy), Ve X.
Zz

3.2. The mass flow model

The solution u(¢,dz) of equation (3.9) represents the flow of concentration in the size
space X . Since the total mass of the system is determined as fX z u(t,dz), we call the
function

a(t,dz) = zup(tdz), t>0,

the mass flow. Considering test functions of the form ¢(z) = z(z), one obtains (cf.

(3.9), (3.13))

//wﬁ ) (z, dy) p(t, dz) //1/} F(z,dy) i(t, dz)

ﬁ’(az,dy) = F( )(a:,dy), (3.25)

sym

where
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and (cf. (3.15))

[ /X [5 (@ +9) 9@+ 4) — 29(2)] Kuym(2, ) (2, do) (1, dy) =

2(2 +y) — 29 (2)| Kym(2,y) p(t, d) pt, dy)

= [ [ et - vte)] S g, do) g ay).
Since, according to (3.22),
F(z,X)=F(z,2), (3.26)

equation (3.9) takes the form of the mass flow equation

/¢ ii(t, dz) /¢ )z S(dz)—
/1/}(:1:)6( i(t, d) // F(m dy) ii(t, dz) + (3.27)

// (z+y) - ()] Ksymy(m y) At dy) i(t,dz),  t>0,

for appropriate test functions ¥ and some initial condition.

In the continuous case X = (0, c0) we assume (3.16) and (3.17). It follows from (3.25)
that F(z,dy) = f(z,y)dy, where

7 Y
f(may) = ; s(;r)n(may) :

Using (3.18) one obtains from (3.27) an equation for the densities
a(t,dz) = é(t, z) dz,

namely the continuous mass flow equation with source and efflux terms

6 (t ;1;)_:113( )—e( ) (t m)‘l‘
/ Ksym ~4,9) b o —y) &(t,y) dy _/:’Wa(t,m) &(t,y) dy

/ F(z +y,2) (t,m+y>dy—/ozf(m,me(t,m)dy.

This equation is equivalent to (3.19).

We assume

/ z S(dz) < (3.28)
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and introduce the modified kernel (cf. (3.3))

(¢, B) = n / 1a(Js(é,2)) o S(da)+ (3.20)
N N
ZlB(Je( ‘|‘Z/ 1B JF f;'L;y (mhdy)—l_
=1 X
N
U3 (i) Kt ) g e pae),

with the modified jump transformations (cf. (3.4))

. N 1 1
JF(é-;'I/;y):f 5%—'— 5y7 JK(é-;'I/;])25_55%—";5%{—%- (330)

The minimal jump process, corresponding to the kernel (3.29), is called mass flow pro-
cess.

Following (3.20), the mass flow fragmentation kernel (3.25) can be represented in the
form

F(m,dy):/z[': 8,y (dy) + .. —|—Z—k52k(dy)] F(z,dz). (3.31)

Since the total fragmentation rate does not change (cf. (3.26)), the “fragment” (next
state) in the mass flow process is chosen as follows: first fragments 21, .. ., 2; are generated
according to the normalized direct simulation fragmentation kernel F(z,dz); then one of
them is chosen with probabilities proportional to their individual masses.

Note that (cf. (3.7), (3.8), (3.28)-(3.30))
_ (g, B = (3.32)

[ / 25(de) + [ ee)tin) + [ Fe,X)etae) + [ [ KomEU ¢ae) giay)

/E(n) [/¢ ) &alde) /¢ ]"(”)(f,dgl): (3.33)
/¢(az)m5(dm)—/ 1/J(m)e(a:)§(da:)—|-/ /X [¢(y)—¢(m)]ﬁ(m,dy)£(dw)+

[ e+ -] =22 ) ggan),

for any ¢ € E™ and appropriate test functions ¥ . The corresponding macroscopic equa-
tion (obtained for n — o0) is (3.27).

an

3.3. Comments

The study of the coagulation-fragmentation equation (3.19) (with s = e = 0 and binary
fragmentation) goes back to [Mel57].

17



In the pure fragmentation case S =0, e=0, K =0, the mass flow equation (3.27)
with test functions ¥ (y) = 1(0,2)(¥) 1mphes

gt ,(0,2) // ©02)(¥1) — L)y )]F(y,dyl)ﬂ(t,dy) (3.34)

= [ [ Py iten) = [ P, 0,2) dy e, 0,0))

According to (3.31), one obtains

R 00) = [ |2 800,00+t 26, (0,2)| Ploy o
1
P

1:z;<x

= F(y,Z)E,

so that equation (3.34) is identical with equation (2) in [Fil61]. Note that a(¢,(0,z)) is
the average sum of masses of particles of mass smaller than z at time ¢. Since (cf. (3.26))

&Ezazﬂmm»

s : (3.35)
1:z;<T F(y7X)

the one-dimensional Markov process introduced in [Fil61, p.279] is just the mass flow
process.

4. Explosion in stochastic coagulation-fragmentation
models

Here we apply the criteria from Section 2 to the models introduced in Section 3. The

trajectories of the underlying Markov chain take values in the space (3.1). The state space

of single particles is (3.2). The jump kernels and waiting time parameters are determined

by (3.3), (3.7) and (3.29), (3.32), respectively. We fix the parameter n and skip the

corresponding superscripts.

Remark 4.1 Condition

) 1 R

implies

= 1 = 1
P(;m<oo>:/EP<;m<oo‘§0:§>uo(df):1,

i.e. explosion with probability one (cf. (2.8)), for any initial distribution vy on E.

It is often easier to prove (4.1), since trajectories starting at a given ¢ remain in a certain
part of the state space, where some of the sufficient conditions can be checked. Note that,
according to (2.10) and Remark 3.1, explosion implies that (with positive probability)
either the number of particles in the system reaches co or some of the particles reach 0
or co.

18



4.1. Explosion of the direct simulation process

We consider the process with the kernel (3.3). In the pure coagulation case the waiting
time parameter (3.7) takes the form

MO =5 Y Klmz).

1<i#j<N

Particle sizes increase so that they cannot reach zero. Both the growth of individual par-
ticles and the number of particles in the system are bounded due to mass conservation. So
there is no explosion provided the coagulation kernel is bounded on compacts. Analogous
arguments apply to the discrete coagulation-fragmentation case (without source term).
Thus, all interesting cases in the sense of explosion should include continuous fragmen-
tation. First we study the situation, when the total fragmentation rate is bounded at
zero, and provide some sufficient conditions for regularity. Finally, Theorem 4.3 gives a
sufficient condition for explosion in the case of pure fragmentation.

Theorem 4.2 Consider the direct simulation kernel (3.8), where

F®) (g, X*) =0, Vee X, k>kp, (4.2)
Flz,Z) < Cp (1 +12), Vze X, (4.3)
Kz, y) <Ck(z+y+zy), Ve,ye X, (4.4)
e(z) < Ce (1 +z), Veze X, (4.5)
and
S(XN(Cs,00))=0, (4.6)

for some constants kr,Cr,Ck,C. and Cg. If there is no source term (Cs = 0) or no
coagulation term (Cx = 0) then the direct simulation process is regular.

Proof. According to (4.3)-(4.6), the waiting time parameter (3.7) satisfies

AE) < (4.7)
n {S(X N (0,Cs]) + (Ce + CF) [Mo(f) + Ml(f)] + OZ—K [2 Mo (&) My (€) + Ml(f)z] } )

where the notations
M) =€), Me)= [ etldn), ¢eE,

are used. Consider trajectories ({o, (1,...). According to assumption (4.2), the number
of particles in the system grows at most linearly, i.e.

P(Mo(gk) < Mo(Co) + kkp, Vi > o) ~1. (4.8)
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According to assumption (4.6), the mass of the system grows at most linearly, i.e.
P(Ml(gk)ng(go)+kcs, szo) ~1. (4.9)
If there is no coagulation term, then (4.7), (4.8), (4.9) imply (a.s.)
M) <1 { S(X) + (Ce+ Cr) | MolGo) + ke + Mi(G) +kCs| |, Vk>0.  (4.10)
If there is no source term, then the mass of the system does not grow, i.e.
P(Ml(gk) < Mi(Go), VE > o) ~1, (4.11)
and (4.7), (4.8), (4.11) imply (a.s.)

MG) < n{(Ce+ Cr)|[Mo(Go) + ke + Mi(G)] (4.12)

FOE [20M0(6o) + kke] ML(G) + M)}, VR0,

In both cases (4.10) and (4.12), one obtains

- 1 = 1
> —_—, h Co,Ch < 8.,
;A(Ck)_kz:;CO‘l‘kCl where Cy,C; < 0 a.s
so that regularity follows. [ |

Theorem 4.3 Consider the direct simulation kernel (8.8) in the pure fragmentation case

(S=0,e=0, K=0). If

C
F(m,Z)Z—F, Vze X, for some Crp >0, a>0, (4.13)
ma

then the direct simulation process explodes almost surely, for any tnitial distribution on

the set E={¢ € E: N >1}.
We prepare the proof by the following lemma.
Lemma 4.4 For any a > 0 the following inequality holds

N N @
Zm;aZNHa(Zmi) Ve; >0, i=1,...,N, N=1,2,.... (414)

i=1 i=1
Proof. We first show that
(N -1z 4 (1 —z)™* > Nt Vze (0,1), N=12,.... (4.15)
The derivative of the function at the left-hand side is
—a(N -1z pa(l —z) >t
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and equals zero if and only if
1t = L -1 le. z = E .
N-1 = ’ N
The minimum taken at this point is just the right-hand side of (4.15).

Assertion (4.14) is proved by induction. Note that it is fulfilled for N = 1 and assume
it holds for N — 1. In the case Zfil z; = 1 one obtains, according to (4.15),

N N-1 e
D e > (N 1)+ (Z m) +ay* > N

and the assertion follows immediately. [ |

Proof of Theorem 4.3. In order to make use of Corollary 2.3, we introduce the sets

N
1
E+(C):{5eE: ~Y <o, NZl}, C>0, (4.16)
n =1
and the function n(¢) = g(é(X)), € € E, where
z? :
g(m):m, z>0, 0 < 6 < min(e, 1),
is an increasing bounded function. The derivative
B it
()= —— 4.17
9'(z) 0t ) (4.17)
is decreasing so that
(y—=z), Vy>z>0. (4.18)

9(y) —g(z) > g'(y
According to (3.3), (3.4), (4.13), (4.17

| [ntén =) ate, a0 :ﬁ [ [ttt - (0] Flos a2

> i / |9((N + 1)/m) = g(N/n)| F (2, dz)

)
)

, (4.18) and Lemma 4.4, one obtains (cf. (4.16))

Y

C N Cr NN
il g((N +1)/n) Zmz 2— ((N +1)/n) Nl"'a(Zazz)
n

i=1 i=1
Cr B[(N +1)/n]""

n (1+[(N+1)/n]f)?

The order of N satisfies § —1—-26+ 1+ a =a— £ > 0, which makes the right-hand

side of (4.19) bounded from below by some € > 0. Thus, condition (2.15) is fulfilled and

Corollary 2.3 implies almost sure explosion on the set of all trajectories (o, (1, . . .) living

in ET(C). Note that any & € E satisfies £ € E*(C) for sufficiently large C', and
(o € E+(C) = (x € E+(C), VE a.s.,

since mass is conserved and the number of particles increases. Thus, the assertion follows
from Remark 4.1. [ |

Nt (Cn)™, Vée EY(O). (4.19)
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4.2. Explosion of the mass flow process

We consider the process with the kernel (3.29). In this model the growth of the size of
individual particles is not bounded so that explosion is possible in the pure coagulation
case. Theorem 4.5 gives a surprisingly easy and rather complete solution to this problem.
As to pure fragmentation, again only the continuous case is of interest in the sense of
explosion. Fragmentation in the mass flow process does not lead to a blow-up of the
number of particles, but only to a decrease of their sizes. Theorem 4.8 provides sufficient
conditions for explosion in the pure fragmentation case.

Theorem 4.5 Consider the mass flow kernel (3.29) in the pure coagulation case (S =
0, e=0, F=0). Assume

K(z,y) > K(2,), (4.20)
where K is homogeneous with exponent o > 1, i.e.
K(cz,cy) = ¢ K(z,y), Ve>0, z,ye X, (4.21)

and such that K(1,1) > 0. Then the mass flow process ezplodes almost surely, for any
initial distribution on the set E={( € E : N >1}.

Proof. In order to make use of Corollary 2.3, we introduce the sets

E+(C,L):{56E: min_z; > C, N:L}, C>0, L=1,2,...,

1=1,...,.N

and the bounded measurable function

z z 1 +
where
H(z) = —z7?, for some 0<fB<a—1.

Consider trajectories ((o, (1, ...). Note that
(o€ ET(C, L) = (€ EY(C,L), VEk as., (4.23)

since the sizes of individual particles increase and the number of particles is conserved.

According to (3.33), (3.14), (4.20) and (4.21), one obtains

/E [’7(51) - 77(5)] 4(¢,dé) = iz EL: [m;ﬂ — (zs + mj)—ﬂ] M >

=i i
1 & 1_968 L
37 [a® - @) F e R(L1) = R(1,1)) 2
n n
1-27° a-1-8 +
> T2 R(,1)LC*P >0,  Vée BYC,L).
n

Thus, condition (2.15) is fulfilled and Corollary 2.3 implies almost sure explosion on the
set of all trajectories living in E*(C, L). Note that any £ € E satisfies £ € E*T(C, L) for
sufficiently small C and some L. Taking into account (4.23), the assertion follows from
Remark 4.1. [ |
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Example 4.6 Consider the mass flow coagulation process MF(1) starting with one par-
ticle of size one, 1.e. (o = 81, n = 1. In this case the Markov chain is deterministic,

Ck:(szk; m](;:21‘:7 k:(),]_,..

c
and the sequence of waiting time parameters takes the form (cf. (3.32))

() = K22

Assuming K = K and using ({.21) one obtains S\(Ck) =2k(e-1) k=0,1,..., so that

?

1
E = <o & a>1.
k:oA(Ck)

Example 4.7 Consider the mass flow coagulation process MF(2) starting with two par-
ticles of size one, i.e. (; =61, n=2. In this case the Markov chain takes the form

|
gk:§[5zk+5yk], k=01,..., @o=yo=1,

and the sequence of waiting time parameters is (cf. (3.82))

() = 5 |y Rlow) | Konn) | Koo (4.21)
If
K(z,y) > (zy)?, Ve,ye X, for some (3, (4.25)
then one obtains
36 2 5 [a27 g ol el ] (4.26)

We consider several special trajectories, for which the ezplosion property can be checked
explicitly.
First there 1s a trajectory of “fastest growth”

zp = 2F ye =1, k=0,1,..., (4.27)

when each jump consists in doubling the first particle. If the coagulation kernel satisfies

(4.25), then one obtains from (4.26)

zh (4.28)

and




Thus, there is ezplosion on the trajectory (4.27) even for many non-gelling kernels.

Next we consider a trajectory of “second fastest growth”
(1,1) —» (1,2) — (3,2) — (3,5) — (8,5) — (8,13) — ... (4.29)

when self-interaction is avoided and alternatingly either the first particle is added to the
second or vice versa. This trajectory is related to the Fibonacci numbers

(14 VB — (1- VB 1 (115 _
> 5 = Integer \/5< 5 ) , k=1,2,..

where Integer[a] denotes the nearest integer of the number a. Here both particles zg,yx
grow as C* for some C > 1. If the coagulation kernel satisfies (4.25), then (4.26) implies
A(¢e) > CCP-Yk 5o that there is explosion on the trajectory (4.29) in the gelling case

g>1/2.

Finally, we consider a trajectory of “slowest growth”
zp=1+k, yr =1, k=0,1,..., (4.30)

when each jump consists in adding the second particle to the first one. If the coagulation

kernel satisfies (4.25), then the estimate (cf. (4.28))

implies ezplosion in the case B > 1. If, however, K(z,y) < zy, Vz,y € X, then one
obtains (cf. (4.24)) M) <z +ye =k +2 and

2

k

>

1 = 1
>V - .
ARLILTT
Thus, there is no ezplosion on the trajectory (4.30) even for many gelling kernels.

Theorem 4.8 Consider the mass flow kernel (3.29) in the pure fragmentation case (S =
0, e=0, K=0). Assume

p(m,X)Zﬁ, Vze X, for some Cpr >0, a>0, (4.31)
ma
and
1 Y\ ~
— =) F(z,dy) <y<1, Vee X. 4.32
F(M)/X(m) (2, dy) < (4.32)

Then the mass flow process explodes almost surely, for any initial distribution on the set

E={¢cE: N>1}.
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Proof. In order to make use of Corollary 2.3, we consider the sets

E+(C,L):{56E: max 2, < C, N:L}, C>0, L=12,...,

and the bounded measurable function (4.22) with H(z) = —z*. Consider trajectories

(Co,C1,y-..). Note that
o€ E7(C,L) = (€ EY(C,L), Vk as., (4.33)

since the sizes of individual particles decrease and the number of particles is conserved.

According to (3.33), (4.31) and (4.32), one obtains

/ [n(fl)—??(f)]fi(f,d&):%i [ [t - o] Plouan) =

%Zma Pz, X) [1-%/}( (%)aﬁ’(mi,dy)]

> >0, Vée EY(C,L).

Thus, condition (2.15) is fulfilled and Corollary 2.3 implies almost sure explosion on the
set of all trajectories living in E*(C, L). Note that any ¢ € E satisfies ¢ € ET(C, L) for
sufficiently large C' and some L. Taking into account (4.33), the assertion follows from
Remark 4.1. [

In terms of the direct simulation fragmentation kernel F' (cf. (3.25), (3.26)), assump-
tion (4.31) takes the form (4.13), while assumption (4.32) takes the form

AR = Fs(lgl z,dy) <vy<1, Vze X, 4.34
F(z,Z) F{)(z,X) Jx \z ) (4.54)

where the first factor represents the average number of fragments (cf. (3.21)). The
following examples illustrate assumption (4.34).

Example 4.9 Consider the case of uniform binary fragmentation (cf. (3.23))
sym

Pz, dy) = F),(0,dy) = F(a) = Lom(y)dy, @€ X = (0,00),
Zz

where the function F determines the waiting time parameter. Assumption (4.34) is ful-

filled, since

2 z 2
ol dy = 1 Y 0.

Example 4.10 Consider the case of deterministic binary fragmentation (cf. (3.23))

F(l)(ma dy) = F(:I}) 5N(z)(dy)7 (4.35)
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where
k(z) € (0,z), Vee X =(0,00),
and the function F determines the waiting time parameter. Note that (cf. (3.24))

P eds) = TS ) + [ (i) b ()]
@ [5n(z)(dy) + 5z_ﬁ(z)(dy)] . (4.36)

Thus, assumption (4.34) takes the form

(d@)“*+(g;ﬂﬂ)“*gy<1, VoeX, (4.37)

Z Z

and 1s fulfilled, +f
mz<kz)<yz, Vze X, for some 0 <y <y <1,

since

(n(m)>“+1 + (93_7“%))&+1 < K(;) V5 + 9[:_Tﬂ(m)(l —71)"
< max (7;,(1 —yl)a) <1.

In the last two examples we consider the case of deterministic binary fragmentation (4.35)
and the mass flow fragmentation process with n = 1 and one initial particle of size .

Note that (cf. (3.25), (4.36))

s

ﬁ’(m, dy) = 2(;;) [y Sr(z)(dy) +y 5z—n(z)(dy)]
= };(zj) [n(m) Sr(z)(dy) + [z — K(z)] 5z—n(z)(dy)]
and
p(:’X) F(z,dy) = ”(;) Sua)(dy) + [1 - @] So—n(z)(dy) -

Thus, the Markov chain takes the form (, = d,,, £k =0,1,..., where

k(z , with probability rlew) ,
Thy1 = () : o k) (4.38)
zr — k(zk), with probability 1 — =
The sequence of waiting time parameters is (cf. (3.32))
~ ~ 1 -
M) = Fzg, X) = 9 F(zy). (4.39)
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Example 4.11 Consider the case (4.85) with the function

K(z) = {

Note that assumption (4.34) (cf. (4.37)) is violated, since lim, o & (% + 5) = 2. Ifzo >

%, then the sequence

1 . 1
+ ) 'Lf z > 2
otherwise.

(4.40)

N8N8

?

2w 428 — 1

nk—Ta k:0717"'7

satisfies

2z0 +2F — 1 1
K(’)’]k) = T + Z = Mk+1

and corresponds to the trajectory of “slowest decrease” (cf. (4.88)). There is no explosion
on this trajectory, since it does not reach zero. However, it has a non-zero probability,
namely

1 1
lim (o) () () = — lim k(m) = —. (4.41)
k—oco 19 T Mk g k—oo 2:110

This ezample illustrates that some additional restriction like assumption (4.32) in Theo-
rem 4.8 cannot be avoided.

Example 4.12 Consider the case (4.85) with the function k(z) = 5 and zo = 1. Accord-
ing to (4.38), the trajectory of the Markov chain is deterministic, with

rp=2"", E=0,1,....

For the choice F(z) = —logz + 1, one obtains (cf. (4.39))

=1 > 2 2 =
; (ckfzmk):logz,; -

k=0 k=0

St
| =

so that there is no ezplosion. This ezample illustrates that assumption (4.81) in Theo-
rem 4.8 cannot be replaced by some arbitrarily slow growth at zero.

4.3. Comments

In the pure coagulation case there is no explosion in the direct simulation model. Accord-
ing to Theorem 4.5 there is explosion in the mass flow model for a rather wide class of
gelling coagulation kernels.

In the pure fragmentation case there is explosion in both models. Theorems 4.3
and 4.8 cover wide classes of unbounded (at zero) fragmentation kernels. The sufficient
conditions for the mass flow model are stronger than those for the direct simulation model.
Example 4.11 shows that there are fragmentation kernels for which the direct simulation
model explodes almost surely, while the mass flow model does not. Indeed, choose the

27



kernel (4.35) with F(z) =2, a > 0, and & given in (4.40). Then the direct simulation
process explodes almost surely for any initial value zq, according to Theorem 4.3. The
mass flow process explodes with probability 1 — i for any zo > % , according to (4.41).

In the direct simulation fragmentation model explosion implies that the number of
particles in the system reaches infinity in finite time (each jump increases this number).
Due to mass conservation, this means that (at the explosion time) infinitely many parti-
cles are below any given size €, creating “dust”. In the mass flow fragmentation model
explosion occurs due a fast approach to zero of a single particle. This explains what is
going on in the example described above. In the direct simulation case each jump creates
two fragments and some of them reach the interval (0, %] leading to explosion. Fragments
staying bigger than % do not avoid the fact of explosion. In the mass flow model there is
only one particle, which stays above % with positive probability.

Recently the interest in fragmentation processes has considerably increased (cf., e.g.,
[Ber02], [Haa03]). In this context the occurrence of small particles (dust) has been studied
using different models.

5. Concluding remarks

In this paper explosion criteria for jump processes with an arbitrary locally compact sep-
arable metric state space were established. These results are of independent interest. As
an illustration, the general criteria were applied to stochastic coagulation-fragmentation
models. The corresponding results (Theorems 4.3, 4.5, 4.8) cover a wide range of coag-
ulation and fragmentation kernels, for which phase transitions to infinitely large (gel) or
infinitely small (dust) particles are known in the context of macroscopic equations. The
proofs of these theorems are rather short, which illustrates the efficiency of the general
explosion criteria. In particular, the results of Theorems 4.3 and 4.5 would hardly be avail-
able on the basis of the previously known criteria for one-dimensional processes. It might
be of interest to extend the explosion results, which were obtained either for pure coagu-
lation or for pure fragmentation, to more general situations combining both processes and
including source and efflux terms. For this purpose, perhaps more sophisticated choices
of the test function 7 in the criteria will be required.

A challenging problem for future research is the study of the limiting behaviour
(n — o0) of the stochastic coagulation-fragmentation models with explosion. In par-
ticular, the second (more difficult) part of the conjecture mentioned in Section 1 is still
open. Convergence of a truncated mass flow model (particles exceeding a certain level are
removed from the system) to the solution of the Smoluchowski equation has been studied
in [EWO01]. In general, the continuation of jump processes after the explosion point is a
delicate problem. In the context of the coagulation-fragmentation models based on parti-
cles there is a natural way of continuation - particles reaching 0 or oo are simply removed
from the system, while the others continue their evolution according to the previous rules.

The conservation property of the mass flow equation (cf. (3.27) without source and
efflux terms and for a constant test function) allows one to interpret its solution as a
probability measure and to construct a related nonlinear Markov process. Such a process
is determined by some stochastic equation with coefficients depending on the law of the
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solution. This approach has been carried out in [DFT02] (pure coagulation), [Jou03]
(including discrete fragmentation) and [FG03] (including continuous fragmentation). It
would be of interest to clarify how the explosion phenomena observed in finite particle
systems are represented in these limiting processes.

It is remarkable that some explosion phenomenon is probably recovered also in the
direct simulation coagulation model in the limit n — oco. A result concerning explosion
of an appropriately scaled tagged particle in the discrete case K(z,y) = (zy)® for 1/2 <
a < 1 was announced in [Mar01], but unfortunately has not been published so far.
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