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1 Introduction

The class of Godunov-type methods for solving numerically hyperbolic conservation laws is
often regarded as one of the most successful. The original first-order scheme of Godunov [5,
6, 7] uses the self-similar solution of the local Riemann problem with piece-wise constant
initial data to compute the upwind numerical flux. The extension to second order of
accuracy in time and space can be carried out, amongst other ways, by using a non-
oscillatory piece-wise linear reconstruction of data from cell averages [12, 13, 39] and
solving the generalised Riemann problem at cell interface position. The generalisation
of the Riemann problem here consists of using the initial condition in the form of two
linear reconstruction polynomials instead of the piece-wise constant states, as done in the
first-order scheme. The corresponding Generalised Riemann Problem (GRP) schemes in
one space dimension have been constructed by various authors [2, 14, 16].

In general, the approximate solution of the generalised Riemann problem, given in [15]
for one-dimensional Euler equations of a gamma-law gas, is quite cumbersome and may
be not possible to obtain for more complicated hyperbolic systems, e.g. MHD equations.
Therefore, the GRP-type methods as such are not competitive with other second-order
accurate Godunov methods. A major simplification to the GRP methodology comes with
the modified GRP (MGRP) scheme, proposed in [28]. In this scheme the generalised Rie-
mann problem is not solved directly. Instead, it is replaced by two conventional Riemann
problems, namely one non-linear problem for the leading term for state variables and one
linear problem for gradients of state variables. Since approximate-state Riemann solvers
are available for most of the hyperbolic conservation laws of interest, the MGRP scheme
is much more practical than the original GRP schemes [2, 14, 16].

The ADER approach [30, 31] can be regarded as a further development of the MGRP
scheme in that it breaks the barrier of second-order accuracy and allows the construction of
arbitrarily high-order accurate schemes, both in time and space. To evaluate the numer-
ical flux, in the ADER approach one solves the generalised Riemann problem with initial
condition consisting of two arbitrary but smooth functions using a semi-analytical method,
reported in [32]. The approximate solution is given as a Taylor time expansion at the cell
interface position up to any order of time accuracy 1 ≤ r < ∞. The extension of original
ADER schemes [31] to the one-dimensional nonlinear systems, using the method [32] has
been reported in [26, 33]. See also [25, 27]. In multiple space dimensions the nonlinear
ADER schemes as applied to scalar nonlinear equations have been constructed in [34, 11]
for both structured and unstructured meshes. We also mention [20, 21] where the authors
consider linear (fixed-stencil) ADER schemes for two-dimensional linear homogeneous sys-
tems with constant coefficients systems. So far the approach has not been applicable to
multidimensional nonlinear systems.

The motivation of this paper is to carry out the extension of one-dimensional non-
oscillatory ADER schemes [26] to multidimensional nonlinear systems of conservation
laws. We present numerical results of schemes of third and fourth order of time accuracy
as applied to the compressible Euler equations of gas dynamics in two and three space
dimensions. These results illustrate the very high order of accuracy of the schemes as well
as their essentially non-oscillatory behaviour. When compared with the state-of-art finite-
volume WENO scheme of Shi et. al [22], the ADER schemes are faster, more accurate
and need less computer memory.
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The rest of the paper is organized as follows. In Section 2 we very briefly review the
ADER approach as applied to one-dimensional nonlinear systems. Extension to three-
dimensional nonlinear systems is carried out in Section 3. Numerical results are provided
in Section 4 and conclusions are drawn in Section 5.

2 The numerical scheme in one space dimension

Consider a hyperbolic system in conservation form given by

∂tQ + ∂xF(Q) = 0 (1)

along with initial and boundary conditions. Here Q is the vector of unknown conservative
variables and F(Q) is the physical flux vector. Integrating (1) over a space-time control
volume in x − t space [xi−1/2, xi+1/2] × [tn, tn+1] of dimensions ∆x = xi+1/2 − xi−1/2,
∆t = tn+1 − tn, we obtain the following one-step finite-volume scheme:

Qn+1
i = Qn

i +
∆t

∆x

(
Fi−1/2 − Fi+1/2

)
. (2)

Here Qn
i is the cell average of the solution at time level tn, Fi+1/2 is the time average of

the physical flux at cell interface xi+1/2:

Qn
i =

1

∆x

∫ xi+1/2

xi−1/2

Q(x, tn) dx, Fi+1/2 =
∫ tn+1

tn
F(Q(xi+1/2, t) dt. (3)

The first step in the ADER flux evaluation algorithm is the reconstruction of point-
wise values of the solution from cell averages at t = tn via high-order polynomials. To
circumvent the Godunov theorem [5] and design non-oscillatory schemes we use the non-
linear (solution-adaptive) weighted essentially non-oscillatory (WENO) reconstruction,
see [10, 1, 22] and references therein. We remark that for the rth order accurate scheme
(in time and space) the reconstruction polynomials must be of (r − 1 )th order, e.g. for
third order schemes we use piece-wise parabolic reconstruction and so on.

After the reconstruction step the conservative variables in each cell are represented
by vectors pi(x) of polynomials. Then at each cell interface we can pose the following
generalised Riemann problem:

PDE: ∂tQ + ∂xF(Q) = 0,

IC: Q(x, 0) =





QL(x) = pi(x), x < xi+1/2,

QR(x) = pi+1(x), x > xi+1/2.

(4)

We find an approximate solution for the interface state Q(xi+1/2, τ), where τ is local time
τ = t− tn, using a semi-analytical method developed in [32]. For rth order of accuracy the
method reduces the difficulty of solving the generalised Riemann problem (4) to that of
solving a sequence of conventional Riemann problems, namely one nonlinear and (r − 1)
linear problems, and proceeds as follows. First we write a Taylor expansion of the interface
state in time

Q(xi+1/2, τ) = Q(xi+1/2, 0+) +
r−1∑

k=1

[
∂k

∂tk
Q(x, t)(xi+1/2, 0+)

]
τ k

k!
. (5)
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The leading term Q(xi+1/2, 0+) accounts for the first-instant interaction of the bound-
ary extrapolated values QL(xi+1/2) and QR(xi+1/2) and is the Godunov state [5] of the
conventional (piece-wise constant data) Riemann problem:

∂tQ + ∂xF(Q) = 0,

Q(x, 0) =





QL(xi+1/2) if x < xi+1/2,

QR(xi+1/2) if x > xi+1/2.

(6)

A key ingredient here is the availability of an exact or approximate Riemann solver to
provide this first term in the expansion.

The higher order terms are evaluated in two steps. First we express all time derivatives
via spatial derivatives by means of the Cauchy-Kowalewski procedure. For system (1) the
procedure yields the following expressions:

∂tQ = −
(

∂F

∂Q

)
∂xQ,

∂txQ = −
(

∂2F

∂Q2

)
(∂xQ)2 −

(
∂F

∂Q

)
∂xxQ,

∂ttQ = −
(

∂2F

∂Q2

)
∂tQ∂xQ−

(
∂F

∂Q

)
∂xtQ

(7)

and so on. In practice, we find it more convenient to carry out (7) in componentwise
manner rather than in the matrix form. The procedure can be easily coded with the aid
of algebraic manipulators, such as MAPLE or Mathematica.

Next we derive the evolution equations for the spatial derivatives by differentiating
the governing equation (1) and reconstruction polynomials QL, QR with respect to x. In
general, for nonlinear systems the evolution equation for each spatial derivative

Q(k) ≡ ∂k

∂xk
Q, 1 ≤ k ≤ r − 1

is in non-conservative form and contains a nonlinear source term H depending on deriva-
tives of lower order l = 1, . . . k − 1 as well as Q(x, t) itself:

∂t

(
Q(k)

)
+ A ∂x

(
Q(k)

)
= H(Q,Q(1),Q(2), . . .Q(k−1)), k = 1, . . . r − 1. (8)

For the Taylor expansion (5) we need the solution of (8) for each k = 1, . . . r − 1 at
interface position x = xi+1/2 at time τ = 0+. Therefore, we can neglect the influence of
the source term, which comes into effect for τ > 0 only. Additionally, we linearize the
equation around the leading term Q(xi+1/2, 0+) of the time expansion (5) and replace
the piece-wise polynomial initial data by left and right boundary extrapolated values of
spatial derivatives at xi+1/2. The described simplifications result in the following linear
conventional Riemann problem for the spatial derivatives Q(k):

∂t

(
Q(k)

)
+ Ai+1/2 ∂x

(
Q(k)

)
= 0, Ai+1/2 = A(Q(xi+1/2, 0+)),

Q(k)(x, 0) =





∂k

∂xk
QL(xi+1/2), x < xi+1/2,

∂k

∂xk
QR(xi+1/2), x > xi+1/2.

(9)
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Note that the coefficient matrix Ai+1/2 is the same for all derivatives and has to be

evaluated only once. If we denote by Q
(k)
∗ ((x− xi+1/2)/τ) the self-similar solution of (9),

then the spatial derivatives Q(k) in (9) are computed as Q(k) = Q
(k)
∗ (0), the Godunov

state.

Finally, having found all spatial derivatives we form the Taylor expansion (5). Two
options now exist to evaluate the numerical flux. The first option is the state-expansion
ADER [26], in which the approximate state (5) is inserted into the definition of the
numerical flux (3) and then an appropriate rth-order accurate quadrature is used for time
integration:

Fi+1/2 =
Kl∑

l=0

F(Q(xi+1/2, γl∆t))ωl. (10)

Here γj and ωj are properly scaled nodes and weights of the rule and Kα is the number
of nodes.

The second option to evaluate the numerical flux is the flux-expansion ADER [33, 25],
in which we seek Taylor time expansion of the physical flux at xi+1/2:

F(xi+1/2, τ) = F(xi+1/2, 0+) +
r−1∑

k=1

[
∂k

∂tk
F(xi+1/2, 0+)

]
τ k

k!
. (11)

From (3) and (12) the numerical flux is now given by

Fi+1/2 = F(xi+1/2, 0+) +
r−1∑

k=1

[
∂k

∂tk
F(xi+1/2, 0+)

]
∆tk

(k + 1)!
. (12)

The leading term F(xi+1/2, 0+) accounts for the first interaction of left and right bound-
ary extrapolated values and is computed as a certain monotone flux of the conventional
Riemann problem (6) for the leading term of the state expansion (5). Following [33],
the remaining higher order time derivatives of the flux in (12) are expressed via time
derivatives of the intercell state Q(xi+1/2, 0+), which are known from (5). No numerical
quadrature is then required to compute the numerical flux.

The solution is advanced in time by updating the cell averages according to the one-
step formula (2).

3 Extension to several space dimensions

Consider the following three-dimensional nonlinear system of conservation laws:

∂tQ + ∂xF(Q) + ∂yG(Q) + ∂zH(Q) = 0. (13)

Integration of (13) over a space-time control volume of dimensions ∆x = xi+1/2 − xi−1/2,
∆y = yj+1/2−yj−1/2, ∆z = zk+1/2−zk−1/2, ∆t = tn+1− tn produces the following one-step
finite-volume scheme:

Qn+1
ijk = Qn

ijk +
∆t

∆x

(
Fi−1/2,jk − Fi+1/2,jk

)
+

∆t

∆y

(
Gi,j−1/2,k −Gi,j+1/2,k

)

+
∆t

∆z

(
Hij,k−1/2 −Hij,k+1/2

)
,

(14)
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where Qn
ijk is the cell average of the solution at time level tn:

Qn
ijk =

1

∆x

1

∆y

1

∆z

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ yj+1/2

yj−1/2

Q(x, y, z, tn) dz dy dx, (15)

and Fi+1/2,jk, Gi,j+1/2,k and Hij,k+1/2 are the space-time averages of the physical fluxes at
the cell interfaces:

Fi+1/2,jk =
1

∆t

1

∆y

1

∆z

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

∫ tn+1

tn
F(Q(xi+1/2, y, z, τ)) dτ dz dy,

Gi,j+1/2,k =
1

∆t

1

∆x

1

∆z

∫ xi+1/2

xi−1/2

∫ zk+1/2

zk−1/2

∫ tn+1

tn
G(Q(x, yi+1/2, z, τ)) dτ dz dx,

Hij,k+1/2 =
1

∆t

1

∆x

1

∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ tn+1

tn
H(Q(x, y, zi+1/2, τ)) dτ dy dx.

(16)

Here τ = t− tn is local time.

While describing the procedure to evaluate the numerical flux in three space dimen-
sions we concentrate on Fi+1/2,jk; the expressions for Gi,j+1/2,k and Hij,k+1/2 are obtained
in an entirely analogous manner.

The evaluation of the ADER numerical flux Fi+1/2,jk consists of the following steps.
First we discretize the spatial integrals over the cell faces in (16) using a tensor product
of a suitable Gaussian numerical quadrature. The expression for the numerical flux in the
x coordinate direction then reads

Fi+1/2,jk =
N∑

α=1

N∑

β=1

(
1

∆t

∫ tn+1

tn
F(Q(xi+1/2, yα, zβ, τ))dτ

)
Kβ Kα, (17)

where yα, zβ are the integration points over the cell face [xi−1/2, xi+1/2]×[yj−1/2, yj+1/2] and
Kα, Kβ are the weights. Normally, we use the two-point Gaussian quadrature for third
and fourth order schemes and a higher-order Gaussian quadrature for fifth and higher
order schemes.

Next we reconstruct the point-wise values of the solution and all derivatives up to
order r− 1 from cell averages at the Gaussian integration points (xi+1/2, yα, zβ) by means
of the dimension-by-dimension WENO reconstruction. For general information on recon-
struction in the context of the two-dimensional ENO and WENO schemes see [3, 22].
Extension to three space dimensions in the context of ADER schemes can be found in
[34].

After the reconstruction is carried out for each Gaussian integration point (yα, zβ) at
the cell face we pose the generalised Riemann problem (4) in the x-coordinate direction
(normal to the cell boundary) and obtain a high order approximation to Q(xi+1/2, yα, zβ, τ).
All steps of the solution procedure remain essentially as in the one-dimensional case. We
write Taylor series expansion in time

Q(xi+1/2, yα, zβ, τ) = Q(xi+1/2, yα, zβ, 0+) +
r−1∑

k=1

[
∂k

∂tk
Q(xi+1/2, yα, zβ, 0+)

]
τ k

k!
. (18)
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The leading term Q(xi+1/2, yα, zβ, 0+) is the Godunov state of the conventional Riemann
problem

∂tQ + ∂xF(Q) = 0,

Q(x, 0) =





QL(xi+1/2, yα, zβ) if x < xi+1/2,

QR(xi+1/2, yα, zβ) if x > xi+1/2,





(19)

To evaluate higher-order terms we first express all time derivatives by spatial derivatives
by means of the Cauchy-Kowalewski procedure. We note that this procedure will now
involve x, y and z derivatives up to order r− 1. For the system in conservation form (13)
we have

∂tQ = −
(

∂F

∂Q

)
∂xQ−

(
∂G

∂Q

)
∂yQ−

(
∂H

∂Q

)
∂zQ,

∂txQ = −
(

∂2F

∂Q2

)
(∂xQ)2 −

(
∂F

∂Q

)
∂xxQ−

(
∂2G

∂Q2

)
(∂xQ)(∂yQ)−

(
∂G

∂Q

)
∂xyQ

−
(

∂2H

∂Q2

)
(∂xQ)(∂zQ)−

(
∂H

∂Q

)
∂xzQ,

∂tyQ = −
(

∂2F

∂Q2

)
(∂yQ)(∂xQ)−

(
∂F

∂Q

)
∂xyQ−

(
∂2G

∂Q2

)
(∂yQ)2 −

(
∂G

∂Q

)
∂yyQ

−
(

∂2H

∂Q2

)
(∂yQ)(∂zQ)−

(
∂H

∂Q

)
∂yzQ,

∂tzQ = −
(

∂2F

∂Q2

)
(∂zQ)(∂xQ)−

(
∂F

∂Q

)
∂xzQ−

(
∂2G

∂Q2

)
(∂zQ)(∂yQ)−

(
∂G

∂Q

)
∂yzQ

−
(

∂2H

∂Q2

)
(∂zQ)2 −

(
∂H

∂Q

)
∂zzQ,

∂ttQ = −
(

∂2F

∂Q2

)
(∂tQ)(∂xQ)−

(
∂F

∂Q

)
∂txQ−

(
∂2G

∂Q2

)
(∂tQ)(∂yQ)−

(
∂G

∂Q

)
∂tyQ

−
(

∂2H

∂Q2

)
(∂tQ)(∂zQ)−

(
∂H

∂Q

)
∂tzQ

(20)
and so on. An optimized FORTRAN or C output can be produced using algebraic ma-
nipulators and then can be directly included into the actual code.

Entirely analogous to the one-dimensional case, we can derive nonhomogeneous evo-
lution equations and the initial conditions for each spatial derivative

Q(k+l+m) ≡ ∂m+n+l

∂xm∂yn∂zl
Q, 1 ≤ m + n + l ≤ r − 1

by differentiating the governing equation (13) and reconstruction polynomials QL, QR

with respect to x. The evolution equations have exactly the same form as (8) with a
difference. The right hand side will now depend not only on lower order x derivatives but
also on mixed derivatives. For the Taylor expansion (18) we need the values at x = xi+1/2,
τ = 0. Therefore, entirely analogous to the one-dimensional case, we neglect the source
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term, linearize the equation around the leading term of the time expansion (18) and
replace the piece-wise polynomial initial data by the left and right extrapolated values.
The spatial derivatives at (x−xi+1/2)/τ = 0 are then the Godunov states of the following
linearised Riemann problem with piece-wise constant initial data:

∂t

(
Q(k+l+m)

)
+ Ai+1/2 ∂x

(
Q(k+l+m)

)
= 0, Ai+1/2 = A(Q(xi+1/2, yα, zβ, 0+)),

Q(k+l+m) =





∂m+n+l

∂xm∂yn∂zl
QL(xi+1/2, yα, zβ), x < xi+1/2

∂m+n+l

∂xm∂yn∂zl
QR(xi+1/2, yα, zβ), x > xi+1/2

(21)

After solving (21) for 1 ≤ m + n + l ≤ r − 1 we form the Taylor expansion (18) for the
interface state at the Gaussian integration point (xi+1/2, yα, zβ). The flux of the state-
expansion ADER scheme is obtained by inserting the approximate state (18) into formula
(17) and using an appropriate rth-order accurate quadrature for time integration:

Fi+1/2,jk =
N∑

α=1

N∑

β=1

(
N∑

l=1

F(Q(xi+1/2, yα, zβ, τl))Kl

)
Kβ Kα. (22)

For the flux expansion ADER schemes we write Taylor time expansion of the physical flux
at each point (xi+1/2, yα, zβ)

F(xi+1/2, yα, zβ, τ) = F(xi+1/2, yα, zβ, 0+) +
r−1∑

k=1

[
∂k

∂tk
F(xi+1/2, yα, zβ, 0+)

]
τ k

k!
. (23)

From (16) and (23) the numerical flux is given by

Fi+1/2,jk =
N∑

α=1

N∑

β=1

(
F(xi+1/2, yα, zβ, 0+) +

r−1∑

k=1

[
∂k

∂tk
F(xi+1/2, yα, zβ, 0+)

]
∆tk

(k + 1)!

)
KαKβ .

(24)
Entirely analogous to the one-dimensional case, the leading term F(xi+1/2, yα, zβ, 0+) is
computed from (19) using a monotone upwind flux. The remaining higher order time
derivatives of the flux in (23) are expressed via time derivatives of the intercell state
Q(xi+1/2, yα, zβ, τ) which are given by the Taylor expansion (18).

The solution is advanced in time by updating the cell averages according to the one-
step formula (14).

4 Numerical results

In this section we present numerical results of the ADER schemes as applied to the
multidimensional compressible Euler equations of the form (13) with

Q =




ρ
ρu
ρv
ρw
E




, F = Qu +




0
p
0
0
pu




, G = Qv +




0
0
p
0
pv




, H = Qw +




0
0
0
p

pw




,

(25)
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p = (γ − 1)(E − 1

2
ρ(u2 + v2 + w2)).

Here ρ, u, v, w p and E are density, components of velocity in the x, y and z coordinate
directions, pressure and total energy, respectively; γ is the ratio of specific heats. We use
γ = 1.4 throughout.

The state-expansion ADER schemes need the Godunov state of the Riemann problems
(6), (19) to provide the leading term of the state expansions (5), (18) respectively. In
general, any exact or approximate Riemann solver can be used for this purpose. In this
paper we choose the adaptive Riemann solver described of Sect. 9.5.2 of [29]. We remark
that the computational cost of the Riemann solver is very small compared to the overall
cost of the scheme, typically around 5%. Other parts of the schemes are considerably
more expensive, e.g. the reconstruction procedure takes around 60% of the computing
time.

The flux-expansion ADER schemes additionally need a first-order upwind flux to pro-
vide the leading term of the flux expansions (12),(24). We have successfully used a number
of upwind fluxes, including the Rusanov flux [19], the Roe flux [18], the HLL flux [9], the
HLLC flux [36] and a very recent multistage MUSTA flux [35]. For general background
on the fluxes see also [29]. However, the aim of this paper is not to assess the performance
of different fluxes in the ADER framework. Rather we would like to illustrate the idea of
the flux-expansion ADER schemes. Therefore, we present results for only two numerical
fluxes, the HLL flux and HLLC fluxes. The HLL flux assumes a two-wave structure of the
Riemann problem solution with wave speeds SL and SR. The HLLC fluxes uses a more
accurate three-wave structure, which includes the middle wave with the speed S∗. These
wave speeds must be estimated. We use the pressure-velocity estimates of Sect. 10.5.2 of
[29].

For both state-expansion and flux-expansion variants of the ADER approach we use
the fourth-order Simpson rule for time integration in (10), (22).

We denote the state-expansion ADER schemes of third and fourth orders of time
accuracy, using the adaptive Riemann solver from [29], as ADER3-AD and ADER4-AD
respectively. The corresponding flux expansion ADER schemes are denoted as ADER3-
HLLC, ADER4-HLLC (the HLLC flux is used) and ADER3-HLL and ADER4-HLL (the
HLL flux is used).

For comparisons in our numerical experiments we also run the dimension-by-dimension
version of the finite-volume WENO scheme of Shi, Hu and Shu [22]. The WENO scheme
uses the piece-wise parabolic (r = 3) reconstruction, three-point (sixth order) Gaussian
rule for flux integration, the Rusanov flux [19] as a building block and the third order
TVD Runge-Kutta method for time discretization [23]. Therefore it is formally fifth order
accurate in space and third order accurate in time.

In our computations we evaluate a stable time step ∆t according to

∆t = Ccfl ×min
ijk

(
∆x

|Sn,x
ijk |

,
∆y

|Sn,y
ijk |

,
∆z

|Sn,z
ijk |

)
. (26)

Here Sn,d
ijk is the speed of the fastest wave present at time level n travelling in the d

direction, with d = x, y, z. Ccfl is the CFL number and is chosen according to the linear
stability condition of the scheme, namely 0 < Ccfl ≤ 1/2 in two space dimensions and
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0 < Ccfl ≤ 1/3 in three space dimensions. We run all convergence tests with a fixed
Courant number close to the stability limit. Usually we use Ccfl = 0.45 in two space
dimensions and Ccfl = 0.3 in three space dimensions.

We remark that the ADER3-AD, ADER3-HLLC and ADER3-HLL schemes of the
present paper and the WENO scheme [22] use the same piece-wise parabolic (r = 3)
reconstruction. Therefore, their comparison is indeed justified. The fourth-order ADER4
and ADER4-HLL schemes use more accurate piece-wise cubic (r = 4) WENO reconstruc-
tion; therefore their comparison with other schemes must be qualified.

We assess performance our methods as applied to the following test problems.

4.1 Two-dimensional vortex evolution problem

We solve the two-dimensional Euler equations in the square domain [−5 : 5] × [−5 : 5]
with periodic boundary conditions. The initial condition corresponds to a smooth vortex
placed at the origin and is defined as the following isentropic perturbation to the uniform
flow of unit values of primitive variables [1]:

u = 1− ε

2π
e

1
2
(1−r2) y, v = 1 +

ε

2π
e

1
2
(1−r2) x,

T = 1− (γ − 1)ε2

8γπ2
e(1−r2),

p

ργ
= 1,

(27)

where r2 = x2 + y2 and the vortex strength is ε = 5. The exact solution is a vortex
movement with a constant velocity at 45o to the Cartesian mesh lines. We compute the
numerical solution at the output time t = 10 for which the vortex returns to the initial
position. We use Ccfl = 0.45 for all runs.

Table 1 shows the convergence study for the ADER and WENO schemes with the
piece-wise parabolic (r = 3) reconstruction. We present errors and convergence rates in
L∞ and L1 norm for cell averages of density. We observe that the ADER schemes achieve
approximately sixth and fifth orders of accuracy in L∞ and L1 norms respectively. It is
interesting to note that these orders of accuracy actually exceed the fourth order accuracy
of the two-point Gaussian rule used for flux integration. The WENO scheme is less
accurate than the ADER schemes by a factor of two on coarse meshes and by a factor of
three on the finest mesh.

Table 2 shows the convergence study for the fourth order ADER schemes with the
higher-order piece-wise cubic (r = 4) reconstruction. We observe that approximately
sixth order of accuracy in both norms. For a fixed resolution the fourth order ADER
schemes are more accurate than the schemes of Table 1 by a factor of ten.

We also note, that the accuracy of the ADER-AD and ADER-HLLC schemes of the
same order is very similar whereas the ADER-HLL schemes are slightly less accurate.

4.2 Double Mach reflection of a strong shock

The setup of the problem is as follows [37]. The domain of interest is a region of 4 units
long and 1 unit wide. At the initial time t = 0 a right-moving shock wave of shock
Mach number equal to 10 is set up. The shock front makes an angle of 60o with the
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Table 1: Density convergence study for the vortex evolution problem (27) at the output
time t = 10. ADER and WENO schemes with piece-wise parabolic (r = 3) reconstruction.

Method Mesh L∞ error L∞ order L1 error L1 order

ADER3-AD 25× 25 5.94× 10−2 3.43× 10−1

50× 50 8.90× 10−3 2.74 2.50× 10−2 3.78
100× 100 2.62× 10−4 5.08 8.83× 10−4 4.82
200× 200 4.55× 10−6 5.85 3.58× 10−5 4.62

ADER3-HLLC 25× 25 5.94× 10−2 3.43× 10−1

50× 50 8.94× 10−3 2.73 2.50× 10−2 3.78
100× 100 2.63× 10−4 5.09 8.83× 10−4 4.82
200× 200 4.68× 10−6 5.81 3.61× 10−5 4.61

ADER3-HLL 25× 25 6.08× 10−2 3.87× 10−1

50× 50 9.32× 10−3 2.71 2.64× 10−2 3.88
100× 100 2.86× 10−4 5.02 9.97× 10−3 4.73
200× 200 4.90× 10−6 5.87 3.79× 10−5 4.72

WENO [22] 25× 25 1.04× 10−1 6.92× 10−1

50× 50 1.38× 10−2 2.91 4.58× 10−2 3.92
100× 100 4.60× 10−4 4.91 2.33× 10−3 4.30
200× 200 1.67× 10−5 4.78 9.05× 10−5 4.68

x-axis at x = 1/6. Ahead of the shock the gas is at rest with ρ = 1.4, p = 1. The
following boundary conditions are used. The in-flow boundary condition is applied at the
left vertical boundary x = 0 and transmissive boundary conditions are used at the right
vertical boundary x = 4. At the bottom boundary y = 0 the exact post-shock values of
all gas parameters are set for 0 ≤ x ≤ 1/6 whereas for 1/6 < x ≤ 4 reflective boundary
conditions are used. The exact motion of the Mach 10 shock is prescribed at the top
boundary y = 1. The solution is studied for the output time t = 1/5.

Figs. 1–6 show numerical results of third-order ADER3-AD, ADER3-HLLC and
ADER3-HLL schemes for three meshes: 480× 120, 960× 240 and 1920× 480 cells. The
corresponding results of the WENO scheme can be found in Fig. 3.4 of [22] and are not
shown here. Comparing our results with those in the existing literature [37, 10, 4, 8, 22]
it is seen that ADER schemes produce the flow pattern generally accepted at present as
corrected, on all meshes. All discontinuities are well resolved and correctly positioned.
Comparing our new schemes, ADER3-AD, ADER3-HLLC, ADER3-HLL, and the WENO
scheme [22], we see that the main difference occurs in the resolution of the slip surfaces
and the associated jet. This is partly explained by the numerical flux. The adaptive Rie-
mann solver used to compute the leading term of the state expansion (18) in the ADER3
scheme and the HLLC Riemann solver used for the leading term of the flux expansion (24)
in the ADER3-HLLC scheme recognize all these waves. In fact, the numerical results of
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Figure 1: Density convergence study for the double Mach reflection problem. Method:
the ADER3-AD scheme. Meshes: 480 × 120 cells (top) , 960 × 240 cells (middle) and
1920× 480 cells (bottom). 30 contour lines from 2 to 22.
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Figure 2: Density convergence study for the double Mach reflection problem. Method:
the ADER3-HLLC scheme. Meshes: 480× 120 cells (top) , 960× 240 cells (middle) and
1920× 480 cells (bottom). 30 contour lines from 2 to 22.
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Figure 3: Density convergence study for the double Mach reflection problem. Method:
the ADER3-HLL scheme. Meshes: 480 × 120 cells (top) , 960 × 240 cells (middle) and
1920× 480 cells (bottom). 30 contour lines from 2 to 22.
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Figure 4: Density convergence study for the double Mach reflection problem. Method:
the ADER3-AD scheme. Meshes: 480 × 120 cells (top) , 960 × 240 cells (middle) and
1920× 480 cells (bottom). 30 contour lines from 2 to 22. Zoomed area of Fig. 1.
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Figure 5: Density convergence study for the double Mach reflection problem. Method:
the ADER3-HLLC scheme. Meshes: 480× 120 cells (top) , 960× 240 cells (middle) and
1920× 480 cells (bottom). 30 contour lines from 2 to 22. Zoomed area of Fig. 2
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Figure 6: Density convergence study for the double Mach reflection problem. Method:
the ADER3-HLL scheme. Meshes: 480 × 120 cells (top) , 960 × 240 cells (middle) and
1920× 480 cells (bottom). 30 contour lines from 2 to 22. Zoomed area of Fig. 3
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Figure 7: Density convergence study for the double Mach reflection problem. Method:
the ADER4-HLL scheme. Meshes: 480 × 120 cells (top) , 960 × 240 cells (middle) and
1920× 480 cells (bottom). 30 contour lines from 2 to 22.
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Figure 8: Density convergence study for the double Mach reflection problem. Method:
the ADER4-HLL scheme. Meshes: 480 × 120 cells (top) , 960 × 240 cells (middle) and
1920× 480 cells (bottom). 30 contour lines from 2 to 22. Zoomed area of Fig. 7

19



Table 2: Density convergence study for the vortex evolution problem (27) at the output
time t = 10. ADER schemes with piece-wise cubic (r = 4) reconstruction

Method Mesh L∞ error L∞ order L1 error L1 order

ADER4-AD 25× 25 1.96× 10−2 1.15× 10−1

50× 50 1.59× 10−3 3.62 5.43× 10−3 4.40
100× 100 2.52× 10−5 5.98 1.29× 10−4 5.39

ADER4-HLLC 25× 25 1.96× 10−2 1.15× 10−1

50× 50 1.60× 10−3 3.62 5.43× 10−3 4.40
100× 100 2.52× 10−5 5.98 1.29× 10−4 5.40

ADER4-HLL 25× 25 1.90× 10−2 1.15× 10−1

50× 50 1.61× 10−3 3.56 5.68× 10−3 4.34
100× 100 2.79× 10−5 5.85 1.44× 10−4 5.31

the ADER3-AD and ADER3-HLLC schemes are very similar, almost identical. The HLL
and the Rusanov fluxes used in the ADER3-HLL and the WENO schemes ignore the
internal structure of the Riemann problem solution and thus smear the slip surfaces more
significantly.

Additionally, we observe that all ADER schemes produce much sharper profiles of
the shock waves as compared with the WENO scheme [22]. Presumably, this should be
attributed to the one-step framework of the ADER approach.

On the finest mesh we begin to see the appearance of the Kelvin-Helmholtz insta-
bility (rolling) of the slip surface. We remark that slip surfaces are physically unstable
features of the flow, the converged solution of which can only be obtained by solving the
Navier-Stokes equations. See e.g. [38] for numerical study of two-dimensional Rayleigh-
Taylor instability. When we use the Euler equations, the viscosity is in fact the numerical
viscosity of the method and depends on the scheme and the mesh used. As the mesh is
refined, no limiting (converged) solution is found. However, for a given particular mesh
the numerical solution may exhibit features, typical of physically unstable flows, but with
unknown viscosity. Therefore, more pronounced instability of the solution (rolling of the
slip surfaces) means smaller numerical diffusion of the ADER3-AD and ADER3-HLLC
schemes as compared to the ADER3-HLL scheme and the WENO scheme of [22].

Figs. 7–8 show numerical results of the higher-order ADER4-HLL scheme for the same
meshes. We observe that the scheme produces the correct flow pattern on all meshes, with
thin profiles of discontinuities. Comparing Fig. 8 with that of methods with the lower-
order piece-wise parabolic reconstruction (see Figs. 1–6 and [22]) it is seen that the rolling
of slip surfaces is much more pronounced in the results of ADER4-HLL scheme. Therefore,
the ADER4-HLL scheme has significantly smaller numerical diffusion as compared with
the lower-order schemes.
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4.3 Three-dimensional explosion test problem

Finally, we apply our schemes to the three-dimensional Euler equations (25) and solve
the spherical explosion test problem [29]. The initial condition defined on [−1 : 1]× [−1 :
1] × [−1 : 1] consists of two regions of constant but different values of gas parameters
separated by a sphere of radius 0.4:

(ρ, p) =

{
(1.0, 1.0), r ≤ 0.4
(0.125, 0.1), r > 0.4

, u = v = w = 0, r2 = x2 + y2 + z2. (28)

The numerical solution is computed at the output time t = 0.25 on a mesh of 101 cells in
each coordinate direction. We use Ccfl = 0.3 for all runs.

Figure 9: The spherical explosion test problem. Computed (symbol) and reference (line)
solutions for density (left) and internal energy (right) for the ADER3-AD scheme. A mesh
of 101× 101× 101 cells is used.

Fig. 9 shows a comparison between the one-dimensional reference radial solution (solid
line) and the cell averages of the three-dimensional ADER3-AD solution (symbols) along
the radial line that is coincident with the x-axis. We present distributions of gas density
ρ and internal energy e for x > 0. The solution contains a spherical shock wave and a
contact surface travelling away from the centre and a spherical rarefaction wave travelling
towards the origin (0,0,0). We observe that the scheme produce the correct flow patter
with the correct values behind the shock wave and the contact surface. No oscillations
are present.

The results of the ADER3-HLLC and ADER3-HLL schemes are essentially the same
and are thus omitted.

4.4 Cost comparison of the schemes

Our numerical experiments show that for the two-dimensional compressible Euler equa-
tions and piece-wise parabolic reconstruction the third-order ADER schemes are faster
than the WENO scheme roughly by 70%. The reason for this is twofold. Firstly, our
scheme needs to perform the very costly characteristic projections and smoothness in-
dicators computations in the reconstruction procedure only once during the time step.
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Secondly, the ADER schemes uses the two-point integration rule to evaluate the numeri-
cal fluxes whereas the WENO scheme in the cited reference uses the three-point Gaussian
rule.

The gain in computational cost of ADER schemes over the WENO schemes with
Runge-Kutta time stepping is similar to that of the finite-difference WENO schemes
with Cauchy-Kowalewski procedure over the finite-difference WENO schemes with Runge-
Kutta time stepping [17].

The fourth order ADER schemes in two space dimensions are more expensive than the
corresponding third order ADER schemes by a factor of three. This is due to substantially
more expensive reconstruction procedure and more complicated fluxes.

Secondly, we discuss the memory requirement of the schemes. The ADER schemes of
any order effectively need only two global arrays to store the vector of the conservative
variables and the total sum of fluxes. The WENO schemes with the third order three-
stage TVD Runge-Kutta method [23] need at least three such arrays. Note that expensive
memory transfers may be needed for the RK method in this case. For the fourth order five
stage SSP RK method [24] the memory requirements are substantially higher. Therefore,
the memory requirement of the ADER schemes are significantly smaller than that of the
WENO schemes with RK time discretizations.

5 Conclusions

In this paper we have extended the ADER approach to multidimensional nonlinear sys-
tems of conservation laws. We implemented schemes of third and fourth order of time
accuracy as applied to the compressible Euler equations of gas dynamics in two and three
space dimensions. We presented the numerical results which illustrate their very high
order of accuracy as well as essentially non-oscillatory property of the schemes. Compar-
isons with the state-of-art WENO scheme [22] show that the ADER schemes are faster,
more accurate and need less computer memory.
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