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Abstract. Numerical methods for conservation laws constructed in the framework of finite
volume and discontinuous Galerkin finite elements require, as the building block, a monotone
numerical flux. In this paper we present a MUIti-STAge approach, called MUSTA, for
constructing upwind numerical fluxes. The scheme may be interpreted as an wun-conventional
approrimate Riemann solver that has simplicity and generality as its main features. When used
in its first-order mode the scheme achieves the accuracy of the best of the first-order upwind
schemes, the Godunov method used in conjunction with the exact Riemann solver. This is
the reference first-order method for hyperbolic systems. Extensions of the scheme are realized
in the framework of existing approaches. Here we present a second-order TVD scheme for
three-dimensional non-linear systems and show numerical results for the two-dimensional Euler
equations on non-Cartesian geometries. The schemes find their best justification when solving
very complex systems for which the solution of the Riemann problem, in the classical sense, is
too complex, too costly or is simply unavailable.

1 Introduction

Numerical methods for solving non-linear systems of hyperbolic conservation laws via finite
volume methods or discontinuous Galerkin finite element methods require, as the building block,
a monotone numerical flux. The choice of the building block has a profound influence on
the properties of the resulting schemes. There are essentially two approaches for providing
a monotone numerical flux. The simplest approach utilizes a symmetric stencil and does not
explicitly make use of wave propagation information in the construction of the numerical flux.
This approach gives rise to centred or symmetric schemes [15], [10], [18], [40], [28], [17], [30],
[2]. A more refined approach utilizes wave propagation information contained in the differential
equations to construct the numerical flux. This is done through the exact or approximate
solution of the Riemann problem. Due to the fact that wave propagation information is used,
these methods are called upwind methods or Godunov-type methods [5], [9], [6], [37], [20], [4],
[27]. For up-to-date background on these methods see [16], [8], [14], [29], [35], [1].

Within the class of existing monotone first-order fluxes, the first-order upwind scheme of
Godunov is the best, it has the smallest local truncation error. However, the superior accuracy
of upwind methods comes at a cost, one must solve exactly or approximately, the Riemann
problem. Conventional approximate Riemann solvers are usually complex and are not available
for many systems of practical insterest, such as for models for compressible multi-phase flows.
It would desirable to construct a numerical flux that emulates the best flux available but has
simplicity and generality.

In this paper we present an approach that closely approximates the above aspirations. The
computation of a numerical flux is carried out via a multi-stage predictor-corrector procedure,



using a simple numerical flux at each stage. In essence, our multi-stage approach may be
regarded as an approximate Riemann solver in which the predictor stage opens the Riemann fan
without making use of knowledge of the structure of the solution of the Riemann problem. In
addition, the information extracted from the opened Riemann fan is precisely the information
required for the evaluation of the intercell numerical flux sought; there is no logic associated
with the complex solution-sampling procedure that is necessary when using an exact Riemann
solver. The simpler sampling logic of conventional approximate Riemann solvers is also absent
in our approach. Our method finds its best justification for complex systems of conservation
laws such as those in compressible multi-phase fluid dynamics and magnetohydrodynamics.

The flux can then be used as the building block for constructing schemes of higher order
of accuracy following existing methodologies, such as TVD methods [11], [30]; ENO/WENO
methods [13], [12], [22]; ADER methods [31], [33], [25],[21], [24] and discontinuous Galerkin
finite element methods [3], [36]. We remark that in higher-order schemes the difference in
accuracy at the level of the first-order flux used, although less obvious, does persist, particularly
for linearly degenerate fields and for long-time evolution problems [34]. Partial, preliminary
results of the MUSTA flux are found in [26].

The rest of this paper is organized as follows. In section 2 we review existing numerical fluxes
relevant to this paper. In section 3 we present our multi-stage predictor-corrector approach and
discuss extensions. In section 4 we show some numerical results for the compressible Euler
equations in one and two space dimensions on non-Cartesian geometries. Conclusions are drawn
in section 5.

2 Monotone Schemes

Finite volume and discontinuous Galerkin finite element methods rely on a monotone, first-
order intercell numerical flux, the building block of the schemes. Here we briefly review existing
numerical fluxes in the frame of the finite volume approach.

2.1 The Finite Volume Framework

For our purpose it is sufficient to consider a general time-dependent non-linear system of hyper-
bolic conservation laws in two space dimensions

%Q+0:F(Q)+9,G(Q)=0, (1)

in which Q is the vector of conserved variables and F = F(Q) and G = G(Q) are the vectors of
fluxes in the Cartesian coordinate directions x and y respectively. In the presence of discontin-
uous solutions one uses the integral form of (1), which is obtained, for example, by integrating
(1) on a control volume V, leading to

%//‘/QdV:—/A(F,G)-ndA. (2)

Here A is the boundary of the control volume V and n is unit vector pointing in the outward
direction normal to the boundary A. In the finite volume approach one does not require a
change of coordinates, such as body-fitted coordinates, to deal with domains whose boundaries
are not aligned with the Cartesian directions; discretisation is performed directly in physical
space. Assuming the domain of interest has been discretised by an appropriate mesh, we then



apply (2) to a finite volume or cell V; to construct numerical schemes. In particular, a fully
discrete finite volume scheme reads:

n+1 n At = -1
Q" =Qf - AV > LT 'Fiy) . (3)
v os=1

Here Q7 is the integral average of Q in volume V; at time level n, N is the total number of faces
of V;, Ls is the length of face s, Ty is the rotation matrix corresponding to side s and T ! is its
inverse, F(; ;) is the numerical flux for face s in the direction normal to it, and is obtained by
solving the Riemann problem

:Q+ 04F(Q) =0,

= )i (4)
Q(d,o):{ Q) =Ty(Qp) if d<0,

0, =T,(Q") if d>0.

Here d is distance normal to face s; 7 = ¢ — " is local time; Q7 is the integral average of the
conserved variable vector in the control volume adjacent to V; having s as a common face; T
aligns the original initial data in the direction normal to the interface s, prior to solving the
Riemann problem. The inverse matrix T} ! restores back the flux information to the Cartesian
frame.

From this point on, the discussion on the numerical flux in an arbitrary direction s can be
reduced to that of the augmented one-dimensional problem in the z-direction, without loosing
generality.

2.2 The Riemann Problem and the Godunov Flux

The one-dimensional equations and the corresponding one-dimensional finite volume scheme are:

9Q+ 0, F(Q) =0,

(5)
] 7

where F, 1 is the numerical flux. Godunov’s method [9] defines the intercell numerical flux
F;

1 1 At
Q?Jr = Q;H - E[FH% - er%

41 in terms of the solution of the corresponding Riemann problem
2

9Q+0:F(Q) =0,
(6)

P, if <0,
Q("E’O)_{ Q,, if >0.

Fig. 1 shows the structure of the solution of the Riemann problem in the z-t plane for an m xm
non-linear system. The so-called Riemann fan consists of m + 1 constant states separated by
m wave families, each one associated with a real eigenvalue A(¥). The similarity solution of (6)
depends of the ratio x/t and is denoted by Q, 1 (z/t). The Godunov intercell numerical flux

is found by first evaluating Q,, 1 (z/t) at z/t = 0, that is along the t-axis in Fig. 1, and then
2
evaluating the physical flux vector F(Q) in (5) at Q,, 1(0), namely
2

Fiil =F(Q;1(0) . (7)
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Figure 1: Structure of the solution of the Riemann problem for an m x m hyperbolic system.

The exact solution will generally involve at least one iterative procedure and thus in practice,
whenever possible, one uses approximate Riemann solvers. For a review on Riemann solvers see,
for example, [29].

2.3 Centred Fluxes

We briefly review intercell numerical fluxes of the centred type to be used directly into the
conservative formula in (5). Unlike upwind methods, centred fluxes do not make use of the
solution of the Riemann problem and they can generally be computed explicitly as functions of
the initial data, namely

Fi+%:Fi+%( n z—l—l) (8)

One may interpret centred fluxes as resulting from a low-level approzimation to the solution of
the Riemann problem (6), in which the Riemann fan is not opened. See Fig. 1.

Two classical centred fluxes are the Lax-Friedrichs flux

1 1Az
LF LF n n n n
Fi=F Q) Q) = [ (QF) + F(Qi )] - QE[ i1 — Q7] (9)
and the two-step Lax-Wendroff flux
FHY = FLY(Q2,Q1) = F(Q))
; i it1) = il )
+1 i+l (10)

Q = %[Q” + Q] — 5 25[F(QP) — F(Q))] .

t‘”’_‘ml»—‘

Another, more recent, centred flux is the FORCE flux, which was derived [28] from a de-
terministic interpretation of the staggered-grid version of Glimm’s method [7] and results in a
non-staggered one-step conservative scheme of the form (5) with intercell numerical flux given
by

1 A
RIS = FISe(QP, Q1Y) = 4 [F@QD) + 2F(Q) ) + F(Qi) - &7 (Q% —Qn)| » ()

1

with Q 1 as in (10). For further details on the FORCE flux see also [29], [30], [2].

A surprising outcome is that the intercell flux (11) is in fact the arithmetic mean of the
Lax-Wendroff flux Fﬂ/‘f and the Lax-Friedrichs flux F.Lf 1. A whole class of centred fluxes can
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be constructed by considering convex averages of the form

F‘;+% = wFiLf% + (1 - w)Fﬁg , (12)
with w a real number in [0, 1]. Then the FORCE flux is a particular member of this class with
w= % As we shall see FORCE is in fact the optimal scheme in this class.

Insight on the resulting centred schemes is gained by considering the model hyperbolic equa-
tion drq + A0,q = 0, where X is a given constant wave speed. Fig. 2 shows a plot containing
the family of three-point schemes that can be written as (12), where the bottom boundary
(maximum numerical dissipation) corresponds to the Lax-Friedrichs scheme (LF) and the top
boundary (minimum numerical dissipation) corresponds to the Lax-Wendroff scheme (LW). The
whole region is subdivided into a bottom region of monotone schemes, for w < w, = ﬁ, and
an upper region of non-monotone schemes, for which w > w,. Here c is the Courant number.
The line w = %_FC corresponds precisely to the Godunov first-order upwind scheme, which is
the first-order scheme with the smallest numerical dissipation and monotone, the best scheme.
Also shown in Fig. 2 is the weight for the Godunov first-order centred method [10], which is
linearly stable for 0 < ¢ < %\/i, but is not monotone in the range 0 < ¢ < % If we were to
select an average (12) with constant weight w (independent of wave propagation information),
then the scheme with the smallest numerical dissipation and monotone would be the FORCE
scheme. In this sense, the FORCE flux is the optimal flux that does not make explicit use of
wave propagation information. Moreover, in [2] it is shown that the conservative scheme in (5)
with the FORCE flux (11) is convergent, for a 2 x 2 non-linear system of conservation laws. The

multi-stage flux schemes of this paper are based on the FORCE flux as predictor and corrector.
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Figure 2: Family of fluxes for three-point schemes as convex average of the Lax-Friedrichs (LF)
and Lax-Wendroff (LW) fluxes.

3 The Multi-stage MUSTA Flux

Given two adjacent data states Qj' and Q',, a corresponding intercell numerical flux F, 1 at
2

the interface z,, 1 is sought. In this section we present a multi-stage procedure to compute the
2



numerical flux in a way that the Riemann fan is opened, without having to solve the Riemann
problem in the conventional way. See Fig. 1.

3.1 The Basic Scheme

In the MUSTA flux approach we first evolve in time the data states, for a number of stages,
utilizing a predictor flux function F® . In this manner, starting with QEO) = Q7 and QE?& =
Q7 ,, after k stages we have the evolved data ng) and Qgi)l. The sought numerical flux is

computed by using a corrector flux function F(©)(V, W), in which the arguments are the evolved
states.

Consider Fig. 3 in the s — 7 plane. Assume that at stage £ — 1 the two initial data states

ngfl) and Qg:l) adjacent to the interface 7 + % are known. We need to determine the states
at the next stage k. Note that Fig. 3 also depicts two additional states to the left and right.
Integration of the differential equations in (5) in space s and time 7 on the control volumes
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Figure 3: Illustration of the multi-stage procedure.

OBCD and ODERB yields, respectively

k k—1 T k—1 k—1
E) = Qz( )_ﬁ_s[F(OB)_FEAC )], (13)
13
k k—1 (k=1 k-1
QE+)1 = QEH ) - %[F(DE = F(OB 1,

with the usual definitions for space and time integral averages. Given that the Riemann data
extends to —oo and oo, at each stage, we set

k—1 k—1 k—1 k—1
Q=" Qfz"=qif. (14)
so that the outer fluxes at interfaces AC and DE can be computed thus
k—1 k—1 k—1 k—1
Fi.V =F@" ) FhY =F@Y) (15)



and therefore formulae (13) become

Q" =" V- &FG,Y -FQ" )

(16)
k E—1 - E—1 E—1
Qz(+)1 = QEH - %[F(Qz('ﬂ )) - FE)B )]37
where E—1 E—1 E—1

Fy, = FP(Q Y, Q") (17)

is a predictor flux, yet to be specified. The final MUSTA flux is then

c k k

FITSTA —FOQM, Q) (18)

2

where F(©)(V, W) is a corrector numerical flux.

In this paper we propose MUSTA-type schemes based on applying the FORCE flux [28]
for both the predictor and the corrector steps, namely

FO(U, V) =FU, V) =FLOFFW, V). (19)
2

Also, we set AT = At and As = Az, where At and Az are related by the CFL stability condition
that comes from the numerical scheme being applied.

An algorithm of the MUSTA scheme works as follows. The multi-staging is started by setting
1=0,Q" =Qr and Q\%, = Q7,,. We then do the following:

Step 1: Flux evaluation

— e, - 37 (@l - Q)
If the prescribed number of stages K has been reached, STOP.
Otherwise

Step 2: Opening of Riemann fan

Q" = qlf - 240, ~#01. Q) ~ql - arl R

(ST

Step 3: Goto step 1 )

A few remarks are in order. First a question of notation. A K-stage MUSTA flux will
be denoted by MUST Ax. Note that the trivial case, MUST Ay, simply corresponds to the
predicter/corrector flux (the FORCE flux here) applied to the original data. Also, it is easy
to verify that the numerical flux resulting from the corrector step is consistent if the fluxes

employed in both the predictor and corrector steps are consistent. That is, for Q' = Q7,; = Q
we have



As the MUST Ay flux corresponds to the FORCE scheme, we remark that in [2] this scheme
is shown to be convergent when applied to a 2 x 2 non-linear hyperbolic system. In [26] we
carried out preliminary analysis of the properties of the MUST Ay scheme, in terms of the
model linear advection equation. Further analysis for the MUST A schemes is the subject of
current research.

Regarding the question of efficiency. For a K-stage MUST A scheme the number of ele-
mentary arithmetic operations needed for the evaluation of the intercell numerical flux is roughly
K (3 flux evaluations +11m + 8) — 4m — 2, where m is the number of equations of the system.
There are no fractional powers involved, unless they are present at the level of the equation of
state, for example, via the flux evaluations in Step 1 in (20). For the one-dimensional Euler
equations (m = 3), a 1-stage scheme MUST A; requires 68 operations and three flux evalua-
tions. This is comparable to typical existing approximate Riemann solvers, such as Roe’s solver
[20] or the HLLC solver [32], for example, but much more efficient than the approximate Rie-
mann solver of Osher and Solomon [19]. As will be illustrated through numerical experiments
in section 4, the MUST Ak flux achieves the accuracy of the best Riemann solvers available,
and it does so preserving simplicity and generality.

3.2 Non-Conservative Variant of MUSTA

We note here that the MUSTA predictor as well as corrector steps are by no means restricted
(k)

to conservative-type schemes. The states QZ(-k), Q;}, may be found by other procedures. For
example, we may write the governing equations in (5) in non-conservative form

AW + A (W)W =0, (22)

where W is a vector of suitably chosen variables; they could also be the conservative variables.
A corresponding MUSTA predictor step is
I+1 ! ! ! !
wit = w - &AOw, - w),
(23)
I+1 ! ! ! !
Wz(-i-l ) = W£J21 - &Az(—lzl[wz(-gl - W( 1 )] .

Here WZ(Q L is a suitable intermediate vector; see Toro and Siviglia [34] for possible choices for
intermediate vectors arising from non-conservative centred schemes. The coefficient matrices
are

Al =aw), Al =Aawl)). (24)
This approach for evaluating the evolved interface states also has potential for the construction
of numerical schemes for non-conservative hyperbolic systems.

3.3 Extensions: Higher Accuracy and Multiple Space Dimensions

The MUSTA first-order schemes just presented may be extended to second or higher-order of
accuracy following a variety of standard ways. Here we present a possible second-order TVD
scheme following the MUSCL-Hancock approach [38], whereby one considers reconstructed data
via piece-wise linear polynomials, so that in each cell 7 we have two boundary extrapolated
values

1 1
QI =Q - 54, QF=Q!+;A, (25)



where A; is a TVD limited slope. These boundary extrapolated values are then evolved in time
by half a time step as follows:

1 At
2 Ax

1

F(QD) - F@N], QF =QF - LU F@QA -F@QH]. (20)

AL AL
Q' =Q; 5

Finally, the MUSTA flux is computed by applying algorithm (20) with initial conditions

QEO) = QzR and Qg?i—)l = Qz‘LH .
For details on the MUSCL-Hancock scheme see [29].

The extension of this TVD scheme to multi-dimensional problems can be carried in at least
two ways. The simplest method is dimensional splitting. Another possibility is a simultaneous
updating, unsplit finite volume approach, as given by (3). See [29], Chapt. 16 for details on
these two approaches. We note, however, that the simultaneous updating unsplit finite volume
approach (explicit) is conditionally stable for upwind intercell fluxes but not for centred fluxes
such as the Lax-Friedrichs flux and the FORCE flux. See [30].

We have implemented the MU ST Ag flux for both split and unsplit schemes in two and three
space dimensions, using TVD methods and WENO methods. In this paper we show results for
the two-dimensional Euler equations for non-Cartesian geometries using the second-order Strang
splitting [23].

4 Numerical Results

To illustrate the performance of the methods proposed in this paper we solve the time-dependent
Euler equations in one space dimension and in two space dimensions on non-Cartesian geome-
tries. We use the ideal gas equation of state with constant gamma v = 1.4. We compare the
results with exact solutions and with reference solutions. Each of the test problems chosen has
a particular purpose in mind.

4.1 Test 1: a shock tube problem with sonic flow

The main purpose of this test problem is to assess the performance of the methods in the presence
of sonic flow. We solve the one-dimensional Euler equations in the domain [0, 1], subdivided into
a left section [0,0.3) and a right section [0.3,1]. The initial conditions assign data for density,
velocity and pressure pr, = 1.0, uy, = 3/4, pr, = 1.0 in the left section and pr = 1/8, ur = 0.0,
pr = 0.1 in the right section. The solution includes a right shock, a right contact discontinuity
and a left transonic, or sonic rarefaction wave. We remark that this is not the original Sod
test problem but a modification of it, in order to produce a transonic rarefaction as part of the
solution. The sonic point is known to cause difficulties to most numerical methods, particularly
to those based on linearized Riemann solvers, for which an explicit entropy fiz must be built into
the scheme to avoid the computation of rarefaction shocks. Here the computations are carried
out using M = 100 cells and a CFL number of 0.9. We apply transmissive boundary condition
at both ends.

Results for density are shown in Figs. 5 and 6 for the MUST A3 scheme, where the exact
solution is shown by a full line. Regarding the results of the MUST A3 scheme, shown in Fig.
4, two points are noted. First, the numerical solution, shown by symbols, is seen to be free from
spurious oscillations in the vicinity of discontinuities. Secondly, the performance of the scheme



at the sonic point inside the transonic rarefaction, z = 0.3, is very satisfactory; the MUST A3
solution within the rarefaction is very smooth, as it should be. Fig. 6 shows, in addition to
the exact solution given by the full line, a comparison between the Godunov first-order upwind
method used in conjunction with the exact Riemann solver (dashed line) and the MUST As
scheme (full smooth line). It is seen that the two schemes are indistinguishable at the shock
wave. Elsewhere, the MUST A3 solution is more accurate, as is clearly seen in the vicinity of
the the contact wave and the sonic point. The MUST A3 flux is distinctly better for the sonic
point and this is achieved automatically by the MUSTA scheme, no ad-hoc entropy fixes are
required.

Fig. 7 shows MUSTA (firt-order mode) numerical results for density (shown in symbols)
and the exact solution (line) for a sequence of four meshes of 100, 200, 400 and 800 cells. The
expected behaviour of the numerical solution under mesh refinement is observed. Convergence
for the shock wave is fast, it is slower for the rarefaction wave and much slower for the contact
discontinuity. This behaviour is typical of other numerical methods as applied to this kind of
test problems. The behaviour of second-order TVD extension of MUSTA under mesh refinement
is illustrated in Fig. 8. These results are to be compared with those of Fig. 7.

4.2 Test 2: A Blast Wave Problem

The purpose of this test problem is to assess the robustness and accuracy of the MUST Ak
schemes for a problem involving very strong shock waves and multiple wave interaction. This
problem does not have an exact solution. As the reference solution we take that obtained by the
Godunov first order upwind scheme used in conjunction with the exact Riemann solver. Recall
that this is the scheme with the smallest truncation error, amongst all first-order monotone
schemes. It is the scheme we are trying to emulate. We solve the blast wave problem proposed
by Woodward and Colella [39]. The domain consists of a tube of unit length with three sections,
a left section [0.0,0.1), a middle section [0.1,0.9) and a right section [0.9, 1.0]. The initial values
for density and particle velocity throughout the domain are p = 1.0, v = 0.0, whereas the
initial pressure takes on the following three values p; = 1000.0 in the left section, pps = 0.01
in the middle section and pr = 100.0 in the right section. Reflective boundary conditions are
imposed at both ends. The solution of this problem is very complex and involves multiple wave
interaction, as time evolves. For a detailed discussion on the solution see [39]. For all methods
we used a CFL number of 0.9 and a mesh of 3000 cells.

Figs. 9 and 10 show numerical results for density at the output time ¢ = 0.038 in the inter-
esting section [%,0.9]. The first feature of the solution, from the left is a contact discontinuity;
the second feature from the left is a shock wave. The first feature from the right is also a shock
wave and the second feature from the right is a contact discontinuity. Fig. 9 shows a comparison
between two first-order monotone methods, namely the Lax-Friedrichs scheme (symbols) and
the Godunov first-order upwind scheme with the exact Riemann solver. The discrepancy is not
surprising, the Lax-Friedrichs scheme is the most diffusive of all stable, three-point monotone
first-order schemes. Fig. 10 shows the result from the 3-stage MUST A3 scheme, which is vir-
tually indistinguishable from that of the Godunov scheme with the exact Riemann solver. As a
matter of fact, the MUST As solution is slightly more accurate than the Godunov solution; this
was also observed to be the case for Test 1. We find that the 2-stage MUST A, is sufficiently
accurate and is probably the scheme to be used for practical computations.
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4.3 Test 3: Shock Reflection in Two Space Dimensions

This test consists of a shock reflection problem in a two-dimensional non-Cartesian domain as
depicted by the left-hand side sketch of Fig. 4. This is a double-wedge situation in which a plane
shock wave travels from left to right, reflects from the wedges placed at an angle of 25 degrees
to the initial shock direction, producing a symmetric Mach reflection pattern. The right-hand
side picture of Fig. 4 shows the experimental result for a single wedge, that is, the lower half of
the domain shown on the left-hand side. Clearly seen in the experiment are the incident shock,
the reflected shock, the Mach stem and the slip surface, all meeting at the triple point. The
experiment corresponds to an initial shock wave of shock Mach number 1.7. Numerical results
are given in Figs. 11 to 14, in which contours are shown for 80 equally spaced levels.

0 0.2 1.
1

Shock wave

e

0

Figure 4: Test 3. Shock reflection problem. Left-hanside sketch shows computational domain
and position of initial shock wave. Right-hand side picture shows the experimental result for
the lower half of the domain (Courtesy Prof. K Takayama, Japan).

Fig. 11 shows computed results at the output time ¢ = 1.0 ms using a mesh of M3 =
1000 x 1000 cells and a CFL number of 0.9. The qualitative agreement between the experimental
result of Fig. 4 (right-hand side) and the numerical result of Fig. 11 is very satisfactory. All
features seen in the experiment are reproduced in the numerical solution. The numerical results
have also preserved the expected symmetry of the problem. Note also that our results do not
escape the typical, so-called, start-up error, which is clearly seen in the density plots. There are
standard ways of eliminating this error but we do not believe this is worth implementing.

The numerical resolution of all discontinuities is very satisfactory; discontinuities are sharp
and free from spurious oscillations. For modern numerical methods the resolution of shocks is
usually straightforward, but not so the resolution of linearly degenerate fields, for which one
of the problems to be encountered is excessive numerical diffusion. Our results also show a
good resolution of the slip surfaces emanating from the triple points. To assess the convergence
properties of the scheme we computed solutions of the same problem using two more, coarser,
meshes. The results are shown in Figs. 12 and 13. Compare the succession of results from Figs.
12, 13 and 11, in which the mesh refinement factor is 2.

Finally, Fig. 14 shows the numerical solution at time ¢ = 1.1 ms using the mesh M3 =
1000 x 1000 cells and a CFL number of 0.9. Note that the two reflected shock waves have
interacted producing two new, stronger reflected shocks waves. This computation is included
to demonstrate the ability of the scheme to handle strong wave interaction in multiple space
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dimensions.

5 Concluding remarks

We have presented a multi-stage (MUSTA) approach to obtain an upwind numerical flux for
use in finite volume and discontinuous Galerkin finite element methods when solving general
hyperbolic systems. The implementation presented here relies on using the FORCE centred
flux at each stage. It is demonstrated that the resulting MUSTA flux, in its first-order mode,
is capable of attaining the accuracy of the reference first-order scheme, namely the Godunov
method used in conjunction with the exact Riemann solver. The MUSTA flux is applicable to any
system of conservation laws, regardless of their complexity. The schemes can be applied to multi-
dimensional problems in the setting of finite volume and discontinuous Galerkin finite element
methods. High-order extensions are also possible following any of the current approaches, such
as TVD methods, ENO/WENO methods, ADER methods and discontinuous Galerkin methods.
In this paper we have shown extensions of the TVD type for the two-dimensional Euler equations
on non-Cartesian domains. Work in progress includes the implementation of the MUSTA flux in
the WENO schemes for three dimensional systems and the solution of compressible multi-phase
flow problems.
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Figure 5: Test 1. Comparison for density between the exact solution (line) and the 3-stage
MUST A3 scheme (symbol).
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Figure 6: Test 1. Comparison for density between the exact solution (line), the Godunov method
(dashed line) and the 3-stage MUST Az scheme (full line).
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Figure 7: MUSTA scheme for Test 1. Numerical results for density (symbols) compared with
the exact solution (line) for a sequence of four meshes.
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Figure 8: MUSTA TVD scheme for Test 1. Numerical results for density (symbols) compared
with the exact solution (line) for a sequence of four meshes.
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Figure 9: Comparison between the Godunov method (full line) and the Lax-Friedrichs scheme
(symbols).
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Figure 10: Comparison between the Godunov method (full line) and the 3-stage MUST As
scheme (symbols).
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