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Abstract

We consider a fully practical finite element approximation of the degenerate
Cahn—Hilliard equation with elasticity: Find the conserved order parameter, 6(z,t)
€ [~1,1], and the displacement field, u(z,t) € R?, such that

YL =V.(bO)V[-7 A+ T (0) + L (0)CEW) : EW)]),
V. (c(0)CEw) =0,

subject to an initial condition #°(-) € [~1,1] on # and boundary conditions on
both equations. Here v € Ry is the interfacial parameter, ¥ is a non-smooth
double well potential, £ is the symmetric strain tensor, C is the possibly anisotropic
elasticity tensor, c(s) := ¢y + 5 (1 — ¢p) (1 + s) with co(y) € Ry and b(s) :== 1 — s?
is the degenerate diffusional mobility. In addition to showing stability bounds for
our approximation; we prove convergence, and hence existence of a solution to
this nonlinear degenerate parabolic system in two space dimensions. Finally, some
numerical experiments are presented.

Mathematics Subject Classification (2000): 65M60, 65M12, 65M50, 35K55, 35K65,
35K35, 82026, 74F15

1 Introduction

Integrated circuits contain thin metallic lines (interconnects) that make electrical contact
between different components of the device. These lines are passivated with a layer of oxide
at large temperatures and during the cooling process large stresses are induced. Also voids
nucleate in the interconnect and they migrate and change their shape due to the diffusion
of atoms. One of the major failure mechanisms in modern micro-electronic circuits is that
voids cut the whole interconnect and cause an open circuit. The understanding of how
voids migrate is therefore of great practical interest.
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In general diffusion in the bulk of the interconnect is much slower than that on the
surface of the void. Therefore we will restrict ourselves to the case where diffusion is
restricted to the surface of the void or more precisely to a diffuse layer at the void surface.
In this case there are three main driving forces for diffusion: one is resulting from capillary
effects and the two others are due to electromigration and stressmigration. To formulate
the latter two we need to introduce the electric potential ¢, the displacement field u, the
symmetric strain tensor £(u) := £ (Vu + (Vu)”) and the elastic energy density E(u) :=
%Cé(g) : £(u). Here C is the possibly anisotropic elasticity tensor, which we assume to

be symmetric and positive definite. The product A : B of two matrices A, B € Réxd

is defined as Z?,jzl A;j Bij. We denote by V' the normal velocity of the void surface,
['(t), with the normal pointing into the void and by k its mean curvature with the sign
convention that k is positive if the interface is curved in the direction of the normal. Then
mass conservation gives

V=-V,.J, onl(t)), where J,=—D;Vi(—sk+ E(u)+ag) (1.1)

dsg —

is the mass flux, V. is the surface divergence, V is the surface gradient, Dy is a constant
related to the surface diffusivity and ¢ is the surface energy density. Here the first term
describes capillary forces, the second describes forces resulting from changes in the elastic
energy and the forcing term a V¢ is caused by an electric current in the bulk of the
material and this force is related to the “electron wind” force. The above equations for the
surface motion then have to be coupled to the Laplace equation for the electric potential
¢, the quasi-static mechanical equilibrium equations for u and appropriate boundary
conditions. For more details we refer to Xia, Bower, Suo, and Shih (1997), Bower and
Craft (1998) and Gungor, Maroudas, and Gray (1998).

Let us briefly discuss the influence of the three terms of the mass flux in (1.1). The first
term leads to diffusion of atoms from regions of small mean curvature to regions of high
mean curvature. If only capillary effects were present the length/area of the void surface
would decrease and the voids would become circular/spherical, see Elliott and Garcke
(1997) and Escher, Mayer, and Simonett (1998). The second term leads to diffusion from
regions of high elastic energy to regions of smaller elastic energy and the third gives rise
to diffusion in the direction opposite to the electric field (this is true if & < 0 and this
is the case for aluminum, which is mainly used for interconnects). The effect of all three
terms can be seen in numerical simulations; see e.g. Bhate, Kumar, and Bower (2000) and
Barrett, Niirnberg, and Styles (2004, §5). From these numerical simulations one notices
that the topology of the voids can change. Therefore numerical methods that depend on
the direct parametrization of the void surface will have difficulties. For an overview on
numerical methods for interface motion and their advantages and disadvantages we refer
to Elliott (1997).

In this paper we study a finite element approximation of a phase field model for sur-
face diffusion of voids due to capillary effects and stressmigration. We will not include
electromigration since a phase field method for surface diffusion in the presence of elec-
tromigration (and in the absence of stressmigration) was already analysed in Barrett,
Niirnberg, and Styles (2004). A phase field model for electromigration of intergranular



voids, i.e. of voids in solids with different grain orientations, will be discussed in Barrett,
Garcke, and Niirnberg (2004a). Furthermore, we will present numerical simulations of the
combined effect of surface diffusion, electromigration and stressmigration in a forthcom-
ing paper where we will also discuss applications to epitaxial growth; see Barrett, Garcke,
and Niirnberg (2004b).

In a phase field model a diffuse layer is used to describe interfaces or free surfaces. To
model surface diffusion by a phase field model we introduce an order parameter # which
(away from a small interfacial layer) attains the value —1 in the void and the value 1 in
regions occupied by the metal. In the diffuse interfacial layer # varies continuously from
—1 to 1. The free energy for the evolution law (1.1) is given by

/ §d8+/ E(u)dzx,
r(o) Q4 (1)

where the first term is the integral of the surface energy density ¢ over the void surface and
Q) is the region occupied by the metal. In phase field models the surface energy density
¢ is now replaced by an Ginzburg-Landau free energy density ¢ 22 |VO? + 1 ¥(0)],
where 7 is a small positive parameter related to the interfacial thickness and W is a free
energy density with the two global minima +1. In the above, and throughout, we will
use for convenience an obstacle free energy of the form

)i =s%) if se[-1,1],
s) = {oo if s¢[-1,1], (1.2)

which restricts the order parameter 6 to lie in the interval [—1,1] and also guarantees
that outside a small interfacial layer # attains the values +1; see e.g. Blowey and Elliott
(1991).

The elastic energy density also has to take the interfacial layer into account and is
hence given by

E(0,u) := 5c(0)CE(w) : E(u), (1.3)

where ¢ is an interpolation function given by
c(s) i=co+35(1—co)(1+s). (1.4)

Here ¢y = ¢o(7) € (0,1) is small and we will assume that ¢y(y) — 0 as v — 0. Hence, ¢
is affine linear with ¢(—1) = ¢5 < ¢(s) <1 =¢(1) for all s € [-1,1]. Now the total free
energy for the phase field model is given by

T(0,) = /Q[g; (ZIVOP - 0(0) } + E(0,u)] da

with the possible addition of an integral over the boundary of 2, depending on the imposed
boundary conditions on u.

Now we define the chemical potential, w, via the first variation of .J with respect to 6

w=5=[c2(—y A0+ W(0) + 3 (0)CEW) : £(w)] (1.5)
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which is the diffusion potential for 6. The diffusion equation for 6 is then given by
72 =v.(2D,b(0) Vw), (1.6)

where
b(s):=1—-s> Vsec[-1,1] (1.7)

is a degenerate mobility which is zero outside of the interfacial layer. Hence diffusion
is restricted to the interfacial layer, which is conceptually close to the idea of surface
diffusion where diffusion only takes place on the surface. In fact it was shown by Cahn,
Elliott, and Novick-Cohen (1996), using formally matched asymptotic expansions, that
(in the absence of elastic effects) the phase field equations as stated above converge, as
the interfacial parameter v — 0, to motion by surface diffusion.

If we include elasticity and require quasi-static equilibrium, i.e.
V. (c(0) CE(w) =0, (1.8)

we obtain in the limit v — 0 and ¢o(y) — 0 that the zero level sets of 6 converge to a
hypersurface T'(¢) that evolves according to the law

V=DA;[—sk+3CEu):Ew)]  onT().

This can be shown using formally matched asymptotic expansions when one combines the
approaches of Cahn, Elliott, and Novick-Cohen (1996), Leo, Lowengrub, and Jou (1998)
and Fried and Gurtin (1994)

The system (1.5)—(1.8) is a degenerate Cahn—Hilliard equation coupled to an elastic-
ity system. If C = 0, then (1.5)—(1.8) collapses to the degenerate Cahn—Hilliard equation
without elasticity. Existence of a solution to this fourth order degenerate parabolic equa-
tion for 6, as b(f) can take on zero values, can be found in Elliott and Garcke (1996).
Degenerate parabolic equations of higher order exhibit some new characteristic features
which are fundamentally different to those for second order degenerate parabolic equa-
tions. The key point is that there is no maximum or comparison principle for parabolic
equations of higher order. This drastically complicates the analysis since a lot of results
which are known for second order equations are proven with the help of comparison tech-
niques. Related to this is the fact that there is no uniqueness result known for (1.5)—(1.7)
with C = 0. Although there is no comparison principle, one of the main features of the
system (1.5)—(1.7) is the fact that one can show existence of a solution with |#] < 1 if
given initial data |#°| < 1. This is in contrast to linear parabolic equations of fourth
order.

In the case of a constant mobility, i.e. b(f) = 1, the system (1.5), (1.6) and (1.8) was
studied analytically by Garcke (2000), Garcke (2003) and Carrive, Miranville, and Piétrus

(2000). For a finite element approximation in this non-degenerate case, see e.g. Garcke,
Rumpf, and Weikard (2001) and Garcke and Weikard (2004).

There is very little work on the numerical analysis of degenerate parabolic equations
of fourth order: for work on the thin film equation see Barrett, Blowey, and Garcke
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(1998), Zhornitskaya and Bertozzi (2000) and Griin and Rumpf (2000), for thin film flows
in the presence of surfactants see Barrett, Garcke, and Niirnberg (2003); and for work
on degenerate Cahn-Hilliard systems see Barrett, Blowey, and Garcke (1999), Barrett,
Blowey, and Garcke (2001) and Barrett and Blowey (2001). In all of these papers, although
stability bounds were proved in one and two space dimensions, the main convergence
result was restricted to one space dimension. However, recently Griin (2003) has proved
convergence in two space dimensions of a finite element approximation to the thin film
equation. This approach was extended in (i) Barrett and Niirnberg (2004) and (ii) Barrett,
Niirnberg, and Styles (2004) to prove convergence in two space dimensions of a finite
element approximation to (i) the thin film equation in the presence of surfactants and
repulsive van der Waals forces, and (ii) the phase field approximation of (1.1) in the
absence of stressmigration. It is the aim of this paper to propose and prove convergence
of a finite element approximation of the degenerate system (1.5)—(1.8), and hence prove
existence of a solution to (1.5)—(1.8). Since in the stressmigration case a term that is
quadratic in the gradient of u — as opposed to linear in ¢ in the electromigration case
— appears in the chemical potential w, see (1.5); this makes the convergence analysis in
the presence of stressmigration far more complicated than that of electromigration.

Due to a lack of embedding properties, our convergence analysis is restricted to two
spatial dimensions (i.e. d = 2). For ease of exposition, we will restrict our presentation
throughout to this case. However, the phase field approach and the corresponding finite
element approximation with the basic energy bound, see (2.80a) below, are easily extended
to three spatial dimensions. We adopt the following notation throughout. The trace of
a tensor A is denoted by Tr(4) := Ay + A, and the divergence is defined as V. A =

(%A 4 OAip DAy | BAQ;) see e.g. Brenner and Scott (2002, Chapter 11). We will assume

0z Oxa 7 Ox1

throughout for all 4, j, k, l € {1,2} that

(1) Cijkr = Cjirs = Cijuk and (i1)  Cijir = Chuij - (1.9)

Here (i) follows, without loss of generality, from the fact that C maps symmetric tensors
to symmetric tensors; and (ii) follows from the symmetry assumption CA:B=A:CB.
We assume also throughout that C is positive definite; that is, there exist constants
me, Mc > 0 such that

0<me(A:A)<CA:A<Mc(A:A) YV AeR¥2\ {0} (1.10)

If one further assumes cubic symmetry, it holds also that Ci111 = Ca292 and Casia = Ci112 =
0; see e.g. Gurtin (1972). For an isotropic material we obtain that

CE(u) =2pE(u) + ATr(E(w) Z, (1.11)

where Z is the identity tensor, and 1 € Ry and A € Ry are the Lamé moduli. In what
follows, to simplify the presentation, we will set, without loss of generality, the surface
diffusivity D, = ¢ and the surface energy density ¢ = 7.

In the following we will analyse a finite element approximation of the nonlinear de-
generate parabolic system for a given v € Ry



(P) Find functions 6 : Q x [0,7] = [-1,1], w : @ x [0,7] = R and u: Q x [0,T] — R?
such that

v¥ =V.(b0) Vw) in Qp, (1.12a)
w=—yA0 4+ W (0) + 5 (0)CE() : E(u) on {|6] <1}, (1.12Dh)
VO.v=0b60)Vw.v=20 on 00 x (0,7], (1.12¢)

0(z,0) = 0°(x) € [-1,1] VazeqQ, (1.12d)
V.(c(0)C&w) =0 in Qp, c@)CE(u)v =g on 00 x (0,7]; (1.12e)

where 2 is a Lipschitz domain in R? with v the outward unit normal to its boundary 02,
T > 0 is a fixed positive time, and Qp := Q x (0,T]. The function g € L*(9Q) is the
given boundary force satisfying the necessary compatibility conditions, f a0 9 ds = 0 and
Jo09 - (2, —21)" ds = 0, for the existence of a solution u to (1.12e). For simplicity, we
will consider

Jiea
N

=CS*v; (1.13)

<

9= 2

where S € R**? is a symmetric tensor and S* := C~' S. Alternatively, one could prescribe
displacement boundary conditions, u = f, on 92 or on parts thereof.

We should note that the solution u to (1.12e) is not unique. This is simply because

E(v)

0 VveRM, (1.14)
where RM is the space of rigid motions and characterized by
RM:={ve H(Q):v=p+q(zs,—z)" peR’, qgeR}.

Hence one can impose uniqueness for (1.12e) by seeking u such that fQ u.v dz = 0 for all
v € RM; see our definition of Ep in (1.20) below.

The basic ingredients of our approach are some key energy estimates. First, we relate
G to b by the identity
b(s)G"(s)=1. (1.15)

Knowing b, recall (1.7), the above identity determines G up to a linear term. Furthermore
we have that GG is convex. One can then derive formally the following energy estimates
for (P). Testing (1.12a) with w and (1.12b) with %, combining and noting (1.12¢,e) and
(1.3) yields that

%{A[%7|V9|2+71‘11(9)+ E(0,u)) d:v—/ g-yds}+71 /Qb(ﬂ)|Vw|2dx§0.

o0
(1.16)
Testing (1.12a) with G'(#) and (1.12b) with —A#f, combining and noting (1.15), (1.2)
(1.10) and (1.4) yields that

72%/ G(e)dx+§72/ |A9l2dx§/|V9l2dx+3%Mc2/ E@][ . (1.17)
Q Q Q @



In order to bound Af in L?(Qr), one needs to bound Vu in L*(Qr). This is the key diffi-
culty when including the elastic effects. This is achieved by using an L>(0,T; W"?(Q)),
p > 2, bound for u solving (1.12e) which does not depend on the choice of § € L*(Qr),
see Garcke (2000), Garcke (2004) and Lemma 1.1 together with Remark 2.2 below.

It is the goal of this paper to derive a finite element approximation of (P) that is
consistent with the energy estimates (1.16) and (1.17). In order to derive a discrete
analogue of the energy estimate (1.17), we adapt a technique introduced in Zhornitskaya
and Bertozzi (2000) and Griin and Rumpf (2000) for deriving a discrete entropy bound
for the thin film equation; see also Barrett, Niirnberg, and Styles (2004). However, the
key difficulty here in proving convergence of our finite element approximation, and hence
existence of a solution to (P), is the finite element analogue of the crucial W"*(Q), p > 2,
bound for u; see Lemma 2.3 below.

This paper is organised as follows. In §2 we formulate a fully practical finite element
approximation of the degenerate system (P) and derive discrete analogues of the energy
estimates (1.16) and (1.17). In §3 we prove convergence, and hence existence of a solution
to the system (P) in two space dimensions. Finally, in §4 we present some numerical
experiments.

Notation and Auxiliary Results

Let D C RY, d =1 or 2, with a Lipschitz boundary 0D if d = 2. We adopt the standard
notation for Sobolev spaces, denoting the norm of W™?(D) (m € N, ¢ € [1,0]) by
| - [|m.q.p and the semi-norm by |- |, 4.p. We extend these norms and semi-norms in the
natural way to the corresponding spaces of vector and matrix valued functions, which will
be denoted by e.g. W™4(D). For ¢ = 2, W™?(D) will be denoted by H™(D) with the
associated norm and semi-norm written as, respectively, ||-||,,,p and ||, p. For notational
convenience, we drop the domain subscript on the above norms and semi-norms in the
case D = Q. Throughout (-, -) denotes the standard L? inner product over Q. In addition
we define

=gl  Vnel(Q).

For later purposes, we recall the following well-known Sobolev interpolation result,
e.g. see Adams and Fournier (1977): Let ¢ € (1,00), r € [g,00) if ¢ > 2 and r € [q, ;—fq]
if g € (1,2); and p := % — 2. Then the following inequality holds

2o, < Clzlo" 21, VvV zeW™(Q). (1.18)

We recall also the following compactness results. Let X, Y and Z be Banach spaces with a
compact embedding X — Y and a continuous embedding Y — Z. Then the embeddings

{neL*0,T;X): % e L*0,T;Z) } — L*(0,T;Y) (1.19a)
and  {n€L®(0,T;X): % € L*0,T;2)} — C([0,T];Y) (1.19b)



are compact and a generalised version of (1.19a), where the time derivative is replaced by
a time translation, holds. That is, any bounded and closed subset F of L*(0,T; X) with

i fsup (e -+9) = 0 ooz p =0 (1.19¢)

is compact in L?(0,T;Y), see Simon (1987).
For p € [1, 00|, we introduce also
Ep = {Q € mlm(Q) t(nu) =0 Vuve M} (1.20)
and define H'(€) := V,. We recall the following version of Korn’s inequality
Iy < ClEMIy  VneV,, pe(l,00); (1.21)

see e.g. Necas and Hlavacek (1981, p79) for the case p = 2, or Mosolov and Mjasnikov
(1971) for general p € (1,00). Moreover, the following lemma holds.

LEMMA. 1.1 There exists 6 € Ry such that for all p € [f—ig,Q + &] there is a B(p) > 1
satisfying

E(2)lop < Bp) sup (77— VzeV (1.22)

where 1—1)+% = 1. Moreover (3 is continuous on the interval [f—j;g, 2+40] and B(p) — (2) =1
as p — 2.

Proof. Let [LP(Q)]272 = {F € [LP(Q)]*** : F is symmetric }. For z € Qp we define

sym

S(E) = (E(2),F) for all E = £(n) with n € Qq. S is a continuous linear functional on a

closed subspace of [L9(2)]%<2 with norm

The Hahn-Banach theorem and the fact that ([L9(Q)]3>)" = [LP(Q)]252 imply the exis-
tence of a G, € [LP(Q)]22 such that

sym
E£(2), €
EDDH =GB YEW@EE md (o= sp SorED) (1o
€D =GD VI Geboo = S0 S EWlog
Let Q : [LP(Q)]357 — [LP ()], be the linear operator such that QF = £(f ), where
if € Qp is such that
E(f). €M) = (EEm)  Vnel, (1.24)



We need to show that Q is well-defined and compute the operator norm ||Q||, of Q. The
well-posedness of Q for p = 2 follows from (1.21) and the Lax-Milgram theorem; and in
addition, ||Ql|s = 1. Moreover, regularity theory implies that there exists a d > 0 such
that for all p € [2,2+ 6] if F € [LP(Q)]22 then it holds that

00 = €L Plop <C)

The first inequality in the above can be shown for example with the help of a method
introduced by Giaquinta and Modica (1979), who proved local LP-estimates for gradients
of solutions to elliptic systems. In Garcke (2000) and Garcke (2004) this method has been
applied to obtain global LP-estimates for gradients of solutions to elasticity systems on
Lipschitz domains. The above shows that Q is a bounded linear operator for p € [2,2+ 0]
and that ||Q||, < C(p).

1Q Flo

(P) [1Elo2 + [Elop] < C(p) | Elop -

We now want to show that Q is also a linear continuous operator on [L(€)]7x7, Where

q is such that }J + % =1 for a p € [2,246]. To do so, we approximate F € [L?(Q)]?*”

sym

Fi € [L*(Q)]252 such that |F — Filoy — 0 as k — oco. As Qp C V, it then follows that

sym
(QFu M) = (QF, QM) = (Fr, QH) YV H € [P
Hence we obtain that

(QZ, H)| < 1Qlly 12y | Felog == 1Q Frlog < 19l 1 Zkllo -

Taking the weak limit of f_ in ‘7 where £(f ) Q Fi, we obtain that (QF, H) =
(E,QH) for all F e [LQ(Q)E;?% and H e [D”(Q)]zgj2 Hence Q defined on [LA()]%0 s

the dual operator to Q defined on [LP(€2)]22 and therefore ||Q||, = || Q|-

The Riesz—Thorin theorem, see Bergh and Lofstrém (1976), then implies that ||Q|], <
1QIIi~(| Q|2 for all 22 < s < p < r < 2+ 4 such that s =(—a);+aranda€0,1].
It follows that log||Q||, is a convex function of 1 5 and therefore ||Q||, is a continuous
function of p with [|Q|[; = 1. Finally, it follows from (1.23) and (1.24) that £(z) = QG.
and hence [£(2)|op < [|Q|l, |QZ|0,, Therefore the desired result (1.22) follows from (1.23)

with 3(p) = [|Qll,- O

We note also for future reference the generalised Young’s inequality
s < %(ar)p+%(a*18)q Vr,seR a€ Ry, pe€(l,00) with %+% =1. (1.25)

Throughout C' denotes a generic constant independent of h, 7 and £; the mesh and tempo-
ral discretization parameters and the regularization parameter. In addition C(ay, - - -, ar)
denotes a constant depending on the arguments {a;}/_,. Finally, -*) denotes an expression
with or without the superscript *.



2 Finite Element Approximation

We consider the finite element approximation of (P) under the following assumptions on
the mesh:

(A) Let  be a convex polygonal domain. Let {7T"},~¢ be a quasi-uniform family of
partitionings of € into disjoint open simplices o with h, := diam(o) and h :=
max,cyn hy, 80 that @ = U,c+7. In addition, it is assumed that all simplices
o € T" are right-angled.

We note that the right-angled simplices assumption is not such a severe constraint for
appropriate domains (2, as there exist adaptive finite element codes that satisfy this
requirement, see e.g. Schmidt and Siebert (2001).

Associated with 7" is the finite element space
Shi={x€C(Q): x|, islinecar Vo € T"} ¢ H(Q).
We introduce also S* := [$"]2, §h := §" N H'(Q) and
Khr={xeS": |x|<1inQ} Cc K:={ne H(Q) :|n| <1ae. inQ}.

Let .J be the set of nodes of 7" and {p;};cs the coordinates of these nodes. Let {x;};cs
be the standard basis functions for S”; that is x; € K" and x;(p;) = d;; for all i,j € J.
The right angle constraint on the partitioning is required for our approximation of b(-),
see (2.9a,b) below, but one consequence is that

/VXZ-.Vdexg() i#j4, YoeTh (2.1)

h

We introduce " : C'(Q) — S”, the interpolation operator, such that (x"n)(p;) = n(p;)

for all j € J. A discrete semi-inner product on C'(2) is then defined by

(1, 7m2)" = /Qﬂh(m(ff) m(@) dz =Y mym(p;) na(py), (2:2)

jeJ
where m; := (1, x;) > 0. The induced discrete semi-norm is then
3
= [t = ([ #GPlas) vyeca). 23)

Both (2.2) and (2.3) are naturally extended to vector and matrix valued functions. We
introduce also the L? projection Q" : L?(Q2) — S" defined by

(@"n,x)" = (n,x) ¥ xes™ (2.4)
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On recalling (1.7) and (1.15), we then define a function G such that b(9) V|G'(8)] = V0;
that is,
G"(s) = = 2L5. (2.5)

b(s) 1—s2

We take
G(s) =3 [F(s)+ F(—s)], where F(s):=(1+s)log(l+s)+(1—s). (2.6)

As in Barrett, Niirnberg, and Styles (2004), for computational purposes we replace F' €
C>®(—1,00), G € C*(—1,1) for any € € (0, 1) by the regularized functions F., G. : R - R
such that

Fi(s) — Fle—=D+(s—e+D)Fe—1)+ S pre —1) s<e—1
o F(s) s>e—1
and  Ge(s) := 3 [FL(s) + F.(—s)]. (2.7)

Hence F., G. € C*!(R) with the first two derivatives of F. given by

v e+ (s—e+1)F'(e—1) s<e—1
F(S)._{F,(S) s>e—1

" _ < _
and F!(s) := File—1) s<e-1
F"(s) s>e—1,

respectively. We note for later purposes that for all s € [—1,1]
< Fl'(s)<e !, TE'(s) <GU(s)<[e(2—o)) t<et. (2.8)

1
2

Similarly to the approach in Zhornitskaya and Bertozzi (2000) and Griin and Rumpf
(2000), we introduce Z, : S* — [L>®(2)]**? approximating b(-) Z, where Z € R**? is the
identity matrix, such that for all z» € S* and a.e. in Q

=.(2") is symmetric and positive semi-definite, (2.9a)
=.(2") vVt GL(Z")] = V" (2.9b)
We now give the construction of Z.. Let {e;}?_, be the orthonormal vectors in R?, such

that the j*" component of e; is 6,5, 4, j =1 — 2 leen non-zero constants o, i = 1 — 2;
let 5({a;}7_,) be the reference open simplex in R? with vertices {p;}7_,, where Dy is the
origin and p; = a;e;, i =1 — 2. Given a o € T" with vertices {p;,}2,, such that p;,
is the right-angled vertex, then there exists a rotation matrix R, and non-zero constants
{a;}2_, such that the mapping R, : 7 € R* — pj, + R,Z € R* maps the vertex p; to pj,,
i=0— 2, and hence & = 5({a;}2,) to 0. For any 2" € S*, we then set

—_ = T

Z(") o= R Z:(2") |5 Ry, (2.10)
where 2"(Z) = 2"(R,Z) for all T € 5 and Z.(3") |; is the 2 x 2 diagonal matrix with
diagonal entries, k =1 — 2,

P E)-2Fo)  — 2(ps)=2"(pg) I .
[éa(gh) l6lke = { =% (pr))=Ge(Z"(Po)) — G’e(zh(pjkk))—G ( 0(:0:0)) if 2"(pj.) # 2"(Pjo); (2.11)
7 ‘ L = 1 . h o .
GZ(EZ (o)) — GL(z(psp)) if (p]k) = 2" Djo

11



As RT = R;! V2" = R, V3", where 7 = (z1,75)7, V = (3%, 3%)", T = (#1,7,)" and

V= (8%1, B%Q)T, it easily follows that Z.(2") constructed in (2.10) and (2.11) satisfies
(2.9a,b). We note that it is this construction that requires the right angle constraint on
the partitioning 7.

In addition to 7", let 0 =ty < t; < ... <ty_; <ty =T be a partitioning of [0, T]]
into possibly variable time steps 7, :=1t, —t,_1, n =1 — N. We set 7 := max,—1_ sy Tp.
For any given ¢ € (0,1), we then consider the following fully practical finite element
approximation of (P):

(Ph7) For n > 1 find {U", 0", W"} € 5" x K" x S" such that

(O 1) CEW™),E(x)) = / gy ds Vyes'  (212)
- - o0~ -
n n—1 h
7 (Z2 ) + (B0 ) Y, V) =0 Vyest (212b)

v (VOL, Vix—0!) > (W +~tert x—en
L@ CEWD) £ -7 Vxe K" (2120

where ©% € K" is an approximation of §° € K, e.g. ©° = Q"0°, or 0° = 7"0° if §° € C(0).

REMARK. 2.1 We note that in the case C = 0, (2.12b,c) collapses to an approximation
of the degenerate Cahn-Hilliard equation, (1.12a—c) with C = 0. This is the same as the
approximation in Barrett, Niirnberg, and Styles (2004) in the absence of an electric field.
Note that as ¢’ is constant, the dependence on ©"~" in (2.12¢) is superfluous.

Below we recall some well-known results concerning S* for any o € T", x, 2" € S",
m € {0,1}, p € [1,00], ¢ € [2,00) and 7 € (2, 00] :

N
—_
w

|X|1,U S Oh;I |X|U,0’;

g1

X |m,s,0 < C’hg2(” 2 X|m,p,o for any s € [p, 00| ; 2.14
(T = 7 lmger < C BT 1], V1€ H(0); 2.15
(I = 7™0lmre < C A "™ 1)1 1o VneWwh(o); 2.16

.l\D
[a—y
~

/Xdeg/Trh[X2]dx§4/X2dx;

|06 2") = (62" < T =7 (x2")oa < CRH™ x| [2"]1 -

~—~~ I~
~— N N N S N

N
—_
co

Finally, as we have a quasi-uniform family of partitionings, it holds that

(T = Q"nlwm <CR™[nli Ve HY(Q). (2.19)

It is convenient to introduce the “inverse Laplacian” operator G : Y — Z such that
(VIGz], Vi) = (2,m) ¥ e H(Q), (2.20)

12



where Y := {z € (H'(Q)) : (2,1) =0} and Z := {z € H'(Q) : (2,1) = 0}. Here and
throughout (-,-) denotes the duality pairing between (H'(Q))" and H'(Q), and its ex-
tension to the corresponding spaces of vector valued functions. The well-posedness of G
follows from the generalised Lax—Milgram theorem and the Poincaré inequality

o < C (Il +1(n, 1)) ¥ neH(Q) (2:21)
As Q is convex polygonal, we recall the well-known regularity result
1Gz]l2 < C|z|o VzeL2(Q)NnY. (2.22)

We define Z" := {2" € S": (2", 1) =0} Cc Y = {2 € C(Q) : (z, )P =0} C Y.
Then, similarly to (2.20), we introduce G" : Y* — Z" such that

(V[G"2"],Vx) = (", )" V¥ xesh. (2.23)

It is easily established from (2.20), (2.23), {T"},>0 being a regular partitioning, (2.22)
and (2.18) that
(G —GM", < Ch|hly V2" esh. (2.24)

We introduce the “discrete Laplacian” operator A" : S — Z" such that
(Al )= —(Vh Vy) V¥V xeSsh (2.25)

It follows from (2.2), (2.17), (2.25), (2.14) and the quasi-uniformity assumption on 7"
that

A" < (AR = (V2" V(A")) < ") A"
< Ch7 A g < ORI E <O |ME Y e ST (2.26)

LEMMA. 2.1 Let the assumptions (A) hold. Then for all 2" € S" we have that

[2"|1,s < C[A"", for any s € (1,00), (2.27a)
21 < O A3 |47 (2.27h)

Furthermore
A" (7'n)|o < C nls V n € H*(Q) with % =0 on 09. (2.28)

Proof. The proof of (2.27a) can be found in Barrett, Langdon, and Niirnberg (2004,
Lemma 3.1). However, we state the proof for the reader’s convenience as the proof of
(2.27Db) is very similar. It follows from (2.25) and (2.23) that

(I—f)"=-g"arz) vzl esh. (2.29)
For s € (2,00) we have from (2.29), (1.18), (2.15), (2.14), (2.22) and (2.24) that

2" 1s < IGIA""]|1s + [(T = 7")GIA " |15 + ("G — G A"y,
< O[GIAMM[lo + C AP [(rhG — gAY < O AR W e P

13



Hence the desired result (2.27a), for all stated s, follows immediately. Similarly, we have
from (2.29), (1.18), (2.15), (2.14), (2.22) and (2.24) that

214 < [GIA" M0 + (1 = 7")GIA"2M]14 + |(7"G — G A" 4
< (GIAIT IGIA [ + C R [GIASM]|y + C ¥ [(xG — GM A",
< IGIAMM|Z |AME + O R A, Ve SP (2.30)
It follows from (2.29), (2.24) and (2.26) that for all 2" € S"
GIAP |y < |GMAPZ | + (G = M)A < 2"+ Ch Ao < Oy
Combining (2.30) and (2.26) yields that

1 1 1 1
24 < 2 AP, > 2o < z Z z € ;
2" L4 < CL"F |AY"G + Che |A'"o < CP"F [AT"G V2" e 8"
and hence the desired result (2.27b).

Finally, it follows from (2.3), (2.17), (2.25), (2.15), n € H*() with 2% = 0 on 9%, and
(2.13) that
A ()5 < ANt = — (V("n), V(A" ("))
— (Y, V(&' (7)) + (VI = 7", V(A (x"n)))
< |Anlo [A"(7"n)lo + C h|nla V(A" (7"n))|o < C |nl3;
and hence the desired result (2.28). a

Similarly to (2.25), we introduce L" : S" — S" such that
(L*2" %) = —(CE(z").£(0)) ¥ xes" (2.31)

We introduce also N : X — H'(Q) and N} : X — S", where X := {n e (H(Q):
(n,v) =0 Vv € RM}, such that

(CENcE),Em) =(&n)  VneH(Q), (2.32)
(CENEE,EX) =(&x)  Vxes. (2.33)

As C satisfies (1.9) and (1.10), the well-posedness of these operators is easily demonstrated.
As 2 is convex polygonal, we will assume the analogue of (2.22),

[Nl < Clele VEELX(QNX. (2.34)

If C is isotropic, (1.11), then the singularity exponents in N¢& do not depend on the
Lamé moduli; and (2.34) follows immediately, for example, on combining Grisvard (1989,
Theorem I) and Seif (1973, Lemma 3.2). Unfortunately, if C is anisotropic then the
singularity exponents depend on the specific form of C and there is no general result of the
type (2.34) in the literature. However, there is also no counterexample. For any particular
material law, C, and domain €2 the singularity exponents in N¢ & can be computed, see e.g.
Costabel, Dauge, and Lafranche (2001), and hence the assumption (2.34) can be tested.

We now have the analogues of (2.26), (2.27a) and (2.28).

14



LEMMA. 2.2 Let the assumptions (A) hold and, if C is anisotropic, assume that (2.34)

holds. Then for all s € (1,00) and for all 2" € S" we have that

E(Z")]os S CIL 2o < Ch 2"y (2.35)

Furthermore

IL"(7"n)|o < C Inl» VneH*(Q) with CE(m)v=0 ondQ. (2.36)

Proof. Tt follows from (1.21), (1.10), (2.32), (2.33), (2.15) and (2.34) that
— Ne) €|l < CLE((Ne = N2) ) < (CE((Ne — N&) €),£((Ne = N2 ) €))

Cl(Ne £
= (CE((Ne = N2 €),£((I = 7")(Ne §))) < CIE( = 7")(Ne §) )5
<O =" (Nl S OR?|INeEll; < CR7 el VEEL(QNX. (237)
Let 2" = (2" — 2B\0) + 2%y such that 2%, € RM and 2" — 2%,, € S". Then it follows from

(2.33) and (1.21) that
2" =z = —NE(LP2"). (2.38)

Combining (2.38), (1.18), (2.16), (2.14) and (2.37) yields for s € (2, c0)
[£(2")lo,s = IENE (L"2") )lo,s < [E(Ne (L"2"))os + IE((T = 7")Ne (L"2") )]o,s
+IE(m" [N (L"2") ] = Ne (L"2") )o.s

< C|INe (L"2") ||2 + € h=0=5) |7 [N (L"2") ] = NE(L"2")], < € |1 2",

and hence the first inequality in (2.35).
It follows from (2.31) and (2.13) that

IL"2"5 = —(CE(2"), E(L"2")) < CIEE") |0 |E(L"2M)]o
S Ch HEE IL 2o < Ch?IEEME < Ch2 |27

and hence the second inequality in (2.35).
Finally, it follows from (2.3), (2.17), (2.31), (2.15), n € H*(Q) with CE(y)v = 0 on
09, and (2.13) that

Hence the desired result (2.36). O
We introduce the projection operator P" : KI’I(Q) — Sh such that

(E(z = P"2),E(x) =0 VY xes". (2.39)

It is crucial for our analysis to prove the following result.
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LEMMA. 2.3 Let the assumptions (A) hold and let § € R be as defined in Lemma 1.1.
Then there exists hg € Rsg and a 3 € C([35,00)) such that for all p € [F£2,00) and for
all h € (0, hy)

EP"2)]op < B IEE0y  VzeV, (2.40)

with B(p) > 1 and B(p) = B(2) =1 as p — 2.

Proof. We adapt the argument for the Laplacian with homogeneous Dirichlet boundary
conditions given in Brenner and Scott (2002, Chapter 8), which is based on the approach
in Rannacher and Scott (1982). Given 7" and any y € , let 0, € T" be such that
y € 0,. We then introduce 6 € C5°(Q) with supp(d}) C o, such that

/ dz=1 and  [|00]lmece, SCh ™ VmeN. (2.41)

Yy

For i, j € {1,2}, let [ € H'(Q) be such that

(E(f

]

), £m) = (6, €M) Ve H(Q). (2.42)

It follows from (1.14) and (1.21) that (2.42) is well-posed. We have from (2.41), (2.39)
and (2.42) for all y € Q and for ¢, j € {1,2} that

[£(P"2)]i;(y) (P'2)lij) = (E(f, ;) E(P"2)) = (E(P"f ). £(2))

= Y,iJ

(2)]iy) + (E(P" = 1)f

]

(dy,
(3, [

SIS

For any y € 2 and any constant p > 1, we introduce the weight function
1
wy,o(®) 1= (|z —y> + p* h?)7. (2.44)

It is easily verified for any o € R that

max(suplu (1)) influy (1)) < € Jfl o < O max{l, (ph)*} (2.450)

aeTh rxEo

and | [wy (7)) < Cla) wy,(2)]*™ V2 eQ, VmeN, ie{l,2}; (2.45b)

«Q
Y,p

where the positive constant C'(«) depends continuously on « and is independent of the
choice of y € @ and p > 1. It follows immediately from (2.15) and (2.45a) that for all
ceT" aeR me{0,1} and i€ {1,2}

2 2 2 2
« om —-m o 9?2 o2 o2
[ty (Bt =) s < cwem Lo, [(50) "+ (52) "+ (54) "] as
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It follows from (2.43), a Holder inequality and (2.45a) that for any p € (2,00), @ > 0
and p >1

é(Phg)h),p <C[1+ (Sup/ w;go‘”) dx) M;f’a] £(2)
Q

0,p
yeQ
<Cll+a 2 (ph) 3 M!LIER)]os Vzel,, (247
>
where — M! = max - sup {/ wi P E(T — Ph][yz,j)|2 dx} : (2.48)
LI=h2 yeq Q ’

The goal is to prove the analogue of Brenner and Scott (2002, Lemma 8.2.6); that is, for
appropriate a > 0 and p sufficiently large that there exists an hy such that

M. <Ch: YV he(0h). (2.49)

It would then follow from (2.47) and (2.49) that (2.40) holds with B\(p) = () for all
p € (2,00), for some constant C;. In addition, it would follow from (1.22), (2.39) and the

above bound for p € (2, 00) that for p € [f—ig, 2) and for all z € Qp

h (E(P"z),E(m) (£(2), £(P"n))
E(P"2)|op < B(p)O:;e% Wb B(p)():;e% Tk

< B(p) Cr1E(2)op

(2.50)

where %+% — 1. As (2.40) trivially holds with 3(2) = 1 from inspecting (2.39), it

follows that (2.40) holds with B\(p) = (C, for all p € [f—ig,oo), for some constant Cj.

Moreover, the desired result (2.40) holds for all p € [f—Ig, o0) by applying the Riesz—Thorin
theorem as in Lemma 1.1 to the P" induced mapping that takes £(z) € [LP(Q)]252 to
£(P*z) € [LP ()3

Therefore we need to prove (2.49). Let Y := {{¢, ¢(} € (H'(Q))' x L*(8Q) : (,,v) +
[oq¢-vds=0 VuveRM}. Then N:)Y —>E1(Q) is such that

(EN(E D)

|

() = (& m) + mg.gds Vne H(Q). (2.51)

Let 002 = Ujﬁlaj—ﬁ and 0;Q N 0xQ = 0 for j # k; with v9) the outward unit normal to
0;€2. In addition, let the largest inner angle w of the convex polygonal domain {2 be such
that w < 5= for some r > 1. Then, similarly to (2.34), on combining Grisvard (1989,
Theorem 1), ¢(2) := sin®(w z) — 22 sinw = ¢(i2) = §(2) := 2% sinw — sinh?*(w 2), and
the fact that ¢(z) has no roots such that [Im(z)| < T, apart from the double root at z = 0
and the simple roots at z = =+i, see Seif (1973, Lemma 3.2); we have for p € (1,2r] that

JB JB
INGE Ol < ClIE0p + D lIClh—2 po0] Y HE ¢ € (Z(Q) x [[W7(0;0)) N Y;
j=1 i=1

(2.52)
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provided that the compatibility condition, Grisvard (1989, (1.5)),
¢ lojo Ut = [ v at every vertex S; of Q (2.53)
holds (in the integral sense if p = 2).

For fixed y € Qand i, j € {1,2},let e := (I — P")f € H(Q), e* := (I—7hf . €

=Y,t] _

H'(Q) and et := (7" — Ph)iy i € S". 'We note that

Enz) =nk(z)+5[2® (V) + (V) ®@z], (2.54)

where a ® b := ab” for all a, b € R%. Tt then follows from (2.54), (2.39), (1.25), (2.45a,b),
(2.46) and (2.13) for any y € Q, 4, j € {1,2}, @ > 0 and p > 1 that

(wys? £(e). £()) = (E(e), E(wys? e™) + E((T — 7")[wyr? "))

yp = yp = Y,p

~ (@) e ® (Vug?) + (Ve @ e))
< Clo) [ [ 1w I8N+, P 1da + [ g, I da
+ [ (T = g )P o]

< Cla) [/Q[ wit? 1E(e))? + Wy, |€A|2]dl’—|—/ wd e dx] . (2.55)

Let 1 = N((I — Pam)(wy,€),0), where Pry : L*(€2) — RM is such that
(I = Prm)z,m) =0 ¥V €RM. (2.56)
It follows from (1.21), (1.14) and (2.56) that

vy < |(I = Pru) 21 + [Prav)y < CLE( — Pry) 2) o + | Prm 21
< ClIE@)]o + [Prvvlo] < CLIE®)]o + |v]o] Voe H'(Q). (2.57)

We have, on noting (2.51) and (2.39), that for all ¢ > 0
(wy,e0) = (E(), £(e) = (E((] —")¥), £(e))
< (wit?E(e),E(e)) + Cs™ /Qw;ga“) E((I = 7"))|*da. (2.58)

It follows from (2.46) and (2.44) that

/wa’ga+2) |§( ([ _ ) |2 dx < Ch2 Z / a+2 |8:1:k8:1:[|2

k=1

<o ([ dx) 61320 < C(@) 5 ()32 [0l . (2:59)
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where 7 is as defined in (2.52) and £ + & = 1. Next we note that (2.52), (1.18), (1.21),
(2.44), (2.54) and (2.45b) yield, on assumlng that a € (0, 2= 1)),

152 < CIT = Pan) @y €)l6.r < C T = Pru) (Wi €17 22

<Ol >§w<0(/9w5%‘2”“dx)r/g (g, P ds

< C(@) (ph)**7 [(wyh? £(e),£(e) + (wy, e 0) ] (2.60)

Therefore for any fixed o € (0, Z(T;l)), we have for all y € Q, i, j € {1,2}, p > po(a) and
h > 0 on combining (2.55), (2.58) with ¢ sufficiently small, (2.59) and (2.60) that

(Wi £le),£(e)) < C(a,p)/[ 421 (e + we, e ] dw . (2.61)

Hence the desired result (2.49) follows from (2.48), (2.61) and (2.46); if we can show for
any y € Q, 14, j € {1,2}, a € (0,1), p>1andh>0that

+219°
First, we have from (2.45b) that

a+2 ij |2 P 2 a 2 a2 2
e, [ b < o) (Wi, B 16,19, P+ w21, o]
(2.63)
Second, it follows from (2.56), (1.14), (2.54), the symmetry of £(-) and (2.42) that (I —

Pru) (wy,p [y ) e H'(Q) solves for all neH ()

(E((I = Pr) (wip £,,))E0) = (Ewiy £,,).Em))
= (E(f,,) E@is ) + 5 ([, @ VIwiy )+ V(wis ) e f 1. Em)

2dx < C(a, p) ho 2. (2.62)

Y,iJ Y,t] N
— (£, ) Vwis )
= %([ ®e;+e; ®6]V5y,wyp 77)
—(E(f, ) V(win ) + 5V V(i )+ V(wi, ) e f, L)
+1 /m [[iy,z-j ® V(w;jl) + V(w;jl) ®f, Jv|.nds. (2.64)

Noting (2.51) and (2.53), and applying the bounds (2.52), (2.45b) and the trace inequality
|| - “é,ﬁkﬂ < C - |lia to (2.64) yields that

oy 241 5 51
wio [, le <Ol Voylo+lwip VS o+ lwis iw.jlo
JB

- Z 11, ® Viwis )+ V(win )@ £, vl g0

<C[|w2+1V6h|0+|wypr lo+lwi, " F Lol (2.65)

=Yij
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It follows from (2.45b), (2.57), (2.45a) and (2.54) that
oV, b S C [lwdo £, 1+ V(w3 >fyij|o] <C|lE@inf, o+ lwfs £, Lo
<C [lwin €L, o+ lwin £, lo] (2.66)

We have from (2.54) that

W, £, )E(f, ) = (E(f, )E@S, 1, )
L, VW) V) © f E(f, ). (267)
Similarly to (2.64), testing (2.42) with n = wy, foii yields that
(é(iy,ij)’é(w;aﬂ iy,ij)) - _%( [gi ® £; + £; ® gi] Véz}}’ w?iﬂ _y,ij) ’ (2'68)
Combining (2.63), (2.65), (2.66), (2.67) and (2.68) yields that
o =y,ig 51 STl
[ w2 5D de < Ola) [Jofy £, 5+ 037 VOR]. (269

For p € (1,2), let X = N((I — Prm)§, 0), where [£], = sign([iy’ij]g) | [iy,ij]‘f|2p_1’ 0=1,2.
It follows from (2.56), (2.51), (2.42), (1.18), (2.52) and (2.44) that

1, = (6 F, ) = (T~ P& ], ) = (E(D).E(, ) = (64 [EX))y)

< Ol 101y 2 < Ot 2 [Tl o < C 102l 17 — Pr)€ly o
2 1 2
< Wl Koo, < C 10, 11, ' < O

<C ( [ wrierrda ) do I < Cla) (ph>2—<a+2>p w;,p“ M. (270)
Q
Next we have from (2.44) and (2.70) that for p € (1, 2)
a a—2
ok 1, < 0 ([ whe ™ dx) ol < C@ R 1L, e (2T1)
Q
where %+§ = 1. Finally, combining (2.69), (2.71), (2.70), (2.41) and (2.44) yields that

2o < Clo, p) h=2 |wiy 01 < Clap) B0 |wip I}

+219L,
< C(a, p) h*?
and hence the desired result (2.62). a

We now have a discrete analogue of a result similar to (1.22).
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LEMMA. 2.4 Let the assumptions of Lemma 2.3 hold. Then there ezists §; € (0,9) and
C(co,me, Mc) € Rag such that for all p € [2,2 + §;] and for all h € (0, hy)

n (c(0") CE("), £(x))
1£(2")]op < Cg;;lepgh 000

vzhelSh vo'ek"; (2.72)
1 1 _
where ’ + i 1.

Proof. The proof is an extension of the approach in Brenner and Scott (2002, §8.6) for
a scalar second order linear elliptic equation. Similarly to (2.50), it follows from (1.22),

(2.39) and (2.40) that for all p € [2,2 + 4], for all h € (0, hy) and for all 2" € S"
(E(2"), £(P"n)) (E(2"), £00)

£ h < ] = = = < (1 —
EEhe < 5010 b e, = W) S e,

: (2.73)

where o € C([2,2+0]), o(p) > 0 and o(p) — 0 as p — 2. On recalling (1.4) and (1.10)
we define for all z € V., for all n € V. and for all 0" € K"

B(z,n) = ((T — 35 c(0") C) £(2),E(n)) -
It follows from (1.10) and (1.4) that

1B(z,n)| < (1= %524) [E(2)lop IE(0)]og - (2.74)
Combining (2.73) and (2.74) yields for all 2" € 5" and 0" € K" that

(c(0") CE(2"), £(x))
_1 (1= amc h < L = == 2.
o — (17 ) Do < 37 Dyes €00 o.q =)

Since o(p) — 0 as p — 2 and o is continuous, one can choose §; € (0,d) such that

o(p) < %m for all p € [2,2 4 0;]. Hence (2.75) yields the desired result (2.72).
a

REMARK. 2.2 Tt is now straightforward to establish a global L>(0,T; W'*(Q)), p > 2,
bound for u solving (1.12e). Let § € L>°(Qr). Then, similarly to the proof of Lemma 2.4,
it follows from (1.21), (1.22), (1.10), (1.4), (1.12e) and a trace inequality that for a.a. t €
(0,7)

0,1,00

om | [0 g-nds] n
s = (1= S E(u(-, )]0y < 7 sup “EE=2 <O sup

<.
oncy, |€Mlog [ ]

|1,q N

(2.76)

We introduce for all ¢ € (0,1), b, : [-1,1] — [¢ (2 — €), 1] defined, on recalling (2.5),
(2.7) and (2.8) by

1 1
O G 2 o)

Then the following two lemmas follow immediately from the construction of =., see Bar-
rett, Niirnberg, and Styles (2004, Lemmas 2.2 and 2.3) for details.

= b(s). (2.77)
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LEMMA. 2.5 Let the assumptions (A) hold. Then for any given ¢ € (0,1) the function
2. 0 Sh— [L®(Q)]**? satisfies for all 2" € K", £ € R? and for all o € T"

[\
B
jsV]
W
o>
o
™
>
=
S
[y
[\
[y
S
[y
o
\]
=z

£(2- ) €7 < minb.(2()) €76 < €7=(M)], €

TET - - - reEoT -

LEMMA. 2.6 Let the assumptions (A) hold and let || -|| denote the spectral norm on R**2.
Then for any given ¢ € (0,1) the function . : S — [L®(Q)]**? is such that for all
2 e K and for all o € T

max || [Z:(2") = b:(z") Z](@)[| < ho [V[be(2")] o000 < 205 [V2" |5 |- (2.79)

rEo

In the remainder of this section, we establish stability bounds for the solution of
(2.12a—) that are needed for our convergence analysis in §3.

LEMMA. 2.7 Let the assumptions (A) hold and ©"~' € K". Then for all ¢ € (0,1) and
for all h, 7, > 0 there exists a solution {UZ,O", W"} to the n-th step of (Pm7) with
for = for-'. {ur,er} is unique. In addition, W is unique if there exists j € J such
that ©2(p;) € (—1,1). Moreover, it holds that

J(OLUD) +5[7|0 =0 i+ HOF — 0 i+ 9t (E(0) VIV, VIVY) ]
< Jerhum, (2.80a)

where

TO,U) = L[y ]00f — 1002 ] + [/ peru - [ g.u ds} R
Q

0
(2.80b)
Furthermore it holds that

Y (G(O7) — G.(0r71), 1) + L 7,y | A7)
<e 2 |Or — O 4y, (VIR VIOF — 00 ))
+r, [(VOr, VOr Y + CLEWUME,].  (2.81)

Proof. As (2.12a) is a linear finite dimensional system, existence of U” follows from
uniqueness. Given Ot € K" it follows from (1.4), (1.10) and (1.21) that

(c(OF ) CEW),EU)) > o (CEW),E(UV)) > come [EW)[; > CIUJT VU €S

) =\ = i = - -

Hence we have existence and uniqueness of U” € S" solving (2.12a).

In order to prove existence of a solution {©7, W} € K"xS" to (2.12b,c), we introduce,
similarly to (2.23), for ¢" € K" the discrete anisotropic Green’s operator Qgh VAL
such that

(E(d") VI[Gp2", VX)) = (" )" ¥V xesh (2.82)
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It follows immediately from (2.78) and (2.21) that Qé‘h is well-posed. Choosing x = 1 in
(2.12b) yields £0©2 = £0©7". Tt then follows from (2.12b) and (2.82) that

n =y Gh [ 1, (2.83)

where A\" € R is a constant. Hence (2.12b,c) can be restated as: Find O € K" and a
Lagrange multiplier A" € R such that

Y (VO V(x — O1) + (yGh, 1 [%2—] — A — ytert y — o)t
> (O CEWT) : EWUN),x—Or) VY yeK". (284)

2

It follows from (2.84) that ©" € K"(©"™ ) := {y € K" : x — ©""! € Z"} is such that

Y(VOL V(X —O8) + (798 1[Z22—] —y Lot x — 0n)h

Tn

> -3 (O CEWUN) - (UM, x—OFr) VY xeKMoer). (285)

There exists a unique O € K"(©" 1) solving (2.85) since, on noting (2.82), this is the
Euler-Lagrange variational inequality of the convex minimization problem

: 702 4 n—1 h _ @n-1y2
omin | {FME + 2 EAO ) VG, (o — e
O L (e CEWE), W)}
Existence of the Lagrange multiplier A" in (2.84) then follows from standard optimisation
theory, see e.g. Ciarlet (1988). Therefore, on noting (2.83), we have existence of a solution
{er,Wr} e K" x S to (2.12b,c). If |©"(p;)| < 1 for some j € J then 7"[1 — (©7)2] £ 0
and choosing y = O"+¢ 7"[1—(0")?] in (2.84) for ¢ > 0 sufficiently small yields uniqueness
of A\ and, on noting (2.83), uniqueness of W-..

It follows from (1.3), (1.10), (1.13), a trace inequality and (1.21) that

g > ~5r @ + | [ Benu - [ guray
Q o0N

—Ly () + 3 come [EWUD)IE = llglloseon 1T o100
—377 m(Q) + Faome [EUD - CLEWDh = Jo > —00. (2:86)

v IV

Furthermore, choosing x = W in (2.12b) and x = ©2! in (2.12¢) yields that

y(Or —er W + 7, (E.(02 ) VW, VIV =0, (2.87a)
v (VOr, V[er !t —er]) > (Wr+ytert ert —on)h
L(d©rhCcEWUr)  E(UY), 0! —Or). (2.87b)

On noting the fact that ¢/(©%~") [O" — O] = ¢(O") — ¢(O"7"), as c is affine linear, and
the elementary identity

2r(r—s)=@*-s)+(r—s)? VrseR, (2.88)

23



it follows from (2.87a,b), (1.3) and (2.86) that the desired result (2.80a,b) holds.
Choosing x = 7"[GL(©"1)] in (2.12b), and noting (2.9b) yields that
7(Or =0T GLOIT)" + 7 (VI VOIT!) = 0. (2.89)

We now apply an argument similar to that in Barrett, Blowey, and Garcke (2001, The-
orem 2.3). From (2.12c) we have for all j € J on choosing x = O + ¢ x;, O £<x;,
Or — ¢ x; € K", respectively for ¢ > 0 sufficiently small, that

Y (VOL, Vx;) — (W + 71O xy)" + 5 (<017 CEWUD) « £(U2), x;)

>0 =1
=0 if O"(p;) ¢ € (~1,1) . (2.90)
<0 =1

From (2.25), (2.2) and (2.1) it follows for all j € .J that
O%pj) =+1 = +0%(p;) >+0%p;) VieJ = +A'O"(p;)<0. (2.91)
Combining (2.90) and (2.91), and noting (2.25), (1.10), (2.3) and (2.17), yields that
YA, = =7 (Ver, v(a'er))
< (WP 4O AN (O CE(UY) < E(UT), AT
< (VoW +617'],ver) + 3 |AOLf; + CEWU) b (2.92)
It follows from (2.89), (2.8) and (2.92) that

V2 (G=(O7) — G-(0r7"), 1) + L | APOP 2
<2 (O — O L GLOM)! + 1 (VY W2 + 0871, VO!) + C'ry [EUM) L
< A2 (07 — 01 L GLOM) — GLOM ) + 7y (VI V[O! — 07 1)
+ 7, (VO VO + Oy [EUM 84

< e 1[0 — OF L 4 1y [y (VW VIOF — O871]) + (VOr, VOr) + C €U i,

and hence the desired result (2.81). a

REMARK. 2.3 We note that (2.80a,b) and (2.81) are the discrete analogues of the energy
estimates (1.16) and (1.17), respectively.

LEMMA. 2.8 Let the assumptions of Lemmas 2.4 and 2.7 hold. Then for all p € [2,24 0]
and for all h € (0, hy)
EUDop < C. (2.93)
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Proof. Similarly to (2.76), it follows from (2.72), (2.12a), (1.13), (1.21) and a trace
inequality that

x ds
ey < © sp HmLX oy, Mo o, oo o
- 0#xESh |£(K)|0,q 0#xeSh |£(K)|0,q 0#xeSh ||X 1q
and hence the desired result (2.93). a
On recalling (1.13), we set N
Ur=U!-5z (2.94)

as it is easier, by exploiting (2.36), to bound |L"U"|, than to bound |L"U"|s; see the
Lemma below.

LEMMA. 2.9 Let the assumptions of Lemmas 2.2 and 2.8 hold. Assuming that O 1 =1
on 0S), it holds that B
IL"UN <10 i, (2.95)

Moreover, for all h € (0, hy)
EUD) g0 < CO)[1O27H 15" + 1], (2.96)

Proof. For ease of notation, let ¢® ' := ¢(©%!). Assuming that ©2 ! =1 on 99, it
follows from (1.13) and £(S*x) = S*£(z) = S* that

[ onts= [ o egypa= v e g
= ("TTCE(S ), E(m)) + (V.(c"TTCSY),p)  Ype HY(Q). (297

Combining (2.12a), (2.94), and (2.97) yields that
("TCEUN,E(N) = (V-("'S),x)  VxeS" (2.98)
For the ensuing analysis it is convenient to introduce u! € H'(Q) such that

(e CE@),Em) = (V. ("' S),n) VneH(Q). (2.99)

Existence and uniqueness of 47, and the bound
@], < C (2.100)
are easily established on noting (2.97), (1.13), (1.4), (1.10), (1.21) and a trace inequality.

We now address the H?(Q) regularity of a”. If § € H'(2), then n := [¢" ']
satisfies, on noting (1.4) and (1.18),

[3)

nh < Ol + 10 s lly 200 ] < C L+ 1O o [l ¢ >0,
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and hence n € H'(Q). Choosing n = [¢"!] 7' 7 in (2.99) yields, on noting (2.54), that for
allj e H'(Q)

(CE@),£M) = ([ V. ("1 S) =" CE@) VI ). (2.101)
It follows from (2.101), (2.34), (1.18), (2.100) and (1.4) that

@l < CTIE@) o, < C R s 1]l
<Cle" M3 <C|@" 1|14 (2.102)

From (1.10), (1.4), (1.21), (2.99), (2.98), (1.9), (2.15) and (2.102) we have that

Cyllar — U213 < (' CE(ar — U?), Ear — UT))
<(TTCE( —mMar), E((I - ")ar)) < Co[(I —m")alfi < Cyh? |azl;. (2.103)
It follows from (2.35) and (2.103) that
(LMo < MUY = mha)fo + (L (x"2) ] < ChH U2 — 7l s + [ (2" a2
<SCORUL = @l + [(T = 7" @y ]+ |2 (@) o < C Jal]s + |L (") (2.104)
It follows from (2.99) and (1.4) that

I'CE()r=0 on o9 — CE(u)v =0 on 09. (2.105)

The desired result (2.95) then follows from (2.104), (2.105), (2.36) and (2.102).
It follows from (2.94) that
ETDoa < CHIETN o4+ 1] (2.106)
On noting (2.35), we have for any o € (0,1) that

EUM54 < Cla) IEWUD) 35700 WD i) < C(0) E(UD) 65520 IL"T2 57

(2.107)
Combining (2.106), (2.107), (2.94), (2.93) and (2.95) yields the desired result (2.96). O

LEMMA. 2.10 Let 0° € K N H*(Q) with ‘%0 =0 on 09, and the assumptions (A) hold.
On choosing ©° = 7"6° it follows that ©° € K" is such that for all h > 0

102)1F + |A"e2); + (G=(82), )" < C. (2.108)

Proof. The desired result (2.108) follows immediately from (2.15), (2.28), (2.3), (2.17),
(2.7) and (2.6). QO
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THEOREM. 2.1 Let the assumptions of Lemma 2.10 hold. Then for all ¢ € (0,1), h €
(0, ho) and for all time partitions {T,}_,, the solution {U", O™ W"IN_ to (PM7) is such
that £ = £0%, n=1— N, and

N
n||2 § : n__ Qon—1|2 -1 n__ on—1|2 = n—1 n n
,an:nlaj{NH@g“l_'_n:l |:fY|@5 @5 |1+7 (|@5 @5 |0+Tn (‘—‘E(ee )VWE,VI/V&))]
N

+> (@ Y CEWUr —Uur), U U ) < C L+ O] <0 (2.109)

n=2

In addition

’YZTn

Moreover, on assuming (2.34) holds, if C is anisotropic, 7, < C'1,_1, n =2 — N, and
O 1 =10n0Q n=1-— N; then

(_)nl
Tn

N
Shyr iy jer-er B <CiiHeUf <o (2110)
n=1

v max (G.(O7),1 +ZTn PN + U2, < C(T) [1+271r2]. (2.111)
n=1—-N —t

Proof. First, it follows from (2.80b), (1.3), (2.88) and (2.12a) that forn =2 - N
JOI LU =J(Or LU = (e(Or ) CEU - LT, EUE - UXTY)) . (2112)

Summing (2.80a) from n = 1 — k and noting (2.112), (2.80b), (1.3), (1.10), (1.4) and a
trace inequality, yields for £ = 2 — N that

87—5

k
JO5US +3> [yler —er 'R+ (jer —er i+ (E(0r ) VI, VIV )]
n=1

k
+1N (e hegwr —urt),E(Ur—-UrY))
n=2

<J(O2,U:) < CI1+ 16l +[ILET] - (2.113)

The desired result (2.109) then follows from (2.80a) for n = 1, (2.113) for k = 2 — N,
(2.80b), (2.3), (2.17) and the fact that ©" € K* n =0 - N, (2.93), (1.21) and (2.108).

From (2.20), (2.4), (2.12b), (2.78) and (2.19) we obtain for any n € H'(2) that

n—1 n_gqn—1 h
7 (VIR W) = (252 ) =5 (252, Q)
= —(2.(0" Yy VIVE, V[Q")) < |[E-(07 1] VW |Q ),
< O|[Z(02 1))z VW o [0 - (2.114)
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The first bound in (2.110) then follows from (2.114) and (2.109). Moreover, we have from
(2.20) that

N

doler—er'y <

n=1

N

> ler—er;

n=1

The second bound in (2.110) then follows from the first and (2.109).

g[@gfeg—l

D

Tn

Finally, summing (2.81) from n = 1 — k and noting (2.3), (2.17), (2.78), (2.109),
(2.110), (2.108), (2.96), (2.27b), our assumption on 7, and (1.25) yields for any k¥ < N
that

k
P(Go(OF), 1) + 3 Y r Ao

n=1

k k
< (GO, 1) 45 123108 — O 1ty max [[O7IF + OS] m ET)A.
n=1 n=1

1
2 2

k k
— — n— 1 n n n—
+|€ IZTnH:E(@a 1)]2VW5 |g 'YZTn|@a — O] lﬁ
n=1

n=1

k
<OM[1+e7' 72 ]+ CY mler "

n=1

1 k 291 1

<SCOM[l+etm2]+CY ma N0, 2 <O [1+e'72]. (2.115)

n=2

Hence the desired result (2.111) follows immediately from (2.115) and (1.21). O

REMARK. 2.4 The approximation (P%7) of (P) requires solving for {©", W} over the
whole domain 2, due to the non-degeneracy of =.(-), see (2.78). For computational
speed it would be more convenient to solve for {©Z, W} just in the interfacial region,
|©771] < 1. With this in mind, and adopting the notation (2.10) and (2.11), we introduce
EX 0 St = [L°(Q)]2%2 such that Z*(2") |,:= R, Z*(3") |5 RT, where

[E*(/Z\h) |"]kk o { 0/\ if /Z\h(ﬁk) = %\h(ﬁo) = =41,

— 7 [Z:(Z") |5]r  otherwise.
We note that the key identities, =.(2") in (2.9a,b) replaced by Z*(z"), still hold. We
then introduce the approximation (P™7) of (P), which is the same as (P™7) but with
Z.(0771) in (2.12b) replaced by ZX(©"!). As =*(-) is now degenerate, existence of a
solution {©", W} to (P"7) does not appear to be trivial. However, this can easily be
established by splitting the nodes into passive and active sets, see e.g. Barrett, Blowey,
and Garcke (1999). Moreover, one can show that ©F is unique, and W(p;) is unique
if (25(0"71), x;) > 0. Furthermore, one can establish analogues of the energy estimates
(2.109) and (2.110). Unfortunately, it does not appear possible to establish an analogue

of the key energy estimate (2.111) for (P™7).
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3 Convergence

In this section we will show convergence of the discrete solutions obtained in Section 2 to
a weak solution of problem (P). We will use methods developed by Barrett, Blowey, and
Garcke (1998), Griin (2003) and Barrett, Niirnberg, and Styles (2004) to deal with the
degeneracy of b. Furthermore, it will be crucial to show strong convergence of £(U”) in
order to pass to the limit in the nonlinearity C £(UTY) : £(UT). B

Let

O (-, 1) = ===t O () 4+ =L or!(.) t € [tat ta] 1 >1, (3.1a)
Of (-, 1) := 0"(.), O, (-, t) :==0""1(,) t€ (ty 1,ta] n>1. (3.1b)

£

We note for future reference that

O.(,t) —OF (1) = (t—t;) 22=(-,t)  tE€ (tp1,ty) n>1, (3.2)

where ¢ :=t, and t;, :=t, ;. We introduce also
T(t) =1, te (ty 1,t,) n>1. (3.3)

Using the above notation, and introducing analogous notation for W, and U, (P"7) can
be restated as: Find {UF, 0., Wt} € L>(0,T;S") x C([0,T]; K") x L>(0,T; S") such
that

/OT(C(@;)CQ(Q:),Q(X)W - /OT /mg.xdsdt vy € L®(0,T; 5", (3.42)

T
/ [v (2=, )" + (2.(07) VW, vx)] dt=0 VxeL>0,T;s", (3.4D)
0 . .,
v [ (vervic-efar= [ vt yer - e ds
0 0

2

[ Ceneew ewh ot Ve LT0T Y. (340)

LEMMA. 3.1 Let 0° € K N H(Q) with 2 =0 on dQ and §0° € (=1,1). Let {T",e,
{7}V, Yuso be such that Q and {T"}uso fulfil assumptions (A), e € (0,1) with e — 0
ash — 0 and 7, < C1yy < Ce?, n=2— N. Let OV = 7"9°. Then there exists a
subsequence of {ULX, 0., Wty where {UY, 0., W} solve (PP7), and functions

e L0, T; K)NHY0,T; (H'(Q)) and we L®0,T;V,,5)), 6 >0,  (3.5)
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with 0(-,0) = 0°(-) in L*(Q2) and £0(-,t) = £6° for a.a. t € (0,T), such that as h — 0

0., 6F -0 weak-+ in L®(0,T; H'(Q)), (3.6a)

G2 — g% weakly in L*(0,T; H*()), (3.6b)

Ur—u weak-+ in L>®(0, T; W01 (Q)), (3.6¢)

0., 6F =0 strongly in L*(0,T; L*(Q)), (3.7a)
Z(0.)—=0b0)T strongly in L*(0,T; L*(Q)), (3.7b)

c(©7) — ¢(0) strongly in L*(0,T; L*(Q)), (3.7¢)

Ul —u strongly in L*(0,T; H'(Q)); (3.7d)

for all s € [2,00). Moreover, {u,0} satisfy

/QC(Q)CQ(Q):QQ ) dzdt = //asz .ndsdt

Furthermore, on assuming (2.34) holds, if C is anisotropic, and if

VineL*0,T;H(Q). (3.8)

©. =1 on 0% (3.9)
then {0,u}, in addition to (3.5), satisfy
0cL*0,T; H* ()  and  u€ LY0,T;W"(Q)); (3.10)

and there exists a subsequence of {UL, 0., W}, satisfying (3.6a—c), (3.7a—d) and as
h — 0

A"e,, A"eF - Af weakly in L*(Qr), (3.11a)
0., 6F =0 weakly in L*(0,T; W"(Q)), for any s € [2,00),  (3.11b)

0. —0 strongly in L*(0,T;C*?(Q)), for any B € (0,1),  (3.11c)

Ul —u weakly in L*(0,T; WH*(Q)). (3.11d)

Proof. On noting (3.1a,b), (3.3) and (1.21); the bounds (2.93), (2.109) and (2.110)
imply that

= (a1l
”QJF”ioo o,rwt2+ ) T ||@(i)||%oo (0,3t () T [[E:(0.)]2 VWJF”%? (0,75L2(52))

+ ||_§88@t€ 2ora @) T ||g8§)f o @) T ||7'2 8aet€ 1200 < C. (3.12)
Furthermore, we deduce from (3.2) and (3.12) that
10 = O 220,y < T B oy < C'T - (3.13)

Hence on noting (3.12), (3.13), ©.(-,t) € K", U (-,t) € S", and (1.19a) we can choose a
subsequence {U', ©., W}, such that the convergence results (3.5), (3.6a—) and (3.7a)
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hold. Then (3.5) and Theorem 2.1 yield, on noting (1.19b), our assumption on ©° and
(2.16) that the subsequence satisfies the additional initial and integral conditions.

The desired results (3.7b,c) follow from (2.79), (2.14), (3.12), (2.77), (1.7) and (1.4);
see Barrett, Niirnberg, and Styles (2004, Lemma 3.1) for details.

For any n € L*(0,T; H*(Q2)), we choose x = «"n in (2.12a). The desired result (3.8)
then follows from (2.15), a trace inequality, (3.12), (1.4), (3.7¢), (3.6¢) and a density
result. We have from (3.4a) and (3.8) that

| eoreg - - vt dear

= [ [0 £ s £ + (0) ~ (O CEWT) L)) dode. (314

The desired result (3.7d) then follows from (3.14), on noting (1.4), (1.21), (3.6¢) and
(3.7¢).

It follows from (2.111), (2.108), (2.3), (2.17), (3.1a,b) and our assumptions on {7, }_,
and ¢ that
1A 220, + UL a0 rgwr0(0y) < C(T)- (3.15)

The desired results (3.10) and (3.11a,d) then follow from (3.15), (2.25), (2.16), (2.18),
(3.12), (3.6a), elliptic regularity as €2 is convex polygonal, and (3.5); see Barrett, Niirnberg,
and Styles (2004, Lemma 3.1) for details. Furthermore, it follows from (3.11a) and (2.27a)

that (3.11b) holds on extracting a further subsequence. Finally, (3.11c) follows from
(3.11b), (3.6b), (1.19a) and the compact embedding Wh*(Q) < C%5(Q). 0

REMARK. 3.1 The condition §° € H?*(Q) with %—‘9”0 = 0 can be relaxed, but it is not
particularly restrictive. See e.g. Barrett and Niirnberg (2004).

In addition to the above lemma, we need the following two lemmas in order to prove
our main result, Theorem 3.1 below.

LEMMA. 3.2 Let all the assumptions of Lemma 3.1 hold. If in addition 7, =17, n=1—
N, then

T—¢
/ O (t+¢)— OXZdt< s VY€ (0,T).
0

Moreover, it holds that the subsequence of {U, 0., W}, in Lemma 3.1 is such that for
any € (0,1)

0Ff =0 strongly in L*(0,T; C™P(Q)) as h — 0; (3.16a)
and, on extracting a further subsequence, it holds for a.a. t € (0,T) that

O (-, 1) — (-, 1) strongly in C%(Q) as h — 0. (3.16b)
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Proof. The proof is the same as that of Lemma 3.3 (with o = 0) in Barrett, Niirnberg,
and Styles (2004). O

From (3.12), (2.78), (2.77), (1.7) and (3.16b) we see that we can only control VIV
on the set where =.(0©7) is bounded below independently of €, and hence h, as ¢ — 0
and h — 0, i.e. on the set where |#| < 1. Therefore in order to construct the appropriate

limits as b — 0, we introduce the following open subsets of Q. For any p € (0,1), we
define for a.a. t € (0,T)

B,(t) :={ze€Q:|0(x,t)] <1—p}. (3.17)

We have from (3.16b), see Barrett, Niirnberg, and Styles (2004) for details, that for
a.a. t € (0,7) and any p € (0, pg), there exists an hy(p,t) such that for all b < hg(p, 1)
there exist collections of simplices T (t) C T" such that

B,(t) C Bl(t) := User @ C Bs(1). (3.18)

In addition for a.a. t € (0,7) and any fixed p € (0,pp), where py := min{po, 3}, it
follows from (3.17), (3.16b) and our assumption on € in Lemma 3.1 that there exists an
ho(p,t) < ho(p,t) such that for h < ho(p,t)

1-2p < |©F(2,t)] Vo & By(t), [07(x,t)]<1-L VazeB,(t) and e<p. (3.19)

LEMMA. 3.3 Let all the assumptions of Lemma 3.2 hold. Then for a.a. t € (0,T) there
exists a function

w(,t) = =y AQ( 1) =700, 1) + 3 [ (0) CE®) - EW)](- 1) € HL.({0(,1)] < 1(}); )
3.20

where {|0(-,t)] < 1} = {x € Q : |0(z,t)| < 1}. Moreover, on extracting a further
subsequence from the subsequence {UL, 0., WX}y, in Lemma 3.2, it holds as h — 0 that

E.(07) VIV — Hypi<13 b(6) Vw weakly in L?(0,T; L*(Q)); (3.21)
where Hjg|<1y is the characteristic function of the set {|0] < 1} := {(x,t) € Qp : [0(z,1)| <
1}.

Proof. Tt follows from (3.12) and (2.78) that
||Ea(ea_) VW;”%?((),T;L?(Q)) <C. (3-22)

Hence (3.22) implies that there exists a function z € L?(0,T; L*(Q)), and on extracting
a further subsequence from the subsequence {US,©., W_}, in Lemma 3.2, it holds as
h — 0 that

Z.(07) VW — 2z weakly in L?(0,T; L*(Q)). (3.23)

We now identify 2.
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First, we consider a fixed p € (0, pp). It follows from (1.7), (2.77), (2.78), (3.19) and
(3.12) that for a.a. t € (0,T) and for all h < hy(p, 1)

p (L= IVWEC DB 5,0 = A=) VW DI5 5,0 < (1= §) VWD 5,00
< |([E=(0))2 VIV (D) < C(1) . (3.24)
From (3.24), (3.18), (2.78) and (3.19) we have for a.a. t € (0,T) and for all h < ho(p, t)
O YW DB asg < _max 567 (0)) (120201 VW) Ol

z€Q\ B, (t)

<CW)b.(1—4p)<C(t)p. (3.25)

On noting (3.15) we have for a.a. t € (0,7T) that
AL ()5 + U )ll1. < C1). (3.26)

It follows from (3.26) and (3.7d), on extracting a further subsequence, that for a.a. t €
(0,T) and as h — 0

A'OF(-,t) — Ab(-, 1) weakly in L?(Q), (3.27a)
Ur(-,t) = u(-,t) weakly in W"*(Q) and strongly in H'(Q); (3.27b)

see Barrett, Niirnberg, and Styles (2004), as for (3.11a), for details of the former. Com-
bining (2.90), (2.25), (2.4), (3.1b), (3.19) and (3.18) yields for a.a. t € (0,T) and for all
h < ho(2,t) that

WA ) = =y A0 (1) =y O (1) + 3 (QM(O7) CEUL) - EWUI)( 1) on By(1).
(3.28)
If o™ € L4(Q), i = 1,2, then for any n € H%(R) we have that
(Q"[v1 vy] — viva,m) = (v) vy —viva,m) + ((Q" = )[Ul vy, (1 = 7")n)
+[(Q"[vf v3], ) — (Q"[vy w3l T ). (3.29)
It then follows from (3.29), (2.15), (2.18) and a density argument that
vl — strongly in L?(Q) and weakly in L*(Q), 1 = 1,2,
= Q"wlvl] — vvy weakly in L?(Q). (3.30)

We then have from (3.28), (3.27a,b), (3.16b), (1.4) and (3.30) for a.a. t € (0,T) that as
h —0

WE( ) = =7 A1) = 100, 1) + F[(0) CE(w) : EW)](,t)  weakly in L*(B,(t)).
This together with (3.24) yields

WX (-,t) = w(-,t) weakly in H'(B,(t)). (3.31)
Combining (3.23), (3.31) and (3.7b) yields for a.a. t € (0,T) that as h — 0
[Z.(07) VW (-, t) = b(0(-, 1) Vw(-,t)  weakly in L*(B,(2)). (3.32)

Repeating (3.24) — (3.32) for all p € (0, py) yields (3.20) and, on noting (3.25) and (3.23),
the desired result (3.21). O

33



THEOREM. 3.1 Let the assumptions of Lemma 3.3 hold. Then there exists a subsequence
of {UF, 0., W}, where {UF, 0., W} solve (P*7), and functions {u,0,w} satisfying
(3.5), (3.10) and (3.20). In addition, as h — 0 the following hold: (3.6a-c), (3.7a-d),
(3.11a-d), (3.16a), (3.16b) for a.a. t € (0,T), and (3.21). Furthermore, we have that
{u,0,w} fulfil 0(-,0) = 0°(-) in L*(Q) and satisfy (3.8), (3.20) and

T
*y/o (%,n)dt—l—/{w 1}1)(9) Vw.Vndrdt =0 vV neL*0,T; H(Q)). (3.33)
<

Proof. We need to prove only (3.33). For any n € H'(0,7; H*(Q2)) we choose
X = 7" in (3.4b). The desired result (3.33) then follows from (2.18), the embedding
H'(0,T; X) < C([0,T]; X), (3.12), (2.15), (2.20), (3.6b), (2.78), (3.21) and the denseness
of H'(0,T; H*(Q)) in L*(0,T; H'(Q2)); see Barrett, Niirnberg, and Styles (2004, Theorem
3.6) for details. QO

4 Numerical Results

Before presenting some numerical results, we briefly state algorithms for solving the re-
sulting system of algebraic equations for {U”, ©F, W} arising at each time level from the
approximation (P%7). As (2.12a) is independent of {©", W™}, we first solve the resulting
linear equation to obtain U”. To this end we employ a preconditioned conjugate gradient
solver. Then the nonlinear equations (2.12b—c) are solved, using the same “Gauss—Seidel

type” iteration as in Barrett, Niirnberg, and Styles (2004, §4).

In order to define the initial shape of the void we introduce the following function.
Given z € R? and R € Ry we define

-1 r(r) < R—IF
v(z, R; x) := sin(r(xifR) r(z) — R| < &, where r(z) := |z — 2|. (4.1)
1 r(r) > R+ 4F

(4.1) represents a circular void with radius R. In line with the asymptotics of the phase
field approach, see §1, the interfacial thickness is equal to 7. For the initial data to (P)
we chose 0° to be either (i) one circle or (ii) two circles; that is,

(i) 0°(x) =v(z, R; ) or (ii) 6°(z) =v(z R; 2) +v(3 Ry z) — 1. (4.2)

We note that in the absence of elastic stresses both these choices of §° are steady states
of (P).

Throughout the given domain Q = (=L, L) x(—L, L) is partitioned into right-angled
isosceles triangles, such that there are approximately 8 mesh points across the interface.
On using the adaptive finite element code Albert 1.0, see Schmidt and Siebert (2001),
we implemented the same mesh refinement strategy as in Barrett, Niirnberg, and Styles
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(2004). In particular, to improve efficiency we use the approximation (ﬁla”), see Re-
mark 2.4, and set ©% = 7"0°. Now we have to solve for {©", W} only in the interfacial

region, |©"~!| < 1. Hence we use a refined mesh with mesh size hy = 22fL in this inter-

2
facial region, and a coarser mesh of mesh size h, = 2N—L away from the interface. Here

Ny and N, are parameters, see Barrett, Nirnberg, and Styles (2004, §5). Furthermore,
we choose Ny such that there are always at least approximately 8 mesh points across the
interface in each direction, i.e. hy < 3‘{ v .

Throughout this section, we restrict ourselves to isotropic elasticity. Hence the as-
sumption (2.34) is satisfied and all our theoretical results in this paper apply. If C is
isotropic, (1.11), then it can be described by its non zero elements

Citnn = Cazze =2+ A, Crizz = A, Cia12 = 45 (4-3)
where ;1 € Ry and A € Ry are the Lamé moduli.
The following computations are inspired by the results in Bhate, Kumar, and Bower

(2000, Figures 9 and 10). They noticed that the void evolution depends strongly on the
SZ R

dimensionless parameter A = 22~ where S, is the maximal stress applied externally,
Bs y
b= %, R is the initial radius of the void, as in (4.1), and ¢ is surface energy density,

which without loss of generality is taken as 7 throughout this paper. Unfortunately,
the authors did not provide their exact dimensions, but it seems that there L ~ 4 R and
R = 7. Throughout our experiments we set 2 to be the unit square, L = 0 5, hence these

values correspond to R = é and vy & % R~ 18 . In what follows we set R = § = (0 0) for

the pure traction boundary condition (1.13) = S = 1, and choose v € {1%, S T8r L1
Finally, let C be defined by (4.3) with A = pu = Where Ae{i il

10A ’ 8572

First, we conducted the following convergence experiments. Setting co(y) = +2
(1.4), we repeated the same experiment with decreasing values of v, i.e. y = =, -

1270 24m’ 487’
In particular, we set A = £, T = 0.02, 7, = 7 = (55)? X 107%, & = 7 x 10~ and used
32 1

the appropriate reﬁnement parameters Ny = == —, N, = NT. The steady state solutions
for this setup agreed very well for the dlfferent values of 7. Hence we are satisfied that
the converged solution is very close to the sharp interface limit. See Figure 1, where we

superimpose the steady states for v = ﬁ and v = ﬁ.

For the remaining experiments, we fix ¢ = 107 and set ¢g = 107% in (1.4). In our first
run, we chose A = % as in Bhate, Kumar, and Bower (2000, Fig.9). This yields A = u = %
The other parameters were chosen as follows: v = ﬁ, T=002r71=7=15x10"°
As initial data we chose (4.2)(¢) with z = (0,0), R = 5. The refinement parameters were
N; =128 and N, = 16. In Figure 2 we plot the zero level sets for ©.(z,t) at different
times. Note that the last plot is a numerical steady state. Furthermore, the figure contains
plots of the principal elastic stress field and the elastic energy at time ¢ = T. Here the

former is defined as

max{|A| : A is an eigenvalue of ¢(07)CE(UT)},
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Figure 1: (S = (3 7)., A = 1) Comparison of zero level sets for O.(z,t) at time 7' = 0.02

forfy— andv—%

whereas the elastic energy is defined as ¢(©7) CE(UY) : £(US). To simplify matters, both
functions were evaluated at the vertices of the triangulation, where we used an arithmetic
average of the functions’ value on all adjacent triangles. One clearly notices that material
is transported away from regions with high elastic energy. To check convergence, we

o3 03 o3
o 02| o

| | O ﬂ ©
-0 -0 -0
-0 02 -0

| ¢ [

Figure 2: (S = A = 5, v = ? ) Zero level sets for O.(x,t) at times t = 0,1.5 x

1074, 1.5 x 10~ 3 0 02 and elastic stress field and elastic energy at time t=0.02.

repeated the same experiment with finer discretization parameters 7, = 7 = 5 x 1075,
Ny = 256, N. = 32 and the results were graphically indistinguishable from those in
Figure 2.

For a smaller interfacial parameter v = 5= we observe a strikingly different behaviour,
see Figure 3. The elliptic shape is no longer stable, and this leads to the development of
a long slit. Here we see that the condition (3.9) need not always be satisfied in practice.
Hence our convergence results for (P7) and a fixed v would only hold true, until the
void reaches the boundary of the domain and the material is separated into two parts.
The evolution in this example indicates that the elastic stresses and the curvature would
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become singular in the sharp interface limit. Hence the sharp interface asymptotics,
which assumes a bounded curvature, breaks down. These singularities are related to the
Asaro-Tiller-Grinfeld instability, see e.g. Asaro and Tiller (1972), Grinfeld (1986) and
also Spencer, Voorhees, and Davis (1993). Moreover, it is argued in Kassner, Misbah,
Miiller, Kappey, and Kohlert (2001) that a phase field model can be interpreted as a
regularization of the singularities resulting from these instabilities. In fact they claim
that a phase field model might even be more realistic, since it is not clear that the sharp
interface model is still plausible in situations where it leads to finite time singularities.
We note that our results are in contrast to Bhate, Kumar, and Bower (2000, Fig.9), where
the authors used a larger interfacial parameter . The discretization parameters used for
our computation are 7, = 7 = 2.5 x 10~% and Ny = 256, N, = 32.

| | <> ’ <>

5 0s os

Figure 3: (S = (J),A =1, v = 55) Zero level sets for O.(z,) at times t = 0, 1.5 x
107%, 1.5 x 1073, 3 x 1073, 3.75 x 1073, 5.25 x 1072 and elastic stress field and elastic
energy at time t=3.75 x 1073,

1
57
Y

The next run is for A = % as in Bhate, Kumar, and Bower (2000, Fig.10), i.e. A = u =
%. A computation for vy = ﬁ, T =4x1075 7, =7 = 5x10~ 7 and refinement parameters
Ny =128, N, = 16 can be seen in Figure 4. Again we can observe a slightly different
evolution for a smaller value of v, see Figure 5. In particular, the developing cusps appear
sharper and less smoothed out. One can again clearly see that material is transported
away from regions with high elastic energy. The parameters for this computation were

Y= ﬁa T = 1075, Tp =T = 1()*7, Nf = 256 and N, = 32.

A run with parameters as in Figure 2 but S = ((1) é) can be seen in Figure 6, where

the last plot is a numerical steady state. If we choose a smaller interfacial parameter
v = ﬁ, the elastic effect tends to be more pronounced and the steady state shape is
slightly different, see Figure 7, where we used the same discretization parameters as in
Figure 3. The last plot is a numerical steady state and it is noteworthy that the steady

37



o4 02 o
Q m O m <> m :
o3 03] o3

= |

Figure 4: (S = (§ ?) A =1, v = ) Zero level sets for O.(z,t) at times ¢ = 0, 3 X

1076, 10~ 5 4 x 1075 and elastic stress field and elastic energy at time t=4 x 10~°.

state is nonconvex in contrast to Wulff shapes which are minimizers of an anisotropic
surface energy under a volume constraint.

For our last example, we chose C such that C £(u) = £(u), i.e. p =5 and A = 0, and

set S = ((1) g). Starting with two initially circular voids, the presence of elastic stresses
leads to a Vertical split in the material, see Figure 8. We used the following parameters
for (P7): v = 5, T =5 x 1075 and 7, = 7 = 107", As initial data we chose (4.2)(ii)
with z = —% = (0,0.23), R = R = 0.18. The refinement parameters were N; = 256 and
N, = 32.

Further results, including simulations modelling the (combined) effect of surface dif-
fusion, an electric field, grain boundaries and anisotropic elasticity will be reported on
elsewhere, see Barrett, Garcke, and Niirnberg (2004b), where we also discuss applications
to epitaxial growth.

Acknowledgement Part of this work was carried out while the authors participated
in the 2003 programme Computational Challenges in Partial Differential Equations at
the Isaac Newton Institute, Cambridge, UK. This work was also supported by the RTN
Programme Fronts-Singularities, HPRN-CT-2002-00274 and the DFG Priority Program
Analysis, Modeling and Simulation of Multiscale Problems.

References

Adams, R. A. and J. Fournier (1977). Cone conditions and properties of Sobolev spaces.
J. Math. Anal. Appl. 61, 713-734.

Asaro, R. J. and W. A. Tiller (1972). Interface morphology development during stress

38



o4 02 o
Q m <> m : : m : :
o3 03] o3

s || IS

Figure 5: (S = (§ ?) A =1, v = 552) Zero level sets for O.(z,t) at times ¢ = 0, 3 X
1075, 5 x 107, 1075 and elastic stress field and elastic energy at time t=10"5.

corrosion cracking: Part i. via surface diffusion. Metall. Trans. 3, 1789-1796.

Barrett, J. W. and J. F. Blowey (2001). Finite element approximation of a degenerate
Allen—Cahn/Cahn—Hilliard system. SIAM J. Numer. Anal. 39, 1598-1624.

Barrett, J. W., J. F. Blowey, and H. Garcke (1998). Finite element approximation of a
fourth order nonlinear degenerate parabolic equation. Numer. Math. 80, 525-556.

Barrett, J. W., J. F. Blowey, and H. Garcke (1999). Finite element approximation of
the Cahn—Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37,
286-318.

Barrett, J. W., J. F. Blowey, and H. Garcke (2001). On fully practical finite element
approximations of degenerate Cahn-Hilliard systems. M2AN Math. Model. Numer.
Anal. 35, 7T13-748.

Barrett, J. W., H. Garcke, and R. Niirnberg (2003). Finite element approximation of
surfactant spreading on a thin film. SIAM J. Numer. Anal. /1, 1427-1464.

Barrett, J. W., H. Garcke, and R. Niirnberg (2004a). A phase field model for electro-
migration of intergranular voids. (in preparation).

Barrett, J. W., H. Garcke, and R. Niirnberg (2004b). Phase field models for stress and
electromigration induced surface diffusion with applications to epitaxial growth and
void evolution. (in preparation).

Barrett, J. W., S. Langdon, and R. Niirnberg (2004). Finite element approximation of
a sixth order nonlinear degenerate parabolic equation. Numer. Math. 96, 401-434.

Barrett, J. W. and R. Niirnberg (2004). Convergence of a finite element approximation
of surfactant spreading on a thin film in the presence of van der Waals forces. IMA
J. Numer. Anal. 24, 323-363.

39



o3 03] o3
o4 04 o
os s w4 w3 oz o1 o o1 0z 03 04 05 85 o4 o3 0z o1 6 01 o0z 03 04 08

Figure 6: (S = A = 5, v = —=) Zero level sets for O.(z,t) at times ¢t = 0,1.5 X
1074, 1.5 x 1073 0 02 and elastic stress field and elastic energy at time t=0.02.

Barrett, J. W., R. Niirnberg, and V. Styles (2004). Finite element approximation of a
void electromigration model. STAM J. Numer. Anal.. (to appear).

Bergh, J. and J. Lofstrom (1976). Interpolation Spaces, an Introduction. Berlin:
Springer.

Bhate, D. N., A. Kumar, and A. F. Bower (2000). Diffuse interface model for electro-
migration and stress voiding. J. Appl. Phys. 87, 1712-1721.

Blowey, J. F. and C. M. Elliott (1991). The Cahn—Hilliard gradient theory for phase
separation with non-smooth free energy. Part I: Mathematical analysis. European
J. Appl. Math. 2, 233-279.

Bower, A. and D. Craft (1998). Analysis of failure mechanisms in the interconnect lines
of microelectronic circuits. Fat. Frac. Eng. Mat. Struct. 21, 611-630.

Brenner, S. C. and L. R. Scott (2002). The Mathematical Theory of Finite Element
Methods (second edition). New York: Springer.

Cahn, J. W.; C. M. Elliott, and A. Novick-Cohen (1996). The Cahn-Hilliard equation
with a concentration dependent mobility: motion by minus the Laplacian of the
mean curvature. Furopean J. Appl. Math. 7, 287-301.

Carrive, M., A. Miranville, and A. Piétrus (2000). The Cahn-Hilliard equation for
deformable elastic media. Adv. Math. Sci. Appl. 10, 539-569.

Ciarlet, P. G. (1988). Numerical Linear Algebra and Optimisation. Cambridge: Cam-
bridge University Press.

Costabel, M., M. Dauge, and Y. Lafranche (2001). Fast semi-analytic computation of
elastic edge singularities. Comp. Meth. Appl. Mech. Eng. 190, 2111-2134.

Elliott, C. M. (1997). Approximation of curvature dependent interface motion. In I. S.
Duff and G. A. Watson (Eds.), The State of the Art in Numerical Analysis, New

40



o4 02 o
Q m D m D m D
o3 03] o3

o o
o3 w2 w1 0 o1 oz 03 o4 o5 s s w3 oz o1 0 o1 oz o3 os 05 b5 o4 o3 w2z w1 0 o1 oz 03 04 0

Figure 7: (S = (}{),A = 1, v = 51=) Zero level sets for O.(z,t) at times t = 0,1.5 x
107%, 1.5 x 1073, 0.02 and elastic stress field and elastic energy at time t=0.02.

York, pp. 407-440. Oxford University Press.

Elliott, C. M. and H. Garcke (1996). On the Cahn—Hilliard equation with degenerate
mobility. STAM J. Math. Anal. 27, 404-423.

Elliott, C. M. and H. Garcke (1997). Existence results for diffusive surface motion laws.
Adv. Math. Sci. Appl. 7, 465-488.

Escher, J., U. F. Mayer, and G. Simonett (1998). The surface diffusion flow for immersed
hypersurfaces. SIAM J. Math. Anal. 29, 1419-1433.

Fried, E. and M. Gurtin (1994). Dynamic solid-solid transitions with phase character-
ized by an order parameter. Physica D 72, 287-308.

Garcke, H. (2000). On mathematical models for phase separation in elastically stressed
solids. Habilitation, University Bonn.

Garcke, H. (2003). On Cahn—Hilliard systems with elasticity. Proc. Roy. Soc. Edin-
burgh 133 A, 307-331.

Garcke, H. (2004). On a Cahn-Hilliard model for phase separation with elastic misfit.
(submitted for publication).

Garcke, H., M. Rumpf, and U. Weikard (2001). The Cahn-Hilliard equation with
elasticity — finite element approximation and qualitative studies. Interfaces Free
Bound. 3, 101-118.

Garcke, H. and U. Weikard (2004). Numerical approximation of the Cahn—Larché equa-
tion. (submitted).

Giaquinta, M. and G. Modica (1979). Regularity results for some classes of higher order
nonlinear elliptic systems. J. Reine Angew. Math. 311-312, 145-169.

Grinfeld, M. A. (1986). Instability of the separation boundary between a non-
hydrostatically stressed elastic body and a melt. Soviet Phys. Dokl. 31, 831-834.

41



o4 02
o 04
@ ) )
Y -0
93 oz o1 0 01 0z 03 o4 os b5 s o3 w2 w1 0 o1 oz 03 04 o

s s s w3 w0z w1 0 o1 oz o3 os o5 b5 o4 o3 <z w1 0 o1 oz 03 04 0

Figure 8: (S = (1)) Zero level sets for ©(z,t) at times ¢ =0, 107°, 2x 107, 5 x 107°

and elastic stress field and elastic energy at time t=1075.

Grisvard, P. (1989). Singularités en elasticité. Arch. Ration. Mech. Anal. 107, 157-180.

Griin, G. (2003). On the convergence of entropy consistent schemes for lubrication type
equations in multiple space dimensions. Math. Comp. 72, 1251-1279.

Griin, G. and M. Rumpf (2000). Nonnegativity preserving numerical schemes for the
thin film equation. Numer. Math. 87, 113-152.

Gungor, M. R., D. Maroudas, and L. J. Gray (1998). Effects of mechanical stress
on electromigration-driven transgranular void dynamics in passivated metallic thin
films. Appl. Phys. Lett. 73, 3848-3850.

Gurtin, M. E. (1972). The linear theory of elasticity. In S. Fliigge and C. Truesdell
(Eds.), Handbuch der Physik, Vol. VIa/2. Berlin: Springer.

Kassner, K., C. Misbah, J. Miiller, J. Kappey, and P. Kohlert (2001). Phase-field
modeling of stress-induced instabilities. Phys. Rev. E 63, 036117 (27 pages).

Leo, P. H., J. S. Lowengrub, and H. J. Jou (1998). A diffuse interface model for mi-
crostructural evolution in elastically stressed solids. Acta Mater. 46, 2113-2130.

Mosolov, P. P. and V. P. Mjasnikov (1971). A proof of Korn’s inequality. Soviet Math.
Dokl. 12, 1618-1622.

Necas, J. and I. Hlavdcek (1981). Mathematical Theory of Elastic and Elasto-Plastic
Bodies: An Introduction. Amsterdam: Elsevier.

Rannacher, R. and R. Scott (1982). Some optimal error estimates for piecewise linear
finite element approximations. Math. Comp. 38, 437-445.

Schmidt, A. and K. G. Siebert (2001). Albert — software for scientific computations
and applications. Acta Math. Univ. Comenian. 70, 105-122.

Seif, J. B. (1973). On the Green’s function for the biharmonic equation in an infinite
wedge. Trans. Amer. Math. Soc. 182, 241-260.

42



Simon, J. (1987). Compact sets in the space LP(0,T; B). Ann. Math. Pura. Appl. 146,
65-96.

Spencer, B. J., P. W. Voorhees, and S. H. Davis (1993). Morphological instability in

epitaxially strained dislocation-free solid films: Linear stability theory. J. Appl.
Phys. 73, 4955-4970.

Xia, L., A. F. Bower, Z. Suo, and C. Shih (1997). A finite element analysis of the
motion and evolution of voids due to strain and electromigration induced surface
diffusion. J. Mech. Phys. Solids 45, 1473-1493.

Zhornitskaya, L. and A. L. Bertozzi (2000). Positivity preserving numerical schemes for
lubrication-type equations. STAM J. Numer. Anal. 37, 523-555.

43



