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Abstract

This paper is the first in a series devoted to the approximation the-
ory of the p-version of the finite element method in three dimensions.
In this paper, we introduce the Jacobi-weighted Besov and Sobolev
spaces in the three-dimensional setting and analyze the approxima-
bility of functions in the framework of these spaces. In particular,
the Jacobi-weighted Besov and Sobolev spaces with three different
weights are defined to precisely characterize the natures of the vertex-
singularity, the edge singularity and vertex-edge singularity, and to
explore their best approximabilities in terms of these spaces. In the
forth coming Part II, we will apply the approximabilities of these sin-
gular functions to prove the optimal convergence of the p-version of
the finite element method for elliptic problems in polyhedral domains,
where the singularities of three different types occur and substantially
govern the convergence of the finite element solutions.

Key words: p-version, finite element method, Jacobi-weighted Besov
and Sobolev spaces, Jacobi projection, vertex singularity, edge singu-
larity and vertex-edge singularity.

1. INTRODUCTION

Since the late 1970s, the p-version of the finite element method(FEM),
which increases the degree of polynomials on a fixed mesh to obtain higher
accuracy, has been widely used in engineering computations. There are
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several commercial and research codes based on the p and h-p versions of the
finite element method, for example, MSC/PROBE (MacNeal Schwendler,
CA, USA), Poly FEM(IBM, MA USA), MECHANICA (Rasna Corp., CA,
USA), PHLEX (Computational Mechanics, TX, USA), STRESSCHECK
(Engineering Software Research & Development, MO,USA), and STRIPE
(Aeronautical Research Institute of Sweden).

In 1980 it was shown that the p-version of FEM in two dimensions
converges at least as fast as the traditional h-version with quasi-uniform
meshes, and that it converges twice as fast as the h-version of FEM if the
solution has singularity of rγ-type. Since then significant progress for the
p-version in one and two dimensions has been made in the past two decades.
The estimation of the upper bound of the approximation error in finite el-
ement solutions of the p-version in two dimensions were analyzed in [5, 6],
and a detailed analysis of the p-version in one dimension is available in [10].
Very recently, the author and his collaborators have further developed the
approximation theory of the p-version of finite element method and bound-
ary element method(BEM) in the framework of the Jacobi-weighted Besov
and Sobolev spaces [1, 2, 3, 4, 11, 12]. In this mathematical framework,
the lower and upper bounds of approximation error in FEM solutions of
the p-version and in BEM solutions of p- and h-p version for problems
in polygonal domains were proved, and the optimal rate of convergence
was mathematically established. The spectral method in the framework of
the Jacobi-weighted Sobolev spaces has been studied and was successfully
applied to singular differential equations [8, 13, 14].

In contrast to the p-version in one and two dimensions, the p-version of
FEM in three dimensions is much less developed due to the complexity of
three dimensional problems. Because of lacking of effective mathematical
tools and theory to deal with the complexities of three dimensional singu-
larities in the 1980’s and 1990’s, a few results and analysis are available in
the literatures. The upper bounds in approximation error of the p-version
in three dimensions was discussed for problems with singularities as a con-
jecture in [9] without proof, and analyzed in [15] for problems with smooth
solutions belonging to Hk(Ω), k > 2.

In this series of papers, we shall precisely characterize singularities and
analyze the approximation to singular functions as well as smooth func-
tions in Hk(Ω), k > 1 in the framework of the Jacobi-weighted Besov
and Sobolev spaces, and prove the optimal convergence of the p- version
of FEM for problems on polyhedral domains. In the first paper of the
series, we shall introduce the Jacobi-weighted Besov and Sobolev spaces
in three dimensions and derive the approximation results for functions in
these spaces, then verify that singular functions of different types, which
arise from problems in polyhedral domains, belong to the corresponding
Jacobi-weighted Besov spaces and prove their approximability by high-
order polynomials. Since the approximation to functions in the Jacobi-
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weighted Besov and Sobolev spaces in one and two dimensions can be
generalized to three dimensions without substantial difficulty and the ap-
proximability of singular functions follows from the general approximation
properties for functions in the Jacobi-weighted Besov spaces and verifica-
tion of the singularities in appropriate Jacobi-weighted Besov spaces, the
crucial part of the paper is to prove that these singular functions belong
to different Jacobi-weighted Besov spaces which are precisely designed ac-
cording to the nature of these singular functions. It is well known that
there are singularities of three different types in solutions of problems with
piecewise analytic date and on polyhedral domains which severely govern
the convergence of the FEM solution; namely vertex singularity, edge singu-
larity and vertex-edge singularity. Since the vertex-edge singularity occurs
in two directions and is anisotropic, the characterization of the vertex-
edge singularity in the Jacobi-weighted Besov spaces is very different from
those for the two dimensional setting [1, 2, 3, 4] and for the vertex sin-
gularity and the edge singularity, which reflects the major difficulty as
well as significance of the paper. The main theorems of the paper are
Theorem 5.2 and 5.3, i.e. u(x) = ργ sinσ θ χ(ρ)Ψ(θ)Φ(φ) ∈ Bs,β

κ (Q) with
s = 2+2 min{σ, γ+(1+β3)/2}+β1 +β2, the Jacobi weight β = (β1, β2, β3)
with βi > −1, arbitrary, and

κ =
{

0 if σ 6= γ + (1 + β3)/2,
1/2 if σ = γ + (1 + β3)/2.

where Q = (−1, 1)3 and (ρ, θ, φ) are the spherical coordinates with respect
to the vertex (−1,−1,−1) and the vertical line L = {x = (x1, x2, x3) | x1 =
x2 = −1, x3 ∈ (−∞,∞)}, χ(ρ), Ψ(θ) and Φ(φ) are the usual c∞ cut-off
functions. It follows immediately from the approximability of functions in
the space Bs,β

κ (Q) that

‖u− ψ‖L2(Q) ≤ Cp−(2+2 min{σ,γ+1/2})(1 + log p)κ

and
‖u− ϕ‖H1(R0) ≤ Cp−2min{σ,γ+1/2} (1 + log p)κ

with

κ =
{

0 if σ 6= γ + 1/2,
1/2 if σ = γ + 1/2.

where R0 denotes a the conic subregion of Q which is the support of u,
ψ and ϕ are the Jacobi projections of u on the space Pp(Q) of poly-
nomials of degree ≤ p associated with the Legendre weight β = (0, 0, 0)
and the Chebyshev-Legendre weight β = (−1/2,−1/2, 0), respectively. It
is worth indicating that a logarithmic term appears in the error estima-
tion if σ = γ + 1/2 although the function has no logarithmic singularity.
This unique feature in three dimension is precisely explored by the Jacobi-
weighted space Bs,β

κ (Q) which is an interpolation space introduced by the
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modified K-method. The results of this paper and forth-coming ones will
significantly improve the approximation theory of the p-version of FEM in
three dimensions.

The scope of the paper is as follows. In Section 2 we introduce the
Jacobi-weighted Besov spaces Bs,β

ν (Q) and Sobolev spaces Hs,β
ν (Q) with

Q = (−1, 1)3, s > 0 and integer ν ≥ 0, and derive error estimation of the
Jacobi projections in the Jacobi-weighted Sobolev norms. In Section 3 we
characterize the singularity and analyze the approximability for singular
functions of ργ logν ρ-type with γ > 0, ν ≥ 0 in terms of the space Bs,β

ν∗ (Q).
The singularity and approximability of singular functions of rσ logµ r-type
with σ > 0 and µ ≥ 0 in terms of the space Bs,β

µ∗ (Q) are analyzed in the
next section. Section 5 focusses on the characterization of singularities and
the best approximation in L2− and H1−norms for singular functions of the
ργ sinσ θ-type and ργ sinσ θ logν ρ logµ sin θ-type with γ, σ > 0 and integers
ν, µ ≥ 0 in terms of the space Bs,β

κ (Q). Some concluding remarks are given
in the last section on the effectiveness of the Jacobi-weighted Sobolev and
Besov spaces by comparing the error estimations of the h- and p-versions
of FEM in terms of Besov and Sobolev spaces with and without the Jacobi
weights.

2. JACOBI-WEIGHTED BESOV AND SOBOLEV SPACES

Let Q = I3 = (−1, 1)3, and let

(2.1) wα,β(x) =
3∏

i=1

(1− x2
i )

αi+βi

be a weight function with integer αi ≥ 0 and real number βi > −1, which is
refereed to as Jacobi weight. Obviously, the Jacobi polynomials and their
derivatives are orthogonal with the weight wα,β(x).

The Jacobi-weighted Sobolev space Hk,β(Q) with integer k is defined
as a closure of C∞ functions in the norm with the Jacobi weight

(2.2) ‖u‖2
Hk,β(Q) =

k∑

|α|=0

∫

Q
|Dαu|2 wα,β(x) dx

where Dαu = ux
α1
1 x

α2
2 ,x

α3
3

, α = (α1, α2, α3), |α| = α1 + α2 + α3, and β =
(β1, β2, β3). By |u|Hk,β(Q) we denote the semi-norm,

|u|2Hk,β(Q) =
∑

|α|=k

∫

Q
|Dαu|2 wα,β(x) dx.

Let Bs,β
2,q (Q) be the interpolation spaces defined by the K-method

(
H`,β(Q),Hk,β(Q)

)
θ,q
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where 0 < θ < 1, 1 ≤ q ≤ ∞, s = (1− θ)` + θk, ` and k are integers, ` < k,
and

(2.3a) ‖u‖Bs,β
2,q (Q)

=
(∫ ∞

0
t−qθ |K(t, u)|q dt

t

)1/q
, 1 ≤ q < ∞

(2.3b) ‖u‖Bs,β
2,∞(Q)

= sup
t>0

t−θ K(t, u)

where

(2.4) K(t, u) = inf
u=v+w

(
‖v‖H`,β(Q) + t‖w‖Hk,β(Q)

)
.

In particular, we are interested in the cases q = 2 and q = ∞. We shall
write for s ≥ 0 and q = 2

Hs,β(Q) = Bs,β
2,2 (Q) =

(
H`,β(Q),Hk,β(Q)

)
θ,2

with 0 < θ < 1 and s = (1 − θ)` + θk. This space is called the Jacobi-
weighted Sobolev space with fractional order if s is not an integer. It
has been proved that Bs,β

2,2 (Q) = Hm,β(Q) if s is an integer m in two
dimensions[1], it can be proved analogously in three dimensions.

For q = ∞, we shall write

Bs,β(Q) = Bs,β
2,∞(Q) =

(
H`,β(Q),Hk,β(Q)

)
θ,∞

which is refereed as the Jacobi-weighted Besov space. It is an exact inter-
polation space of θ-exponent according to [7].

For the best approximation of the singular functions such as ργ logν ρ,
ν > 0 we need to introduce an interpolation space

Bs,β
ν (Q) =

(
H`,β(Q), Hk,β(Q)

)
θ,∞,ν

with integer ν > 0 by a modified K-method,

(2.5) ‖u‖
Bs,β

ν (Q)
= sup

t>0

t−θK(t, u)
(1 + | log t|)ν

Remark 2.1. The space Bs,β
0 (Q) = Bs,β(Q) is a standard exact interpolation

space of θ-exponent, all important properties of exact interpolation spaces
such as the reiteration theorem stands for Bs,β(Q). It has been shown [1]
that the space Bs,β

ν (Q) with ν > 0 is a uniform interpolation space, but
not an exact one. Hence many important properties of exact interpolation
spaces do not hold for the space Bs,β

ν (Q) with ν > 0, for instance, the
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reiteration theorem. Fortunately a partial reiteration theorem was proved
which guarantees

(
H`,β(Q),Hk,β(Q)

)
θ,∞,ν

=
(
H`′,,β(Q),Hk′,β(Q)

)
θ′,∞,ν

as long as (1− θ)` + θk = (1− θ′)`′ + θ′k′ = s. Hence the space Bs,β
ν (Q) is

well defined and does not depend on the individual values of ` and k, but
their combination (1− θ)` + θk.

For the definition and properties of exact interpolation spaces of ex-
ponent θ, we refer to [7]. For the partial reiteration theorem and various
properties of uniform interpolation space Bs,β

ν (Q) with integer ν > 0, we
refer to [3].

Remark 2.2. For β1 = β2 = β3 = 0, the spaces Bs,β
ν (Q) are referred

to as Legendre-weighted Besov spaces, and for β1 = β2 = −1/2, β3 = 0,
they are referred to as Chebyshev-Legendre weighted Besov spaces, for
β1 = β2 = −1/2, β3 > −1, are referred as the Chebychev-weighted Besov
spaces, etc.

We next study the approximation properties for functions in the Jacobi-
weighted Sobolev spaces. Let Pp(Q) be set of all polynomials of (separate)
degree ≤ p. For u ∈ Hk,β(Q), k ≥ 0, we have the Jacobi-Fourier expansion
in H0,β(Q)

u(x) =
∞∑

i,j,k=0

Cijk Pi(x1, β1) Pj(x2, β2) Pk(x3, β3)

where

Pn(xi, βi) =
(1− x2

i )
−β

2n n!
dn (1− x2

i )
β+n

dxn

is the Jacobi polynomial of degree n in variable xi, 1 ≤ i ≤ 3. Then

up(x) =
p∑

i,j,k=0

Cijk Pi(x1, β1) Pj(x2, β2)Pk(x3, β3)

is the projection of u(x) on Pp(Q).

Proposition 2.2 Let u ∈ Hk,β(Q), and let up(x) be the projection of u(x)
on Pp(Q) in H0,β(Q). Then , up(x) is the projection on Pp(Q) in H`,β(Q)
for all 0 ≤ ` ≤ k, and

|up|2H`,β(Q) + |u− up|2H`,β(Q) = |u|2H`,β(Q).

Proof The proposition was proved in [3] for two dimensions. The proof
can be carried easily for one and three dimensions.
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Due to the Proposition 2.2, up is refereed as the Jacobi projection, for
which, we have the following approximation property.

Theorem 2.3 Let u ∈ Hk,β(Q) with integer k ≥ 1, βi > −1, i = 1, 2,
and up be its H0,β(Q)-projection onto Pp(Q). Then we have for integer
` ≤ k ≤ p + 1

(2.6) |u− up|H`,β(Q) ≤ C p−(k−`) |u|Hk,β(Q).

Proof: The proof for one and two dimensions can be carried here for three
dimensions, we will not give the details of the proof, instead refer to [1].

By a standard argument of interpolation spaces, we are able to general-
ize Theorem 2.3 to an approximation theorem for functions in the Jacobi-
weighted Besov spaces Bs,β(Q).

Theorem 2.4 Let u ∈ Bs,β(Q), s > 0 with βi > −1, 1 ≤ i ≤ 3, and let up

be the Jacobi projection of u on mathcalP p(Q) with p + 1 ≥ s. Then for
any real κ ∈ [0, s) there holds

(2.7) ‖u− up‖Hκ,β(Q) ≤ C p−(s−`) ‖u‖Bs,β(Q)

with constant C independent of p.

Theorem 2.5 Let u ∈ Bs,β
ν (Q), s > 0, ν > 0 with βi > −1, 1 ≤ i ≤ 3, and

let up be the Jacobi projection of u on Pp(Q) with p + 1 ≥ s. Then for any
real κ ∈ [0, s), there holds

(2.8) ‖u− up‖Hκ,β(Q) ≤ C p−(s−`) (1 + log p)ν‖u‖
Bs,β

ν (Q)

with constant C independent of p.

The proof of Theorem 2.4 and 2.5 for integer κ can be found in [3],
and a usual argument of interpolation spaces leads to the estimations for
non-integer κ.

3. APPROXIMABILITY OF VERTEX-SINGULAR FUNCTIONS

Let Q = (−1, 1)3, and let (ρ, θ, φ) be the spherical coordinates with re-
spect to the vertex (−1,−1,−1) and the vertical line L = {x = (x1, x2, x3) |
x1 = x2 = −1, x3 ∈ (−∞,∞)} with ρ = {∑3

i=1(xi+1)2}1/2, θ = arctan
r

x3 + 1

= arctan
{(x1 + 1)2 + (x2 + 1)2}1/2

x3 + 1
∈ (0, π/2), and φ = arctan

x2 + 1
x1 + 1

∈
(0, π/2).

We now consider the singular functions with γ > 0

(3.1) u(x) = ργ χ(ρ)Φ(θ, φ)
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and

(3.2) v(x) = ργ logν ρχ(ρ)Φ(θ, φ)

with integer ν ≥ 0, where χ(ρ) and Φ(θ, φ) are C∞ functions such that for
0 < ρ0 < 1

χ(ρ) = 1 for 0 < ρ < ρ0/2, χ(ρ) = 0 for ρ > ρ0.

Hereafter, Sκ0 denotes a subset of the intersection of the unit sphere and
Q such that the angles between the radial A1 − x and the xi-axis is larger
than κ0. For 0 < κ0 < π/4, let

R0 = Rρ0,κ0{x ∈ Q | 0 < ρ < ρ0, (θ, φ) ∈ Sκ0}

as shown in Fig 3.1. Then there hold for x ∈ R0

(3.3)
(2− ρ0)(1 + xi) ≤ (1− x2

i ) ≤ 2(1 + xi), 1 ≤ i ≤ 3,

κ1 ≤ 1 + xi

1 + xj
≤ κ2, 1 ≤ i ≤ 3

where κ2 = max{tanκ0, cotκ0} and κ1 = 1/κ2.

The functions defined in (3.1) and (3.2) reflect a typical singularity, re-
ferred as the vertex singularity, which occurs in the solutions of problems
on polyhedral domains and severely affect the convergence of the finite ele-
ment solution. Therefore, finding the best approximation to these singular
functions is essential for the error estimates of the finite element solutions
for problems with such singularities. It is worth indicating that the vertex
singularity is isotropic, hence the most appropriate Jacobi-weighted Besov
and Sobolev spaces for their best approximation shall be isotropic as well.

3.1 SINGULAR FUNCTIONS OF ργ-TYPE

Theorem 3.1 Let u = ργ χ(ρ)Φ(θ, φ) given in (3.1), and let β = (β1, β2, β3)
with βi > −1, 1 ≤ i ≤ 3, arbitrary. Then u ∈ Bs,β(Q) and u ∈ Hs−ε,β(Q)
with s = 2γ + 3 +

∑3
i=1 βi and ε > 0, arbitrary.

Proof Let u = u1 + u2 with u1 = χδ(ρ) u and u2 = (1 − χδ(ρ))u for
δ ∈ (0, ρ0). Then u1 ∈ H0,β(Q), and

(3.4) ‖u1‖2
H0,β(Q) ≤ Cδ2γ+3+

P3
i=1 βi .

It is easy to see that u2 ∈ Hk,β(Q), for any k > 2γ + 3 +
∑3

i=1 βi, and

(3.5) ‖u2‖2
Hk,β(Q) ≤ Cδ2γ+3−k+

P3
i=1 βi .
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Fig. 3.1 Cubic Domain Q and sub region Rr0,κ0

Selecting δ = t
2
k , we have for t ∈ (0, 1)

K(t, u) ≤ Cδγ+(3+
P3

i=1 βi)/2(1 + tδ−k/2)

≤ Cδγ+(3+
P3

i=1 βi)/2 ≤ Ct
2γ+3+

P3
i=1 βi

k

and for t ≥ 1, there holds

K(t, u) ≤ C‖u‖H0,β(Q).

Letting θ =
2γ + 3 +

∑3
i=1 βi

k
, we have

sup
t>0

t−θ K(t, u) ≤ C

which implies that u ∈ (
H0,β(Q),Hk,β(Q)

)
θ,∞ = Bs,β(Q) with s = θk =

2γ + 3 +
∑3

i=1 βi.

If θ =
2γ + 3 +

∑3
i=1 βi − ε

k
=

s− ε

k
with ε > 0, arbitrary, then

∫ 1

0
t−2θ|K(t, u)|2 dt

t
≤ C

∫ 1

0
t−1+2ε/kdt ≤ C.

which implies u ∈ (
H0,β(Q),Hk,β(Q)

)
θ,2

= Hs−ε,β(Q). 2

The approximability of the singular function of ργ-type is the conse-
quence of Theorem 2.4 and Theorem 3.1.
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Theorem 3.2 For u = ργ χ(ρ)Φ(θ, φ) given in (3.1), there exists ψ ∈
Pp(Q) such that

(3.6) ‖u− ψ‖L2(Q) ≤ Cp−(2γ+3) ‖u‖B2γ+3,β(Q)

with β = (0, 0, 0). Also, there exists ϕ ∈ Pp(Q) such that

(3.7) ‖u− ϕ‖H1(R0) ≤ C‖u− ϕ‖H1,β(Q) ≤ Cp−(2γ+1) ‖u‖B2γ+2,β(Q)

with β = (−1/3,−1/3,−1/3).

Proof By Theorem 3.1 u ∈ Bs,β(Q) with s = 2γ +3 and β = (0, 0, 0). Due
to Theorem 2.3, the Jacobi projection ψ of u on Pp(Q) associated with the
weight β = (0, 0, 0) satisfies

‖u− ψ‖L2(Q) = ‖u− ψ‖H0,β(Q) ≤ C p−(2γ+3) ‖u‖B2γ+3,β(Q).

For β = (−1/3,−1/3,−1/3), by Theorem 3.1, u ∈ Bs,β(Q) with s =
2γ + 2. Owing to Theorem 2.4, there holds for the Jacobi projection ϕ of
u on Pp(Q), associated with the weight β = (−1/3,−1/3,−1/3),

|u− ϕ|H`,β(Q) ≤ C p−(2γ+2−`)‖u‖B2γ+2,β(Q).

with ` = 0, 1. Note that

(3.8) ‖u− ϕ‖L2(Q) ≤ ‖u− ϕ‖H0,β(Q) ≤ Cp−(2γ+2) ‖u‖B2γ+2,β(Q).

Due to (3.3), for α with |α| = 1 and for x ∈ R0, there exist two constants
C1 and C2 such that

(3.9) C1 ≤
∏

1≤i≤3

(1− x2
i )

αi−1/3 ≤ C2.

Then, we have
∫

R0

∣∣∣Dα(u− ϕ)
∣∣∣
2
dx ≤ C

∫

R0

∣∣∣Dα(u− ϕ)
∣∣∣
2 ∏

1≤i≤3

(1− x2
i )

αi−1/3 dx

≤ C

∫

Q

∣∣∣Dα(u− ϕ)
∣∣∣
2 ∏

1≤i≤3

(1− x2
i )

αi−1/3dx

≤ Cp−2(2γ+1) ‖u‖2
B2γ+2,β(Q)

which together with (3.8) leads to (3.7). 2

3.2 SINGULAR FUNCTIONS OF ργ logν ρ-TYPE
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It can be proved that the singular function v(x) = ργ logν ρχ(ρ)Φ(θ, φ),
given in (3.2), belongs to the space Bs−ε,β(Q) with s = 2γ + 3 +

∑3
i=1 βi

and ε > 0, arbitrary. Consequently, the approximation error will lose a rate
of O(pε). To avoid such a loss, the modified Jacobi-weighted Besov spaces
will be the most appropriate spaces for the vertex-singular functions with
logarithmic terms to describe the nature of singularity and to explore the
best approximation.

Theorem 3.3 Let v(x) = ργ logν ρχ(ρ)Φ(θ, φ), given in (3.2), and let
β = (β1, β2, β3) with βi > −1, 1 ≤ i ≤ 3, arbitrary. Then v ∈ Hs−ε,β(Q),
and v ∈ Bs,β

ν∗ (Q), with s = 2γ + 3 +
∑3

i=1 βi and ε > 0, arbitrary, and

(3.10) ν∗ =





max{ν − 1, 0} if γ is an integer,

ν if γ is not an integer.

Proof Let v = v1 +v2 with v1 = χδ(ρ) v and v2 = (1−χδ(ρ))v with χδ(ρ).
Then v1 ∈ H0,β(Q), and

‖v1‖2
H0,β(Q)

=
∫

Q
|v|2

3∏

i=1

(1− x2
i )

βidx

≤ C

∫ δ

0
ρ2γ+2+

P3
i=1 βi | log ρ|2νdρ

≤ Cδ2γ+3+
P3

i=1 βi | log δ|2ν .

It is easy to see that v2 ∈ Hk,β(Q), for any k > 2γ +3+
∑3

i=1 βi, and there
holds

‖v2‖2
Hk,β(Q) ≤ Cδ2γ+3−k+

P3
i=1 βi | log δ|2ν .

Selecting δ = t
2
k , we have for t ∈ (0, 1)

K(t, v) ≤ C(‖v1‖2
H0,β(Q) + t‖v2‖2

Hk,β(Q))

≤ Cδγ+(3+
P3

i=1 βi)/2(1 + tδ−k/2)| log δ|ν
≤ Cδγ+(3+

P3
i=1 βi)/2(1 + | log t|)ν

and for t ≥ 1, there hold

K(t, v) ≤ C‖v‖H0,β(Q),

and

sup
t>1

t−θK(t, v)
(1 + | log t|)ν

≤ C‖v‖H0,β(Q).
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Letting θ =
2γ + 3 +

∑3
i=1 βi

k
, we have

sup
0<t<1

t−θK(t, v)
(1 + | log t|)ν

≤ C

which implies that v ∈ (
H0,β(Q),Hk,β(Q)

)
θ,∞,ν

= Bs,β
ν (Q) with s = θk =

2γ + 3 +
∑3

i=1 βi.

Similarly arguing as in the proof of Theorem 3.1, and selecting θ =
2γ + 3 +

∑3
i=1 βi − ε

k
=

s− ε

k
with ε > 0, arbitrary, we have

∫ 1

0
t−2θ|K(t, u)|2 dt

t
≤ C

∫ 1

0
t−1+2ε/k(1 + | log t|)νdt ≤ C,

which implies u ∈ (
H0,β(Q),Hk,β(Q)

)
θ,2

= Hs−ε,β(Q).

If γ is an integer and the integer ν ≥ 1, we adopt a different composition
of v = v1 + v2 for δ ∈ (0, 1), namely,

v1 = ργ (logν ρ− logν(ρ + δ))χ(ρ)Φ(θ, φ)

and
v2 = ργ logν(ρ + δ)χ(ρ)Φ(θ, φ).

Then v1 ∈ H0,β(Q) and v2 ∈ Hk,β(Q) for any k > 2γ + 3 +
∑3

i=1 βi. Using
the arguments in [1, Theorem 3.9], we have

(3.11) ‖v1‖2
H0,β(Q) ≤ Cδ2γ+3+

P3
i=1 βi | log δ|2(ν−1)

and

(3.12) ‖v2‖2
Hk,β(Q) ≤ Cδ2γ−k+3+

P3
i=1 βi | log δ|2(ν−1).

(3.11) and (3.12) lead to

K(t, v) ≤ Cδγ+(3+
P3

i=1 βi)/2(1 + tδ−k/2)| log δ|ν−1

≤ Cδγ+(3+
P3

i=1 βi)/2| log δ|ν−1

and

sup
0<t<1

t−θK(t, v)
(1 + | log t|)ν−1

≤ C

with δ = t
2
k and θ =

2γ + 3 +
∑3

i=1 βi

k
. This implies that v ∈ Bs,β

ν−1(Q)

with s = 2γ + 3 +
∑3

i=1 βi. 2
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The precise characterization of singularity for the singular function of
ργ logν ρ-type given by Theorem 3.3 leads to the best approximation to the
singular function of this type. The following theorem is a consequence of
Theorem 2.5 and 3.3

Theorem 3.4 For v = ργ logν ρ χ(ρ) Φ(θ, φ) given in (3.2), there exists
ψ(x) ∈ Pp(Q) such that

(3.13) ‖v − ψ‖L2(Q) ≤ Cp−(2γ+3) (1 + log p)ν∗ ‖u‖
B2γ+3,β

ν∗ (Q)

with β = (0, 0, 0). Also, there exists ϕ(x) ∈ Pp(Q) such that

(3.14) ‖u− ϕ‖H1(R0) ≤ Cp−(2γ+2) (1 + log p)ν∗ ‖u‖
B2γ+2,β

ν∗ (Q)

with β = (−1/3,−1/3,−1/3). In both (3.13) and (3.14) ν∗ is given in
(3.10).

Proof By Theorem 3.3 v ∈ Bs,β
ν∗ (Q) with s = 2γ +3 and β = (0, 0, 0). Due

to Theorem 2.3, the Jacobi projection ψ of u on Pp(Q) associated with the
weight β = (0, 0, 0) satisfies

‖u− ψ‖L2(Q) = ‖u− ψ‖H0,β(Q) ≤ C p−(2γ+3) (1 + log p)ν∗ ‖u‖
B2γ+3,β

ν∗ (Q)
.

For β = (−1/3,−1/3,−1/3), by Theorem 3.1, v ∈ Bs,β
ν∗ (Q) with s =

2γ + 2. Owing to Theorem 2.5, there holds for the Jacobi projection ϕ of
u on Pp(Q) associated with the weight β = (−1/3,−1/3,−1/3),

(3.15) |u− ϕ|H`,β(Q) ≤ C p−(2γ+2−`) (1 + log p)ν∗ ‖u‖
B2γ+2,β

ν∗ (Q)
.

for ` = 0, 1. Due to (3.9) and Theorem 2.5, we have for |α| = 1
∫

R0

∣∣∣Dα(u− ϕ)
∣∣∣
2
dx ≤ C

∫

Q

∣∣∣Dα(u− ϕ)
∣∣∣
2 ∏

1≤i≤3

(1− x2
i )

αi−1/3dx

≤ Cp−2(2γ+2) (1 + log p)2ν∗ ‖u‖2
B2γ+2,β

ν∗ (Q)

which together with (3.15) leads to (3.14). 2

4. APPROXIMABILITY OF EDGE-SINGULAR FUNCTIONS

Let Q = (−1, 1)3, and let (r, φ, x3) be the cylindrical coordinates with
respect to the vertex (-1,-1,-1) and the vertical line L = {x = (x1, x2, x3) |
x1 = x2 = −1, x3 ∈ (−∞,∞)}. Let r = {∑2

i=1(xi + 1)2}1/2, and let

φ = arctan
x2 + 1
x1 + 1

∈ (0, π/2).
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We consider the singular function with σ > 0

(4.1) u(x) = rσ χ(r)Φ(φ)Ψ(x3)

and

(4.2) v(x) = rσ logµ rχ(r)Φ(φ)Ψ(x3).

Here χ(r),Ψ(x3) and Φ(φ) are C∞ functions such that for 0 < r0 < 1,

χ(r) = 1 for 0 < r < r0/2, χ(r) = 0 for r > r0,

and for 0 < z0 < 1/2

Ψ(x3) = 1 for x3 ∈ (−1 + 2z0, 1− 2z0), Ψ(x3) = 0 for |x3| ≥ 1− z0.

Obviously, u(x) and v(x) have a support Rr0,z0 = {x ∈ Q | 0 < r <
r0, |x3| ≤ 1− z0} ⊂ Q. For 0 < φ0 < π/4, let

R0 = Rr0,φ0,z0{x ∈ Q | 0 < r < r0, φ0 ≤ φ ≤ π/2− φ0, |x3| ≤ 1− z0},

as shown in Fig. 4.1. Then there hold for x ∈ R0

(4.3)

z0(2− z0) ≤ (1− x2
3) ≤ 1,

(2− ρ0)(1 + xi) ≤ (1− x2
i ) ≤ 2(1 + xi), 1 ≤ i ≤ 2,

tanφ0 ≤ 1 + x2

1 + x1
≤ cotφ0.

- 1

φ0

X

X

1

3

X 2

1

1O

Z 0

Z 0

R0

- 1

φ0

Fig. 4.1 Cubic Domain Q and sub region Rr0,φ0,z0

The singular functions given in (4.1) and (4.2) reflect another typical
singularity in the solutions of problems in polyhedral domains, and are re-
ferred as the edge singularity. The characterization of edge singularity in
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appropriate functional spaces is critical to its approximability and the con-
vergence of the finite element solutions. Although the characterization and
approximability of singular functions of rσ logµ r-type in Q = (−1, 1)3 are
similar to those of vertex singular functions of rγ logµ r-type in two dimen-
sions, it is worth pointing out that the edge singularity in three dimensions
is anisotropic and the vertex singularity in two dimensions is isotropic.
Therefore we will refer to [1] for the details of some arguments which are
applicable to three dimensional setting, and emphasize the special features
in three dimensions.
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4.1 SINGULAR FUNCTIONS OF rσ-TYPE

Theorem 4.1 Let u(x) = rσ χ(r)Φ(φ) Ψ(x3) given in (4.1), and let β =
(β1, β2, β3) with βi > −1, 1 ≤ i ≤ 3. Then u ∈ Bs,β(Q) and u ∈ Hs−ε,β(Q)
with s = 2σ + 2 + β1 + β2 and ε > 0, arbitrary.

Proof Let u = u1 + u2 with u1 = χδ(r) u and u2 = (1 − χδ(r))u for
δ ∈ (0, r0). Note that

Dαu1 =
∂α1+α2

∂xα1
1 ∂xα2

2

(
χδ

∂α3u

∂xα3
3

)

and

Dαu2 =
∂α1+α2

∂xα1
1 ∂xα2

2

(
(1− χδ)

∂α3u

∂xα3
3

)
.

Due to (4.3), the factor (1 − x2
3)

α3+β3 is bounded from above and below,
and will not affect the regularity of singular function u. Therefore, the
arguments for vertex singular functions in two dimensions [1] can be carried
out here. Obviously, u1 ∈ H0,β(Q), and

(4.4) ‖u1‖2
H0,β(Q) ≤ Cδ2σ+2+β1+β2 .

It is easy to see that u2 ∈ Hk,β(Q), for any k > 2σ + 2 + β1 + β2, and

(4.5) ‖u2‖2
Hk,β(Q) ≤ Cδ2σ+2−k+β1+β2 .

For the details for derivation of (4.4) and (4.5) we refer to [1, Theorem 3.4].
Selecting δ = t

2
k , we have for t ∈ (0, 1)

K(t, u) ≤ Cδσ+1+β1/2+β2/2(1 + tδ−k/2)

≤ Cδσ+1+β1/2+β2/2 ≤ Ct
2σ+2+β1+β2

k

and for t ≥ 1, there holds

K(t, u) ≤ C‖u‖H0,β(Q).

Letting θ =
2σ + 2 + β1 + β2

k
, we have

sup
t>0

t−θ K(t, u) ≤ C

which implies that u ∈ (
H0,β(Q),Hk,β(Q)

)
θ,∞ = Bs,β(Q) with s = θk =

2σ + 2 + β1 + β2.

If θ =
2σ + 2 + β1 + β2 − ε

k
=

s− ε

k
with ε > 0, arbitrary, then

∫ 1

0
t−2θ|K(t, u)|2 dt

t
≤ C

∫ 1

0
t−1+2ε/kdt ≤ C.
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which implies u ∈ (
H0,β(Q),Hk,β(Q)

)
θ,2

= Hs−ε,β(Q). 2

Theorem 4.1 and Theorem 2.4 lead to the best approximation of the
singular function u.

Theorem 4.2 For u(x) = rσ χ(r) Φ(φ)Ψ(x3) given in (4.1), there exists
ψ(x) ∈ Pp(Q) such that

(4.6) ‖u− ψ‖L2(Q) ≤ Cp−2(σ+1) ‖u‖B2σ+2,β(Q)

with β1 = β2 = 0 and β3 > −1, arbitrary. Also, there exists ϕ(x) ∈ Pp(Q)
such that

(4.7) ‖u− ϕ‖H1(R0) ≤ C‖u− ϕ‖H1,β(Q) ≤ Cp−2σ ‖u‖B1+2σ,β(Q)

with β1 = β2 = −1/2 and β3 > −1, arbitrary.

Proof Due to Theorem 4.1, u ∈ B2σ+2,β(Q) with β1 = β2 = 0 and
β3 > −1, arbitrary, which together with Theorem 2.4 leads to (4.6).

For β1 = β2 = −1/2 and β3 > −1, arbitrary, u ∈ B1+2σ,β(Q). By
Theorem 2.5 the Jacobi projection ϕ of u associated with the weight β =
(−1/2,−1/2, β3)

‖u− ϕ‖H`,β(Q) ≤ Cp−2σ−1+` ‖u‖B1+2σ,β(Q)

with ` = 0, 1, which gives

(4.8) p‖u− ϕ‖L2(Q) + ‖∂(u− ϕ)
∂x3

‖L2(Q) ≤ Cp−2σ ‖u‖B1+2σ,β(Q).

Due to (4.3), there holds for α with
∑2

i=1 αi = 1 and for x ∈ R0, there
exist two constants C1 and C2 such that

C1 ≤ (1− x2
3)

αi+β3
∏

1≤i≤2

(1− x2
i )

αi−1/2 ≤ C2.

which implies for |α| = 1 with α3 = 0

‖Dα(u− ϕ)‖L2(R0) ≤ C‖u− ϕ‖H1,β(Q) ≤ Cp−2σ ‖u‖B1+2σ,β(Q)

This together with (4.8) leads to (4.7). 2

4.2 SINGULAR FUNCTIONS OF rσ logµ r-TYPE

For singularity with logarithmic terms we need to use the modified
Jacobi-weighted Besov spaces for the best approximation.

Theorem 4.3 Let v(x) = rσ logµ r χ(r) Φ(φ) Ψ(x3) given in (4.2), and
let β = (β1, β2, β3) with βi > −1, 1 ≤ i ≤ 3. Then v ∈ Bs,β

µ∗ (Q), and
v ∈ Hs−ε,β(Q) with s = 2σ + 2 + β1 + β2 and ε > 0, arbitrary and

(4.9). µ∗ =





max{µ− 1, 0} if γ is an integer,

µ if γ is not an integer.
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Proof Let v = v1 + v2 be the decomposition same as one in the proof of
Theorem 4.1, i.e. v1 = χδ(r) v and v2 = (1 − χδ(r))v for δ ∈ (0, r0) Then
v1 ∈ H0,β(Q), and

‖v1‖2
H0,β(Q)

=
∫

Q
|v|2

3∏

i=1

(1− x2
i )

βidx

≤ C

∫ δ

0
r2σ+1+β1+β2 | log r|2νdr

≤ Cδ2σ+2+β1+β2 | log δ|2ν .

Also, v2 ∈ Hk,β(Q), and there holds for any k > 2σ + 2 + β1 + β2

‖v2‖2
Hk,β(Q) ≤ Cδ2σ+2−k+β1+β2 | log δ|2µ.

Selecting δ = t
2
k , we have for t ∈ (0, 1)

K(t, v) ≤ C(‖v1‖H0,β(Q) + t‖v2‖Hk,β(Q))

≤ Cδσ+1+β1/2+β2/2(1 + tδ−k/2)| log δ|µ
≤ Cδσ+1+β1/2+β2/2(1 + | log t|)µ,

and for t ≥ 1, there holds

K(t, v) ≤ C‖v‖H0,β(Q).

Letting θ =
2σ + 2 + β1 + β2

k
, we have

sup
t>0

t−θK(t, v)
(1 + | log t|)µ

≤ C,

which implies that v ∈ (
H0,β(Q),Hk,β(Q)

)
θ,∞,ν

= Bs,β
ν (Q) with s = θk =

2σ + 2 + β1 + β2.

Similarly arguing as in the proof of Theorem 4.1, and selecting θ =
2σ + 2 + β1 + β2 − ε

k
=

s− ε

k
with ε > 0, arbitrary, we have

∫ 1

0
t−2θ|K(t, u)|2 dt

t
≤ C

∫ 1

0
t−1+2ε/k(1 + | log t|)µdt ≤ C,

which implies u ∈ (
H0,β(Q),Hk,β(Q)

)
θ,2

= Hs−ε,β(Q).

If σ is an integer and the integer µ ≥ 1, we adopt a different decompo-
sition of v = v1 + v2, namely, for δ ∈ (0, 1)

v1 = rσ (logν r − logµ(r + δ))χ(r)Φ(φ)Ψ(x3)
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and
v2 = rσ logµ(r + δ)χ(r)Φ(φ)Ψ(x3).

Then v1 ∈ H0,β(Q) and v2 ∈ Hk,β(Q) for any k > 2σ + 2 +
∑2

i=1 βi. By [1,
Theorem 3.3], we have

(4.10) ‖v1‖2
H0,β(Q) ≤ Cδ2σ+2+β1+β2 | log δ|2(µ−1)

and

(4.11) ‖v2‖2
Hk,β(Q) ≤ Cδ2σ−k+2+β1+β2 | log δ|2(µ−1).

(4.10) and (4.11) lead to

K(t, v) ≤ Cδσ+1+β1/2+β2/2(1 + tδ−k/2)| log δ|µ−1

≤ Cδσ+1+β1/2+β2/2| log δ|µ−1

and

sup
0<t<1

t−θK(t, v)
(1 + | log t|)µ−1

≤ C

with δ = t
2
k and θ =

2σ + 2 + β1 + β2

k
. This implies that v ∈ Bs,β

µ−1(Q)
with s = 2σ + 2 + β1 + β2. 2

Theorem 4.3 gives a precise characterization of the singular function of
rγ logµ r-type, which avoids a loss of O(pε) in the approximation error.

Theorem 4.4 For v(x) = rσ logµ r χ(r)Φ(φ)Ψ(x3) given in (4.2), there
exists ψ(x) ∈ Pp(Q) such that

(4.12) ‖v − ψ‖L2(Q) ≤ Cp−(2σ+2)(1 + log p)µ∗ ‖v‖
B2σ+2,β

µ∗ (Q)

with β1 = β2 = 0 and β3 > −1, arbitrary. Also, there exists ϕ(x) ∈ Pp(Q)
such that

(4.13) ‖v−ϕ‖H1(R0) ≤ C‖v−ϕ‖H1,β(Q) ≤ Cp−2σ(1+log p)µ∗ ‖v‖
B1+2σ,β

µ∗ (Q)

with β1 = β2 = −1/2 and β3 > −1, arbitrary. In both (4.12) and (4.13) µ∗

is given in (4.9).

Proof The approximability of the singular function v is the consequence of
Theorem 2.5 and Theorem 4.3. We will not elaborate details of the proof,
which are similar to those for Theorem 3.4 and Theorem 4.2. 2
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5. APPROXIMABILITY OF VERTEX-EDGE SINGULAR FUNCTIONS

Let Q = (−1, 1)3, and let (ρ, θ, φ) be the spherical coordinates with re-
spect to the vertex (−1,−1,−1) and the vertical line L = {x = (x1, x2, x3) |
x1 = x2 = −1, x3 ∈ (−∞,∞)} as in Section 3.

We now consider the singular functions with real γ, σ > 0 and integers
ν, µ ≥ 0,

(5.1) u(x) = ργ sinσ θ χ(ρ)Ψ(θ) Φ(φ)

and

(5.2) v(x) = ργ logν ρ sinσ θ logµ sin θ χ(ρ)Ψ(θ)Φ(φ)

where ρ = {(x1 + 1)2 + (x2 + 1)2 + (x3 + 1)2}1/2, χ(ρ) and Φ(φ) are C∞

cut-off functions defined in Section 3 and 4 with 0 < ρ0 < 1, respectively,
and Ψ(θ) is a C∞ function such that for θ0 ∈ (0, π/2)

Ψ(θ) = 1 for 0 ≤ θ ≤ θ0/2, Ψ(θ) = 0 for θ ≥ θ0.

Obviously, u has a support Rρ0,θ0 = {x ∈ Q | 0 < ρ < ρ0, θ ∈ (0, θ0)} ⊂ Q.
For 0 < φ0 < π/4, let

R0 = Rρ0,θ0,φ0 = {x ∈ Q | 0 < ρ < ρ0, θ ∈ (0, θ0), φ ∈ (φ0, π/2− φ0)}

as shown in Fig. 5.1. Then there hold for x ∈ R0

(5.3)

(2− ρ0)(1 + xi) ≤ (1− x2
i ) ≤ 2(1 + xi), 1 ≤ i ≤ 3,

1 + x3

1 + xi
≥ cot θ0, 1 ≤ i ≤ 2,

tanφ0 ≤ 1 + x2

1 + x1
≤ cotφ0.

The singularity of the functions given in (5.1) and (5.2) is the well-
known vertex-edge singularity for problems on polyhedral domains, which
reflect the major difficulties in characterization of the singularity and analy-
sis of the approximability. They combine the vertex and edge singularities,
and are anisotropic. The combination of two types of singularities make
the analysis totally different from those for the two dimensional setting
and for the vertex-singularity and the edge-singularity. The designing the
Jacobi-weighted Besov spaces and proving the regularities in these spaces
for the best approximation are extremely difficult and elegant.

5.1 SINGULAR FUNCTIONS OF ργ sinσ φ-TYPE

Lemma 5.1 Let u(x) = ργ sinσ θ χ(ρ)Ψ(θ)Φ(φ) given in (5.1). Then u ∈
Hs,β(Q) with βi > −1, 1 ≤ i ≤ 3 for s < 2+2 min{γ+(1+β3)/2, σ}+β1+β2.
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Fig. 5.1 Cubic Domain Q and sub region Rρ0,φ0,θ0

Proof Note that

(5.4) |Dαu| ≤ Cργ−|α|| sin θ|σ−α1−α2

which implies that for |α| < 2 + 2min{γ + (1 + β3)/2, σ}+ β1 + β2

∫

Q
|Dαu|2

3∏

i=1

(1− x2
i )

αi+βidx

≤ C

∫

R0

ρ2γ−|α|+2+
P3

i=1 β1 | sin θ|2σ−α1−α2+1+
P2

i=1 βidρdθdφ < ∞.

This proves the lemma for integer s = k. By a typical argument of interpo-
lation spaces we are able to prove the lemma for non-integer s in general.
2

Theorem 5.2 Let u(x) = ργ sinσ θ χ(ρ)Ψ(θ)Φ(φ) given in (5.1), and let
β = (β1, β2, β3) with βi > −1, 1 ≤ i ≤ 3. Then u ∈ Hs−ε,β(Q) and
u ∈ Bs,β

κ (Q) with s = 2 + 2 min{σ, γ + (1 + β3)/2} + β1 + β2, ε > 0,
arbitrary, and

(5.5) κ =
{

0 if σ 6= γ + (1 + β3)/2,
1/2 if σ = γ + (1 + β3)/2.

Proof Since r = ρ sin θ = {(1 + x1)2 + (1 + x2)2}1/2 we write

u(x) = ργ−σ rσ χ(ρ)Φ(φ)Ψ(θ),

and the estimate (5.4) can be written as

(5.6) |Dαu(x)| ≤ Cργ−|α|| sin θ|σ−α1−α2 ≤ C(1 + x3)γ−σ−α3 rσ−α1−α2 .
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By φδ(r) we denote a C∞ function such that ϕδ(r) = 1 for r < δ
and ϕδ(r) = 0 for r > 2δ with 0 < δ < ρ0/2. Let u1 = ϕδ(r)u and
u2 = (1−φδ(r))u. Then u1 ∈ H0,β(Q) due to Lemma 5.1, and u2 ∈ Hk,β(Q)
for any k > 2 + 2 max{γ + (1 + β3)/2, σ}+ β1 + β2.

+1

T2

θ0
ρ

0

X3

1T

2δ
r

Rρ
0 θ0,

O

Fig. 5.2, Regions T1, T2 and Rρ0,θ0

Let Rρ0,θ0 be the projection of Rρ0,θ0,φ0 on the r − x3 plane,

Rρ0,θ0 = {(r, x3) | r cot θ0 ≤ (1 + x3) ≤ (ρ2
0 − r2)1/2, 0 ≤ r ≤ ρ0 sin θ0},

and by T1 and T2 we denote the triangular and rectangular regions in the
r − x3 plane, respectively,

T1 = {(r, x3) | r cot θ0 ≤ 1 + x3 ≤ 2δ cot θ0, 0 ≤ r ≤ 2δ}

and
T2 = {(r, x3) | 2δ cot θ0 ≤ 1 + x3 ≤ ρ0, 0 ≤ r ≤ 2δ}

as shown in Fig. 5.2. Obviously, Supp.u1 ⊂ T1 ∪ T2.

Due to (5.6) there holds

(5.7)

‖u1‖2
H0,β(Q)

=
∫

Rρ0,θ0,φ0,

|ϕδu|2ρ
P3

i=1 βi | sin θ|β1+β2dx

≤ C

∫

Rρ0,θ0

|ϕδu|2(1 + x3)β3 r1+β1+β2drdx3

≤ C

∫

T1∪T2

(1 + x3)2(γ−σ)+β3 r2σ+1+β1+β2drdx3.
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Letting x̃3 = x3 + 1, we have by a simple calculation

(5.8)

∫

T1

(1 + x3)2(γ−σ)+β3 r2σ+1+β1+β2drdx3

≤ C

∫ 2δ cot θ0

0
x̃

2(γ−σ)+β3

3 dx̃3

∫ x̃3tanθ0

0
r2σ+1+

P2
i=1 βidr

≤ C

∫ 2δ cot θ0

0
x̃

2γ+2+
P3

i=1 βi

3 dx̃3

≤ Cδ2γ+
P3

i=1 βi+3.

We also have for σ 6= γ + (1 + β3)/2

(5.9)

∫

T2

(1 + x3)2(γ−σ)+β3 r2σ+1+β1+β2drdx3

≤ C

∫ 2δ

0
r2σ+1+β1+β2dr

∫ ρ0

2δ cot θ0

x̃
2(γ−σ)+β3

3 dx̃3

≤ C(1 + δ2(γ−σ)+1+β3)δ2σ+2+β1+β2

≤ C(δ2γ+3+
P3

i=1 βi + δ2σ+2+β1+β2)

and for σ = γ + (1 + β3)/2

(5.10)

∫

T2

(1 + x3)2(γ−σ)+β3 r2σ+1+β1+β2drdx3

≤ C

∫ 2δ

0
r2σ+1+β1+β2dr

∫ ρ0−1

2δ cot θ0−1
(1 + x3)2(γ−σ)+β3 dx3

≤ C(1 + | log δ|)δ2σ+2+β1+β2 ,

which together with (5.7)-(5.10) yields

(5.11) ‖u1‖2
H0,β(Q) ≤ C(1 + | log δ|)2κδ2+2min{γ+(1+β3)/2,σ}+β1+β2

with κ given in (5.5).

We next estimate ‖u2‖Hk,β(Q). Note that

∂ku2

∂xk
1

= (1− ϕδ)
∂ku

∂xk
1

−
k−1∑

l=0

( k
l

) ∂lu

∂xl
1

∂k−lϕδ

∂xk−l
1

,

and for 0 ≤ l ≤ k ∣∣∣∂
k−lϕδ

∂xk−l
1

∣∣∣ ≤ Cδ−(k−l).
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Fig. 5.3 Region T3

Let

T3 = {(r, x3) | r cot θ0 ≤ 1 + x3 ≤ ρ0, δ ≤ r ≤ ρ0 tan θ0}

as shown in Fig. 5.3. Obviously, Supp. (1−ϕδ)
∂ku

∂xk
1

and Supp.
∂k−lϕδ

∂xk−l
1

are

contained in T3 for 0 ≤ l < k. . It is seen that

∫

Q
|∂

ku2

∂xk
1

|2(1− x2
1)

k+β1

3∏

i=2

(1− x2
i )

βidx

≤ C

∫

R0

(∣∣∣∂
ku

∂xk
1

∣∣∣
2
|1− ϕδ|2 +

k−1∑

l=0

∣∣∣ ∂lu

∂xl
1

∣∣∣
2∣∣∣∂

k−lϕδ

∂xk−l
1

∣∣∣
2
ρk+

P3
i=1 βi | sin θ|k+β1+β2

)
dx.

Due to (5.6) there hold

(5.12)

∫

R0

∣∣∣∂
ku

∂xk
1

∣∣∣
2
|ϕδ|2ρk+

P3
i=1 βi | sin θ|k+β1+β2dx

≤ C

∫

T3

(1 + x3)2(γ−σ)−k+β3 r2σ+1−k+β1+β2drdx3

≤ C

∫ ρ0

δ cot θ0

x̃
2(γ−σ)+β3

3 dx̃3

∫ x̃3 tan θ0

δ
r2σ+1−k+β1+β2dr

≤ Cδ2σ+2−k+β1+β2

∫ ρ0

δ cot θ0

x̃
2(γ−σ)+β3

3 dx̃3

≤ C(1 + | log δ|)2κδ2γ+3−k+
P3

i=1 βi ,
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and for l < k
(5.13)∫

R0

∣∣∣ ∂lu

∂xl
1

∣∣∣
2∣∣∣∂

k−lϕδ

∂xk−l
1

∣∣∣
2
ρk+

P3
i=1 βi | sin θ|k+β1+β2dx

≤ Cδ−2(k−l)

∫ 2δ cot θ0

δ cot θ0

x̃
2(γ−σ)+β3

3 dx̃3

∫ x̃3 tan θ0

δ
r2(σ−l)+1+k+β1+β2dr

≤ Cδ2(σ+1)+β1+β2−k

∫ 2δ cot θ0

δ cot θ0

x̃
2(γ−σ)+β3

3 dx̃3

≤ C(1 + | log δ|)2κδ2γ+
P3

i=1 βi+3−k.

A combination of (5.12) and (5.13) leads to

∫

Q

∣∣∣∂
ku2

∂xk
1

∣∣∣
2
(1− x2

1)
k+β1

2∏

i=1

(1− x2
i )

βidx ≤ C| log δ|2κδ2γ+
P3

i=1 βi+3−k.

The estimate on
∂ku2

∂xk
3

can be carried similarly. Due to (5.6), there hold

∣∣∣∂
ku2

∂xk
3

∣∣∣ =
∣∣∣ϕδ

∂ku

∂xk
3

∣∣∣ ≤ C(1 + x3)γ−σ−k rσ

and ∫

Q

∣∣∣∂
ku2

∂xk
3

∣∣∣
2

2∏

i=1

(1− x2
i )

βi(1− x2
3)

k+β3dx

≤ C

∫

T3

∣∣∣∂
ku

∂xk
3

∣∣∣
2
ρk+

P3
i=1 βi | sin θ|β1+β2dx

≤ C

∫ ρ0 tan θ0

δ
r2σ+1+β1+β2dr

∫ ρ0

r cot θ0

x̃
2(γ−σ)−k+β3

3 dx̃3

≤ C

∫ ρ0 tan θ0

δ
r2γ+2+

P3
i=1 βi−kdr

≤ C δ2γ+3−k+
P3

i=1 βi .

We can treat all terms of Dαu2 with |α| ≤ k in similar way, which gives
for k > 2max{σ, γ + 1/2 + β3}+ 2 + β1 + β2

(5.14) ‖u2‖2
Hk,β(Q) ≤ C(1 + | log δ|)2κδ2γ+

P3
i=1 βi+3−k.
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Therefore, we have by (5.11) and (5.14)

K(t, u) = inf
u=v+w

{‖v‖H0,β(Q) + t ‖w‖Hk,β(Q)}
≤ C(‖u1‖H0,β(Q) + t ‖u2‖Hk,β(Q))

≤ C(1 + | log δ|)κδ1+min{γ+(1+β3)/2,σ}+β1/2+β2/2(1 + t δ−k/2).

Selecting δ = t2/k, we have for 0 < t < 1

K(t, u) ≤ C(1 + | log t|)κt
2+2 min{γ+(1+β3)/2,σ}+β1+β2

k .

For t >≥ 1, it always holds

K(t, u) ≤ C‖u1‖H0,β(Q).

Choosing θ =
2 + 2 min{γ + (1 + β3)/2, σ}+ β1 + β2

k
, we have

sup
t>0

t−θ K(t, u)
(1 + | log t|)κ

≤ C

which implies that u ∈ (
H0,β(Q),Hk,β(Q)

)
θ,∞,κ

= Bs,β
κ (Q) with s = θk =

2min{γ + (1 + β3)/2, σ}+ β1 + β2 and κ given in (5.10).

Selecting θ =
2 + 2min{γ + (1 + β3)/2, σ}+ β1 + β2 − ε

k
=

s− ε

k
with

ε > 0, arbitrary, gives for either σ = γ + (1 + β3)/2 or σ 6= γ + (1 + β3)/2
∫ ∞

0
t−2θ|K(t, u)|2 dt

t
≤ C

which implies u ∈ (
H0,β(Q),Hk,β(Q)

)
θ,2

= Hs−ε,β(Q). 2

A combination of Theorem 5.2 and Theorem 2.4-2.5 leads to the ap-
proximability of the singular function of ργ sinσ φ-type.

Theorem 5.3 There exists ψ(x) ∈ Pp(Q) such that for β = (0, 0, 0) and
s = 2 + 2 min{σ, γ + 1/2}

(5.15) ‖u− ψ‖L2(Q) ≤ Cp−(2+2min{σ,γ+1/2}) ‖u‖Bs,β(Q).

if σ 6= γ + 1/2, and

(5.16) ‖u− ψ‖L2(Q) ≤ Cp−(2+2min{σ,γ+1/2})(1 + log p)1/2 ‖u‖
Bs,β

1/2
(Q)

.

Also, there exists ϕ(x) ∈ Pp(Q) such that for β = (−1/2,−1/2, 0) and
s = 1 + 2 min{σ, γ + 1/2}

(5.17) ‖u− ϕ‖H1(R0) ≤ Cp−2min{σ,γ+1/2} ‖u‖Bs,β(Q)
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if σ 6= γ + 1/2, and

(5.18) ‖u− ϕ‖H1(R0) ≤ Cp−2σ(1 + log p)1/2 ‖u‖
Bs,β

1/2
(Q)

if σ = γ + 1/2.

Proof For β = (0, 0, 0), Theorem 5.2 indicates that u ∈ Bs,β(Q) if σ 6=
γ+1/2 and u ∈ Bs,β

1/2(Q) if σ = γ+1/2 with s = 2+2 min{σ, γ+1/2}, which
together with Theorem 2.4-2.5 leads to (5.14) and (5.15) immediately.

Also for β = (−1/2,−1/2, 0), Theorem 5.2 tells that u ∈ Bs,β(Q) if
σ 6= γ +1/2 and u ∈ Bs,β

1/2(Q) if σ = γ +1/2 with s = 1+2 min{σ, γ +1/2}.
Due to Theorem 2.4-2.5, there exists ϕ(x) ∈ Pp(Q) such that for ` = 0, 1

(5.19) |u− ϕ|H`,β(Q) ≤ Cp−(2min{σ,γ+1/2}+1−`) ‖u‖Bs,β(Q)

if σ 6= γ + 1/2, and

(5.20) |u− ϕ|H`,β(Q) ≤ Cp−(2min{σ,γ+1/2}+1−`)(1 + log p)1/2 ‖u‖
Bs,β

1/2
(Q)

if σ = γ + 1/2. Note that

(5.21) |u− ϕ|L2(Q) ≤ C|u− ϕ|H0,β(Q).

Due to (5.3), there holds for x ∈ R0 = Rρ0,θ0,φ0 and |α| = 1

(5.22) C1 ≤ (1 + x1)α1−1/2(1 + x2)α2−1/2(1 + x3)α3 ≤ C2

where two positive constants C1 and C2 are independent of x. This implies
that for |α| = 1

∫

R0

∣∣∣Dα(u− ϕ)
∣∣∣
2
dx

≤ C

∫

R0

∣∣∣Dα(u− ϕ)
∣∣∣
2

2∏

i=1

(1 + xi)αi−1/2(1 + x3)α3 dx

≤ C

∫

R0

∣∣∣Dα(u− ϕ)
∣∣∣
2

2∏

i=1

(1− x2
i )

αi−1/2(1− x2
3)

α3dx

≤ C|u− ϕ|2
H1,β(Q)

which together with (5.19)-(5.21) leads to (5.17) and (5.18), and complete
the proof. 2
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5.2 SINGULAR FUNCTIONS OF ργ logν ρ sinσ θ logµ sin θ-TYPE

Since the function given in (5.2) can be written as

v(x) = ργ−σ rσ logν ρ (log ρ− log r)µ χ(ρ)Ψ(θ)Φ(φ)

= ργ−σ rσ logν ρ χ(ρ) Ψ(θ)Φ(φ)
∑µ

l=0

( µ
l

)
(−1)µ−l logl ρ logµ−l r

We need to analyze the functions of this type

w(x) = ργ−σ rσ logν+l ρ logµ−l r χ(ρ)Ψ(θ)Φ(φ)
= ργ−σ rσ logν′ ρ logµ′ r χ(ρ)Ψ(θ)Φ(φ).

with ν ′, µ′ ≥ 0.

Theorem 5.4 Let β = (β1, β2, β3) with βi > −1, 1 ≤ i ≤ 3. Then w ∈
Hs−ε,β(Q) and w(x) ∈ Bs,β

κ′ (Q) with s = 2+2 min{γ+(1+β3)/2, σ}+β1+β2,
ε > 0, arbitrary, and

(5.22) κ′ =





µ′ if σ < γ + (1 + β3)/2,
µ′ + ν ′ + 1/2 if σ = γ + (1 + β3)/2,
µ′ + ν ′ if σ > γ + (1 + β3)/2.

Proof We decompose the function into w = w1 + w2 with w1 = ϕδ(r)u
and w2 = (1−ϕδ(r))u, where ϕδ(r) is a C∞ function defined as previously.
It is easy to verify that w1 ∈ H0,β(Q) and w2 ∈ Hk,β(Q) for any k >
2 + 2max{γ + (1 + β3)/2, σ}+ β1 + β2.

Let Rρ0,θ0 , Ti, 1 ≤ i ≤ 3 be the regions defined as in previous section
and shown in Fig. 5.2-5.3. There holds
(5.24)

‖w1‖2
H0,β(Q)

=
∫

Rρ0,θ0,φ0,

|ϕδw|2ρ
P3

i=1 βi | sin θ|β1+β2dx

≤ C

∫

Rρ0,θ0

|ϕδu|2(1 + x3)β3 r1+β1+β2drdx3

≤ C

∫

T1∪T2

(1 + x3)2(γ−σ)+β3 log2ν′(1 + x3) r2σ+1+β1+β2 log2µ′ rdrdx3.
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Letting x̃3 = x3 + 1, as analogue to the estimates (5.7), we have
(5.25)∫

T1

(1 + x3)2(γ−σ)+β3 log2ν′(1 + x3) r2σ+1+β1+β2 log2µ′ rdrdx3

≤ C

∫ 2δ cot θ0

0
x̃

2(γ−σ)+β3

3 log2ν′ x̃3 dx̃3

∫ x̃3 tan θ0

0
r2σ+1+β1+β2 log2µ′ rdr

≤ C

∫ 2δ cot θ0

0
x̃

2γ+2+
P3

i=1 βi

3 log2(ν′+µ′) x̃3 dx̃3

≤ Cδ2γ+
P3

i=1 βi+3(1 + | log δ|)2(ν′+µ′).

Analogously to (5.8)-(5.10) we have for σ 6= γ + (1 + β3)/2,
(5.26) ∫

T2

(1 + x3)2(γ−σ)+β3 log2ν′(1 + x3) r2σ+1+β1+β2 log2µ′ rdrdx3

≤ C

∫ 2δ

0
r2σ+1+β1+β2 log2µ′ rdr

∫ ρ0

2δ cot θ0

x̃
2(γ−σ)+β3

3 log2ν′ x̃3 dx̃3

≤ C(1 + δ2(γ−σ)+1+β3 | log δ|2ν′)δ2σ+2+β1+β2 | log δ|2µ′

≤ C(δ2γ+3+
P3

i=1 βi | log δ|2(ν′+µ′) + δ2σ+2+β1+β2 | log δ|2µ′)

and for σ = γ + (1 + β3)/2,

(5.27)

∫

T2

(1 + x3)2(γ−σ)+β3 log2ν′(1 + x3) r2σ+1+β1+β2 log2µ′ rdrdx3

≤ C

∫ 2δ

0
r2σ+1+β1+β2 log2µ′ rdr

∫ ρ0

2δ cot θ0

x̃−1
3 log2ν′ x̃3 dx̃3

≤ C(1 + | log δ|)2ν′+1)δ2σ+2+β1+β2 | log δ|2µ′

≤ C| log δ|2(ν′+µ′)+1 δ2σ+2+β1+β2 .

Combining (5.25)-(5.27) yields

(5.28) ‖w1‖2
H0,β(Q) ≤ C| log δ|2κ′δ2+2min{σ,γ+(1+β3)/2}+β1+β2 .

Similarly we have the estimate on ‖w2‖2
Hk,β(Q)

,

(5.29) ‖w2‖2
Hk,β(Q) ≤ C| log δ|2κ′δ2+2min{σ,γ+(1+β3)/2}+β1+β2−k

It follows from (5.28) and (5.29) that

K(t, w) ≤ C| log δ|κ′δ1+min{σ,γ+(1+β3)/2}+β1/2+β2/2 (1 + tδ−k/2)
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Selecting δ = t2/k and θ =
2 + 2 min{γ + (1 + β3)/2, σ}+ β1 + β2

k
, we

have for 0 < t < 1
t−θK(t, u)

(1 + | log t|)κ′ ≤ C

which implies the desired characterization of the singularity of the function
w(x) in the spaces Bs,β

κ′ (Q) with s = 2 + 2 min{γ + (1 + β3)/2, σ}+ β1 + β2

and κ′ given in (5.22).

Selecting θ =
2 + 2min{γ + (1 + β3)/2, σ}+ β1 + β2 − ε

k
=

s− ε

k
with

ε > 0, arbitrary, we have
∫ ∞

0
t−2θ|K(t, u)|2 dt

t
≤ C

which implies u ∈ (
H0,β(Q),Hk,β(Q)

)
θ,2

= Hs−ε,β(Q). 2

The following theorem on the characterization of singularity of the func-
tion v(x) is a corollary of Theorem 5.4.

Theorem 5.5 Let v(x) be given in (5.2), and let βi > −1, 1 ≤ i ≤ 3. Then
w ∈ Hs−ε,β(Q) and v(x) ∈ Bs,β

κ (Q) with s = 2+2min{γ +(1+β3)/2, σ}+
β1 + β2,ε > 0, arbitrary, and

(5.30) κ =





µ if σ < γ + (1 + β3)/2,
µ + ν + 1/2 if σ = γ + (1 + β3)/2,
µ + ν if σ > γ + (1 + β3)/2.

Characterization of singularity of the function v(x) by Theorem 5.5 and
the approximation property described in Theorem 2.5 give the approxima-
bility of v(x).

Theorem 5.6 Let v(x) be given in(5.2). Then there exists ψ(x) ∈ Pp(Q)
such that for β = (0, 0, 0) and s = 2 + 2 min{σ, γ + 1/2}

(5.31) ‖v − ψ‖L2(Q) ≤ Cp−(2+2min{σ,γ+1/2})(1 + log p)κ ‖u‖
Bs,β

κ (Q)
.

Also, there exists ϕ(x) ∈ Pp(Q) such that for β = (−1/2,−1/2, 0) and
s = 1 + 2 min{σ, γ + 1/2}

(5.32) ‖v − ϕ‖H1(R0) ≤ Cp−2min{σ,γ+1/2}(1 + log p)κ ‖u‖
Bs,β

κ (Q)
.

κ in (5.31) and (5.32) is given in (5.30).

Proof By Theorem 5.5 v(x) ∈ B
2min{γ+1/2,σ}+2,β
κ (Q) with κ specified by

(5.30), in particular, for β = (0, 0, 0) and β = (−1/2,−1/2, 0).
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Applying Theorem 2.5 with β = (0, 0, 0) leads to (5.31) immediately.
Applying Theorem 2.5 with β = (−1/2,−1/2, 0) and arguing as in the
proof of Theorem 5.3 we can easily obtain (5.32). 2

Remark κ given in (5.30) reduces to (5.6) if ν = µ = 0. κ depends on ν
and µ, but also on the relation between γ and σ. When σ = γ +(1+β3)/2,
v(x) ∈ Bs,β

κ (Q) with κ increased by an extra value of 1/2. Consequently,
an extra loss of a factor (1 + log p)1/2 happens in the error estimate (5.31)
and (5.32), which was mentioned in [16] for the p-version of BEM. Whether
the extra value of 1/2 can be removed or not is an open question for further
investigation. Fortunately, the extra value of 1/2 appears in κ not in s.

6. CONCLUDING REMARKS

The singularities of singular functions in three dimensions and their ap-
proximabilities have been analyzed in the framework of the Jacobi-weighted
Besov and Sobolev spaces. To precisely characterizing the singularities
and investigate the approximabilities for singular functions of three dif-
ferent types, Jacobi-weighted Besov and Sobolev spaces associated with
three different Jacobi weights are elegantly designed. The most difficult as
well as most significant work is the characterization of the functions with
the singularity of ργ logν ρ sinσ θ logµ sin θ-type in the Besov space Bs,β

κ (Q)
with κ given in (5.30). The singularity of this type is anisotropic and
totally different from the singularity in two dimension. The key for suc-
cess is the decomposition of the singular function with a cut-off function
ϕδ(r), instead of ϕδ(ρ) and ϕδ(θ) although the singularity appears in ρ
and θ. After having tried various decompositions we are convinced that
only this decomposition can lead to our desired results. For the best ap-
proximation of these singular functions we select different weights, namely,
β = (−1/3,−1/3,−1/3), β = (−1/2,−1/2, β3), β = (−1/2,−1/2, 0), re-
spectively. We are also convinced that only this selection can give us the
best error estimation in L2- and H1-norms. Once the weights are properly
selected the approximation results follows in natural way. Our approach for
error estimation for singular functions are different from usual approach,
namely we do not analyze directly approximation of singular functions, but
verify that they belong to certain Jacobi-weighted Besov spaces.

Although the treatments for singular functions in three dimensions are
quite different from those in one and two dimensions and much more diffi-
cult, it is worth indicating that the structures of Jacobi-weighted spaces are
basically the same. The difference lies only in the selection of Jacobi weights
and the way to prove that singular function belong to the Jacobi-weighted
spaces. Hence the mathematical framework of the Jacobi-weighted Besov
and Sobolev spaces is robust and uniform for problems in one, two and
three dimensions.
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Table 6.1. The value of k and s in Sobolev,
Besov and Jacobi-weighted Besov spaces for functions of

ργ , rσ, ργ sinσ θ-type

Space Hk(Q) Hs(Q) Bs(Q) Hk,β(Q) Bs,β(Q)

ργ 3/2 + [γ] 3/2 + γ − ε 3/2 + γ 2 + 2γ − ε 2 + 2γ

rσ 1 + [σ] 1 + σ − ε 1 + σ 1 + 2σ − ε 1 + 2σ

ργ sinσ θ 1 + [λ] 1 + λ− ε 1 + λ 1 + 2λ− ε 1 + 2λ

Table 6.2. Accuracy of approximation in H1-norm to singular
functions of ργ , rσ, ργ sinσ θ-type by the h- and p-version

based on Sobolev, Besov and Jacobi-weighted Besov spaces

h version p version

Space Hs(Q) Bs(Q) Hs(Q) Bs(Q) Bs,β(Q)

ργ h1/2+γ−ε h1/2+γ+1/2 p−(1/2+γ−ε) p−(γ+1/2) p−(2γ+1)

rσ hσ−ε hσ p−(σ−ε) p−σ p−2σ

ργ sinσ θ hλ−ε hλ p−(λ−ε) p−λ p−2λ

In Table 6.1 and Table 6.2 λ = min{γ + 1/2, σ}, σ 6= γ + 1/2, β =
(−1/3,−1/3,−1/3), β = (−1/2,−1/2, β3), β = (−1/2,−1/2, 0) for ργ , rσ

and ργ sinσ θ, respectively.

The singular functions with singularities of three different types are
typical and appear in the solution of problems with piecewise analytical
date on polyhedral domains, which govern the convergence of the finite el-
ement solutions of the h-, p- and h-p version(associated with quasi-uniform
meshes). The function spaces used for characterizing the singularities de-
pends on the nature of singularities as well as the type of the finite element
methods. Thus the selection of function spaces is crucial to the best ap-
proximation for the finite element solutions. The Table 6.1 and 6.2 tell
us how the functional spaces used for characterization of singularities and
error analysis affect the estimation of approximation error measured in H1-
norm. Hence we can conclude that the Jacobi-weighted Besov is the best
theoretical tool for analyzing approximation of functions by the p- and
h-p version (associated with quasi-uniform meshes) of the finite element
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method. Meanwhile, it can be shown that it has no substantial impact on
the error estimation for the classical h-version of the finite element method.

Finally, the framework we set up in three dimensions can be used for the
spectral and the boundary element methods, and the analysis and results
parallel to those for the finite element can be established for the spectral
and the boundary element methods without substantial difficulties.
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[2] Babuška, I. and Guo, B.Q., Direct and inverse approximation theo-
rems of the p-version of the finite element method in the framework of
weighted Besov spaces, Part 2: Optimal convergence of the p-version of
the finite element method, TICAM Report 31, 1999, and Math. Mod.
Meth. Appl.( M3AS ) 12 (2002), 689-719.
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