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Abstract

A conservative hyperbolic model for compressible two-phase two-fluid model is
studied and numerical methods for its approximate solution are proposed. The
derivation of the governing equations of the model is based on the principles of
extended thermodynamics. The field equations form a hyperbolic system of balance
equations in conservative form, which guarantees the well-posedness of the initial-
value problem (its solvability, at least locally in time). The system of governing
equations consists of well-known conservation laws for the mixture mass, momen-
tum, and energy, which are completed by the additional balance laws for the relative
velocity of phases and for the volume concentration of one phase. The closure con-
stitutive relation for the model is the equation of state for the mixture, which can be
derived from known equations of state for each phase. The eigenstructure analysis
of the one-dimensional case shows the existence of six real eigenvalues, four of which
are connected with two speeds of sound in the pure phases, and two correspond to
the mixture flow velocity. A corresponding, complete set of linearly independent
eigenvectors is given explicitly and the nature of the associated characteristic fields
is studied.

For the case of isentropic flow it is shown that in terms of the individual phase
parameters the originally conservative system of governing equations can be trans-
formed to the well-known non-conservative model of Baer-Nunziato-type. In this
situation our model differs from the latter by the definition of interfacial pressure
and by extra terms in the momentum equations related to lift forces.

Finite volume shock-capturing methods for solving numerically the governing
equations are studied, test problems are proposed and numerical results are presented
and discussed.

Key words: two-phase, two-pressure model, compressible flow, hyperbolic conser-
vation laws, finite volume numerical methods

1 Introduction

The multiphase flow modelling is one of the most challenging fields of research in applied
mathematics and computational fluid dynamics. But even in the case of two-phase com-
pressible flow there is no final conventional form of the model and its governing equations.
Certainly well mathematical properties of governing equations play a key role in the for-
mulation of a model. At present it is practically conventional fact that the governing
equations of compressible two-phase flow model must be hyperbolic. Ideally it would
be very attractive if all governing equations of a model can be written in a conservative
form, because it gives a straightforward way to define a discontinuous solution such a
shock waves and contacts.

In this paper we discuss two-phase flow models, in which pressures of constituents of
the mixture supposed to be different. Such type a model is called two-pressure two-phase
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model. The first two-pressure model was proposed in 1986 by Baer and Nunziato [1] and
this paper was the basis for further modifications of the model and new approaches in
the modelling of such a flows, see for example [2, 3, 4]. The governing equations in
these models are based on the mass, momentum and energy conservation laws for each
phase in which interfacial exchange terms are included. Note that these approaches
lead to governing equations which are written in a non-conservative form, that is why a
difficulties arise in a defining of a discontinuous solution [5, 6].

Here we consider a phenomenological conservative model derived by the principles of
extended thermodynamics [7, 8, 9, 10] and proposed in [11, 12]. One-dimensional versions
of this model are studied in [13, 14]. The governing equations are written in terms of
the parameters of state for the mixture and taking into account a two-phase character of
a flow. We study the mathematical properties of its one-dimensional version and give a
full eigenstructure analysis. We also formulate a reduced version of equations in which
thermal processes are ignored (isentropic model).

It interesting to note that although the conservative model is derived by the phe-
nomenological principles and written in terms of the parameters of state for the mixture,
there is a possibility to rewrite them in terms of parameters of state for individual phases
and in the form which is similar to the Baer-Nunziato equations. In the paper we com-
pare equations for conservative and Baer-Nunziato models for the isentropic case. One-
dimensional conservative equations can be written in the Baer-Nunziato form, but there
is a difference in the definition of interfacial pressure. For the multi-dimensional case,
conservative equations written in the Baer-Nunziato form include additional differential
source terms in the momentum equations which not appear in the original Baer-Nunziato
equations and their modifications. Such terms in the momentum equations are called as
lift forces [15].

A few numerical examples to illustrate the character of solutions of the model are
given.

2 Conservative equations for two-phase compressible flow

We study the system of governing equations for two-phase two-fluid flow which has been
proposed in [12]. These governing equations derived using the principles of extended
thermodynamics [7, 8, 11]. The resulting system forms a system of partial differential
equations written in a conservative form, which can be transformed to a symmetric
hyperbolic system [12].
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2.1 The multi-dimensional model

The three-dimensional system of evolution differential equations

∂

∂t
(ρα) +

∂

∂xk
(ρukα) = −φ, (1)

∂

∂t
ρ +

∂

∂xk
(ρuk) = 0, (2)

∂

∂t
(ρul) +

∂

∂xk
(ρuluk + pδkl + ρwlEwk

) = 0, (3)

∂

∂t
(ρc) +

∂

∂xk
(ρukc + ρEwk

) = 0, (4)

∂

∂t
wk +

∂

∂xk
(ulwl + Ec) = −(ekljulωj + πk), (5)

∂

∂t

(

ρ(E +
ulul

2
)
)

+
∂

∂xk

(

ρuk(E +
ulul

2
) + Πk

)

= 0. (6)

should be completed by two additional compatibility relations which are discussed below.
In the paper the conventional summation notation with respect to equal index is used.

The set of parameters characterizing the state of a mixture is: α - volume concentra-
tion of one of the phases (assume that it is the phase with prescribed number 1), c - the
mass concentration of one of the phases (we also assume that it is the phase with number
1), ρ - the mass density of the mixture, ul - the velocity of the mixture, wl - the relative
velocity of phases, p - the pressure of the mixture, E - the specific internal energy of the
mixture (we also call it further Equation of state). Variables φ, ωj , πk are defined below,
and δkl and eklj are the unit tensor and unit pseudoscalar respectively. Πk is the energy
flux vector and is defined by the formula

Πk = ukp + ρukwlEwl
+ ρEcEwl

. (7)

The system consists of the balance equation for the volume concentration of one of
the phases (1), the mass conservation equation for the mixture (2), total momentum
conservation equation (3), mass concentration equation (4) for one of the phases, balance
equation (5) for the relative velocity of phases, and energy conservation equation for the
mixture (6).

Here we ignore many possible dissipative processes such as heat conductivity, viscous
behavior of each phase, and others. We also ignore phase transition of the constituents
of the mixture. The phase interaction includes the relaxation of phases pressures to
a common value and an interfacial friction only. We also emphasize that the model
is designed for processes in which the thermal non-equilibrium between the phases is
small enough, that is why we take the mixture entropy only as the parameter of state
characterizing the thermal behavior of a mixture. Nevertheless the range of processes for
the modelling of which these equations can be applied is quite wide.

The internal energy E assumed to be a known function of the parameters of state for
the mixture:

E = e(α, ρ, c, S) + c(1 − c)
wlwl

2
, (8)

where e is the thermodynamic internal energy of the mixture, and S is the mixture
entropy. The mixture pressure p is connected with the internal energy by the formula

p = ρ2Eρ = ρ2 ∂E

∂ρ
= ρ2 ∂e(α, ρ, c, S)

∂ρ
. (9)
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As it is noted above two processes of interphase exchange are taken in account in the
model. First, the pressure relaxation is simulated by the source term φ in the equation
(1):

φ =
ρ

τ
Eα =

ρ

τ

∂E

∂α
, (10)

where τ is the pressure relaxation time which assumed to be a function of parameters of
state. Second, the interfacial friction term π on the right hand side of equation (5) for
the relative velocity:

πk = κEwk
= κ

∂E

∂wk
= κc(1 − c)wk, (11)

where κ is the coefficient of interfacial friction, which also can be a function of parameters
of state.

The vector variable ωj is not a parameter of state, but it is an auxiliary variable which
is introduced to formulate the equation (5) in a conservative form. The introducing of
auxiliary variables in systems of thermodynamically compatible conservative governing
differential equations is caused by its specific structure and discussed in [11].

The vector ωj is defined as the vorticity of the relative velocity vector

ωj = ejkl
∂wk

∂xl
, (12)

and it must satisfy an additional differential relation

∂ωk

∂t
+

∂(ulωk − ukωl + ekljπj)

∂xl
= 0. (13)

This additional relation is a consequence of compatibility requirement for the system (1)-
(6). To prove this it is necessary to apply the differential operator ejkl∂/∂xl to equation
(5):

∂

∂t

(

ejkl
∂wk

∂xl

)

+ ejkl
∂2

∂xk∂xl
(ulwl + Ec) = −ejkl

∂

∂xl
(ekmnumωn + πk).

It is obvious that the second term in the left hand side of above formula is equal to
0 due to antisymmetric character of ejkl with respect to subscripts k and l, namely,
ejkl = −ejlk. Finally, using (12), this formula can be written in the form

∂

∂t
ωj +

∂

∂xl
(ejklekmnumωn + ejklπk) = 0,

which is equivalent to (13).
Emphasize again that the relative velocity vorticity ωj is an auxiliary variable and

its introducing is necessary to write the equation for relative velocity in a conservative
form only. The system (1)-(6) can be rewritten in the form in which ωj is neglected. To
do this it is necessary to include to the system the following equation

∂wk

∂t
+ ul

∂wk

∂xl
+

∂Ec

∂xk
+ wl

∂ul

∂xk
= −πk (14)

instead of equation (5). Equation (14) can be derived from the equation (5) by adding
(12) multiplied by ul. After solving the complete system (1)-(4),(14),(6) for variables
α, ρ, ul, c, wk, S one can calculate ωj using its definition (12), if it is necessary.
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The system (1)-(6) is completely reasonable from the mathematical viewpoint. Firstly,
all its equations are in a conservative form, that allows to define a discontinuous solution.
Secondly, the simplified system, in which source term are neglected, can be written in a
symmetric hyperbolic form (if the equation of state is a convex function). Finally, the
system (1)-(6) is a thermodynamically compatible one, it means that the solution of the
system admits an additional entropy balance law.

This entropy balance law has the following form:

∂ρS

∂t
+

∂ρukS

∂xk
= Q =

1

ES
(Eαφ + ρEwk

πk) . (15)

The right hand side Q in the above equation is the entropy production and it is a non–
negative quantity due to appropriate definitions (10) for φ and (11) for πk:

Q =
1

ES
(Eαφ + ρEwk

πk) =
ρ

ES

(

1

τ
E2

α + κEwk
Ewk

)

≥ 0.

To derive this balance law for the entropy we can use the equivalent nonconservative
form of the system (1)–(6):

dρ

dt
+ ρ

∂uk

∂xk
= 0,

ρ
dul

dt
+

∂p

∂xl
+

∂ρwlEwk

∂xk
= 0,

ρ
dE

dt
+ p

∂uk

∂xk
+ ρwiEwk

∂ui

∂xk
+

∂ρEcEwk

∂xk
= 0,

ρ
dα

dt
= −φ,

ρ
dc

dt
+

∂ρEwk

∂xk
= 0,

dwk

dt
+ wl

∂ul

∂xk
+

∂Ec

∂xk
= −πk.

Here d/dt = ∂/∂t + uk∂/∂xk is the material derivative.
Using the formula

dE =
∂E

∂α
dα +

∂E

∂ρ
dρ +

∂E

∂c
dc +

∂E

∂wk
dwk +

∂E

∂S
dS

we find
dS

dt
=

1

ES

(

dE

dt
− Eα

dα

dt
+ Eρ

dρ

dt
+ Ec

dc

dt
+ Ewk

dwk

dt

)

Now using equations of latter nonconservative system one can derive the required entropy
balance law (15).

Sometimes it is convenient to use the complete system of governing differential equa-
tions (1)-(6) in which the energy conservation law (6) replaced by the entropy balance
equations (15). The energy conservation law is a must if we study discontinuous solutions.
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2.2 Reformulation of the model

Note that in the previous consideration we used parameters of state for the mixture,
such as mixture mass density, volume and mass fractions of the phases, mixture velocity
and relative velocity. Now we present a different formulation of the system of governing
equations with the use of individual mass density and velocity for each phase. The two
phases of the mixture are characterized by the volume concentrations α1, α2 and mass
concentrations c1, c2 with constraints

α1 + α2 = 1, c1 + c2 = 1.

The definition of individual phase parameters of state by the mixture parameters are as
follows:

ρ1 =
c1ρ

α1
=

cρ

α
, ρ2 =

c2ρ

α2
=

(1 − c)ρ

(1 − α)
, (16)

(u1)k = uk + c2wk = uk + (1 − c)wk, (u2)k = uk − c1wk = uk − cwk, (17)

where ρi is the mass density of i-th phase, (ui)k is the k-th component of velocity vector of
i-th phase, ci is the mass concentration of i-th phase, and αi is the volume concentration
of i-th phase.

The definition of mixture parameters by the individual parameters follows from (16)
and (17)

ρ = α1ρ1 + α2ρ2, uk = c1(u1)k + c2(u2)k = α1ρ1(u1)k + α2ρ2(u2)k. (18)

Now we formulate the main assumption which allows to rewrite equations in terms
of parameters characterizing each phase. It concerns the thermodynamic internal energy
of the mixture e. We suppose that it can be derived from the two known equations of
state of each phase as follows:

e(α, ρ, c, S) = c1e1(ρ1, S) + c2e2(ρ2, S) = ce1

(cρ

α
, S

)

+ (1 − c)e2

(

(1 − c)ρ

(1 − α)
, S

)

. (19)

Here ei is the internal specific energy of i-th phase. Note that we assume that the entropy
S is the common entropy for the mixture. It is clear that in limiting cases c1 = 1, c2 = 0
and c1 = 0, c2 = 1 we have e = e1(ρ1, S) and e = e2(ρ2, S) respectively.

Now using formula (19) for internal energy, definition (16), and identities for differ-
entials derived from (16)

dρ1 = −
cρ

α2
dα +

ρ

α
dc +

c

α
dρ, dρ2 =

(1 − c)ρ

(1 − α)2
dα −

ρ

1 − α
dc +

1 − c

1 − α
dρ,

we obtain the following formulae for derivatives of the equation of state

∂e

∂α
= −

ρ2
1

ρ

∂e1

∂ρ1
+

ρ2
2

ρ

∂e2

∂ρ2
=

p2 − p1

ρ
, (20)

∂e

∂c
= e1 +

ρc

α

∂e1

∂ρ1
− e2 −

ρ(1 − c)

(1 − α)

∂e2

∂ρ2
= e1 +

p1

ρ1
− e2 −

p2

ρ2
, (21)

∂e

∂ρ
=

α1

ρ2
ρ2

1

∂e1

∂ρ1
+

α2

ρ2
ρ2

2

∂e2

∂ρ2
=

αp1 + (1 − α)p2

ρ2
, (22)
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∂e

∂S
= c

∂e1

∂S
+ (1 − c)

∂e2

∂S
. (23)

Note that from (22) the formula for the mixture pressure p as an average of phases
pressures p1 and p2 follows as

p = αp1 + (1 − α)p2. (24)

Now using formulae (18), (20), (21), (24) the system (1)-(6) supplemented by the
steady compatibility relation (12) can be written in an equivalent form

∂

∂t
(α1ρ1 + α2ρ2) +

∂

∂xk
(α1ρ1(u1)k + α2ρ2(u2)k) = 0,

∂

∂t
(α1ρ1(u1)l + α2ρ2(u2)l) +

∂

∂xk
(α1ρ1(u1)l(u1)k + α2ρ2(u2)l(u2)k + pδlk) = 0,

∂

∂t
((α1ρ1 + α2ρ2)α) +

∂

∂xk
((α1ρ1(u1)k + α2ρ2(u2)k)α) = −φ,

∂

∂t
(α1ρ1) +

∂

∂xk
(α1ρ1(u1)k) = 0, (25)

∂

∂t
((u1)k − (u2)k) +

∂

∂xk

(

(u1)l(u1)l

2
−

(u2)l(u2)l

2
+ e1 +

p1

ρ1
− e2 −

p2

ρ2

)

= −Γk,

∂

∂t

(

α1ρ1e1 + α2ρ2e2 +
(u1)l(u1)l

2
+

(u2)l(u2)l

2

)

+

∂

∂xk

(

α1ρ1(u1)k

(

e1 +
p1

ρ1
+

(u1)l(u1)l

2

)

+ α2ρ2(u2)k

(

e2 +
p2

ρ2
+

(u2)l(u2)l

2

))

= 0,

∂((u1)k − (u2)k)

∂xj
−

∂((u1)j − (u2)j)

∂xk
= −ekjlωl,

where the source terms are

φ =
1

τ
(p2 − p1), Γk = ekljulωj + πk, πk = κc(1 − c)wk.

The entropy balance equation is transformed to

∂

∂t
((α1ρ1 + α2ρ2)S) +

∂

∂xk
((α1ρ1(u1)k + α2ρ2(u2)k)S) = Q,

where the entropy production is

Q =
1

eS

(

(p1 − p2)
2

ρτ
+ ρκc2(1 − c)2((u1)k − (u2)k)((u1)k − (u2)k)

)

≥ 0.

Further we will see that the choice of individual parameters of a state as primitive
variables is more convenient for the eigenstructure analysis and gives a possibility to
derive an explicit formulae for eigenvalues and eigenvectors.

3 Analysis of the model

In this section we formulate one-dimensional version of the system for two-phase flow
described in the previous section. We shall study two different kind of the system using
two different sets of primitive variables, one of them is mixture parameters of state and
another one is based on the individual parameters of phases.
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3.1 One-dimensional equations

Assume that the mixture flows along x = x1 axis and hence the mixture velocity uk and
the relative velocity wk have only one component each, u = u1 and w = w1 respectively.
Then the system (1)-(6) can be written in the form

∂tU + ∂xF (U) = S(U), (26)

where U , F (U), and S(U) are vectors of conserved variables, fluxes and source terms
respectively, which are defined by

U =

















ρ
ρα
ρu
ρc
w

ρ(E + u2

2 )

















, (27)

F (U) =

















ρu
ρuα

ρu2 + p + ρwEw

ρuc + ρEw

uw + Ec

ρu(E + u2

2 ) + pu + ρuwEw + ρEcEw

















, (28)

S(U) =

















0
− ρ

τ Eα

0
0

−κc(1 − c)w
0

















. (29)

The system is closed by the equation of state for the mixture

E(α, ρ, c, S, w) = e(α, ρ, c, S) + c(1 − c)
w2

2
, (30)

where e is defined by (19). The pressure and derivatives of E with respect to w, c, α are

p = ρ2Eρ = ρ2eρ, Ew = c(1 − c)w, Ec = ec + (1 − 2c)
w2

2
, Eα = eα.

3.2 Primitive-variable formulation

The system (26)-(29) can be rewritten in a quasilinear form using the vector of primitive
variables

W = (ρ, α, u, c, w, S)T (31)

as follows
∂tW + A(W )∂xW = Q(W ), (32)
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where the matrix A(W ) is



















u 0 ρ 0 0 0
0 u 0 0 0 0

1
ρ(pρ + c(1 − c)w2) pα

ρ u 1
ρ(pc + ρ(1 − 2c)w2) 2c(1 − c)w pS

ρ

c(1 − c)w
ρ 0 0 u + (1 − 2c)w c(1 − c) 0

ecρ eαc w ecc − w2 u + (1 − 2c)w ecS

0 0 0 0 0 u



















,

and Q(W ) = U−1
W S(U(W )).

The approximate analysis of eigenvalues of the matrix A has been done in [12]. It is
shown that there are six real roots of the equation for eigenvalues

det[A(W ) − λI] = 0, (33)

which can be calculated explicitly in the case of zero relative velocity w = 0. Unfor-
tunately in general if w 6= 0 only approximate formula, assuming w a small value, for
eigenvalues and eigenvectors has been derived in [12].

It turns out that if to rewrite the system using another set of primitive variables then
the eigenstructure analysis can be done explicitly. Let us take the following vector of
primitive variables

V = (v1, v2, v3, v4, v5, v6)
T = (α, S, ρ1, u1, ρ2, u2)

T (34)

which is connected with W = (ρ, α, u, c, w, S)T by formulae (16) and (17) in which the
one-dimensional character of flow is taken in account:

u1 = u + c2w = u + (1 − c)w, u2 = u − c1w = u − cw.

In order to study the eigenstructure of the one-dimensional equations one can pass
to the new set of variables in the equation (32) directly, using the Jacobian matrix of
variables transformation. But it is quite complicated procedure and it is better to use an
equivalent one-dimensional version of governing equations system (25) which is as follows

∂

∂t
(α1ρ1 + α2ρ2) +

∂

∂x
(α1ρ1u1 + α2ρ2u2) = 0,

∂

∂t
(α1ρ1u1 + α2ρ2u2) +

∂

∂x
(α1ρ1u

2
1 + α2ρ2u

2
2 + α1p1 + α2p2) = 0,

∂

∂t
((α1ρ1 + α2ρ2)α) +

∂

∂x
((α1ρ1u1 + α2ρ2u2)α) = −φ,

∂

∂t
(α1ρ1) +

∂

∂x
(α1ρ1u1) = 0, (35)

∂

∂t
(u1 − u2) +

∂

∂x

(

u2
1

2
−

u2
2

2
+ e1 +

p1

ρ1
− e2 −

p2

ρ2

)

= −π,

∂

∂t

(

α1ρ1e1 + α2ρ2e2 +
u2

1

2
+

u2
2

2

)

+

∂

∂x

(

α1ρ1u1

(

e1 +
p1

ρ1
+

u2
1

2

)

+ α2ρ2u2

(

e2 +
p2

ρ2
+

u2
2

2

))

= 0,
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where the source terms are

φ =
1

τ
(p2 − p1), π = κc(1 − c)(u1 − u2).

The entropy balance law in the one-dimensional case becomes

∂

∂t
((α1ρ1 + α2ρ2)S) +

∂

∂x
((α1ρ1u1 + α2ρ2u2)S) = Q,

where the entropy production is

Q =
1

eS

(

(p1 − p2)
2

ρτ
+ ρκc2(1 − c)2(u1 − u2)

2

)

≥ 0.

Further transformation of equations in order to simplify them and write them in a
quasilinear form leads us to the following system:

∂α

∂t
+ u

∂α

∂x
= −

φ

ρ
,

∂S

∂t
+ u

∂S

∂x
=

Q

ρ
,

∂ρ1

∂t
+ u1

∂ρ1

∂x
+ ρ1

∂u1

∂x
+

α2

α1

ρ1ρ2

ρ
(u1 − u2)

∂α

∂x
=

ρ1φ

α1ρ
,

∂u1

∂t
+ u1

∂u1

∂x
+

1

ρ1

∂p1

∂x
+

p1 − p2

ρ

∂α

∂x
+

α2ρ2

ρ
(T1 − T2)

∂S

∂x
= −

α2ρ2

ρ
π,

∂ρ2

∂t
+ u2

∂ρ2

∂x
+ ρ2

∂u2

∂x
+

α1

α2

ρ1ρ2

ρ
(u1 − u2)

∂α

∂x
= −

ρ2φ

α2ρ
,

∂u2

∂t
+ u2

∂u2

∂x
+

1

ρ2

∂p2

∂x
+

p1 − p2

ρ

∂α

∂x
−

α1ρ1

ρ
(T1 − T2)

∂S

∂x
=

α1ρ1

ρ
π.

Here ρ = α1ρ1 + α2ρ2 and Ti = ∂ei/∂S. Certainly we assume αi 6= 0 and αi 6= 1
Now it is not difficult to rewrite the latter system in quasilinear form in terms of the

set of primitive variables (34)

∂tV + B(V )∂xV = Z(V ), (36)

where the matrix B(V ) is



















u 0 0 0 0 0
0 u 0 0 0 0
a1 0 u1 ρ1 0 0

b d1
C2

1

ρ1
u1 0 0

a2 0 0 0 u2 ρ2

b d2 0 0
C2

2

ρ2
u2



















.

Here

a1 =
α2

α1

ρ1ρ2

ρ
(u1 − u2), a2 =

α1

α2

ρ1ρ2

ρ
(u1 − u2), b =

p1 − p2

ρ
,

d1 =
1

ρ1

∂p1

∂S
+

α2ρ2

ρ
(T1 − T2), d2 =

1

ρ2

∂p2

∂S
−

α1ρ1

ρ
(T1 − T2),

C2
1 =

∂p1

∂ρ1
, C2

2 =
∂p2

∂ρ2
.
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3.3 Eigenstructure and characteristic fields

Due to the structure of the matrix B the equation for eigenvalues

det[B − λI] = 0

takes the form
(λ − u)2[(λ − u1)

2 − C2
1 ][(λ − u2)

2 − C2
2 ] = 0. (37)

It is clear now that the system (36) has six real eigenvalues. Assuming C1 ≥ C2 we
can order them in the following manner

λ1 = u1 − C1, λ2 = u2 − C2, λ3 = λ4 = u, λ5 = u2 + C2, λ6 = u1 + C1. (38)

We see that eigenvalues λ3,4 are the mixture velocity. The functions C1 =
√

∂p1/∂ρ1

and C2 =
√

∂p2/∂ρ2 coincide with the speeds of sounds in the phases with numbers 1
and 2 respectively. Hence eigenvalues λ1,6 correspond to sound waves propagating in the
first phase moving with the velocity u1, and λ2,5 correspond to the similar sound wave
in the second phase.

As is noted (in the beginning of the second section) the presented equations of two-
phase flow can be transformed to a symmetric hyperbolic system, that is why the set of
linearly independent eigenvectors for matrix B exists. Now we derive an explicit formulae
for eigenvectors.

The right eigenvectors corresponding to the set of eigenvalues λi, (i = 1, ..., 6) can be
chosen by the following way:

R(1) = (0, 0, ρ1,−C1, 0, 0)
T ,

R(2) = (0, 0, 0, 0, ρ2,−C2)
T ,

R(3) = (z1z2, 0, µ1z2, ν1z2, µ2z1, ν2z1)
T ,

R(4) = (0, z1z2, ρ1d1z2,−(u1 − u)d1z2, ρ2d2z1,−(u2 − u)d2z1)
T ,

R(5) = (0, 0, 0, 0, ρ2, C2)
T ,

R(6) = (0, 0, ρ1, C1, 0, 0)
T ,

where
z1 = (u1 − u)2 − C2

1 , z2 = (u2 − u)2 − C2
2 ,

µ1 = −(u1 − u)a1 + ρ1b, ν1 =
C2

1

ρ1
a1 − (u1 − u)b,

µ2 = −(u2 − u)a2 + ρ2b, ν2 =
C2

2

ρ2
a2 − (u2 − u)b.

So, we have the set of linearly independent eigenvectors, although the multiple eigenvalues
λ3 = λ4 exist, and in principle there is a possibility for some eigenvalues corresponding
to sound waves to be equal for some values of flow parameters.

Now we study characteristic fields properties. Denoting by

∇V λ =

(

∂λ

∂v1
, ...,

∂λ

∂v6

)
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one can prove that for the eigenvalues λ1, λ2, λ5, λ6 the property

∇V λi · R
(i) 6= 0

holds. Actually the value ∇V λi ·R
(i) computed for the mentioned eigenvalue-eigenvector

pairs is equal to one of four values

±
∂(ρiCi)

∂ρi
(i = 1, 2),

which are not equal to 0 for admissible equations of state. Let us consider, for example,
the first eigenvalue-eigenvector pair (λ1, R

(1)). It is clear that

∂λ1

∂α
= 0,

∂λ1

∂S
= 0,

∂λ1

∂ρ1
= −

∂C1

∂ρ
,

∂λ1

∂u1
= 1,

∂λ1

∂ρ2
= 0,

∂λ1

∂u2
= 0.

Now using the expression for R(1) we have

∇V λ1 · R
(1) = −ρ1

∂C1

∂ρ1
− C1 = −

∂(ρ1C1)

∂ρ1
6= 0.

The property of genuine nonlinearity is valid for the eigenvalue λ3 = u which corre-
sponds to the equation for the void fraction α, but there exist locally exceptional cases,
namely if u1 − u2 = 0, then

∇V λ3 · R
(3) = 0.

Actually by definition λ3 = u = (α1ρ1u1 + α2ρ2u2)/(α1ρ1 + α2ρ2). Hence

∂λ3

∂α
=

ρ1ρ2

ρ2
(u1 − u2),

∂λ3

∂S
= 0,

∂λ3

∂ρ1
=

α1α2ρ2

ρ2
(u1 − u2),

∂λ3

∂u1
=

α1ρ1

ρ
,

∂λ3

∂ρ2
= −

α1α2ρ1

ρ2
(u1 − u2),

∂λ3

∂u2
=

α2ρ2

ρ
.

Now using the expression for R(3) we have

∇V λ3 ·R
(3) =

(u1 − u2)

ρ2
(ρ1ρ2z1z2 +α1α2ρ2µ1z2 +α1ρ1ρν1z2 −α1α2ρ1µ2z1 +α2ρ2ρν2z1),

and one can prove that latter expression is not equal to 0 if u1 − u2 6= 0.
As for the characteristic field connected with the entropy equation eigenvalue λ4 = u,

one can prove that
∇V λ4 · R

(4) ≡ 0.

To do this we have to use only the fact that ∇V λ3 = ∇V λ4 and the expression for R(4).
So we have formulated and studied the one-dimensional conservative system of gov-

erning equations for two-phase two-pressure compressible flow which allows to develop a
mathematically correct theory for simple waves such as shock, centred and contact waves.
In the next section we compare a reduced isentropic conservative model with one of the
most popular two-pressure nonconservative model.
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4 Comparison of models

In this paper we deal with conservative model of two-phase compressible flow with two
velocities and two pressures. In recent years the most established approach for modelling
two-phase two-pressure compressible flows has been proposed in [1]. The approach con-
sists of representation two-phase flow as two separate continua coupled by momentum
and energy exchange. The resulting system of governing equations is hyperbolic but it
is not in a conservative form. Several modifications of this approach [2],[4],[3],[?] has
been done. Models based on this approach we call Baer-Nunziato (BN) -type models.
In this section we compare the governing equations discussed in previous sections with
the governing equations of the BN-type model. As was noted in the Section 2 our con-
servative model is designed for processes in which the thermal state of phases is almost
in equilibrium state, while BN-type models can take into account significant thermal
non-equilibrium. That is why it is reasonable to compare the reduced conservative and
BN models in which thermal processes are ignored and the phases behavior is isentropic.

In this section we will show that the one-dimensional versions of the models are
similar, that is to say, they can be written by the selfsame way formally. But there is
a difference in the definition of interfacial pressure and certainly this difference can give
different results in the modelling of some phenomena. The models differ much more in
the multidimensional case: the conservative model contain lift forces [15] in the individual
phase momentum equations which arise intrinsically due to the structure of conservative
governing equations. The BN-type models do not contain terms corresponding to lift
forces.

The general BN-type model consists of partial differential balance equations for mass,
momentum, and energy for each of two phases completed by the evolution equation for the
volume fraction. Further we consider a simplified BN model in which thermal processes
are ignored and hence the energy balance equations for each phase can be neglected. The
reduced isentropic model is governed by the five equations system

∂α1

∂t
+ (uI)k

∂α1

∂xk
= µ(p1 − p2),

∂α1ρ1

∂t
+

∂α1ρ1(u1)k

∂xk
= 0,

∂α1ρ1(u1)i

∂t
+

∂α1ρ1(u1)i(u1)k

∂xk
+

∂α1p1

∂xi
= pI

∂α1

∂xi
+ λ((u2)i − (u1)i), (39)

∂α2ρ2

∂t
+

∂α2ρ2(u2)k

∂xk
= 0,

∂α2ρ2(u2)i

∂t
+

∂α2ρ2(u2)i(u2)k

∂xk
+

∂α2p2

∂xi
= pI

∂α2

∂xi
− λ((u2)i − (u1)i).

Here, as in the previous sections, αi are the volume concentrations of phases (α1+α2 = 1),
ρi are the mass densities, (ui)k are the k-th component of the velocity of i-th phase,
|ui|

2 = (ui)
2
1 + (ui)

2
2 + (ui)

2
3, pi is the pressure of i-th phase. The quantities (uI)k and pI

are called interfacial velocity and interfacial pressure respectively. They are determined
by the same way as average velocity and average pressure for the conservative model in
previous sections:

(uI)k = (u)k =
α1ρ1(u1)k + α2ρ2(u2)k

α1ρ1 + α2ρ2
, pI = p = α1p1 + α2p2.
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Here we assume that for each phase its pressure is a known function of its density

pi = pi(ρi), (i = 1, 2).

It is interesting to compare also the one-dimensional versions of the conservative and
BN-type models. Assuming that the mixture flows in the x = x1 direction and velocities
u1 and u2 only exist, the one-dimensional version of BN equations is as follows

∂α1

∂t
+ uI

∂α1

∂x
= µ(p1 − p2),

∂α1ρ1

∂t
+

∂α1ρ1u1

∂x
= 0,

∂α1ρ1u1

∂t
+

∂α1ρ1u
2
1

∂x
+

∂α1p1

∂x
= pI

∂α1

∂x
+ λ(u2 − u1), (40)

∂α2ρ2

∂t
+

∂α2ρ2u2

∂x
= 0,

∂α2ρ2u2

∂t
+

∂α2ρ2u
2
2

∂xk
+

∂α2p2

∂x
= pI

∂α2

∂x
− λ(u2 − u1).

First of all we compare one-dimensional versions of conservative model from Section
3 and the BN-type equations (40). Here we also consider a reduced conservative model
in which thermal processes are neglected. Such a modification of the system (35) is as
follows

∂

∂t
(α1ρ1 + α2ρ2) +

∂

∂x
(α1ρ1u1 + α2ρ2u2) = 0,

∂

∂t
(α1ρ1u1 + α2ρ2u2) +

∂

∂x
(α1ρ1u

2
1 + α2ρ2u

2
2 + α1p1 + α2p2) = 0,

∂

∂t
((α1ρ1 + α2ρ2)α) +

∂

∂x
((α1ρ1u1 + α2ρ2u2)α) = −φ, (41)

∂

∂t
(α1ρ1) +

∂

∂x
(α1ρ1u1) = 0,

∂

∂t
(u1 − u2) +

∂

∂x

(

u2
1

2
−

u2
2

2
+ e1 +

p1

ρ1
− e2 −

p2

ρ2

)

= −π.

It is obvious that using the first and third equations of the system (41) one can derive
the evolution equation for the volume fraction α = α1 in the form

∂α

∂t
+ u

∂α

∂x
= −φ, (42)

It is also clear that from the first and fourth equations of the system (41) the mass
conservation equation for the second phase follows

∂

∂t
(α2ρ2) +

∂

∂x
(α2ρ2u2) = 0. (43)

And finally, after some cumbersome transformation, using the second (total momen-
tum) and fifth (relative velocity) equations of the system (41), one can derive the mo-
mentum balance equations for each phase:

∂α1ρ1u1

∂t
+

∂α1ρ1u
2
1

∂x
+

∂α1p1

∂x
=

α2ρ2p1 + α1ρ1p2

ρ

∂α1

∂x
−

α1α2ρ1ρ2

ρ
π, (44)

∂α2ρ2u2

∂t
+

∂α2ρ2u
2
2

∂xk
+

∂α2p2

∂x
=

α2ρ2p1 + α1ρ1p2

ρ

∂α2

∂x
+

α1α2ρ1ρ2

ρ
π. (45)
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So, combining equations (42)-(45) and the fourth equation of the system (41) we
obtain the complete one-dimensional system for isentropic two-phase flow

∂α

∂t
+ uI

∂α

∂x
= −φ,

∂

∂t
(α1ρ1) +

∂

∂x
(α1ρ1u1) = 0,

∂

∂t
(α2ρ2) +

∂

∂x
(α2ρ2u2) = 0, (46)

∂α1ρ1u1

∂t
+

∂α1ρ1u
2
1

∂x
+

∂α1p1

∂x
= p̂I

∂α1

∂x
−

α1α2ρ1ρ2

ρ
π,

∂α2ρ2u2

∂t
+

∂α2ρ2u
2
2

∂xk
+

∂α2p2

∂x
= p̂I

∂α2

∂x
+

α1α2ρ1ρ2

ρ
π.

Recalling the definition of the source terms (see Section 3)

φ =
1

τ
(p2 − p1), π = κ

α1α2ρ1ρ2

ρ2
(u1 − u2),

we conclude that the latter system is similar to the one-dimensional version of BN model
(40) if to denote

µ = −
1

τ
, λ = −κ

(α1α2ρ1ρ2)
2

ρ3
.

The definition of interfacial velocity is the same for both models

uI = u =
α1ρ1u1 + α2ρ2u2

α1ρ1 + α2ρ2
,

but the definition of interfacial pressure is different. In the BN-type model we have
pI = α1p1 + α2p2 while in the conservative model

p̂I =
α2ρ2p1 + α1ρ1p2

α1ρ1 + α2ρ2
.

Such a difference in definition of internal pressure in the BN model and conservative
model can lead to a different behavior of solutions for concrete problems. Although in
the case of very fast pressure relaxation the solutions could be close because in this case
the phases pressures must be very close to a common uniform value.

The difference between two models becomes more significant in the multidimensional
case. Now we will not present the complete comparison of governing equations for both
models. We note only that the mass conservation equations for each phase and relaxation
equation for the volume fraction remain identical for both models. But in the phase
momentum balance equations derived from the present conservative model an additional
terms connected with phase vorticities arise.

Actually, from the total momentum equation (second equation in (25)) and the rel-
ative velocity equation (fifth equation in (25)) for the mixture, after cumbersome trans-
formations the equations for phases momentum follow

∂α1ρ1(u1)i

∂t
+

∂α1ρ1(u1)i(u1)k

∂xk
+

∂α1p1

∂xi
= p̂I

∂α1

∂xi
+ Fi −

α1α2ρ1ρ2

ρ
π, (47)

∂α2ρ2(u2)i

∂t
+

∂α2ρ2(u2)i(u2)k

∂xk
+

∂α2p2

∂xi
= p̂I

∂α2

∂xi
− Fi +

α1α2ρ1ρ2

ρ
π. (48)
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We can see that in equations (47),(48) an additional extra terms Fi arise which are not
presented in the BN-type equations (39). These terms are defined as follows

Fi = ρc1c2((u1)k − (u2)k)

(

c1

(

∂(u2)i

∂xk
−

∂(u2)k

∂xi

)

+ c2

(

∂(u1)i

∂xk
−

∂(u1)k

∂xi

))

.

Here ci = (αiρi)/ρ, i = 1, 2 are the phase mass fractions.
Terms Fi describe the forces arising for the flow with nonzero relative velocity and

caused by the phases vorticities. Such type of force is called as lift force, see for example
[15].

So there is a difference between governing equations for isentropic processes in the BN-
type model and conservative model. The distinctions appear in the phases momentum
balance equations. First distinction is in the definition of the interfacial pressure. The
second one appears in multidimensional case only, namely, the lift forces are presented
in the conservative model, but they are not presented in the BN-type model.

5 Numerical methods

Here we consider finite volume schemes for solving numerically the two-phase flow equa-
tions studied in previous sections of this paper. We restrict the presentation to systems
of the form

∂tQ + ∂xF(Q) = S(Q) , (49)

where Q is the vector of conserved variables, F(Q) is the vector of fluxes and S(Q) is
the vector of sources, assumed to be a non-differential term, e.g. algebraic.

Finite volume schemes for solving (49) numerically are constructed by first integrating
(49) over a control volume V ≡ [xi− 1

2

, xi+ 1

2

] × [tn, tn+1] of dimensions

∆x = xi+ 1

2

− xi− 1

2

, ∆t = tn+1 − tn . (50)

The result is the exact relation

Qn+1
i = Qn

i −
∆t

∆x

[

Fi+1/2 − Fi−1/2

]

+ ∆tSi , (51)

where

Qn
i =

1

∆x

∫ xi+1/2

xi−1/2

Q(x, tn) dx ,

Fi+1/2 =
1

∆t

∫ tn+1

tn
F(Q(xi+1/2, τ)) dτ ,

Si =
1

∆t

1

∆x

∫ tn+1

tn

∫ xi+1/2

xi−1/2

S(Q(x, τ)) dx dτ .



















































(52)

Conservative numerical schemes may be constructed from the exact relation (51)-(52)
by defining suitable approximations to (52) leading to numerical fluxes and numerical
sources, still denoted by the symbols Fi+1/2 and Si respectively.
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Here we consider centred, as distinct from upwind, schemes. The most well-known
centred schemes is that given by the Lax-Friedrichs numerical flux, namely

FLF
i+1/2 =

1

2

[

F(Qn
i ) + F(Qn

i+1)
]

−
∆x

∆t

[

Qn
i+1 − Qn

i

]

. (53)

The conservative scheme (51) along with the numerical flux (53) gives the Lax-Friedrichs
scheme, which is first-order accurate, mononote and stable to CFL unity, where CFL is
the maximum Courant, or CFL, number. This scheme is very simple but is the most
diffusive of all stable three-point schemes and thus is not recommended for practical use.

An improvement is obtained by using the FORCE flux [16]- [18]

FFORCE
i+1/2 = 1

4 [F(Qn
i ) + 2F(Q

n+ 1

2

i+ 1

2

) + F(Qn
i+1) −

∆x
∆t (Q

n
i+1 − Qn

i )],

Q
n+ 1

2

i+ 1

2

= 1
2 [Qn

i + Qn
i+1] −

1
2

∆t
∆x [F(Qn

i+1) − F(Qn
i )].



















This numerical flux leads to a conservative scheme that is first-order accurate, monotone
and more accurate than that of Lax-Friedrichs. Recently, the scheme has been proved to
be convergent, for a 2 × 2 system of non-linear conservation laws [19].

A second-order non-oscillatory (TVD) extension of the FORCE flux is the SLIC
scheme [18], which is based on MUSCL linear reconstructions in each cell i, leading to
two boundary extrapolated values

QL
i = Qn

i −
1

2
∆̂i , QR

i = Qn
i +

1

2
∆̂i ,

where ∆̂i = φ∆i is a TVD limited slope (actually a vector difference), φ is a slope limiter
function and ∆i is a slope of the form

∆i = ω∆i− 1

2

+ (1 − ω)∆i+ 1

2

, ∆i+ 1

2

= Qn
i+1 − Qn

i

with ω a parameter in the real interval [0, 1]. One usually takes ω = 0.
In the scheme, the boundary extrapolated values are then evolved in time by half a

time step as follows:

Q̂L
i = QL

i −
1

2

∆t

∆x
[F(QR

i ) − F(QL
i )] , Q̂R

i = QR
i −

1

2

∆t

∆x
[F(QR

i ) − F(QL
i )] .

In the final step of the scheme we evaluate the FORCE flux FFORCE
i+1/2 (A,B) with argu-

ments A = Q̂R
i and B = Q̂L

i+1.
The resulting scheme is the second-order non-oscillatory SLIC scheme, which is simple

and easily applicable to complex non-linear systems, such as those studied in this paper.
Full details SLIC scheme are found in [17]. Regarding the source terms, there are various
approaches that can be used. For details see Chapter 15 of [17].

6 Numerical Examples

In this section we study two test problems numerically using the reduced isentropic ver-
sion of the conservative model for two-phase flow. The governing equations are taken
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in the form (41) neglecting the interfacial interactions, namely pressure relaxation and
interfacial friction. Obviously such a simplified system will not accurately describe phe-
nomena involving strong shock waves but will still be useful for a valuable range of
problems. Moreover, for this model it is easy to analyse the mathematical character
of the system and to test new idea regarding numerical methods for multiphase flow
problems. For the source terms we assume φ = 0 and π = 0.

Each of the test problems represents a Riemann problem for an air/water mixture.
Suppose that index 1 denotes the air parameters and index 2 denotes the water param-
eters. The closing constitutive relationships which are needed to close the model are the
isentropic equations of state relating pressures to densities. For air, the isentropic perfect
gas law is

p1 = A1

(

ρ1

ρ0
1

)γ1

, (54)

with constants ρ0
1 = 1kg/m3, A1 = 105Pa, γ = 1.4.

For water we take the Tait’s equation of state

p2 = A2

(

ρ2

ρ0
2

)γ2

− A3, (55)

with ρ0
2 = 103kg/m3, A2 = 8.5 × 108Pa, A3 = 8.4999 × 108Pa, γ2 = 2.8.

For the initial conditions in both test problems we assume that the mixture has
constant volume fractions of air and water of 0.9 and 0.1 respectively and that the
pressure of air and water in the initial data are equal and it is a given value. The values
of phase densities in the initial data can be evaluated by formulae (54) and (55).

For both test problems the computational domain is the real interval [0, 1]. In each
test the initial data defines a Riemann problem with a left section [0, 1/2) and a right
section [1/2, 1].

6.1 Test 1: Symmetric four-rarefaction problem

This test problem has initial data:
Left section: p = 109Pa, u1 = u2 = −1.8 × 103m/s,
Right section: p = 109Pa, u1 = u2 = 1.8 × 103m/s.

Figs. 1 to 4 show computed results at time 0.11 × 10−5s, using various meshes, for
liquid and gas densities, liquid and gas velocities, mixture density and pressure, mixture
velocity and relative velocity. The CFL coefficient used in the calculations was CFL= 0.9.

Fig. 1 shows a reference numerical solution computed with a fine mesh of 4000 cells
and the best of the numerical methods presented in this paper, namely SLIC, which
is a second-order TVD method. The structure of the solution contains four symmetric
rarefaction waves, two for each phase. The solution also contains a middle region in which
the density of both phases is very low. In fact this is the main feature that motivates
the choice of this test problem for assessing numerical methods. For single-phase flow,
it is a well documented fact that the computation of low density flows is indeed very
challenging; it is known that all linearized Riemann solvers, for example, will lead to the
computation of negative densities [20].

The four-rarefaction structure becomes more complex when we examine the mixture
quantities. Due to the superposition of the two waves for each of the two phases we end
up with a structure that contains, apparently, six waves. See for example the mixture
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density and the relative velocity. The computed results of Fig. 1 look very satisfactory
in that all the expected features of the solution are well resolved. We note, however, that
there is a small spurious overshoot in the solution; this is more evident in the relative
velocity profile.

Figs. 2 to 4 show numerical results for a coarse mesh of 100 cells (thin line) compared
with the reference solution (thick line), for three schemes, namely Lax-Friedrichs, FORCE
and SLIC. It is obvious that the Lax-Friedrichs scheme is too inaccurate to be used in
practice. As judging from the results of these figures, the best scheme is the second-order
TVD method, SLIC.

6.2 Test 2: Symmetric four-shock problem

This test problem describes the collision of a compressed mixture with discontinuous
initial data:

Left section: p = 108Pa, u1 = u2 = 3.0 × 103m/s,
Right section: p = 108Pa, u1 = u2 = −3.0 × 103m/s.

Figs. 5 to 8 show results at time 0.22 × 10−5s, for various meshes, of liquid and gas
densities, liquid and gas velocities, mixture density and pressure, mixture velocity and
relative velocity. The CFL coefficient used in the calculations was CFL= 0.9.

Fig. 5 shows a reference numerical solution computed with a fine mesh of 4000 cells
and the best of the numerical methods presented in this paper, namely SLIC, which is a
second-order TVD method.

The structure of the solution contains four symmetric shock waves, two for each phase.
The point in proposing this test problem is to assess the ability of numerical schemes to
resolve shock waves in general, and shock waves in two phase flow in particular. One of
the difficulties of numerical methods when computing shock waves is robustness, the code
may crush. Then one would like to resolve the shock with high resolution (a couple of
cells across the wave) and without spurious oscillations in the vicinity of the discontinuity.
The second-order TVD scheme SLIC appears to comply quite satisfactorily with these
requirements.

The results of Fig. 5 look very satisfactory in that all the expected main features of
the solution are well resolved. We do observe, however, some small spurious oscillations in
the vicinity of the shock waves. It is known that the TVD (Total Variation Diminishing)
constraint does not theoretically apply to non-linear systems, and therefore the TVD
method will not strictly avoid all spurious oscillations.

Figs. 6 to 8 show numerical results for a coarse mesh of 100 cells (thin line) compared
with the reference solution (thick line), for three schemes, namely Lax-Friedrichs, FORCE
and SLIC. As judging from the results of figures 6 to 8, the best scheme is the second-order
TVD method, SLIC.

Finally, in Fig. 9 we show a numerical convergence test for the SLIC scheme as
applied to the four-shock test problem. To this end we select a single quantity, namely
the mixture density. Numerical results (thin line) for sequence of four meshes: 100, 200,
400, 800 are compared with the reference solution of Fig. 5. We observe that the second
and third meshes do already give very satisfactory results.
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7 Conclusions

The governing equations of a conservative two-phase two-pressure model based on ex-
tended thermodynamics principles are studied. The system is hyperbolic and is written
in conservation-law form. In the one-dimensional case the system has six equations, for
which the full eigenstructure analysis is performed, namely, explicit formulae for eigenval-
ues and eigenvectors are derived and the corresponding characteristic fields are studied.

The reduced isentropic conservative system is formulated and compared with the cor-
responding isentropic Baer-Nunziato-type model. It is shown that the one-dimensional
version of the present conservative system is similar to the Baer-Nunziato-type model
except for the definition of interfacial pressure, which is included into the differential
source terms in the momentum equations. Moreover, it turns out that for the multidi-
mensional case the lift forces included in the momentum equations of the present model
do not appear in the Baer-Nunziato-type model.

Conservative shock-capturing of the centred type are then proposed to solve the
governing equations. Test problems are proposed and numerical results are shown and
discussed.
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