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Abstract. We consider highly specific protein-protein interactions in proteomes of simple

model proteins. We are inspired by the work of Zarrinpar et al. [2003 Nature 426 676].

They took a binding domain in a signalling pathway in yeast and replaced it with domains

of the same class but from different organisms. They found that the probability of a protein

binding to a protein from the proteome of different organism is rather high, around one half.

We calculate the probability of a model protein from one proteome binding to the protein

of a different proteome. These proteomes are obtained by sampling the space of functional

proteomes uniformly. In agreement with Zarrinpar et al. we find that the probability of a

protein binding a protein from another proteome is rather high, of order one tenth. Our

results, together with those of Zarrinpar et al., suggest that designing, say, a peptide to block

or reconstitute a single signalling pathway, without affecting any other pathways, requires

knowledge of all the partners of the class of binding domains the peptide is designed to mimic.

This knowledge is required to use negative design to explicitly design out interactions of the

peptide with proteins other than its target. We also found that patches that are required

to bind with high specificity evolve more slowly than those that are required only to not

bind to any other patch. This is consistent with some analysis of sequence data for proteins

engaged in highly specific interactions.
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1. Introduction

Inside cells there is a constant flux of signals, for example a change in the cell’s environment

may trigger a signal that is transmitted across the cytoplasm to the nucleus to turn on

transcription of a specific gene. Accurate transmission of a signal requires specific protein-

protein interactions. A protein must bind strongly to one other protein to trigger the

appropriate response, and not bind to any of a thousand other proteins, to avoid triggering

inappropriate responses. We would like to understand how this high specificity binding

has been achieved by evolution. Recent work by Lim and coworkers [1] has probed these

interactions by replacing a protein domain involved in the osmoresistance signalling pathway

in yeast by domains of the same class of protein domain but from other species. Inspired

by this work, we consider partial proteomes, i.e., sets of protein domains of the same class,

of simple model proteins [2,3] and look at how proteins interact both with other proteins of

the same proteome and with proteins from another proteome. We generate the proteomes

by imposing the requirement that the model proteins bind with high specificity and then

we uniformly sample the partial proteomes that satisfy this requirement. This is a crude

model of what evolution might produce. This is in contrast to, for example, Havranek

and Harbury [4], Shifman and Mayo [5] and Kortemme et al. [6], who all explicitly design

proteins. We interpret our results in terms of the selection of proteins not only for the

strength of their binding to their partner but also for the weakness of their binding to other

proteins. This form of selection has parallels to what scientists who design proteins [4, 7, 8]

call negative design: the design of proteins to not do something deleterious. Understanding

how high-specificity binding is achieved is essential for developing drugs that have few side

effects, i.e., whose action is highly specific. To achieve this the peptide would need to block or

reconstitute one and only one specific signalling pathway without affecting other pathways.

See Lazar et al. [9] for a recent review of drug design.

The outline of the paper is as follows. In the next section we set down what we require

of the matrix of interactions between the members of a set of proteins which interact in

pairs with high specificity. This requirement defines a functional set of interactions, or

interactome. In the third section we define a simple model protein, similar but not identical

to that of earlier work [2]. The fourth section is a compact description of how we sample

the model proteomes, and the fifth section describes our results and compares them to

the experimental results of Lim and coworkers [1]. We find qualitative agreement. In this

section we also compare our results for the rate of neutral evolution with analysis of sequence

data [10–17]. Again the results for our model agree with the data on real proteins, although

some of this data is controversial. We find that the constraint on a binding site to participate

in high specificity binding slows its rate of neutral evolution. The final section is a conclusion.
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2. Model of the cytoplasm of a cell

Inside a prokaryote cell or a compartment of a eukaryote cell there are many proteins that

have to interact with high specificity [18]. Zarrinpar et al. [1] considered high specificity

binding between the SH3 domains and their partners in yeast. The SH3 domain is one of

many types of domains whose function is to bind with high specificity [19,20]. Yeast has 27

different SH3 domains, each of which binds to a different one of a class of proteins. Motivated

by this relatively small number of proteins, of order 10 not the many thousands present in

vivo, we consider model proteomes of N proteins, where N is a few tens. Essentially, we

assume that the SH3 domains and the partners do not bind to the other proteins in the cell.

As we are interested solely in the specific interactions between proteins, we neglect the parts

of the protein other than the patch on their surface responsible for the interaction. Our

model proteome is simply N surface patches interacting in N/2 pairs.

This is a model of a small subset of all the proteins inside a cell. Now, the full

complement of proteins of the cell is called the proteome. So the mixture of N patches

is only a partial proteome, but, the sake of brevity we will call it a proteome here. We will

use the same model for all proteins. This is rather different from the typical situation for real

proteins where the binding is highly asymmetric: an SH3 domain binds to a characteristic

partner domain, but there is no possibility of one SH3 domain binding to another SH3

domain. However, this does not change the essential feature of high specificity binding,

which is to pick out one protein from many, and it does mean we only need one type of

model protein.

In a partial proteome of N binding patches, each odd numbered patch i is required to

bind to the (i+1)th patch, with a large equilibrium constantKb. The ith (i odd) and (i+1)th

proteins must bind only to each other, it must be specific, and so in addition to binding to

each other we require that the equilibrium constant between any odd numbered patch i and

any patch other than patch i+ 1 be less than Ks ¿ Kb. Similarly, the equilibrium constant

between patch i + 1 and any protein other than protein i must also be less than Ks. Thus

if we denote the binding constant between proteins i and j by Kij we require

Kij > Kb ij = 12, 21, 34, 43, . . . , (N − 1)N,N(N − 1)

Kij < Ks otherwise. (1)

In the language of genomics, this defines a functional partial interactome. Zarrinpar et al. [1]

measured in vitro dissociation constants, Kd = K−1, K being the equilibrium constant. The

wild-type dissociation constant for the interaction between the osmoresistance SH3 domain

and its partner is Kd = 1.3µM. Thus, we set Kb = 10
6nm3. A dissociation constant of 1µM

is approximately equal to an equilibrium constant of 106nm3. Zarrinpar et al. found that

osmoresistance was restored for dissociation constants of order Kd = 40µM or less. Thus, we

set the maximum equilibrium constant between non-binding patches to be well below this:
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Ks = 10
4nm3.

Having defined a functional partial interactome we need a model protein in order to

calculate the equilibrium constants. We also need some method of sampling functional

proteomes of these model proteins. Of course, many different proteomes will satisfy equation

(1). We will sample uniformly the proteomes that are functional according to equation (1),

and assume that the proteomes produced by evolution are a relatively weakly biased set

of the possible functional proteomes. This would be the case if there is extensive neutral

evolution. Neutral evolution, as proposed by Kimura [21], and by King and Jukes [22] is the

change of sequences with time without change in fitness; see for example Bastolla et al. [23]

for recent work.

3. Model protein

Our model protein is similar to that used in our earlier work [2, 3] but there patches were

specified by sequences of only hydrophobic and hydrophilic, polar, monomers. Here each

patch has interactions that depend on a sequence s of nM monomers, each of which is one

of four types: hydrophobic (H), hydrophilic (P), positive (+) and negative (−). We use

the four-letter alphabet of Backofen et al. [24]. Table 1 lists the interaction energies of all

combinations of these four types of monomers, in units of −ε. ε is positive and sets the energy

scale of our interactions; we will work with ε = 2kBT . kB and T are Boltzmann’s constant

and the absolute temperature respectively. If we write the sequences of these monomers of

two interacting patches as the vectors s and s′, then the interaction energy is v (s, s′), and

their equilibrium constant is

K (s, s′) =
(

1

2

)δij

a exp [−v (s, s′) /kBT ] , (2)

where a is a measure of the phase volume accessible to two interacting patches (it would also

absorb the effect of any non-specific binding), in units of nm3. We take a = (1/6)nm3, as in

earlier work [2, 3]. The prefactor is a symmetry factor that halves the equilibrium constant

between identical patches. Note that although the monomers determine the interactions in

our model and the residues determine the interactions in a real protein, there is no one-to-one

relationship between one of our monomers and an amino acid.

When two patches with sequences s and s′ interact every monomer of the sequence

s interacts with only one monomer of the sequence s′. As an example of the interaction

between two patches with short sequences, consider the two patches of nM = 5 monomers:

s = (H,+,P,P−) and s′ = (−,P,H,−,H). The interaction energy for this pair is then obtained

by considering the interactions between the first monomer of s and the last monomer of s′, the

second monomer of s and the last-but-one monomer of s′ and so on. For the sequences above

the five interactions are, in order, HH, +−, PH, PP and −−. Thus the total interaction
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H P + −

H 4 0 0 0

P 0 0 0 0

+ 0 0 −1 1

− 0 0 1 −1

Table 1. The interaction free energies between the four different monomer types, in units

of −ε, for the 4-letter alphabet of Backofen et al. (1999).

energy is −4ε: −5ε from the HH and +− interactions and ε from the −− interaction. Note

that the first monomer of one sequence interacts with the last, not the first, monomer of

the other sequence, the second with the last-but-one and so on. This is done as if each

element i interacted with the element i on the other patch, then when a patch interacted

with another patch with the same sequence any H monomers would always interact with

themselves making the interaction between two identical patches always strongly attractive.

Thus patches would always stick to themselves unless they had only a couple of H monomers.

This would severely restrict the possible sequences. Also, our model protein patch has a

primary structure, the sequence s, and the interactions drive the binding together of specific

pairs, quaternary structure, but it lacks secondary and tertiary structure.

There has been extensive previous work on simple models of proteins where only a single

isolated protein is considered, for example work on protein folding [25,26]. For example the

neutral evolution of single proteins has been considered [23], i.e., evolution via mutations that

still allow the protein to fold. There has also been some work on protein-ligand binding [27].

Proteins typically operate inside the crowded environment inside cells [18] surrounded by

thousands of other proteins, and many proteins have to interact with other proteins in order

to function. Thus there is a clear need to study the function and evolution of proteins

interactions.

4. Methods

We will need to sample many proteomes that are functional according to equation (1). To

do this we first require a functional proteome of N patches. This is generated as follows.

Each of the N/2 pairs of patches is obtained by starting with a pair of patches all of whose

monomers are polar, and then making enough of the corresponding pairs of elements either

both hydrophobic, or positive and negative, to make their equilibrium constant larger than

Kb. Having obtained N/2 pairs, we check the proteome for patches which violate equation

(1) by sticking (Kij > Ks) to patches other than their partner. Any pair of patches where

either patch violates equation (1) is then removed and replaced with another pair of patches
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selected as above. Having done this the proteome is again checked for violations of equation

(1). The two steps of replacing pairs in which a patch sticks to another and rechecking for

violations of equation (1) are then repeated a number of times until either a viable proteome

is obtained or it is concluded that a viable proteome either does not exist at this value of N

or that it is prohibitively difficult to locate such a proteome.

Having obtained a viable proteome, averages are obtained by simply mutating monomers

at random, and accepting the mutation if the mutated proteome still satisfies equation (1)

and rejecting it and returning to the original proteome if the mutated proteome violates

equation (1). This is a common simple model of neutral evolution used frequently to model

the neutral evolution of single proteins [23]. It generates a simple random walk in the

space of the proteome of the N proteins. This is similar to protein space [28] but of course

it is the space of a set of proteins, not that of a single protein. It is a proteome space

not a protein space. Also, after we generated a new viable proteome and before we start

accumulating averages, we evolve the proteome for a large number of attempted mutations.

This procedure removes any biases in the sampling due to the way we generate our starting

proteomes. To evolve the proteome we need to select the probabilities pαβ of a mutation

converting a monomer of type α into one of a different type β. We take all the probabilities of

type α = H,P,+,− mutating to a monomer of a different type β, pαβ to satisfy pαβ/pβα = 1

except that pHβ/pβH = 1/2. In the absence of selection for binding this makes H monomers

twice as common as the other three types.

For each proteome we looked at the interaction both between binding pairs and between

pairs of patches that do not bind to each other. In each case we determined the probability

distribution function p(u) of the interaction energy between the patches. It is convenient

to use the reduced interaction energy u = v(s, s′)/(−ε) — u is positive for attractive

interactions. Also, we took many pairs of proteomes and for each pair we calculated the

interactions of a patch from one proteome with the patches of the other proteome. From

this we were able to calculate the probability distribution function for the interactions p(u)

of a patch from one proteome with the patches of another.

5. Results and discussion

Lim and coworkers [1] studied a cell function called osmoresistance, which relies on binding

between the specific SH3 domain belonging to a protein called Sho1 and a domain on a

protein called Pbs2. They studied this in Saccharomyces cerevisiae (yeast), in which 27

distinct SH3 domains have been identified. They took 12 SH3 domains from organisms

other than S. cerevisiae as well as the other 26 SH3 domains of S. cerevisiae, and used each

domain in turn to replace the SH3 domain that in S. cerevisiae binds to Pbs2 to trigger

osmoresistance. Six of the 12 domains from other organisms bound sufficiently strongly to
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Figure 1. The probability distribution function, p, for u the interaction energy of a pair

of patches in units of −ε. a) is for a protein and its binding partner, and b) is for a protein

and any other protein that is not its binding partner; both are for pairs of proteins from the

same proteome. c) is for a protein introduced into another proteome; the squares are for any

two patches from different proteomes, and the curve with crosses is for pairs of patches with

random sequences. The number of monomers nM = 16, the number of patches N = 32,

and the interaction energy scale ε = 2kBT . The binding strength is Kb = 10
6nm3, and

Ks = 10
4nm3.
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the Pbs2 domain to allow at least partial osmoresistance. None of the 26 other SH3 domains

from S. cerevisiae did so. This second observation makes sense of course: if SH3 domains

other than the correct one trigger the osmoresistance pathway, then this pathway will be

triggered by mistake, which is undesirable. However, as Zarrinpar et al. [1] noted, the fact

that an SH3 domain from another organism sometimes binds to the osmoresistance Pbs2 of

yeast while the yeast’s own SH3 domains do not, suggests that the sequences of the SH3

domains are not only under selective pressure to bind to their partners they are also under

selective pressure not to bind to proteins other than their partner.
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In order to compare with the experimental data, we have generated many proteomes

and have calculated the probability distribution function p(u). u is the interaction energy

between pairs of patches, in units of −ε. We performed calculations for a proteome of N = 32

patches each with sequences nN = 16 monomers long; the minimum equilibrium constant

for binding Kb = 10
6nm3 and the maximum equilibrium constant allowed between patches

that are not partners Ks = 10
4nm3. These values for Kb and Ks are comparable to those

in in vitro measurements [1]. A binding strength of Kb = 10
6nm3 requires an interaction

energy of at least u = 8, and the upper limit Ks = 10
4nm3 means that non-binding pairs

must have u ≤ 5.

Figures 1a) and 1b) show the results for proteins in a functional proteome. In a) p(u)

is plotted for pairs of proteins that are binding partners, whereas in b) p(u) is plotted for

proteins that are not binding partners. Note that the data in b) do not fall on a smooth

curve because the number of ways of achieving a given value of u is not a smooth function of

u. The curve is reproducible. We see that for binding partners p(u) is cut off below u = 8,

while for other pairs p(u) is cut off above u = 5. These two cutoffs are essential for the

proteome to be functional. We need u ≥ 8 for a strong interaction in the protein interaction

network of our model proteome, but to avoid ‘cross-talk’ we need all other interactions to be

much weaker. When proteins are designed by protein engineers to bind with high specificity,

interactions with the wrong other proteins have to be explicitly designed out [4]. This is

often called negative design. For example Kortemme et al. [6] redesigned an existing pair of

binding proteins and used specific negative design to prevent the redesigned proteins binding

to the original proteins. Essentially, they designed in an upper cutoff of the form seen in

figure 1b).

Figure 1c) shows results for the interactions between a foreign patch that has been

introduced into a proteome and the N patches of this proteome. This distribution has no

cutoffs. Collectively the sequences of all the patches of a single viable proteome must be

such that equation (1) is satisfied, and so there are cutoffs present in the p(u)’s, but when

proteins from different proteomes are considered, this is not the case. The interactions are

not constrained. We have also calculated the probability distribution function for u assuming

complete randomness. We generated sequences of nM = 16 monomers that were random

but on average had the same fractions of polar, positive etc. monomers. For the parameter

values we are working with, the average fractions of monomers that are hydrophobic, polar,

positive, and negative are 0.17, 0.28, 0.27 and 0.27, respectively. The distribution function

for the interactions between patches with these sequences is shown as the crosses joined

by lines in figure 1c). We see that it describes the probability distribution function for the

interaction energy u between patches from different proteomes (the squares) quite well. Also,

we have shown the results for only one pair of values of nM and N but the results are not

very sensitive to variations in either parameter. In particular, the qualitative shapes of the
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nM = 12 16

N = 16 0.15 0.21

N = 32 0.10 0.15

N = 48 0.07 0.13

Table 2. The probability pr that a patch from one proteome will bind to a specific patch

in another proteome sufficiently strongly to act as a binding partner. Sufficiently strongly

means u ≥ 6, equivalent to an equilibrium constant of 2.7×104nm3 or a dissociation constant

' 40µM. The energy scale ε = 2kBT . Results are given for varying numbers of monomers,

nM , and of patches in the proteome, N .

curves is always as in figure 1.

Zarrinpar et al. [1] found that proteins that interacted with a dissociation constant of

around Kd = 40µM (measured in vitro) or less were able to at least partially reconstituted

osmoresistance. For our model, u = 6 is enough to give a dissociation constant this small. We

define pr as the probability of two patches interacting with u ≥ 6 and so binding sufficiently

strongly to act as binding partners. The probability of two patches from different proteomes

interacting with u ≥ 6, is pr = 0.15. This is rather lower than the 50% of foreign domains

that reconstituted osmoresistance in yeast [1], but given the simplicity of our model we

would not have expected quantitative agreement. Zarrinpar et al. [1] also present indirect

evidence that the foreign SH3 domains interfere with signalling pathways other than the

osmoresistance pathway. Within our model, with u = 6 considered enough to bind, on

average a foreign patch strongly affects 32× 0.15 ' 5 pathways.

In addition to our calculations with N = 32 patches with sequences nM = 16 long, we

have performed calculations with other values of N and nM and tabulated the results for

the probability of reconstituting a pathway in Table 2. The probability of reconstitution

increases with the number of monomers and decreases with the number of patches in the

proteome. Let us consider the dependence onN , the number of patches. We found above that

the distribution function p(u) for a protein in a foreign proteome could be reproduced quite

accurately by simply modelling the sequences by random sequences with the appropriate

fractions of H monomers, P monomers etc., see figure 1c). Now, for proteomes with

nM = 16 and N = 64, the average fractions of monomers that are hydrophobic, polar,

positive and negative are 0.16, 0.29, 0.28 and 0.28, respectively. These figures are rather

similar to those for nM = 16 and N = 32, 0.17, 0.28, 0.27 and 0.27, respectively. However,

for the larger value of N there are slightly fewer H monomers, and slightly more of the

charged and polar monomers. The H monomers mediate the strongest attraction so if we

consider the interactions between random sequences we see that decreasing the number of

H monomers while increasing the fraction of P, + and − monomers, will on average weaken
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the interactions. Varying the fraction of + and − monomers will have no effect when the

sequences are random as there will as many ++ and −− interactions as +− interactions.

Thus, as N increases the patches become a little less hydrophobic. Then two patches with

uncorrelated sequences are less likely to interact with an interaction energy u ≥ 6 and so

reconstitute a pathway. Recall that the interaction between patches from different proteomes

can be modelled quite accurately by the interaction between uncorrelated sequences, see

figure 1c).

It is also true that pr is sensitive to the alphabet of monomers used. Work with a

simple 2-letter alphabet version of the model, that of [3], gives significantly smaller values

of pr [29]. The larger, 20-letter, alphabet of real proteins may partially explain the larger

values of pr found by Zarrinpar et al. [1]. We should also say that all our N model patches

are equivalent, whereas presumably there was some variation in the SH3 domains studied by

Zarrinpar et al. [1], particularly as they are from a variety of different species. Finally, when

we evolved our proteomes, we took all the probabilities of type α = H,P,+,− mutating to

a monomer of a different type β, pαβ to satisfy pαβ/pβα = 1 except that pHβ/pβH = 1/2. In

the absence of selection for binding, this makes H monomers twice as common as the other

three types. This was just a simple choice; calculations done where the probabilities pαβ are

different changes the values of pr somewhat.

Our proteomes are a uniform, i.e., unbiased, sample of all proteomes satisfying our

requirement for viability, equation (1), Proteomes can be considered as points in proteome

space. A point in this space is defined by the values of the elements of the sequences of all

the patches. Proteome space is just a generalisation of protein space [28]. We sample the

functional parts of this proteome space uniformly. Evolution will introduce at least some

bias, i.e., favour some possible fit proteomes over others. However, although the curves of

figure 1 are averages over many proteomes, the curve for a single protein inserted into a

single foreign proteome typically looks rather similar to figure 1, i.e., most foreign proteins

inserted into most proteomes have results that resemble our averaged findings. We conclude

that biases are unlikely to change our results greatly.

5.1. Rate of evolution

It has been suggested [10] that analysis of protein sequence data shows that there is a negative

correlation between the number of other proteins a given protein interacts with and its rate

of evolution. This suggestion is controversial [10–15]. There is also other work [16,17]. that

has found that the evolution of residues in proteins that participate in specific binding is

slower than that of other residues. We look at whether neutral evolution of the sequences of

our patches depends on whether they are required to bind to specific other patches or not.

We consider only neutral evolution, not the evolution of new interactions, and assume

that the rate of neutral evolution is proportional to the fraction of mutations that are neutral
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not deleterious. The idea is that mutations arise spontaneously at a constant rate; those

that are neutral are retained and contribute to the measured rate of change of the sequence,

while those that are deleterious are eliminated. Thus, the higher the fraction of possible

mutations that are neutral the faster the rate of neutral evolution.

When we evolve our proteomes they undergo a random walk in proteome space. For

the system of figure 1, i.e., N = 32 patches, on average a fraction 0.21 of mutations of

a functional proteome result in another functional proteome, as defined by equation (1).

The remaining fraction 0.79 of mutations result in proteomes that violate equation (1). In

contrast if we consider a proteome of N = 32 patches that are simply required not to be too

sticky, i.e., we simply require that all Kij < Ks, a fraction 0.54 of mutations of one functional

proteome result in another functional proteome. In the absence of any requirement to engage

in high-specificity protein-protein interactions, the proteome explores proteome space at a

rate that is a factor of 0.54/0.21 = 2.6 higher. Thus, within this simple calculation for our

simple model, the requirement to bind reduces the rate of evolution by almost a factor of

three.

We can look at why mutations of a proteome with high-specificity binding are

deleterious. We find that a fraction 0.27 of mutations are deleterious because they weaken

the binding between a patch and its partner enough to make the equilibrium constant drop

below Kb, but a much higher fraction, 0.67 of mutations are deleterious because they cause a

patch to bind to a patch other than its partner with an equilibrium constant greater than Ks.

Thus most mutations are deleterious because they violate the negative-design requirement

to avoid sticking to the wrong other patch. Selection eliminates sequences because they

bind too strongly to a protein other than their partner. Note that 0.67 and 0.21 do not

add up to 0.79 because some mutations cause both requirements to be violated. Within our

model, the functional requirement to bind with high specificity reduces the fraction of neutral

mutations more than does the requirement not to stick to other patches. For these reasons

binding patches evolve much more slowly. In real proteins, other factors will affect the rate

of evolution: the evolution may not be completely neutral; there are constraints on the

amino-acid sequences other than those due to protein-protein interactions, the requirement

to fold for example, and so on. These other factors may be obscuring the effect of binding

on the rate of evolution, making the evidence for it ambiguous.

6. Conclusion and outlook

The work of Zarrinpar et al. [1] suggests that if we want to synthesise a peptide that can

block one and only one signalling pathway, not only do we need to design the peptide to

bind to a specific domain but we need to design it to specifically avoid all other members of

this class of domains. This is certainly true for the model proteomes studied here, and of
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course it requires knowledge of the sequences of all these other proteins. Thus, if we want to

develop a peptide drug that is highly specific, i.e., had few or no side effects, then we need

to explicitly use negative design to design out unwanted interactions in order to avoid side

effects. Without negative design the equilibrium constants for the interactions of the peptide

drug with other domains, and hence potential side effects, may lie anywhere within a very

wide range. Indeed the distribution of interaction energies can be accurately modelled by

the interaction energies between purely random sequences, with the same average fraction

of hydrophobic, positive, etc. monomers.

Half of the 12 foreign SH3 domains were found to bind to the osmoresistance SH3 partner

(Pbs2) in yeast whereas none of yeast’s other 26 SH3 domains did so. This is clear evidence:

i) that the evolution of the 27 SH3 domains is that the proteome level, i.e., it is not the case

that one of the 27 pairs evolves independently of the other 26 pairs, and ii) that the evolution

has required selection against binding to the wrong other protein as well as for binding to

the right other protein. Also, maintaining this functional set of proteins must involve the

elimination of mutations that cause inappropriately strong interactions between a domain

and another domain that is not its partner. Certainly within our model, during our simple

model of neutral evolution, more mutations are rejected because they cause interactions

between domains that are not partners than because they weaken a binding interaction.

There is evidence that proteins whose function requires a number of specific interactions

evolve slowly [10–17]. If this is so our calculations suggest that the slow rate of evolution

is to a great extent due to many mutations being rejected because they cause inappropriate

binding. Studies on yeast with mutant forms of binding proteins may be able to observe this

effect.
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Glossary

Interactome. A complete set of interactions in an organism, typically specific functional

interactions between proteins.

Negative design. The design of an object not to do something, e.g., a protein can be designed

not to bind to another protein. This is contrast to positive design, where a protein might be
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designed to do something, e.g., to bind to another protein.

Proteome. A set of proteins, especially either the complete set of proteins encoded for by

the genome of an organism or that present in a cell at a particular time.

Specific binding. A pair of proteins in a mixture of many proteins, such as that inside cells,

binding to each other and only to each other, not to any other protein present.
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