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Abstract
We consider random matrices, belonging to the groups U(n), O(n), SO(n), and
Sp(n) and distributed according to the corresponding unit Haar measure. We prove
that the moments of traces of powers of the matrices coincide with the moments of
certain Gaussian random variables if the order of moments is low enough. Corre-
sponding formulas, proved partly before by various methods, are obtained here in
the framework of a unique method, reminiscent of the method of correlation equa-
tions of statistical mechanics. The equations are derived by using a version of the
integration by parts.

1 Introduction

Consider the probability space, whose objects are n × n unitary matrices, and whose
probability measure is unit the Haar measure on the group U(n). Denote E {...} the
expectation with respect to the measure. Let a : N \ {0} → N be a function, defined on
positive integers and assuming non-negative integer values such that only finitely many
of them are different from zero. Given two such functions a and b, consider the moment

E

{∏

l≥1

(TrU l
n)al(TrU l

n)bl

}
. (1.1)

Denote
κ(a) =

∑

l≥1

lal <∞. (1.2)

It follows from the invariance of the Haar measure with respect to the transformation
Un → eiϕUn, ϕ ∈ [0, 2π) that (1.1) is zero if κ(a) 6= κ(b). Hence, without loss of
generality, we can confine ourselves to the moments, whose multi-indices a and b satisfy
the condition: κ(a) = κ(b). In this case we call

κ := κ(a) = κ(b) (1.3)

the order of the corresponding moment, and we write

m(n)
κ (a; b) = E

{∏

l≥1

(TrU l
n)al(TrU l

n)bl

}
. (1.4)
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In the recent paper [4] (see also [5, 8]) Diaconis and Evans proved the formulas:

m(n)
κ (a; b) = µκ(a; b), κ ≤ n, (1.5)

where
µκ(a; b) =

∏

l≥1

lalal!δal,bl , (1.6)

and
E
{

TrU j
n TrUk

n

}
= min{j, n} · δj,k, (1.7)

for all positive integers j.
Denote {Xl}l≥1 and {Yl}l≥1 independent standard Gaussian random variables (i.e.,

of zero mean and of unit variance) and set Zl = (Xl + iYl)/
√

2. Then (1.4)–(1.6) are
equivalent to [4]

E

{∏

l≥1

(TrU l
n)al(TrU l

n)bl

}
= E

{∏

l≥1

(
√
lZl)

al(
√
lZ l)bl

}
, κ ≤ n. (1.8)

Hence the mixed moments of traces of powers of matrices of U(n) whose orders do not
exceed n coincide with analogous moments of multiples of the standard Gaussian complex
random variables. This is why this property is called in [9] the mock Gaussian property.
Notice that a collection of random variables

{
(TrU l

n)al , (TrU l
n)bl
}
l≥1

cannot be Gaussian for any two multi-indices a and b. A simple example is given by the
pair {

(TrU l
n)al , (TrU l

n)al
}
, l > n.

Indeed, according to formulas (2.21), (2.25), and (2.26) below, the characteristic function
of the pair is not Gaussian.

Analogous result was obtained in [4, 5] also for the orthogonal group O(n). Namely, let
us view O(n) as the probability space whose probability measure is the normalized to unity
Haar measure of the group and denote again E {...} the expectation with respect to the
measure. Given a multi-index a : N \ {0} → N with finitely many non-zero components,
consider the moments

m(n)
κ (a) := E

{∏

l≥1

(TrOl
n)al

}
. (1.9)

Then, according to [4, 5], we have

m(n)
κ (a) = E

{∏

l≥1

(√
lXl + ηl

)al
}
, ηl =

(
1 + (−1)l

)
/2, (1.10)

where
κ ≤ n/2. (1.11)
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On the other hand, by using the explicit form of the matrices of SO(2), it is easy to check
that the collection of random variables

{
(TrOl

n)al
}
l≥1

is not Gaussian, at least for n = 2.
Similarly, if

m̂(n)
κ (a) := E

{∏

l≥1

(TrSln)al

}
(1.12)

are the moments of symplectic matrices with respect to the unit Haar measure on Sp(n),
then we have [9]

m̂(n)
κ (a) = E

{∏

l≥1

(√
lXl − ηl

)al
}
, κ ≤ n+ 1. (1.13)

The proofs of (1.5)–(1.7), (1.10)–(1.11), and (1.13) in [4, 5] were based on the representa-
tion theory of the groups U(n), O(n), and Sp(n), in particular, on the works [16] on the
Brauer algebras of O(n) and Sp(n). Another proof of (1.5) was given in [11] (Appendix).
It is based on certain identities for the Töplitz determinants [1]. Hughes and Rudnick [9]
proved (1.10) for the group SO(n) and κ ≤ n− 1 and (1.13), by using the combinatorics
of the cumulant expansion, constructed by using the Weyl integration formulas for SO(n)
and Sp(n).

We will prove (1.5) for U(n), (1.10) for the both groups O(n), and SO(n) and for
κ ≤ n−1, and (1.13) by using a unique and elementary method, similar to the method of
correlation equations of statistical mechanics. We also give proofs of (1.7) and of certain
related formulas, by using standard means of the random matrix theory, in fact, the so
called determinant form of the Weyl formula for the restriction of the Haar measure of
U(n) to the space of cental functions (see e.g. [13]). Similar formulas for other classical
groups [12] yield analogs of (1.7), i.e. the variances of traces of matrices, for other classical
groups (see e.g. [9], Section 2). For example, for the Sp(n) we have

E{TrSjn} = −
{
ηj, j ≤ n,
0, j > n,

(1.14)

and

E
{(

TrSjn − E{TrSjn}
)(

TrSkn − E{TrSkn}
)}

(1.15)

= δj,k





j, j ≤ n/2,
j − 1, 1 + n/2 ≤ j ≤ n,
n, j > n.

Notice that to have (1.5), (1.10), and (1.13) in the full range (κ ≤ n, κ ≤ n − 1 and
κ ≤ n+ 1 respectively) is important for comparison with results on the behavior of linear
statistics of zeros of the Riemann ζ-function and the L-functions [10]. It is also of interest
for the quantum chaos studies [8]. Certain questions related to the above moments were
considered in [3, 2, 7, 14, 19, 18, 21].
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2 Unitary Group

Our proof will be based on the following simple implication of the left invariance of Haar
measure on U(n).

Proposition 2.1. Let F : U(n)×U(n)→ C be a continuously differentiable function.
Then for any n× n Hermitian matrix X we have

E
{
F ′1(Un, U

∗
n) ·XUn − F ′2(Un, U

∗
n) · U∗nX

}
= 0, (2.1)

where U∗n is the Hermitian conjugate of Un, and F ′1 and F ′2 are derivatives of F with
respect to its first and second argument correspondingly, i.e., linear applications in the
vector space of n× n matrices.

The proposition follows from the fact that e−itX is a unitary matrix for any real t and
that E

{
F (eitXUn, U

∗
ne
−itX)

}
is independent of t because of the left invariance of the Haar

measure of U(n) .

Lemma 2.2. Denote T pl the operation, replacing the lth value al of a given multi-index
a by al + p, p ∈ Z: (T pl a)m = am + pδl,m. Let j be the left hand endpoint of the support
of a. Then we have the following identities

m(n)
κ (a; b) +

1

n

(
(1− δj,1)

j−1∑

l=1

m(n)
κ (TlTj−lT−1

j a; b) + j(aj − 1)m(n)
κ (T−2

j T2ja; b)

+
∑

l≥j+1

lalm
(n)
κ (T−1

j T−1
l Tj+la; b)

)
(2.2)

= jbjm
(n)
κ−j(T

−1
j ak;T

−1
j b) +

1

n

(
(1− δj,1)

j−1∑

l=1

lblm
(n)
κ−l(Tj−lT

−1
j a;T−1

l b)

+
∑

l≥j+1

lblm
(n)
κ−j(T

−1
j a;T 1

l−jT
−1
l b)

)
.

Proof. Choosing in (2.1) X = zX(x,y) + z(X(x,y))T , where z is an arbitrary complex
number and

X(x,y) = {δpxδqy}np,q=1, (2.3)

we conclude that formula (2.1) is valid also in the case where X is replaced by X(x,y) (in
fact, by any real matrix).

We apply (2.1) with X = X(x,y) to

F (Un, U
∗
n) = (U j

n)x,y
(
TrU j

n

)aj−1
∏

l≥j+1

(
TrU l

n

)al∏

l≥1

(
Tr (U∗n)l

)bl
. (2.4)
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Taking into account the relations

(
(Um

n )x,y

)′
·X(x,y)Un =

m−1∑
i=0

(
U i
nX

(x,y)Um−i
n

)
x,y

=
m−1∑
i=0

(
U i
n

)
x,x

(
Um−i
n

)
y,y

= δx,x (Um
n )y,y +

m−1∑
i=1

(
U i
n

)
x,x

(
Um−i
n

)
y,y
,

(TrUm
n )′ · X(x,y)Un = mTrUm

n X = m (Um
n )y,x ,

(Tr (U∗n)m)
′ · U∗nX

(x,y) = m ((U∗n)m)y,x ,

and the equality UnU
∗
n = 1, we obtain

δxxE
{

(U j
n)y,yα−β

}
+

j−1∑
i=1

E
{(
U i
n

)
x,x

(
U j−i
n

)
y,y
α−β

}
(2.5)

+ (aj − 1)jE
{(
U j
n

)
x,y

(
U j
n

)
y,x

(
TrU j

n

)aj−2
α+β

}

+
∑

l≥j+1

allE
{(
U j
n

)
x,y

(
U l
n

)
y,x
α(l)β

}

−
∑

l≥1

bllE
{(
U j
n

)
x,y

(
(U∗n)l

)
y,x
α−β(l)

}
= 0,

where

α− =
(
TrU j

n

)aj−1
α+, α+ =

∏

l≥j+1

(
TrU l

n

)al , β =
∏

l≥1

(
Tr (U∗n)l

)bl
,

α(l) =
(
TrU j

n

)aj−1 (
TrU j+1

n

)aj+1 ...
(
TrU l−1

n

)al−1
(
TrU l

n

)al−1 (
TrU l+

n

)al+1 ...,

β(l) = (TrU∗n)b1 ...
(
Tr (U∗)l−1

n

)bl−1
(
Tr (U∗n)l

)bl−1 (
Tr (U∗n)l+1

)bl+1 ....

Since the moments (1.4) can be written as

m
(n)
k (a; b) (2.6)

=
n∑
x=1

E

{
(U j

n)x,x (TrU j
n)
aj−1 ∏

l≥j+1

(
TrU l

n

)al ∏
l≥1

(
Tr (U∗n)l

)bl
}
,

we apply to (2.5) the operation n−1
∑n

x,y=1 and we obtain, after regrouping terms, the
assertion of the lemma.

Remark. It will be important in what follows that the orders of all moments on the r.h.s.
of (2.2) equal κ, while the orders of all moments on the l.h.s. are less then κ (κ − 1 at
most).

Now we are ready to prove formulas (1.5)–(1.7) (Theorem 2.1 of [4]).

Theorem 2.3. Let m
(n)
k (a; b) be the moments of traces of powers of unitary matrices,

defined in (1.2)–(1.4). Then we have formulas (1.5)–(1.7).
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Proof. We prove first (1.5). To this end we present the result of Lemma 2.2 in a more con-
venient form, reminiscent of that of the correlation equations (for instance, the Kirkwood-
Salzburg equations) of statistical mechanics (see e.g. [17]).

Given a non-negative integer K, denote PK the set of multi-indices such that

PK =

{
a = {al}l≥1 :

∑

l≥1

lal ≤ K

}
. (2.7)

Consider the vector space L(U)
K of collections of complex numbers, indexed by pairs (a, b)

such that κ(a) = κ(b) and a, b ∈ PK , and call the integer κ of (1.3) the order of a

component v(a; b) of v ∈ L(U)
K . We define in L(U)

K the uniform norm

||v||U = max
a,b∈PK

|vκ(a; b)|. (2.8)

Furthermore, we view the expression in the parentheses of the l.h.s. of (2.2), the first term
of the r.h.s., and the expression in the parentheses of the r.h.s. of (2.2) as the results of

action of certain linear operators on the vector m
(n)
K , whose components are the moments

(1.4) of the orders κ ≤ K. In other words, if j is the left hand endpoint of the support of

a, then we set for v ∈ L(U)
K :

(AUv)κ(a; b) = (1− δj,1)

j−1∑

l=1

vκ(TlTj−lT−1
j a; b) (2.9)

+ j(aj − 1)vκ(T
−2
j T2ja; b) +

∑

l≥j+1

lalvκ(T
−1
j T−1

l Tj+la; b),

(BUv)κ(a; b) = jbjvκ−j(T−1
j a;T−1

j b), (2.10)

(CUv)κ(a; b) = (1− δj,1)

j−1∑

l=1

lblvκ−l(Tj−lT−1
j a;T−1

l b) (2.11)

+
∑

l≥j+1

lblvκ−j(T−1
j a;Tl−jT−1

j b).

With this notation we can rewrite (2.2) as the following equation in L(U)
K :

(
I + n−1AU

)
m

(n)
K = BUm

(n)
K + n−1CUm

(n)
K . (2.12)

Besides, it is easy to see that the sequence (1.6)–(1.8) verifies the following recursion
relation, valid for any l ≥ 1:

µκ(a; b) = lblµκ−l(T−1
l a;T−1

l b). (2.13)

By using (2.9)–(2.11) and (2.13), we can prove the following (see Appendix)

Lemma 2.4. Let AU , BU and CU be the linear operators, defined by (2.9)–(2.11). We
have

(i) ||AU || ≤ (K − 1),

(ii) if µK is the vector of LK, whose components are given by (1.6) for
all κ ≤ K, then

BUµK = µK , CUµK = AUµK .
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Since BUm
(n)
K and CUm

(n)
K include the moments whose orders are strictly less than K, we

can use (2.12) to find the moments of the order K, provided that the moments of lower
orders are known. This suggests the use of the induction in K to prove formula (1.5).

Indeed, it is easy to check that for K = 0, 1 formula (1.5) holds: the equality

m
(n)
0 (a; b) = 1 is evident and the equality m

(n)
1 (a; b) = 1 can already be deduced from

(2.2) (it is also the normalization of the character of U(n)).

Assume now that m
(n)
κ (a, b) = µκ(a, b), ∀κ ≤ K − 1. The r.h.s. of (2.10)–(2.11)

contain the components of v, whose order does not exceed K − 1. Hence we can write:
BUm

(n)
K = BUµK , CUm

(n)
K = CUµK . These facts and the second assertion of the lemma

allow us to replace (2.12) by the following relation

(
I + n−1AU

)
m

(n)
K =

(
I + n−1AU

)
µK . (2.14)

Now the first assertion of the lemma implies that if K ≤ n, then the operator I + n−1AU
is invertible. Hence, for K ≤ n (2.14) is equivalent to (1.5).

To prove (1.7) we first note that its part, corresponding to j ≤ n is a particular case
of (1.5). Hence we have to prove (1.7) for j > n. We will use the standard mean of
the random matrix theory, so called determinant form of the joint probability density of
eigenvalues of the random matrix Un (the Circular Unitary Ensemble), widely used in
the random matrix theory since the seminal paper by Dyson [6] (see also [13]). Namely,
if λα = eiθα , θα ∈ [0, 2π), α = 1, ..., n are eigenvalues of Un, then their joint eigenvalue
density with respect to the measure dθ1...dθn/(2π)n on the n-dimensional torus is

pn(θ1...θn) = (n!)−1|∆(θ1...θn)|2, (2.15)

where
∆(θ1...θn) =

∏

1≤α<β≤n
(eiθα − eiθβ) = det{ei(j−1)θα}nj,α=1. (2.16)

Note, that (2.15)–(2.16) is, in fact, the Weyl integration formula for the restriction of the
Haar measure on U(n) to the space of central function [12, 22]. This implies the so-called
determinant formula for the lth marginal density pn,l of pn [6, 13]:

pn,l(θ1...θl) =
[
n(n− 1)...(n− l + 1)

]−1
det{Kn(θα, θβ}lα,β=1, (2.17)

where

Kn(θ′, θ′′) =
n−1∑

l=0

eil(θ
′−θ′′). (2.18)

By using (2.17) for l = 1, 2, it is easy to prove (1.7). We will give below a bit dif-
ferent version of the above technique, to demonstrate corresponding simple and general
mathematical mechanisms. Our presentation is rather close to those of [8, 19].

Given j ≥ 1, consider the moments

E
{(

TrU j
n

)p (
TrU j

n

)p}
, p = 0, 1, ... (2.19)

and their generating function

F (t) =
∞∑
p=0

t2p

(p!)2
E
{(

TrU j
n

)p (
TrU j

n

)p}
. (2.20)
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It follows from the invariance of the Haar measure with respect to the change Un →
eiϕUn, ϕ ∈ [0, 2π) that

E
{(

TrU j
n

)p (
TrU j

n

)q}
= δp,qE

{(
TrU j

n

)p (
TrU j

n

)p}
.

Hence, F (t) can be written as

F (t) =
∞∑

p,q=0

tptq

p!q!
E
{(

TrU j
n

)p (
TrU j

n

)q}
= E

{
exp

[
tTrU j

n + tTrU j
n

]}

= E

{
exp

[
n∑

α=1

teijθα +
n∑

α=1

te−ijθα
]}

= E

{
n∏

α=1

g(θα)

}
, (2.21)

where
g(θ) = exp

[
teijθ + te−ijθ

]
, (2.22)

and in writing this formula we took into account the spectral theorem for unitary matrices,
according to which TrU j

n =
∑n

α=1 e
ijθα .

Combining now (2.15)–(2.16), (2.21)–(2.22), and the Gram theorem (see e.g. [20]), we
obtain that

F (t) = detAn, (2.23)

where the entries Am1,m2 of the n× n matrix An are

Am1,m2 =
1

2π

∫ 2π

0

exp
[
teijθ

]
exp

[
te−ijθ

]
ei(m1−m2)θdθ, 1 ≤ m1,m2 ≤ n. (2.24)

Expanding the exponentials exp
[
teijθ

]
and exp

[−teijθ] and taking into account that the
difference m1 −m2 in the integrand of (2.24) varies between −(n − 1) and (n − 1) (see
(2.15)–(2.16)), we find easily that if j > n, then Am1,m2 = δm1,m2f(t), where

f(t) =
1

2π

∫ 2π

0

exp
[
teijθ + te−ijθ

]
dθ =

∞∑
p=0

t2p

(p!)2
(2.25)

is I0(2t), and I0 is the modified Bessel function. This and (2.23) implies that

F (t) = (f(t))n , (2.26)

and in view of (2.20) we obtain (1.7) for j > n just calculating the second derivative of
(2.26) at t = 0.

Remark 1. Formulas (2.25)–(2.26) allow us to find also other ”binary” moments for j > n.
For example

E

{(
TrU j

n

)2
(

TrU j
n

)2
}

= n(2n− 1), j > n.

Remark 2. Formula (1.7) was obtained in [8] by a similar argument.
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Remark 3. If we confine ourselves to the case j > n already in formula (2.21), then we
can obtain (2.25)–(2.26) without (2.23)–(2.24). Indeed, consider a more general function

G(s1, ..., sn, t1, ..., tn) = E

{
exp

[
n∑

α=1

sαe
ijαθα +

n∑
α=1

tαe
−ijαθα

]}

= E

{
n∏

α=1

exp
[
sαe

ijαθα
]

exp
[
tαe
−ijαθα]

}
.

coinciding with (2.21) if s1 = ... = tn = t, j1 = ... = jn = j. Assume that all integers
j1, ...jn are strictly bigger than n. Expanding every exponential in the second line of this
formula and taking into account that the r.h.s. of (2.16) contains the exponentials eilθα

with |l| ≤ n− 1, we obtain easily that

G(s1, ..., sn, t1, ..., tn) =
n∏

α=1

f(
√
sαtα). (2.27)

Setting here s1 = ... = tn = t, we obtain in the r.h.s. the r.h.s. of (2.26). For j1 = ... =
jn = j > n we obtain the characteristic function of eigenvalues of U j

n, and then (2.27)
implies that eigenvalues of U j

n are statistically independent if j > n. This interesting
phenomenon was discussed in [15] in the a general context of compact Lee groups.

One more manifestation of the phenomenon is the closed form of the generating func-
tion of the family of moments

E
{

(TrU j1
n )a1 ...TrU jp

n )ap(TrUk1
n )b1 ...(TrU

kq
n )bq

}

for any fixed j1, ...jp, k1, ...kq that are all strictly bigger than n, and for a1, ...ap, b1, ...bq,
varying over N. In this case we consider a multi-variable analog of (2.21):

F (s1, ..., sp, t1, ..., tq) =
∞∑
a1=0

...

∞∑

bq=1

p∏
µ=1

s
aµ
µ

aµ!
(TrU jµ

n )aµ
q∏

ν=1

tbν
ν

bν !
(TrUkν

n )bν ,

and we obtain (cf (2.26)–(2.25))

F (s1, ...sp, t1, ..., tq) = [f(s1, ..., sp, t1, ..., tq)]
n,

where

f(s1, ..., sp, t1, ..., tq) =
1

2π

∫ 2π

0

exp

[
p∑

α=1

sαe
ijαθ +

q∑

β=1

tβe
−ikβθ

]
dθ.

Remark 4. Since the proof of the formulas (1.5)–(1.6) for the mixed moments is based on
the induction argument, it requires the both, equation (2.12) (or (2.2)) and the explicit
form (1.5) (or (1.8)) of the moments for κ ≤ n. It is interesting to note in this connection
that the explicit form can also be obtained from the equation (2.12) (or (2.2)) as the
n→∞ limit of the moments. Indeed, by using (2.2), whose r.h.s. contains the moments
of the order less than κ, we can prove by induction in κ that for any given K all the
moments of the order less or equal K are uniformly bounded in n. Hence, the sequence
{m(n)

K }n≥K of the vectors of the space L(U)
K is bounded in n. Besides, it is easy to see that

the norms of the operators B and C of (2.10) and (2.11) are bounded by K. Thus, by
the compactness argument, the limit mK of any converging subsequence of the sequence
{m(n)

K }n≥K satisfies the equation mK = BmK . In view of (2.10) and (2.13), this equation
is equivalent to (1.5).
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3 Orthogonal and Symplectic Groups

3.1 Orthogonal Groups

In this subsection we prove (1.10) for the groups O(n) and SO(n) and for κ ≤ n− 1. As
in the previous section we will use the following simple

Proposition 3.1. Let F : O(n)→ R be a continuously differentiable function. Then,
for any n× n real antisymmetric matrix X we have (cf. (2.1))

E {F ′(On) ·XOn} = 0, (3.1)

where F ′ is the derivative of F .

The proposition follows from the fact that the expression E
{
F (etXOn)

}
is independent

of a real parameter t.

Remark. Since the matrices etX , t ∈ R belong to SO(n), formula (3.1) is also valid, if we
replace O(n) by SO(n) and the unit Haar measure on O(n) by the unit Haar measure
on SO(n). This implies that our result, whose derivation below is based on this formula,
will be valid for the both groups: O(n) and SO(n).

Lemma 3.2. Denote aj the first from the left non-zero component of the multi-index

a = {al}l≥1. Then we have the following identity for the moments m
(n)
κ (a) of (1.9):

m(n)
κ (a) +

1

n− 1

(
(1− δj,1)

j−1∑

l=1

m(n)
κ (TlTj−lT−1

j a) + j(aj − 1)m(n)
κ (T−2

j T2ja)

+
∑

l≥j+1

lalm
(n)
κ (T−1

j T−1
l Tj+la)

)

=
n

n− 1

(
ηjm

(n)
κ−j(T

−1
j a) + j(aj − 1)m

(n)
κ−2j(T

−2
j a)

)
(3.2)

+
1

n− 1


2(1− δj,1)

∑

l<j/2

m
(n)
κ−2l(Tj−2lT

−1
j a) +

∑

l≥j+1

lalm
(n)
κ−2j(T

−1
j Tl−jT−1

l a)

)
,

where ηj is defined in (1.10).

Proof. We write (1.9) as

m
(n)
k (a) =

n∑
x=1

E

{
(Oj

n)x,x
(
TrOj

n

)aj−1
∏

l≥j+1

(
TrOl

n

)al
}
, (3.3)

and use Proposition 3.1 with

F (On) = (Oj
n)x,y

(
TrOj

n

)aj−1
∏

l≥j+1

(
TrOl

n

)al , (3.4)

and with
X = Y (x,y) := {δpxδqy − δpyδqx}np,q=1. (3.5)
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Taking into account the relations

(
(Om

n )x,y

)′
· Y (x,y)On =

m−1∑
i=0

(
Oi
nY

(x,y)Om−i
n

)
x,y

=
m−1∑
i=0

((
Oi
n

)
x,x

(
Om−i
n

)
y,y
− (Oi

n

)
x,y

(
Om−i
n

)
x,y

)

= δx,x (Om
n )y,y +

m−1∑
i=1

(
Oi
n

)
x,x

(
Om−i
n

)
y,y
− δx,y (Om

n )x,y

−
m−1∑
i=1

(
Oi
n

)
x,y

((
Om−i
n

)T)
y,x
,

(TrOm
n )′ · Y (x,y)On = mTrOm

n Y
(x,y) = m (Om

n )y,x −m (Om
n )x,y

= m (Om
n )y,x −m

(
(Om

n )T
)
y,x
,

and also the equality OnO
T
n = 1, where OT

n is the transposed matrix, we obtain

δxxE
{

(Oj
n)y,yα−

}− δxyE
{

(Oj
n)x,yα−

}
+

j−1∑
i=1

E
{(
Oi
n

)
x,x

(
Oj−i
n

)
y,y
α−
}

(3.6)

−
j−1∑
i=1

E
{(
Oi
n

)
x,y

(
Oj−i
n

)T
y,x
α−
}

+(aj − 1)jE
{(
Oj
n

)
x,y

((
Oj
n

)
y,x
− (Oj

n

)T
y,x

) (
TrOj

n

)aj−2
α+

}

+
∑

l≥j+1

allE
{(
Oj
n

)
x,y

((
Ol
n

)
y,x
− (Ol

n

)T
y,x

)
α(l)

}
= 0,

where

α− =
(
TrOj

n

)aj−1
∏

l≥j+1

(
TrOl

n

)al , α+ =
∏

l≥j+1

(
TrOl

n

)al ,

α(l) =
(
TrOj

n

)aj−1 (
TrOj+1

n

)aj+1 ...
(
TrOl−1

n

)al−1
(
TrOl

n

)al−1
∏

m≥l+1

(TrOm
n )am .

Applying to (3.6) the operation n−1
∑n

x,y=1, regrouping terms and using (3.3), we obtain
(3.2).

Theorem 3.3. Let m
(n)
κ (a) be the moments (1.9) of traces of powers of orthogonal

matrices, belonging to O(n) or SO(n). Then we have formulas (1.10) for all κ ≤ n− 1.

Proof. As in the previous section we consider the vector space L(O)
K of collections of real

numbers, indexed by the multi-index a = {al}l≥1 of the set PK of (2.7), and we call

the integer κ of (1.3) the order of a component v(a) of v ∈ L(O)
K , if the index a of the

component satisfies (1.3). We define in L(O)
K the uniform norm:

||v||O = max
a∈PK

|v(a)|. (3.7)
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Furthermore, we define the linear operators AO, BO, and CO as follows. If aj is the first
from the left non-zero component of a ∈ PK , then

(AOv)κ(a) = (1− δj,1)

j−1∑

l=1

vκ(TlTj−lT−1
j a) (3.8)

+ j(aj − 1)vκ(T
−2
j T2ja) +

∑

l≥j+1

lalvκ(T
−1
j T−1

l Tj+la),

(BOv)κ(a) = ηjvκ−j(T−1
j a) + j(aj − 1)vκ−2j(T

−2
j a), (3.9)

(COv)κ(a) = 2(1− δj,1)
∑

l<j/2

vκ−2l(Tj−2lT
−1
j a) (3.10)

+ ηjvκ−j(T−1
j a) + j(aj − 1)vκ−2j(T

−2
j a)

+
∑

l≥j+1

lalvκ−2j(T
−1
j Tl−jT−1

l a).

With this notation we can rewrite (3.2) as (cf (2.12))

(
I + (n− 1)−1AO

)
m

(n)
K = BOm

(n)
K + (n− 1)−1COm

(n)
K . (3.11)

Besides, if we denote µκ(a) the r.h.s. of (1.10), then the integration by parts yields the
relation (2.13)

µκ(a) = ηlµκ−l(T−1
l a) + l(al − 1)µκ−2l(T

−2
l a), (3.12)

valid for any l ≥ 1 and al ≥ 1.
By using (3.8)–(3.12), we can prove an analog of Lemma 2.4 (see Lemma A.1of the

Appendix). Thus, the rest of the proof of (1.10) for κ ≤ n− 1 coincides with that of the

unitary case, taking into account that m
(n)
0 (a) = 1 and m

(n)
1 (a) = 0. The first equality is

evident, and the second follows already from (3.2) (it is implied also by the orthogonality
of the characters of the groups O(n) and SO(n) to a constant).

Remark. It can also be shown that the explicit form (3.12) of the moments (1.1) can be
obtained by passing to the limit n→∞ in (3.11), analogously to the unitary case.

3.2 Symplectic Group

Here we will prove (1.13). Recall that Sp(n) is the subgroup of U(n) for an even order

n = 2ν,

consisting of unitary matrices such that J = UJUT , where

J =

(
0 −1
1 0

)
⊗ 1ν .

These matrices can be viewed as ν × ν matrices, whose entries are 2× 2 blocks. We will
index the blocks by pairs of the Latin characters, running each from 1 to ν and the entries
of a block by pairs of the Greek characters, assuming values ±1, so that

Sn = {Sαx,βy}νx,y=1;α,β=±1.
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In particular we have: Jα,x;β,y = −αδα,−βδx,y. If a n× n matrix X is such that Sn = eitX

belongs to Sp(n) for some real t, then X is Hermitian and its blocks have the form
(
ax,y bx,y
bx,y −ax,y

)
,

where ax,y and bx,y are complex numbers (ax,y are real for the diagonal blocks x = y).
For any matrix of this form we have an analog of Propositions 2.1 and 3.1:

E {F ′(Sn) ·XSn} = 0. (3.13)

The above form of X implies that it suffices to use (3.13) with the ”basis” matrices (cf
(2.3) and (3.5))

X(ξ,x;η,y) =
(
X(x,y) ⊗ q(ξ,ξ) −X(y,x) ⊗ q(−ξ,−ξ)) δξ,η

+
(
X(x,y) +X(y,x)

)⊗ q(ξ,−ξ)δξ,−η,

where
X(x,y) = {δxpδyq}νp,q=1, q(ξ,η) = {δξαδηβ}α,β=±,

and with (cf (2.4) and (3.4))

F (Sn) =
(
Sjn
)
ξ,x;η,y

(
TrSjn

)aj−1
∏

l≥j+1

(
TrSln

)al .

Now, by using the scheme of proofs of Lemmas 2.2 and 3.2 we obtain the identity
(
I + (n+ 1)−1AS

)
m̂

(n)
K = BSm̂

(n)
K + (n+ 1)−1CSm̂

(n)
K , (3.14)

where (cf (2.9)–(2.11) and (3.8)–(3.10))

(ASv)κ(a) = (AOv)κ(a), (3.15)

(BSv)κ(a) = −ηjvκ−j(T−1
j a) + j(aj − 1)vκ−2j(T

−2
j a), (3.16)

(CSv)κ(a) = −2(1− δj,1)
∑

l<j/2

vκ−2l(Tj−2lT
−1
j a) (3.17)

+ ηjvκ−j(T−1
j a)− j(aj − 1)vκ−2j(T

−2
j a)

)

+
∑

l≥j+1

lalvκ−2j(T
−1
j Tl−jT−1

l a).

Besides, if we denote µ̂κ(a) the r.h.s. of (1.13), then the integration by parts yields the
relation (cf (2.13) and (3.12))

µ̂κ(a) = −ηlµ̂κ−l(T−1
l a) + l(al − 1)µ̂κ−2l(T

−2
l a), (3.18)

valid for any l ≥ 1 and al ≥ 1.
By using (3.15)–(3.18), we can prove analogs of Lemmas 2.4 and A.1 of the Appendix.

Thus, the rest of the proof of (1.13) is the same as its analogs in the unitary and/or the
orthogonal case.

Remark. It can also be shown that the r.h.s. of (1.13) can be obtained by passing to the
limit n→∞ in (3.14), analogously to the unitary and the orthogonal cases.
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Appendix

Proof of Lemma 2.4. Let v ∈ L(U)
K be a vector of the unit norm, where L(U)

K is defined by
(2.7)–(2.8). Then we have for its components:

|v(a; b)| ≤ 1, ∀a, b ∈ PK .

Then (2.9) yields

|(AOv)κ(a; b)| ≤
(

(1− δj,1)

j−1∑

l=1

|vκ(TlTj−lT−1
j a; b)|+ j(aj − 1)|vκ(T−2

j T2ja; b)|

+
k∑

l=j+1

lal|vκ(T−1
j T−1

l Tj+la; b)|
)

≤
(

(j − 1) + j(aj − 1) +
∑

l≥j+1

lal

)
≤
(∑

l≥j
lal − 1

)
≤ K − 1.

This implies the first assertion of the lemma.
To prove the second assertion we denote (A1µ)κ(a; b) and (C1µ)κ(a; b) the first terms

on the r.h.s of (2.9) and (2.11) respectively with µ as v. We have then, in view of (3.12),

(C1µ)κ(a; b) : = (1− δj,1)

j−1∑

l=1

lblµκ−l(Tj−lT−1
j a;T−1

l b)

= (1− δj,1)

j−1∑

l=1

µκ(TlTj−lT−1
j a; b) = (A1µκ)(a; b).

Likewise, denote (A2µ)κ(a; b) the sum of the second and the third terms on the r.h.s. of
(2.9) and (C2µ)κ(a; b) the second term on the r.h.s. of (2.11) with µ as v. We obtain from
(1.8) and (2.13):

(C2µ)k(a; b) : =
k∑

l=j+1

lblµκ−j(T−1
j a;Tl−jT−1

l b)

=

k−j∑

l=1

µκ+l(T
−1
j Tj+la;Tlb) =

k−j∑

l=1

l(bl + 1)µκ(T
−1
l T−1

j Tj+la; b).

In addition, formula (1.8), its ”diagonality” in (a, b) in particular, implies

l(bl + 1)µκ(T
−1
l T−1

j Tj+la; b) =





0, l < j,
j(aj − 1)µκ(T

−2
j T2ja; b), l = j,

lalµκ(T
−1
l T−1

j Tj+la; b), l ≤ j + 1.

The last formulas and the expression

(A2µ)κ(a; b) := j(aj − 1)µκ(T
−2
j T2ja; b) +

k∑

l=j+1

lalµκ(T
−1
j T−1

l Tj+la; b)
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yield evidently the equality (A2µ)κ(a; b) = (C2µ)κ(a; b).
The equality (Bµ)κ(a; b) = µκ(a; b) is, in fact, (2.13).

Lemma A.1. Let AO, BO, and CO be the operators (3.8)–(3.10), acting in the space L(O)
K ,

defined by (3.7). Then

(i) ||AO|| ≤ (K − 1);

(ii) if µK is the vector of L(O)
K , whose components are given by the l.h.s.

of (1.10), then
BOµK = µK , AOµK = COµK .

Proof. The first assertion of the lemma can be proved by using the same argument as
that in the proof of Lemma 2.4.

The proof of the second assertion of the lemma is also similar to the respective proof
in Lemma 2.4, being based now on the explicit form (3.8)–(3.10) of the operators AO, BO,
and CO of (3.8)–(3.10), and on (1.10) and (3.12), in particular on the relations:

µκ(a) =

{
ηlµκ−l(T−1

l a), al = 1,
(l + ηl)µκ−2l(T

−2
l a), al = 2.

(A.1)

Denote (A1µ)κ(a) the sum of the two first terms on the r.h.s of (3.8) with µ as v, and
(C1µ)κ(a) the analogous sum on the r.h.s of (3.10) with µ as v. We have then in view of
(A.1):

(A1µκ)(a) =


2(1− δj,1)

∑

l<j/2

ηlηj−l + ηj

{
0 j is odd,

j/2 + ηj/2 j is even;


µκ−j(T−1

j a)

= µκ−j(T−1
j a)

{
0, j is odd,

j − 1, j is even;

and

(C1µ)κ(a) = 2(1− δj,1)
∑

l<j/2

ηj−2lµκ−j(T−1
j a) + ηj

= µκ−j(T−1
j a)×

{
0, j is odd,

j − 1, j is even.

Thus (A1µ)κ(a) = (C1µ)κ(a).
Denote now (A2µ)κ(a) the sum of the second and of the third term on the r.h.s. of

(3.8) µ as v, and (C2µ)κ(a) the analogous terms in (3.10). Let k be the right endpoint
of the support of the multi-index a. There are several cases, depending on the relative
values of k and j of the endpoints of the support of a. We analyze, for instance, the case,
where k ≥ 3j (other cases can be treated analogously). By using again (1.10) or (3.12),
we obtain after some algebra

(A2µ)κ(a) = (A′µ)κ(a) + (Dµ)κ(a),

(C2µ)κ(a) = (C ′µ)κ(a) + (Dµ)κ(a),
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where

(Dµ)κ(a) = µκ+2j(T2ja) +

k−j∑

l=j+1

µκ+2l(T
−1
j TlTl+ja)−

k−2j∑

l=j

µκ−l(T−1
j Tl+ja),

(A′µ)κ(a) = −
k∑

l=k−j+1

ηlηj+lµκ−j(T−1
j a), (C ′µ)κ(a) = −

j∑

l=1

ηlηj+lµκ−j(T−1
j a).

Now it is easy to find that the sums in (A′µK)κ(a) and (C ′µK)κ(a) coincide (being equal
zero if j is odd and j/2 if j is even).
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problem and for stimulating discussions.
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