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The flat histogram Monte Carlo (FHMC) algorithm has been proposed as an ef-
ficient sampling scheme for problems with a complex free energy landscape. Its
successful implementation requires fast and stable determination of the sampling
weight function which can be a challenge for simulation at low temperatures. We
describe here a polynomial parametrization of the sampling weight function which
allows one to perform noise filtering and extrapolation at the same time. Efficiency
of the scheme as compared to Berg’s original iterative formula is demonstrated on
the two-dimensional compass model for d-orbital ordering.

1 Why canonical sampling is not always good enough

In the study of systems at thermal equilibrium, Monte Carlo simulations have proven to be
a powerful tool for extracting detailed and quantitative description of the properties of the
system in the temperature range of interest. The basic idea of this approach, dating back
to Metropolis and coworkers!, is very simple in principle. At a given temperature T, the
average value of a physical quantity X is given by,

(X) = 3 Xaexp(~Fa/T), (1)

where Z = 3 exp(—E,/T) is the partition function and the sum is over all allowed states
of the system. In a Monte Carlo simulation, instead of summing over all possible states,
one generates a set of sample configurations {ai,as,...,as} according to a prescribed
probability distribution function P,. The formula

XP — 22:1 Xai Poz-l exp(—Eai/T)
2?21 PC?il exp(—Eq, /T)
is then used to compute an approximate value for (X). The naive choice P, = const.,

known as uniform sampling, gives rather poor performance when the number of degrees of
freedom is large. The usual practice is to choose

P, = Z 'exp(—E4/T), (3)

(2)

i.e., to pick samples according to their statistical importance in the partition sum.

Obviously, to obtain an accurate estimate of (X), we need to focus on configurations
that give significant contributions to the sum in (1). In many problems of interest in physics,
where the system is spatially uniform, such configurations also have very similar physical
properties in the sense that their values of X are quite similar. In this case, computing (X)
using the “canonical sampling weights” Eq. (3) is quite adequate. There are, however, other
cases where configurations that make significant contributions to (X) (and other quantities
of interest) have either distinct or a broad spectrum of physical properties. This is what
happens at phase transitions, or in glassy systems with a complex energy landscape. In such
circumstances, in order to achieve an accurate estimate of (X), one needs to not only visit
all these configurations during sampling, but also make sure that their relative frequencies
are in accordance with the correct weights. This type of systems have been the focus of
novel Monte Carlo sampling schemes in recent years?3*%.
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2 The flat-histogram Monte Carlo methodology

In usual implementation of Monte Carlo simulations, sample configurations are generated
through a sequence of “local moves”, each time modifying the current configuration at one
or a few sites only. (Parallel updating in most applications can be viewed as a collection
of independent local moves.) Such moves are usually easy to construct and can be readily
made to satisfy the detailed balance condition. However, simulations based on local moves
may fail to produce accurate values for the statistical averages if configurations which need
to be sampled sufficiently are separated by large barriers, i.e., the path that connects such
configurations needs to go through regions of very low probability in the configuration space,
which may be loosely called “transition states”.

The flat-histogram Monte Carlo (FHMC) methodology?® tackles this problem by de-
manding that the transition states are visited as frequently as the “equilibrium states” that
make important contributions to the statistical averages such as (1). Provided the local
moves are ergodic, this can always be achieved through a suitable choice of the sampling
probability P, as discussed below. In the best scenario, the system will then be able to
travel freely back and forth between the equilibrium states in the simulation to produce
a fair sampling. The transition states may themselves be part of the equilibrium state at
higher temperatures, in which case one gains an extra-advantage of obtaining statistics over
a broad temperature range in a single Monte Carlo run.

The FHMC methodology has been applied to a number of computationally hard prob-
lems in statistical physics with varying degrees of success®. In many applications, energy is
a natural “reaction coordinate” that can be used to parametrize the transition states. In a
“multicanonical Monte Carlo” (MCMC) simulation, the sampling probability P, is chosen
to be a function of the energy F,. In particular, the choice

Po = p~'(Ea) = exp[~S(Ea)] (4)

yields a flat energy histogram when the simulation is run for a sufficiently long time. Here
p(E) is the density of states (or configurations) in energy, and S(E) = lnp(E) is the
Boltzmann entropy. From the thermodynamic relation

T-! = 8S/dE, (5)

we may write the sampling probability around a given state oy with energy FEy and proba-
bility Py = P(Ep) as

Py = Pyexp[S(Eo) — S(Ea)] = Py exp(—AE,/Ty). (6)

Hence the sequence of configurations generated in a MCMC simulation resembles locally
those of constant temperature simulations. However, as the simulation continues, the tem-
perature of the system drifts with its energy in such a way that there is no bias or restoring
force towards any particular energy value.

For problems where the (free) energy barrier is the main obstacle towards sampling
the statistically important but well-separated configurations, one may expect the MCMC
scheme to perform well. Its success has been well documented in several recent reviews*:67:8,
On the other hand, it has been argued that MCMC is not so effective when applied to prob-
lems such as the Ising spin glass in three dimensions®. While one may speculate about the
existence of other important “reaction coordinates”!?, this issue has not been investigated
sufficiently so far. In the following we shall focus on a technical aspect regarding implemen-
tation of the MCMC scheme, and leave the discussion of “good coordinates” for flattening
histograms for future study.



3 Achieving fast and stable convergence

Unlike the canonical sampling weights (3), Eq. (4) can not be used directly in most cases as
it contains an unknown function S(F). Berg proposed an iterative procedure to overcome
this difficulty®!!. Starting with a trial sampling weight function Pj(E) at k = 0, a set of
configurations are generated. Their energies are recorded in the energy histogram hy(F).
Once sufficient number of samples are collected, the sampling weight function is updated
using the formula

Pyy1(E) = Py(E)/hi(E). (7)

In theory, a perfect hy(E) yields the desired Py11(E) in one iteration. In practice, however,
hi(F) contains statistical fluctuations due to the finite length of the simulation. More
seriously, when Py (E) is far from the weight given by (4), there are energy intervals which
are not visited at all in the simulation. Therefore the key to reaching optimal convergence
of the recursion (7) is to minimize the influence of statistical fluctuations on the one hand,
and to expand the range of energies with sufficient number of counts on the other hand.

We have implemented the following three-step procedure which combines noise-filtering
with extrapolation to regions with poor or no statistics in each iteration. At the end of each
sampling run, we first compute the function

Aw(B) = Infhy(B) + 1] (8)

from the raw histogram data hy(F). Next, an energy interval (Fmin, Fmax) is determined
from hy(E), based on the condition that for any E within this interval, the count hy(E)
exceeds certain threshold value h.. Normally, h, is chosen to be 2% of the maximum count
over all bins. The data

Ri41(E) = Ry(E) + Ay(E), 9)

with R, (E) = — ln P, (E), is then used for a least-squares fit to either a single polynomial
function over the entire interval (Emin, Emax), or several polynomial functions over a set of
sub-intervals, with the requirement that the polynomials covering neighboring sub-intervals
join smoothly at their meeting point. For the examples discussed in the next section, a fifth
order polynomial is sufficient for our purpose. In the final step, the interval (Emin, Emax)
is extended at one or both ends to (E!,,, E! ..), with E/ . < Fnin < Fmax < E! ... The
polynomial functions are then used to assign values to Rp+1(E) = —In Py 1(E) on the
expanded interval. For E < E/, , Rj1(FE) is approximated by a linear function with the
slope given by the slope of the polynomial at E = E!, . This is equivalent to setting a
minimum temperature Tp,ip ;41 in the new round of sampling.

Figure 1 shows the energy histograms and the corresponding sampling weight functions
under three different iterative schemes. The system simulated is the two-dimensional (2D)
compass model described in the next section, with N = 32 x 32 lattice sites. In all cases, the
initial sampling probability function is chosen to be a constant, corresponding to the infinite
temperature ensemble. The sampling time grows by a factor 1.3 in successive iterations,
but is identical in all three cases. Figures 1(a) and (d) correspond to a straightforward
implementation of (7) without noise filtering and extrapolation. In this case, the interval
with significant statistics expands quite slowly under the iteration. In addition, part of the
ruggedness in the histogram can be attributed to the spurious variations in the function
Ri(E). After the noise-filtering and extrapolation step is introduced, expansion of the
interval with good statistics is much accelerated, as seen in Fig. 1(b). In the final round,
however, the sampling probability density function increases too fast at the low energy end.
Consequently, only configurations in a narrow energy range are visited in the simulation.
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Figure 1. Energy histograms [(a)-(c)] and the corresponding sampling functions R(E) = —In P(E) [(d)-(f)]
under three different iterative schemes. See text for details.

The “instability” due to over-extrapolation is a serious obstacle against fast convergence
to flat-histogram over the entire energy range, particularly for large systems and at low
temperatures. Instead of reducing the range of extrapolation, which necessarily slows down
convergence, one may find ways to restore the flat histogram by making use of the statistics
already collected. In the example illustrated in Fig. 1(c), the problem appears at the
iteration k = 3, where the histogram h3(F) runs away from the intended energy range that
includes E/N = 1. Nevertheless, we may still use h3(E) to construct a good sampling
function R4(E) in the interval 0.66 < E/N < 0.78 where large number of counts are
registered. On the other hand, from the previous run, we already have a good sampling
function for 0.94 < E/N < 1. Each of these functions, however, can be shifted up or down
by a constant without affecting the sampling process. Taking this property into account,
we first perform a least-squares fit to the derivatives of the two functions using a single
polynomial. Integrating the polynomial allows us to determine how much one piece should
be shifted against the other. The k¥ = 4 curve in Fig. 1(f) shows the best polynomial
that matches both pieces after the shift is performed. Using this sampling function, a flat
histogram over the interval (0.7,1) is achieved in the next iteration. This procedure allows
iteration to continue until the desired flat histogram is obtained.
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4 Simulation results on the 2D compass model

We have implemented the above iteration scheme on a number of problems with success. In
this section some results from the simulation of a classical 2D compass model are presented.
The Hamiltonian of the model is given by!?13,

H==J) sist;+sls!,. (10)
[

Here §; = (cosf;,sin6;) are classical XY spins on a square lattice. The problem arises in
the study of the ordering of d-orbitals in certain transition metal oxides. An important
aspect of the model is the directional coupling of the orbital states specified by §;. One is
interested in the possibility of a directionally ordered state at low temperatures.

The classical ground state of (10) is highly degenerate due to the presence of continuous
and discrete symmetries. The continuous O(2) symmetry corresponds to a global rotation
of all angles starting from a uniform state 8; = 6y, all . This symmetry is restricted to
the ground state. Indeed, self-consistent harmonic approximation applied to (10) yields an
extra free energy gain of the order 72/3 for the special orientations 6y = 0, +7/2,7w. This
entropic advantage stabilizes orbital ordering at sufficiently low temperatures.

The one-dimensional (1D) coupling of the z and y components of 3; gives rise to a discrete
symmetry. Take any row of spins, the transformation s7 — —s7 leaves the Hamiltonian
(10) invariant. Similarly, the transformation sY — —s? for any column of spins leaves (10)
invariant as well. Since this symmetry is 1D, it is not expected to be broken except at T' = 0.
A suitable order parameter for the low temperature phase is thus ¢ = N~} >, cos(26;).

Figures 2(a)-(c) show the energy, entropy, and specific heat data against 7' from our
MCMC simulation for seven system sizes L = 8,12,16,24,32,48 and 64 under periodic
boundary conditions (PBC). A background term due to classical harmonic motion of the
angles has been taken out in the energy E/N and entropy S/N, respectively, so that change
in these quantities in the transition region can be examined more closely. The discrete 1D
symmetry gives rise to a 2 x 2 degeneracy in the ordered phase at low temperatures. This
translates to a finite-size correction ASr = (L 4+ 1)In2 in the entropy of an L x L system
under PBC. Such a contribution is evident in Fig. 2(b). It is quite remarkable that, in
order to observe the effect, the 2X*! degenerate configurations should all be visited with
more or less the same frequency, which appears to be the case with the MCMC sampling.

The strong size-dependence of the specific heat curves shown in Fig. 2(c) makes it
quite difficult to locate the transition temperature 7. At first sight, both the energy and
entropy seem to exhibit a finite jump at the transition, suggesting the transition is first
order. More careful analysis shows that this is not the case. The first-order like behavior
can be attributed to the ASL term which gives extra stability to the low temperature phase
in a finite system. Consequently, the specific heat peak acquires a strong size-dependence.
The effect can be eliminated through the introduction of an “annealed” boundary condition,
where the sign of the coupling constant J in (10) on a selected row and a selected column
is allowed to fluctuate. In the low temperature ordered phase, the —J configurations are
energetically unfavorable and do not contribute to the equilibrium statistics. However, in
the high temperature disordered phase, both +J configurations contribute nearly equally.
The ASp term, which contributes only in the ordered phase under PBC, is now present
in both phases under the annealed boundary condition. Figure 2(d) shows the specific
heat curves in the latter case. The data can be well fitted to a logarithmic divergence at
a T, ~ 0.147, as in the 2D Ising model. Details of our analysis, supported by an exact
mapping to the 2D Ising model, can be found in Ref. 13.

5



0.04

T 1T T L L
L (a) 0.2
5 =
9 Yo}
CI) T 01
|
. |
D 5
64
0 e 1
~ (d) anneadled BC
15+
g [ 48x48 18 [
< =
2 B 7 8 B
2 1 48 1L 48x48
5 [ - 18 1 \
N L, 88 B /| |
0.5 | 11 1 | 0.5 il I I | 11 1 | 1 1 1 |
0.1 0.15 0.2 0.25 0.1 0.15 0.2 0.25
T T

Figure 2. Multicanonical Monte Carlo simulation results on the two-dimensional compass model for various
system sizes. (a) Energy against temperature; (b) Entropy against temperature; (c) Specific heat against
temperature; (d) Specific heat against temperature under “annealed boundary condition”. See text for
details.

5 Conclusions

In simulation studies of equilibrium systems with a complex energy landscape, the flat
histogram Monte Carlo scheme offers a generic and potentially powerful methodology to
achieve efficient sampling of the statistically important configurations. Successful imple-
mentation of the idea, particularly in the case of low temperature simulations, requires
improvements in the iterative determination of the sampling weight function. For many
problems of interest, the optimal sampling weight function is smooth (except near phase
transitions) and can be well-approximated by one or a few polynomials in the respective
intervals. The use of polynomials to parametrize the sampling weight function allows one to
achieve noise filtering and extrapolation at the same time in the iterative process. Success
of this strategy is demonstrated in the simulation of the 2D compass model.
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