THE POISSON-DIRICHLET DISTRIBUTION AND THE
FREQUENCY OF LARGE PRIME DIVISORS

J.F.C. Kingman, Isaac Newton Institute

Of the 100 integers from 2 to 101, 68 have the property of possessing a prime divisor
larger than their square root. This phenomenon persists for larger integers, and the density

of the set of such integers is just log2 = 0.69315.

This is a special case of a theorem of Dickman (1930), who calculated the density
D{n;pi(n) > n"}, (1)

where p;(n) is the largest prime divisor of n, and

D(E) = lim n~! 1 (2)
meE ,m<n

is (when it exists) the usual arithmetic density of a set E of natural numbers. Dickman’s

expression for (1) is in general very complicated, but simplifies when z > % to

D{n;pi(n) >n"} = —logzx. (3)

Dickman’s result was rediscovered, for instance by Ramaswami (1949) and de Bruijn
(1951), but it was greatly generalised by Billingsley (1972). He showed that, if

p1(n) = p2(n) > ... = pm(n) (4)

are the (not necessarily distinct) prime factors of n, and if we define p,.(n) = 1 for r > m,
so that

n=[Lpm. (5)

then the density
D{n;logp,(n)/logn > z,(r=1,2,...,k)} (6)

exists for all £ > 1 and all z,., and he gives explicit complicated formulae for these densities.
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Lloyd (1984) noticed that Billingsley’s formulae were the same as those that Shepp
and Lloyd (1966) had derived for the problem of cycle lengths in a random permutation,
although there is no natural isomorphism between these two problems. As will be shown,
his analysis holds the key to Billingsley’s theorem, but it was ignored by subsequent authors

(and only drawn to my attention by Simon Tavaré in 2004).

In particular, it was not cited in an otherwise definitive paper by Donnelly and Grim-
mett (1993). They observed that Billingsley’s expressions for (6) were the marginal dis-
tributions of the Poisson-Dirichlet distribution PD(1). By exploiting a characterisation of
this distribution as that of the order statistics of the GEM distribution, they produced a

transparent and elegant proof of Billingsley’s theorem.

Not, however, transparent enough, since Arratia, Barbour and Tavaré (1997, 2003)
pointed out that the prime divisor problem is unusual among the many applications of the
Poisson-Dirichlet distribution in being difficult to relate to other instances. The analysis

of Lloyd, however, does lead to a clear explanation of the occurrence of PD(1) in (6).

The Poisson-Dirichlet distribution was introduced in Kingman (1975) as a limiting case
of the Dirichlet distribution, relevant to problems of computer storage and of population
genetics. The marginal distributions can be read off from results of Watterson (1974),
and these coincide with those of Dickman and Billingsley. Kingman showed that the
distribution can be derived from the jumps of the gamma subordinator of Moran (1959),
and the familiar description of the jumps of a subordinator in terms of a non-homogeneous

Poisson process leads at once to the modern definition of PD(f), where 6 > 0.
Thus let a random sequence
Yi>Yo>Ys>...>0 (7)
form a Poisson process on (0, 00) whose mean measure has density
By~te™ (y>0). (8)

(Definitions and properties of Poisson processes as in Kingman (1993)). Campbell’s theo-

rem shows easily that

c=>) Y, 9)

r=1
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is finite with probability one, and has the gamma distribution with density

L) 1s~le=® (s> 0). (10)
The key property of the density (8) is that the sequence

Xi>Xo>X3>...>0 (11)

defined by
X, =Y, /o (12)

is independent of o. Its distribution is the Poisson-Dirichlet distribution PD(#), which is

a probability measure on the space of infinite sequences (z,;r < 1) satisfying

oo
.731>£E2>.’L‘3>...>0,Z.TT:1. (13)
r=1

Billingsley’s theorem can then be expressed by saying that the density (6) exists and
is given by
P{X,>z.(r=12,...,k)} (14)

where the sequence (X,.) has distribution PD(1).

In order to make this manifest, we need to find a Poisson process with mean measure
defined by (8) with # = 1. The clue to this construction is in Lloyd (1984), where he

considers, for any s > 1, a distribution P4 on the natural numbers with
Py{n}=((s)"'n™" (n>1), (15)

¢(s) being of course the Riemann zeta function. If the unique factorisation of n into primes
is written not in the form (5) but as

n = Hpap(") , (16)
p

(15) becomes

pa=T1(1- 1) (1) i

pS
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This shows that the oy, are independent random variables with geometric distributions

Play=a}=(1-p%) ()" (a>0). (18)

This leads easily to the following result, implicit in Lloyd (1984).

Theorem 1 The joint distributions of the counts of the random set

{(s—1)logp, (r=1,2,...)}, (19)

counting multiplicities, under Pg, converges as s — 1 to those of a Poisson process with
density (8) with 6 = 1.

Proof Write
t=(s—1)71 (20)

Then the number of points of (19), counting multiplicities, that fall in an interval I =
(A,B] (0< A< B<)is

Cy= > apn). (21)

etA <p<€tB

Since the a, are independent under P, for distinct primes p, the C(I) for disjoint I are
independent, so that we have only to prove that the P-distribution of C(I) converges, as

s — 1, to a Poisson distribution with mean

B
/ y e Vdy. (22)

A

Lloyd does this by a clever trick which lengthens and obscures the proof. Standard
theorems on Poisson approximation can be used (and would be useful if error bounds were
required), but for our purposes it is simpler to proceed directly. The probability generating
function of C(I) is, for 0 < ¢ < 1,

vo- I (5%)

etA <p<etB

=exp | — Z log{l—l—z%z;f)}

etA <p<€tB
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It is easy to check that

p*(1-§)

< 2p—23
1-p

7

log {1 ‘ } —-gp

so that

‘—10gq>1(f) -(1-¢ >,

etA <p<etB

<2 Z p—2s — O(e—tA)

etA<p

as s — 1, t — oco. Hence the theorem is proved if we can show that

B
lim Z p_S:/ y le Vdy. (23)
A

s—1
etA <p<etB

This is the only point at which serious number theory is needed. Equation (23) is an
easy consequence of the prime number theorem, but it does not require anything like the
full force of that theorem. We deduce it from the much easier theorem (Theorem 427 of
Hardy and Wright (1960)) that

S(z) = Z L loglogz + C + o(1) (24)

P

as £ — oo, where C' is a constant. The sum in (23) can be written as a Stieltjes integral

with respect to the step function S, which can then be integrated by parts:

tB

Z p_sz/: z17%dS(z)

tA
etA <p<etB



By (24) this last expression is equal to
-B —A
e 7 (logtB+ C) — e (logtA+ C)

B
+ / e Y (logty + C)dy + o(1)
A

B

=e BlogB—e“4logA+ / e Ylogydy + o(1)
A

B
= / y~ e Vdy + o(1).

A

This proves (23), and thus the theorem.

Note, that, although (19) may contain multiple points, the limiting Poisson process
does not, since its mean measure is non-atomic. Thus the theorem remains true even if

multiple points are only counted once.

The following theorem is an almost immediate consequence of Theorem 1.

Theorem 2 Under Py, the joint distributions of the sequence
logp,/logn (r=1,2,3,...) (25)

converge to those of PD(1) as s — 1.

Proof Theorem 1 shows that the joint distributions of the sequence
Y,=(s—1logp, (r=1,2,3,...) (26)

converge to those of the points of a Poisson process with mean measure having density

y~te™Y. If we can prove that the distributions of

Yl,Yé,Yg,...,J:Y1+Yé+... (27)

converge to those of the points of a Poisson process and their sum, the conclusion of the
theorem follows. This is not quite obvious, since o is only a lower semicontinuous function
of the Y,.. However,

o= (s—1)logn, (28)

6



and it is elementary from (15) that the distribution of o converges, as s — 1, to a unit
exponential distribution. Since this is same as the distribution ((10) with § = 1) in the
Poisson limit, Theorem 1 does extend to the extended sequence (27). Thus the distributions
of

X, = Y, /o = logp,/logn (29)

converge to those in the Poisson limit, which are the marginals of PD(1). This completes

the proof.

It is important to note that this argument does not prove Billingsley’s (or even Dick-
man’s) theorem. These make statements about the arithmetic densities D(E) of certain

subsets E of the natural numbers. Theorem 2 makes the same statements about

-1 —s
D(E) = ;;rng(s : (30)
We use the symbol HD because, as Lloyd points out, (30) is equivalent to the harmonic
density

T -1 -1
HD(E) = lim (logm) EEZ< nt. (31)

If D(E) exists, so does HD(F), and they are equal.

The converse however is false; a set E can have HD(FE) without D(F) existing. A
vivid example is the set E of natural numbers whose decimal expansion begins with 1.
This has

HD(E) =log2/log10,

but has upper and lower densities 5/9 and 1/9.

Thus for a self-contained proof of the Dickman-Billingsley theorem, the best approach
remains that of Donnelly and Grimmett. If however we appeal to general results, such as
those of Levin and Fainleit (1967), to establish the existence of D(E), we can use Theorem

2 and avoid the computations of joint distributions in the Donnelly-Grimmett proof.

Does the present argument make the inevitability of PD(1) clear? The identification
of the Poisson process in Theorem 1 does help, but the computation of the mean measure
is perhaps still a little unsatisfactory. The characteristic of Poisson processes with densities

of the form (8) is the independence of

o=>Y and (Y/o;r=12,.).

r=1



This is actually a stumbling block to Arratia, Barbour and Tavaré (1997), since the p,(n)

are determined by n, so how can log p,(n)/logn be independent of n?

The answer to this mild paradox is that the probabilities are averaged over numbers

near n. What it is saying is that the statistics of the sequence

logpr(n)/logn (r=1,2,..))
for n in some distant interval do not depend on the choice of that interval.

If this were obvious, the occurrence of PD(#) would be explained. The particular value
f# = 1 is easier to understand, since it relates to the asymptotic exponential distribution
for

(s—1)logn

under the natural distribution Pj.
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POSTSCRIPT (19.8.04)

Construct a sequence X; > Xy > ... with distribution PD(0) by equations (7)—(12).
Let Z be independent of the Y, and therefore of the X,, with gamma distribution (10).
Then the joint distribution of

)(1,)(2,...,0
is the same as that of
)(la)(Qa"'aZZ
and hence the joint distribution of
U)(l,a)fzw..
is the same as that of
ZX1,4Xq,....

This proves that, if (X,.) has distribution PD(f) and the independent random variable
7 has distribution I'(f), then

ZX,.(r=1,2,..))

are the points of a Poisson process with density (8). Combining this result for § = 1 with

the Dickman-Billingsley theorem, we have the following analogue of Lloyd’s theorem.

Theorem 3 Let pr > pa = ... = pm be the prime factors of a random integer n,
uniformly distributed on {1,2,...,N}. Let Zn be independent of n, having a negative
exponential distribution with mean (log N)~'. Then the joint distributions of the random

sequence

Zn log py (r=1,2,...)

converge as N — 0o to those of the points (in descending order) of a Poisson process with

density z~le 7.

Proof The Dickman-Billingsley theorem states, in effect, that the sequence

log pr/logn (r=1,2,...)
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converges in distribution to PD(1) as N — oo. Since Zy log N has distribution I'(1), this
shows that the sequence

Zn log Nlogp,/logn

converges in distribution to the Poisson process with density (8) and § = 1. It is therefore
only necessary to show that

logn/log N — 1

in probability, and this is clear since

logn 1 a
E - 1
{logN} NlogNnXZ:l oen

1
=—— (NlogN—-N+O0(ogN)) — 1.
NlOgN( og + O(log N))

The random scaling by Zp is essential for the result; it is easy to see that Zx cannot

be replaced by any deterministic sequence.

A direct proof of Theorem 3 would give a proof of the Dickman-Billingsley theorem.
By Rényi arguments, it would be enough to prove that the distribution of the number of

r for which Zy logp, lies in a finite union F of intervals converges, as N — oo, to the

/x_le_‘”da:.

E

Poisson distribution with mean
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