
MOCK-GAUSSIAN BEHAVIOUR

C.P. HUGHES

Abstract. We show that the moments of the smooth counting function of a set of points
encodes the same information as the n-level density of these points. If the points are the
eigenvalues of matrices taken from the classical compact groups with Haar measure, then we
show that the first few moments of the smooth counting function are Gaussian, while the
distribution is not. The same phenomenon occurs for smooth counting functions of the zeros
of L–functions, and we give examples relating to each classical compact group. The advantage
of calculating moments of the counting function is that combinatorially, they are far easier to
handle than the n-level densities.

One of the connections between random matrix theory and number theory is that the correla-
tions and densities between eigenangles of matrices chosen at random from the classical compact
groups appear to be the same as correlations and densities between zeros of L–functions taken
from certain families. This connection was first suggested by Katz and Sarnak [7], and is dis-
cussed in more detail elsewhere in this Proceedings.

Rather than study densities of zeros, the purpose of this note is to argue that the same results
can be obtained more easily by calculating the moments of smooth counting functions. The
mock-Gaussian behaviour of the title refers to the fact that in all the cases examined here, the
first few moments are Gaussian, while the overall distribution is not.

In the first section we will explicitly demonstrate the connections between the moments of smooth
counting functions and the n-level densities. In the middle section we will sketch the proofs of
mock-Gaussian behaviour for the classical compact groups. At the end of the paper we will give
examples from number theory where mock-Gaussian behaviour holds, and therefore re-prove, in
a manner that does not require a lot of combinatorial sieving, that the n-level densities of these
examples agree with what one obtains from random matrix theory.

1. General connections between moments and n-level densities

Let (x1, . . . , xN ) be chosen from some probability distribution on RN . The n-level density
function for this distribution is

Dn(g1, . . . , gn) = E


 ∑′

1≤j1,...,jn≤N

g1(xj1) . . . gn(xjn)


 . (1)

Here
∑′

denotes the sum over distinct indices, that is ji 6= jl for i 6= l, and E denotes
expectation with respect to the density function.

Remark. Sometimes the numbers xj have a symmetry condition. An example would be if for
each j there exists an j′ such that xj = −xj′ . In that case sometimes the n-level density is
defined with the further condition that ji 6= jl′ imposed, as well as the current distinctness
condition that ji 6= jl. We assume the xj are desymmetrized.
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Another statistic is the moments of the smooth counting function,

Mn(f) = E







N∑

j=1

f(xj)




n
 = E


 ∑

1≤j1,...,jn≤N

f(xj1) · · · f(xjn)


 (2)

which is also just the nth moment of the one level density.

We will show that the two statistics provide the same information. This might seem a little
surprising since the n-level density appears to have a more general test function, being a product
of n different functions.

1.1. The n-level density implies the moments of the counting function. Note that the
sums in (2) range unrestrictedly over all variables (they include both diagonal and off-diagonal
terms), whereas the sum in (1) is over distinct variables (off-diagonals). This problem can be
overcome by summing over the diagonals separately.

Definition 1. We say σ is a set partition of m elements into r non-empty blocks if

σ : {1, . . . , m} −→ {1, . . . , r} (3)

satisfies

(1) For every q ∈ {1, . . . , r} there exists at least one j such that σ(j) = q (this is the
non-emptiness of the blocks).

(2) For all j, either σ(j) = 1 or there exists a k < j such that σ(j) = σ(k) + 1.

The collection of all set partitions of m elements into r blocks is denoted P (m, r).

Roughly speaking, if we think of {1, . . . , r} as denoting ordered pigeonholes, then σ(j) either
goes into a non-empty pigeonhole, or into the next empty hole.

Remark. The number of σ ∈ P (m, r) is equal to S(m, r), a Stirling number of the second
kind. The number of set partitions of m elements into any number of non-empty blocks is∑m

r=1 S(m, r) = Bm, a Bell number.

Therefore,
∑

1≤j1,...,jm≤N

g1(xj1) . . . gm(xjm) =
m∑

r=1

∑

σ∈P (m,r)

∑′

1≤i1,...,ir≤N
ij all distinct

g1(xiσ(1)) . . . gm(xiσ(m)) (4)

(think of this a summing over the diagonals separately).

From this we may conclude that


N∑

j=1

f(xj)




n

=
m∑

r=1

∑

σ∈P (m,r)

Dr(fλ1 , . . . , fλr ) (5)

where λq = #{j : 1 ≤ j ≤ m , σ(j) = q}.
Therefore, from knowing the n-level densities, one can immediately deduce the moments of the
smooth counting function.

1.2. The moments of the counting function imply the n-level densities. Let us create
an inductive hypothesis that for all 1 ≤ r < n, E [Dr(g1, . . . , gr)] can be written in terms of
E [Mm(f)] for various f with 1 ≤ m ≤ r.

An inclusion / exclusion type formula gives

∑

S⊆{1,...,n}
(−1)n−|S|

(∑

i∈S

ai

)n

= n!a1 . . . an (6)
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where the sum is over all subsets of {1, . . . , n}, and so removing the subset {1, . . . , n} we get

Mn(g1 + · · ·+ gn) = (M1(g1) + · · ·+ M1(gn))n (7)

= n!M1(g1) . . . M1(gn)−
∑

S({1,...,n}
(−1)n−|S|Mn

(∑

i∈S

gi

)
(8)

where the sum is over all proper subsets of {1, . . . , n}.
By (4) the term n!M1(g1) . . . Mn(gn) equals n!Dn(g1, . . . , gn) plus terms involving Dr for r < n.
By the inductive hypothesis those terms can be written in terms of the moments of the counting
function, and we are done.

This is more easily seen in terms of an example. Consider the 2-level density. We have

M2(g1 + g2) = [M1(g1) + M1(g2)]
2 (9)

= 2M1(g1)M1(g2) + M1(g1)2 + M1(g2)2 (10)

= 2M1(g1)M1(g2) + M2(g1) + M2(g2). (11)

Now,
M1(g1)M1(g2) = D2(g1, g2) + M1(g1g2) (12)

and so we see that from knowing E [M2(f)] and E [M1(f)], we have recovered E [D2(g1, g2)], since

E [D2(g1, g2)] = 1
2 E [M2(g1 + g2)]− E [M1(g1g2)]− 1

2 E [M2(g1)]− 1
2 E [M2(g2)] . (13)

1.3. Restricted range. Often in number theory, it is only possible to prove the n-level density
or the moments of the counting function for test functions whose Fourier transforms are sup-
ported in a restricted range. However, the above arguments go through without change, and
if we know Mm(f) for all f with supp f̂ ∈ [−α/m, α/m], for all 1 ≤ m ≤ n, then we know
Dn(g1, . . . , gn) for all gi with supp ĝi ∈ [−α/n, α/n]. We should remark that this is a little
bit weaker than what is often proved within number theory, where the support restriction is
frequently of the form

∑n
j=1 αi = α, where supp ĝi ∈ [−αi, αi]. Clearly the result above, where

αi = α/n, fits this.

2. Mock-Gaussian behaviour in the classical compact groups

The classical compact groups are:

• U(N), the group of all N ×N unitary matrices.

• SO(2N), the subgroup of U(2N) containing the even orthogonal matrices with determi-
nant one. If eiθ is an eigenvalue, then so is e−iθ.

• SO(2N + 1), the subgroup of U(2N + 1) containing the odd orthogonal matrices with
determinant one. If eiθ is an eigenvalue, then so is e−iθ, and there is an additional
eigenvalue at 1.

• USp(2N), the subgroup of U(2N) containing the symplectic unitary matrices. That is,

UU† = I2N and U tJU = J where J =
(

0 IN

−IN 0

)
. Again, if eiθ is an eigenvalue

then e−iθ is also an eigenvalue.

Averages with respect to Haar measure over all of these compact classical groups can be written
in the form

EG(N)

[
N∏

n=1

f(θn)

]
=

1
N !

∫

TN

det
N×N

{QG(N)(xi, xj)}
N∏

n=1

f(xn) dxn (14)
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where G(N) denotes one of U(N), SO(2N), SO(2N + 1) or USp(2N), (N being the number of
independent eigenvalues). We call QG(N) the kernel of the group, and T the range. Let

SN (z) =
1
2π

sin(Nz/2)
sin(z/2)

. (15)

then, the kernels and ranges are given by

Group G(N) Kernel QG(N)(x, y) Range T

U(N) SN (x− y) (−π, π]

SO(2N) S2N−1(x− y) + S2N−1(x + y) [0, π]

SO(2N + 1) S2N (x− y)− S2N (x + y) [0, π]

USp(2N) S2N+1(x− y)− S2N+1(x + y) [0, π]

Choose a function φ from the set of all real functions whose Fourier transform,

φ̂(u) :=
∫ ∞

−∞
φ(x)e−2πixu dx, (16)

is smooth and compactly supported. Note that for any A > 1, this means φ(x) ¿ (1 + |x|)−A

for all x ∈ R. From such a φ we create a 2π-periodic function

FM (θ) :=
∞∑

n=−∞
φ

(
M

2π
(θ + 2πn)

)
. (17)

Given an M × M unitary matrix U with eigenangles θn, the smooth counting function, or
one-level density, or linear statistic, of the eigenangles of the matrix U is

Zφ(U) := TrFM (U) :=
M∑

n=1

FM (θn). (18)

Remark. Note that the matrix is chosen to be size M×M , and it has N independent eigenangles.
The counting function sums over all M of the eigenangles, but Haar measure integrates only
over the N independent terms.

Note that due to the rapid decay on φ, Zφ(U) has the largest contribution from the eigenvalues
of U close to 1. We will study moments of Zφ(U) when U is averaged over one of the classical
compact groups, and show that the first few moments are Gaussian, but the higher ones are not.

Theorem 1 (Hughes and Rudnick [5, 6]). If φ is chosen so that φ̂ is smooth and has compact
support, then:

i) If supp φ̂ ⊆ [−2/m, 2/m] then the first m moments of Zφ(U) over the unitary group
U(N) converge as N →∞ to the moments of a Gaussian random variable with mean

µU
φ =

∫ ∞

−∞
φ(x) dx (19)

and variance

(σU
φ )2 =

∫ 1

−1

|u||φ̂(u)|2 du. (20)

ii) If φ is even, and supp φ̂ ⊆ [−1/m, 1/m], then the first m moments of Zφ(U) when
averaged over the symplectic group USp(2N) converge to the moments of a Gaussian
with mean

µUSp
φ =

∫ ∞

−∞
φ(x) dx−

∫ 1

0

φ̂(u) du (21)
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and variance

(σUSp
φ )2 = 2

∫ 1/2

−1/2

|u|φ̂(u)2 du. (22)

iii) If φ is even, and supp φ̂ ⊆ [−1/m, 1/m], then the first m moments of Zφ(U) when
averaged over either SO(2N) or SO(2N + 1) converge to the moments of a Gaussian
with mean

µSO
φ =

∫ ∞

−∞
φ(x) dx +

∫ 1

0

φ̂(u) du (23)

and variance

(σSO
φ )2 = 2

∫ 1/2

−1/2

|u|φ̂(u)2 du. (24)

To re-phrase this theorem, part (i) says that if supp φ̂ ⊆ [− 2
m , 2

m ], then

lim
N→∞

EU(N)

[(
Zφ(U)− µU

φ

)m
]

=

{
(2k)!
2kk!

(σU
φ )2k if m = 2k is even

0 otherwise
(25)

Remark. This theorem is sharp, in the sense that if the support of φ̂ was increased beyond
[−1/m, 1/m] (or [−2/m, 2/m] in the unitary case), then the mth moment ceases to be Gaussian
for m ≥ 3.

This theorem can be proven via a study of the cumulants (though in [6] a different approach is
taken), since if one knows the first ` cumulants then one knows the first ` moments. If θ1, . . . , θN

are the independent eigenangles of a matrix U ∈ G(N), then for a 2π-periodic function g, the
cumulants of

∑N
n=1 g(θn) are defined as

logEG(N)

[
exp

(
t

N∑
n=1

g(θn)

)]
=

∞∑

`=1

t`

`!
C

G(N)
` (g) (26)

and for the classical compact groups they can be written in terms of the kernel as follows (this
is non-obvious: See, for example, [9])

C
G(N)
` (g) =

∑̀
m=1

∑

σ∈P (`,m)

(−1)m+1(m− 1)!
∫

Tm

m∏

j=1

gλj (xj)QG(N)(xj , xj+1) dxj (27)

where we identify xm+1 with x1. Here P (`,m) is the set of all partitions of ` objects into m
non-empty blocks, as in Definition 1, where the jth block has λj = λj(σ) elements.

Put

Ceven
`,N (g) =

1
2

∑̀
m=1

∑

σ∈P (`,m)

(−1)m+1(m− 1)!
∫

[−π,π]m

m∏

j=1

gλj (xj)SN (xj − xj+1) dxj (28)

and

Codd
`,N (g) =

1
2

∑̀
m=1

∑

σ∈P (`,m)

(−1)m+1(m− 1)!
∫

[−π,π]m

m∏

j=1

gλj (xj)SN (xj − εjxj+1) dxj (29)

where εj = +1 for j = 1, . . . , m− 1 and εm = −1, and where SN (z) is defined in (15).

Expanding out the kernels QG(N)(x, y) for the various groups, we find

C
U(N)
` (g) = 2Ceven

`,N (g) (30)

C
USp(2N)
` (g) = Ceven

`,2N+1(g)− Codd
`,2N+1(g) (31)

C
SO(2N)
` (g) = Ceven

`,2N−1(g) + Codd
`,2N−1(g) (32)

C
SO(2N+1)
` (g) = Ceven

`,2N (g)− Codd
`,2N (g) (33)
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Extending the combinatorics introduced by Soshnikov [9], we deduced in [5] that if ` ≥ 2,
∣∣Codd

`,L (g)
∣∣ ≤ const`

∑

k∈Z`

|k1|+···+|k`|>L

|gk1 | . . . |gk`
| (34)

and if ` ≥ 3 ∣∣Ceven
`,L (g)

∣∣ ≤ const`

∑

k1+···+k`=0
|k1|+···+|k`|>2L

|gk1 | . . . |gk`
| (35)

where gk is the kth Fourier coefficient of g, so g(θ) =
∑∞

k=−∞ gkeiθ.

In order to prove Theorem 1 we must show that for ` ≥ 3, the `th cumulant of

Zφ(U) :=
M∑

n=1

FM (θn) (36)

tends to zero when averaged over the unitary group if supp φ̂ ⊆ [−2/`, 2/`], and tends to zero
when averaged over the symplectic or orthogonal groups if supp φ̂ ⊆ [−1/`, 1/`]. Recall that M
is the total number of eigenangles of the matrix U , while N is the number of independent ones.
Therefore, we choose g as follows:

• If G(N) = U(N), we choose g(θ) = FN (θ).

• If G(N) = USp(2N), φ must be even, and we choose g(θ) = 2F2N (θ)

• If G(N) = SO(2N), φ must be even, and we choose g(θ) = 2F2N (θ)

• If G(N) = SO(2N + 1), φ must be even, and we choose g(θ) = 2F2N+1(θ) + F2N+1(0)

Note that from the definition of FM (θ), (17), the Fourier coefficients of g can be computed, since

1
2π

∫ π

−π

FM (θ)eikθ dθ =
1
2π

∫ π

−π

∞∑

j=−∞
φ

(
M

2π
(θ − 2πj)

)
dθ (37)

=
1
M

φ̂

(
k

M

)
. (38)

Therefore part (i) of Theorem 1 follows from (30) and (35), since if supp φ̂ ∈ (−2/`, 2/`) the `th
cumulant of Zφ(U) is zero (for ` ≥ 3). The mean and variance of Zφ(U) equals C

U(N)
1 (g) and

C
U(N)
2 (g) can be calculated from (28).

Similarly, from (32)–(31) and (34)–(35), we have that if supp φ̂ ∈ [−1/`, 1/`] the first ` cumulants
of Zφ(U) are Gaussian for USp(2N), SO(2N), and SO(2N + 1), and this proves parts (ii) and
(iii) of Theorem 1.

2.1. Connections to moments of traces of matrices. From the cumulants one can obtain
moments of traces of powers of U , first investigated by Diaconis and Shahshahani [1].

Expanding Zφ(U) out as a Fourier series, we obtain

EG(N) {(Zφ)m} =
1

Nm

∞∑
n1=−∞

· · ·
∞∑

nm−∞
φ̂

(n1

N

)
. . . φ̂

(nm

N

)
EG(N) {Tr Un1 . . . TrUnm} . (39)

Writing the moments in terms of cumulants, using (34) and (35), and comparing Fourier coeffi-
cients, we find that

Corollary 1.1. Let Zj be independent standard normal random variables, and let

ηj =

{
1 if j is even
0 if j is odd

(40)
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Let aj ∈ {0, 1, 2, . . . } for j = 1, 2, . . . .

• If
∑

jaj ≤ M − 1, then

ESO(M)

{∏
(Tr U j)aj

}
= E

{∏
(
√

jZj + ηj)aj

}
. (41)

• If
∑

jaj ≤ M + 1, where M is even, then

EUSp(M)

{∏
(Tr U j)aj

}
= E

{∏
(
√

jZj − ηj)aj

}
. (42)

These results were found by Diaconis and Shahshahani [1], though only for half the range of the
parameters (and they dealt with the full orthogonal group, not the special orthogonal group).
Recently Michael Stolz [10] has provided a further proof of this theorem, for the full range, using
invariant theory (though again, he does not deal with the special orthogonal group).

Analogously, for the unitary group, one obtains

Corollary 1.2. For aj , bj ∈ {0, 1, 2, . . . }, if

max


∑

j≥1

jaj ,
∑

j≥1

jbj


 ≤ N (43)

then

EU(N)





∏

j≥1

(
TrU j

)aj
(
TrU−j

)bj



 = δa,b

∏

j≥1

jaj aj ! (44)

where δa,b = 1 if aj = bj for all j, and zero otherwise.

This is exactly the result of Diaconis and Shahshahani, [1]. Indeed, in [6] the mock-Gaussian
result for the unitary case was proved via this result, rather than evaluating the cumulants, as
this was a more direct approach.

3. Number theory examples

3.1. The Riemann zeta function: A unitary example. Consider the non-trivial zeros of
the Riemann zeta function, 1

2 + iγ. The Riemann Hypothesis (which we do not assume) is the
statement that γ ∈ R for all γ.

The counting function of Riemann zeros is

N(T ) = #{γ : 0 ≤ Re(γ) ≤ T} (45)

= N(T ) + S(T ) (46)

where

N(T ) = 1 +
1
π

Im log
(
π−iT/2Γ( 1

4 + 1
2 iT )

)
(47)

=
T

2π
log

T

2πe
+

7
8

+O(
1
T

) (48)

and the error term is

S(T ) =
1
π

Im log ζ(1
2 + iT ) (49)

= O(log T ). (50)

To motivate the study of the smooth counting function, we ask the question: What is the
distribution of the number of zeros lying in an interval of size h around height T? That is: What
is the distribution of N(t + h)−N(t) averaged over T ≤ t ≤ 2T?
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Clearly, the mean is
1
T

∫ 2T

T

N(t + h)−N(t) dt ∼ h

2π
log T (51)

and Fujii [2] (among others) has shown that the centered moments are

1
T

∫ 2T

T

(
S(t + h)− S(t)

σ

)2k

dt =
(2k)!
2kk!

+O(
1
σ

) (52)

where

σ2 =

{
1

π2

∫ h log T

0
1−cos t

t dt 0 < h ¿ 1
1

π2 (log log T − log |ζ(1 + ih)|) 1 ¿ h ¿ T
(53)

Thus if h log T → ∞, the moments converge to the Gaussian moments, and so the distribution
is normal.

However, when h log T = O(1), the main term, (2k)!
2kk!

, is of the same order as the error term
O(1/σ). Therefore, we cannot conclude from (52) that the distribution in normal. In fact, the
distribution is not normal, as it is discrete.

This motivates the study of the smooth counting function when the zeros are critically scaled,

Nφ(t) =
∑

γ

φ

(
log T

2π
(γ − t)

)
. (54)

In [4] the moments of Nφ(t) were calculated, and the first few were found to be Gaussian.

For technical reasons we change the average. Instead of integrating over t ∈ [T, 2T ] we define
the average to be

〈Nφ〉T =
∫ ∞

−∞
Nφ(t)ω(

t− T

T
)
dt

T
(55)

where
∫∞
−∞ ω(x) dx = 1 and ω̂ is compactly supported. The previous average would come from

setting ω to be the indicator function of the interval [0, 1], but this is not allowed.

Theorem 2 (Hughes and Rudnick [4]). If supp φ̂ ⊂ (−2/m, 2/m) then the first m moments of
Nφ converge as T →∞ to those of a Gaussian random variable with mean

∫ ∞

−∞
φ(x) dx (56)

and variance
σ2

φ =
∫ ∞

−∞
min(|u|, 1)φ̂(u)2 du. (57)

Sketch of proof. From a smooth version of Riemann’s explicit formula we have that Nφ(τ) =
Nφ(τ) + Sφ(τ), where

Nφ(τ) =
1
2π

∫ ∞

−∞
φ

(
log T

2π
(r − τ)

)
Ω(r)dr + φ

(
log T

2π
(
i
2
− τ)

)
+ φ

(
log T

2π
(− i

2
− τ)

)
(58)

with
Ω(r) =

1
2
Ψ(

1
4

+
1
2
ir) +

1
2
Ψ(

1
4
− 1

2
ir)− log π (59)

and where

Sφ(τ) = − 1
log T

∑

n≥2

Λ(n)√
n

φ̂(
log n

log T
)2 cos(τ log n). (60)

Asymptotic analysis gives that if φ̂ ∈ C∞c (R), then the mean value of Nφ is given by

〈Nφ〉T =
〈
Nφ

〉
T

(61)

=
∫ ∞

−∞
φ(x)dx +O(

1
log T

), T →∞ . (62)
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Since

lim
T→∞

〈(
Nφ − 〈Nφ〉T

)m〉
T

= lim
T→∞

〈(Sφ)m〉T (63)

it is therefore sufficient to show that the mth moment of Sφ is the same as that of a centered
normal random variable with variance σ2

φ.

Multiplying out and integrating

〈(Sφ)m〉T = (
−1

log T
)m

∑
ε1,...,εm=±1

∑
n1,...,nm

m∏

j=1

Λ(nj)√
nj

φ̂(
log nj

log T
)

× ŵ(
T

2π

m∑

j=1

εj log nj)e−iT
∑m

j=1 εj log nj . (64)

Note nj ≤ T 2/m−ε since supp φ̂ ∈ (−2/m, 2/m).

Since ŵ has compact support, in order to get a nonzero contribution we need

|
m∑

j=1

εj log nj | ¿ 1
T

, (65)

and thus
∑

εj log nj = 0.

Thus for T À 1, we find (taking into account that ŵ(0) =
∫∞
−∞ w(x)dx = 1)

〈(Sφ)m〉T = (
−1

log T
)m

∑

n1,...,nm≥2
ε1,...,εm=±1∑m
j=1 εj log nj=0

m∏

j=1

Λ(nj)√
nj

φ̂(
log nj

log T
). (66)

The only terms which do not vanish as T → ∞ are those where m = 2k is even, and there
is a partition {1, . . . , 2k} = S ∪ S′ into disjoint subsets and a bijection σ : S → S′ such that
nj = nσ(j) and εj = −εσ(j). There are k!

(
2k
k

)
such terms, and so

〈
(Sφ)2k

〉
T
→ (2k)!

k!

(
1

log2 T

∑
n

Λ(n)2

n
φ̂(

log n

log T
)2

)k

(67)

→ (2k)!
k!

(∫ ∞

0

uφ̂(u)2du

)k

(68)

by the Prime Number Theorem. ¤

This theorem compares perfectly with part (i) of Theorem 1.

3.2. Real Dirichlet L–functions: A symplectic family. Consider the zeros of quadratic
L-functions, that is of L-functions of the form

L(s, χd) =
∞∑

n=1

χd(n)
ns

(69)

where χd(n) =
(

d
n

)
is the Kronecker symbol.

Rather than averaging over t, we will average the low-lying zeros of the L-function over charac-
ters, that is over d ∈ D(X) := {d : |d| ≤ X , χd primitive}.
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From an explicit formula we can show that the smooth counting function equals

Nφ(χd) :=
∑
γd

φ

(
log X

2π
γd

)
(70)

=
∫ ∞

−∞
φ(x) dx−

∫ ∞

0

φ̂(u) du− 2
log X

∞∑
n=1
n6=¤

Λ(n)
n1/2

χd(n)φ̂
(

log n

log X

)
. (71)

The mean of Nφ(χd) is µUSp
φ :=

∫∞
−∞ φ(x) dx− ∫ 1

0
φ̂(u) du, and so the centered moments are

1
|D(X)|

∑

d∈D(X)

(
Nφ(χd)− µUSp

φ

)m

=
1

|D(X)|
∑

d∈D(X)


− 2

log X

∞∑
n=1
n6=¤

Λ(n)
n1/2

χd(n)φ̂
(

log n

log X

)



m

(72)
Expanding out the bracket, one can show that if supp φ̂ ∈ (−1/m, 1/m), then the only contri-
bution comes from the terms where n1 . . . nm = ¤ (in which case χd(n1 . . . nm) = 1 for all d).
That is, we have

Theorem 3. Let D(X) be the set of primitive quadratic characters χd with |d| ≤ X. If supp φ̂ ∈
[−1/m, 1/m] then

1
|D(X)|

∑

d∈D(X)

(
Nφ(χd)− µUSp

φ

)m

→




(2k)!
2kk!

(
4

∫ 1/2

0
uφ̂(u)2 du

)k

if m = 2k is even

0 if m is odd
(73)

where

µUSp
φ =

∫ ∞

−∞
φ(x) dx−

∫ 1

0

φ̂(u) du. (74)

This theorem agrees perfectly with part (ii) of Theorem 1. By the work in Section 1, this
theorem implies the n-level densities of the zeros L(s, χd) are the same as the n-level densities
of the symplectic group (within a restricted range), a result first derived by Mike Rubinstein [8],
though this approach avoids the combinatorial sieving necessary there. Indeed, also by the work
in Section 1, one can derive this theorem immediately from Rubinstein’s result.

3.3. L–functions arising from cuspidal newforms: An orthogonal example. Let H?
k(N)

be the set of all holomorphic cusp forms which are newforms of weight k and level N .

Let the Fourier coefficients of an f ∈ H?
k(N) be af (n), and let λf (n) = af (n)n−(k−1)/2. The

L-function associated with f is

L(s, f) =
∞∑

n=1

λf (n)n−s. (75)

It satisfies the functional equation mapping s −→ 1− s which has sign εf = ±1.

Therefore H?
k(N) splits into two disjoint subsets, H+

k (N) = {f ∈ H?
k(N) : εf = +1} and

H−
k (N) = {f ∈ H?

k(N) : εf = −1}.
For φ̂ ∈ C∞c (R), define the smooth counting function

Nφ(f) =
∑
γf

φ

(
log(k2N)

2π
γf

)
. (76)

Here, γf runs through the non-trivial zeros of L(s, f). We rescale the zeros by log(k2N) as this
is the order of the number of zeros with imaginary part less than a large absolute constant.
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We define the average over either H+
k (N) or H−

k (N) by

〈Nφ(f)〉± :=
1

|H±
k (N)|

∑

f∈H±
k (N)

Nφ(f). (77)

We let N →∞ through the primes, with k held fixed.

Theorem 4 (Hughes and Miller [3]). If supp φ̂ ⊆ (− 1
m , 1

m ) then the mth moment of Nφ(f),
when averaged over the elements of either H+

k (N) or H−
k (N), converges to the mth moment of

a normal distribution with mean

µ = φ̂(0) +
1
2

∫ 1

−1

φ̂(y) dy (78)

and variance

σ2 = 2
∫ 1/2

−1/2

|u|φ̂(y) dy. (79)

This result is in complete agreement with part (iii) of Theorem 1, and also shows that the n-
level densities do, as expected, agree with the n-level densities for the special orthogonal group.
However, in this case we are able to go beyond the diagonal, and show that Gaussian behaviour
ceases at the point predicted by random matrix theory.

Theorem 5 (Hughes and Miller [3]). Let µ± = 〈Nφ(f)〉±, and let S(x) = sin πx
πx . For n ≥ 2, let

supp(φ̂) ⊂ (− 2
2n−1 , 2

2n−1 ). Then as N →∞ through the primes, if n = 2m is an even integer,

lim
N→∞

〈
(Nφ(f)− µ±)2m

〉
±

=
(2m)!
2mm!

(
2

∫ 1

−1

φ̂(x)2|x| dx

)m

∓ 22m−1

[∫ ∞

−∞
φ(x)2mS(2x) dx− 1

2
φ(0)2m

]
, (80)

and if n = 2m + 1 is an odd integer, then

lim
N→∞

〈
(Nφ(f)− µ±)2m+1

〉
±

= ±22m

[∫ ∞

−∞
φ(x)2m+1S(2x)dx− 1

2
φ(0)2m+1

]
. (81)

In particular, as the Fourier Transform of S(2x) is 1
211{|x|≤1}, the third centered moment is zero

if supp φ̂ ⊂ (1/3, 1/3), but non-zero if the support exceeds this interval. These non-Gaussian
results still agree with the random matrix results for Zφ(U).
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