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Abstract — Building upon Dyson’s fundamental 1962 article known in random-matrix
theory aghe threefold waywe classify disordered fermion systems with quadratic Hamil-
tonians by their unitary and antiunitary symmetries. Important physical examples are af-
forded by noninteracting quasiparticles in disordered metals and superconductors, and by
relativistic fermions in random gauge field backgrounds.

The primary data of the classification are a Nambu space of fermionic field operators
carrying a representation of some symmetry group. Our approach is to eliminate all of the
unitary symmetries from the picture by transferring to an irreducible block of equivariant
homomorphisms. After reduction, the block data specifying a linear space of symmetry-
compatible Hamiltonians consist of a basic vector spaca space of endomorphisms in
EndV &V*), a bilinear form oV & V* which is either symmetric or alternating, and one
or two antiunitary symmetries that may mikwith V*. Every such set of block data is
shown to determine an irreducible classical compact symmetric space. Conversely, every
irreducible classical compact symmetric space occurs in this way.

This proves the correspondence between symmetry classes and symmetric spaces con-
jectured some time ago.

Keywords: disordered electron systems, random Dirac fermions, quantum chaos; repre-
sentation theory, symmetric spaces

1. Introduction

In a famous and influential paper published in 1962 (“the threefold way: algebraic
structure of symmetry groups and ensembles in quantum mechabBips’Hreeman
J. Dyson classified matrix ensembles by a scheme that became fundamental to several
areas of theoretical physics, including the statistical theory of complex many-body
systems, mesoscopic physics, disordered electron systems, and the field of quantum
chaos. Being set in the context of standard quantum mechanics, Dyson’s classification
asserted that “the most general matrix ensemble, defined with a symmetry group that
may be completely arbitrary, reduces to a direct product of independent irreducible
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ensembles each of which belongs one of three known types.” These three ensembles,
or rather their underlying matrix spaces, are nowadays known as the Wigner-Dyson
symmetry classes of orthogonal, unitary, and symplectic symmetry.

Over the last ten years, various matrix spaces beyond Dyson’s threefold way have
come to the fore in random-matrix physics and mathematics. On the physics side, such
spaces arise in problems of disordered or chaotic fermions; among these are the Eu-
clidean Dirac operator in a stochastic gauge field backgrov#d, [and quasiparticle
excitations in disordered superconductors or metals in proximity to a superconductor
[A]. In the mathematical research area of number theory, the study of statistical corre-
lations in the values of the Riemann zeta function, and more generally of families of
L-functions, has prompted some of the same extenskohs [

A brief account of why new structures emerge on the physics side is as follows.
When Dirac first wrote down his famous equation in 1928, he assumed that he was
writing an equation for thevavefunctiorof the electron. Later, because of the insta-
bility caused by negative-energy solutions, the Dirac equation was reinterpreted (via
second quantization) as an equation for teemionic field operator®f a quantum
field theory. A similar change of viewpoint is carried out in reverse in the Hartree-
Fock-Bogoliubov mean-field description of quasiparticle excitations in superconduc-
tors. There, one starts from the equations of motion for linear superpositions of the
electron creation and annihilation operators, and reinterprets them as a unitary quan-
tum dynamics for what might be called the quasiparticle ‘wavefunction’.

In both cases — the Dirac equation and the quasiparticle dynamics of a superconduc-
tor — there enters a structure not present in the standard quantum mechanics underlying
Dyson’s classification: the fermionic field operators are subject to a set of conditions
known as thecanonical anticommutation relationgnd these are preserved by the
guantum dynamics. Therefore, whenever second quantization is undone (assuming it
canbe undone) to return from field operators to wavefunctions, the wavefunction dy-
namics is required to preserve some extra structure. This puts a linear constraint on
the allowed Hamiltonians. A good viewpoint to adopt is to attribute the extra invariant
structure to the Hilbert space, thereby turning it into a Nambu space.

It was conjectured some time agA][that extending Dyson’s classification to the
Nambu space setting, the relevant objects one is led to consider are large families
of symmetric spacesf compact type. Past understanding of the systematic nature
of the extended classification scheme relied on the mapping of disordered fermion
problems to field theories with supersymmetric target spacem[combination with
renormalization group ideas and the classification theory of Lie superalgebras.

An extensive review of the mathematics and physics of symmetric spaces, covering
the wide range from the basic definitions to various random-matrix applications, has
recently been given in(J]. That work, however, offers no answers to the question
as towhy symmetric spaces are relevant for symmetry classification, and under what
assumptions the classification by symmetric spaces is complete.
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In the present paper, we get to the bottom of the subject and, using a minimal set of
tools from linear algebra, give a rigorous answer to the classification problem for disor-
dered fermions. The rest of this introduction gives an overview over the mathematical
model to be studied and a statement of the main result obtained.

We begin with a finite- or infinite-dimensional Hilbert spaéecarrying a unitary
representation of some compact Lie grd@syg- this is the group of unitary symmetries
of the disordered fermion system. We emphasize @gaheed not be connected; in
fact, it might be just a finite group.

LetW =V @V *, called the Nambu space of fermionic field operators, be equipped
with the inducedGg-representation. This means thatis equipped with the given
representation, ang(f) := fog™tfor f € V*, ge Go. LetC:W — W be the
C-antilinear involution determined by the Hermitian scalar prodygt; on V. In
physics this operator is called particle-hole conjugation. Another canonical structure
onW is the symmetric complex bilinear forbn: W x W — C defined by

b(vi+ f1,vo+ f2) 1= f1(v2) + f2(v1) .

It encodes the canonical anticommutation relations for fermions, and is related to the
unitary structurd, ) of W by b(wy, w,) = (Cwy,ws) for all wy,w, € W.

It is assumed thaBg is contained in a grouf — the total symmetry group of the
fermion system — which is acting AV by transformations that are either unitary or
antiunitary. An elemeng € G either stabilize¥/ or exchange¥ andV *. In the latter
case we say tha@t € G mixes, and in the former case we say that it is nonmixing.

The groupG is generated bysg and distinguished elemengs which act as anti-
unitary operator§ : W — W. These are referred to as distinguished ‘time-reversal’
symmetries, off -symmetries for short. The squares of tielie in the center of the
abstract grougs; we therefore require that the antiunitary operatbreepresenting
them satisfyT? = +Id. The subgroufy is defined as the set of all elements®f
which are represented as unitary, nonmixing operatoid/on

If T andT; are distinguished time-reversal operators, theg T Ty is a unitary sym-
metry. P may be mixing or nonmixing. In the latter cag¥is in Ggo. Therefore, modulo
Go, there exist at most two differeffit-symmetries. If there are exactly two such sym-
metries, we adopt the convention tHats mixing andT; is nonmixing. Furthermore,
it is assumed thal andT; either commute or anticommute, i.&,T = +TT;.

As explained throughout this article, all of these situations are well motivated by
physical considerations and examples. We note that time-reversal symmetry (and all
otherT-symmetries) of the disordered fermion system may also be broken; in this case
T andT; are eliminated from the mathematical model &= G.

GivenW and the representation &f on it, the object of interest is the real vector
spaceH of C-linear operators in ErdV ) that preserve the canonical structubesnd
(,) of W and commute with th&-action. Physically speakind{ is the space of
‘good’ Hamiltonians: the field operator dynamics generatetillyH preserves both
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the canonical anticommutation relations and the probability in Nambu space, and is
compatible with the prescribed symmetry graap

When unitary symmetries are present, the sgdcdecomposes bilocksassoci-
ated with isomorphism classes Gf-subrepresentations occurring\M. To formal-
ize this, recall that two unitary representatigns Go — U(V), i = 1,2, are equiv-
alent if and only if there exists a unitaf§-linear isomorphism : V3 — V, so that
p2(9)(d(v)) = d(p1(g)(v)) for all v e Vy and for allg € Go. Let Gy denote the space
of equivalence classes of irreducible unitary representatiofg.ohn element\ € Gg
is called an isomorphism class for short. By standard facts (recall that every represen-
tation of a compact group is completely reducible) the uni@gyrepresentation okl
decomposes as an orthogonal sum over isomorphism classes:

V =a,V,.

The subspaces), are called th&g-isotypic components df . Some of them may be
zero. (Some of the isomorphism classe§gimay just not be realized ¥ .)

For simplicity suppose now that there is only one distinguished time-reversal sym-
metry T, and for any fixed\ € Go with V) # 0, consider the vector spaddV,). If
T is nonmixing, i.e.,T : V — V, thenT(V,) € V must coincide with the isotypic
component for the same or some other isomorphism class. (Since conjugatipisby
an automorphism o0&y, the decomposition intGo-isotypic components is preserved
by T.) If T is mixing, i.e.,T :V — V*, thenT(V,) = V5, still with some)’ € G.

Now define the blociB, to be the smallegB-invariant space containing, @ V,".
Note that if we are in the situation of nonmixing af@V,) # V,, then

Br=MVaeT(Vy)® (VaaT(Vy))".
On the other hand, if we are in the situation of mixing an,) # V,*, then
By=(V,®T(Vy))a (VyaT(V,)) .

The blockB, is halved ifT (V) = V) resp.T(V,) = V).
Note that if there are two distinguishddsymmetries, the above discussion is only
slightly more complicated. In any case we now have the Hasioariant blocksB, .
Because different blocks are built from representations of different isomorphism
classes, the good Hamiltonians do not mix blocks. Thus edegyH is a direct sum
over blocks, and the structure analysistbf can be carried out for each blodk,
separately. IV, is infinite-dimensional, then to have good mathematical control we
truncate to a finite-dimensional spagec V, and form the associated blo8 c W .
The truncation is done in such a way tiBgtis aG-representation space and is Nambu.
The goal now is to compute the space of Hermitian operatoB, avhich commute
with the G-action and respect the canonical symmegHbilinear formb induced from
that onV @&V * (such a space of operators realizes what is calleghametry clags
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For this, certain spaces @p-equivariant homomorphisms play an essential role,
i.e., linear map$: Vi — Vo betweenGg-representation spaces which satisfy

P2(g) o S= Sop1(Q)

for all g € Go, wherep; : Go — U(V), i = 1,2, are the respective representations. If it
is clear which representations are at hand, we often simply @rite= Sog or S=
gSg L. Thus we regard the space HepiV1, V2) of equivariant homomorphisms as the
space ofGp-fixed vectors in the space Hd, V2) of all linear maps. I, =V, =V,
then these spaces are denoted byd; (M) and EndV) respectively.

Roughly speaking, there are two steps for computing the relevant spaces of Her-
mitian operators. First, the blodR, is replaced by an analogous bloek of Go-
equivariant homomorphisms from a fixed representation spacef isomorphism
classA and/or its duaR; to By. The spaceH, carries a canonical form (called ei-
thers or a) which is induced fronb. As the notation indicates, although the original
bilinear form onB,, is symmetric, this induced form is either symmetric or alternating.

Change of parity occurs in the most interesting case when there is a nor®gvial
isomorphismp : Ry, — R}. In that case there exists a bilinear fofp: R, x Ry — C
defined byFy(r,t) = W(r)(t), which is either symmetric or alternating. In a certain
sense the fornb is a product ofy and a canonical form oH,. Thus, ifFy is alter-
nating, then the canonical form &), must also be alternating.

After transferring to the spadd,, in addition to the canonical bilinear forsor a
we have a unitary structure and conjugation by one or two distinguished time-reversal
symmetries. Such a symmetfymay be mixing or not, and boff? = Id andT2 = —Id
are possible. The second main step of our work is to understand these various cases,
each of which is directly related to a classical symmetric space of compact type. Such
are given by a classical Lie algebyavhich is eitheruy, usp,,, or son(R).

In the notation of symmetric spaces we have the following situation.g b the
Lie algebra ofantihermitianendomorphisms dfly which are isometries (in the sense
of Lie algebra elements) of the induced complex bilinear formasor b= a. This is
of compact type, because it is the intersection of the Lie algebra of the unitary group
of H, and the complex Lie algebra of the group of isometriels.a€onjugation by the
antiunitary mappin@ defines an involutio® : g — g.

The good Hamiltonians (restricted to the reduced bldgkare theHermitianoper-
atorsh € ig such that at the level of group action the one-parameter grotifissatisfy
Te th— HthT je., h € g must anticommute witfi. Equivalently, ifg = ¢® p is the
decomposition of into B-eigenspaces, the space of operators which is to be computed
is the(—1)-eigenspace. The space of good Hamiltonians restrictedpthen is p.

Since the appropriate action of the Lie grd€fwith Lie algebrak) on this space is just
conjugation, one identifieg iwith the tangent spacg/¢ of an associated symmetric
spaceG/K of compact type.

It should be underlined that there is more than one symmetric space associated to a
Cartan decompositiop = ¢ @ p. We are most interested in the one consisting of the
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physical time-evolution operators &; if G (not to be confused with the symmetry
group@G) is the semisimple and simply connected Lie group with Lie alggbthis is
given as the image of the compact symmetric sgade under the Cartan embedding
into G defined bygK — g8(g) %, where : G — G is the induced group involution.

The following mathematical result is a consegence of the detailed classification work
in Sects. 3, 4 and 5.

Theorem 1.1 — The symmetric spaces which occur under these assumptions are ir-
reducible classical symmetric spacggt of compact type. Conversely, every irre-
ducible classical symmetric space of compact type occurs in this way.

We emphasize that here the notieymmetric spaces applied flexibly in the sense
that depending on the circumstances it could mean either the infinitesimal gyddel
or the Cartan-embedded compact symmetric sfate

Let us mention that direct sunagt @ g/¢ may occur in examples where the original
situation is irreducible, e.g., when the initial blogks V* is invariant under two dis-
tinguished time-reversal symmetries. But the main object of interest would seem to be
the irreducible classical symmetric space of compact type.

Theorem 1.1 settles the question of symmetry classes in disordered fermion systems;
in fact every physics example is handled by one of the situations above.

The paper is organized as follows. In Sect. 2, starting from physical considerations
we motivate and develop the model that serves as the basis for subsequent mathemati-
cal work. Sect. 3 proves a number of results which are used to eliminate the group of
unitary symmetrie$sg. The main work of classification is given in Sect. 4 and Sect.

5. In Sect. 4 we handle the case where there is at most one distinguished time-reversal

operator present, and in Sect. 5 the case where there are two. There are numerous sit-
uations that must be considered, and in each case we precisely describe the symmetric
space which occurs.

Various examples taken from the physics literature are listed in Sect. 6, illustrating
the general classification theory.

2. Disordered fermions with symmetries

‘Fermions’ is the physics name for the elementary particles which all matter is made
of. The goal of present article is to establish a symmetry classification of Hamiltonians
which arequadraticin the fermion creation and annihilation operators. To motivate
this restriction note that at the fundamental level, any Hamiltonian for fermions is
of Dirac type; thus it is always quadratic in the fermion operators, albeit with time-
dependent coefficients that are themselves operators. At the nonrelativistic or effective
level, quadratic Hamiltonians arise in the Hartree-Fock mean-field approximation for
metals and the Hartree-Fock-Bogoliubov approximation for superconductors. By the
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Landau-Fermi liquid principle, such mean-field or noninteracting Hamiltonians give
an adequate description of physical reality at very low temperatures.

In the present section, starting from a physical framework, we develop the appropri-
ate model that will serve as the basis for the mathematical work done later on. Please be
advised thatdisorder, though advertised in the title of the section and the title of paper,
will play no explicit role here. Nevertheless, disorder (and/or chaos) are the indispens-
able agents thanust be preserih order to remove specific and nongeneric features
from the physical system and make a classification by basic symmetries meaningful.
In other words, what we carry out in this paper is the first step of a two-step program.
This first step is to identify in the total space of Hamiltonians some linear subspaces
that are relevant (in Dyson’s sense) from a symmetry perspective. The second step is
to put probability measures on these spaces and work out the disorder averages and
statistical correlation functions of interest. It is this latter step that ultimately justifies
the first one and thus determines the name of the game.

2.1. The Nambu space model for fermions. — he starting point for our considera-

tions is the formalism of second quantization. Its relevant aspects will now be reviewed

so as to introduce the key physical notions as well as the proper mathematical language.
Leti=1,2,... label an orthonormal set of quantum states for a single fermion.

Second quantizing the many-fermion system means to associate with eagair

of operatorsciT andc;, which are called fermion creation and annihilation operators,

respectively. These operators are subject tatdmnical anticommutation relations

cc +CTCT:0,

c.cj+clc. 0,
c C +cc = gjj ,

for all i, j. They act in a Fock space, i.e., in a vector space with a distinguished vec-
tor, called the ‘vacuum’, which is annihilated by all of the operatpré = 1,2,...).
Applying n creation operators to the vacuum one gets a state vectarféomions. A

field operatory is a linear combination of creation and annihilation operators,

Y= Z vc+fc,

with complex coefficients; and f;.

To put this in mathematical terms, I8t be the complex Hilbert space of single-
fermion states. (We do not worry here about complications due to the dimension of
V being infinite. Later rigorous work will be carried out in the finite-dimensional
setting.) Fock space then is the exterior algebka, with the vacuum being the
one-dimensional subspace of constants. Creating a single fermion amounts to exte-
rior multiplication by a vector € V and is denoted bg(v). To annihilate a fermion,
one contracts with an elemehbf the dual spac¥ *; this operation on\V is written
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1(f). In that framework the canonical anticommutation relations read

e(V)e(V) +e(V)e(v) =0,
L (f)+i(fn(f)=o0,
L(f)e(v) +e(vi(f)=f(v).

They can be viewed as the defining relations of an associative algebra generated by the
vector spacdV =V @V * which is isomorphic to the space of field operatgrs

This algebra, called the Clifford algebtd\W ), comes with a natural grading by the
degree:

CW)=CaClW)aC3W)a...,

whereCY(W) =2 W. In the sequel, we shall focus on the componéhtéWV ) and
C2(W). Since we only consider Hamiltonians that are quadratic in the creation and
annihilation operators, we will be able to reduce the second-quantized formulation to
standard single-particle quantum mechanics, albeit on the doubled\Apazerying
some extra structurdV is sometimes referred to &&ambu spacé physics.

OnW there exists a canonical symmetric complex bilinear fordefined by

b(v+ f,7+f) = f(v) + f(9) = 5 (fivi+ fi %) .

The significance of this bilinear form in the present context lies in the fact that it en-
codes onWW the canonical anticommutation relations (CAR) obeyed by the Clifford
algebra generators B (W ). Indeed, we can view a field operatpe= ;(v: ¢/ + f. c,)
eitherasavectap=v+f €V @V *, or equivalently as an operatdr=g(v) +1(f) €
CL(W). Adopting the operator perspective, we get from CAR that

WO+ = f(V)+ () =5, (fivi+fi%) .
Switching to the vector perspective we have the same answerdfpgn®). Thus

WP+ Py = b(y, D) .

Definition 2.1 — In the Nambu space model for fermions one identifies the space
C(W) of field operatorsp = £(v) +1( f) with the complex vector spaté =V @V *
equipped with its canonical unitary structute) and canonical symmetric complex
bilinear form b.

Remark — Having already expounded the physical origin of the symmetric bilinear
form, let us now specify the canonical unitary structureMf The complex vector
spaceV , being isomorphic to the Hilbert space of single-particle states, comes with a
Hermitian scalar product (or unitary structute)y, . Given(, )y define aC-antilinear
bijectionC:V — V* by

Cv=(v,")y ,
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and extend this to an antilinear transforma@nW — W by the requiremer@? = Id.
ThusC|y- = (Cly ). The operato€ is calledparticle-hole conjugatiotin physics.
UsingC, transfer the unitary structure frokh to V * in the natural way:
(f, f)y. = (Cf,Cf)y = (Cf,Cf)y
The canonical unitary structure ¥ is then given by
W+ 1,9+ F) = MOy +(F, Dy =S, W+ ) .
Thus(, ) is the orthogonal sum of the Hermitian scalar product¥oandV *.

Proposition 2.2 — The canonical unitary structure and symmetric complex bilinear
form of W are related by

(W, ) =b(Cy, ).
Proof. — Given an orthonormal basd% cl,cg,cz,...this is immediate from
CHil v.cl +f.c) Zi(\Tici+chiT)
and the expressions for ) andb in components. O

Returning to the physics way of telling the story, consider the most general Hamilto-
nianH which is quadratic in the single-fermion creation and annihilation operators:

H=33Ai(cej—cie) + 3 (Bicle] +Bicje).

The Hamiltoniandd act on the field operatorg by the commutatonp — [H, Y], and
the evolution with time is determined by the Heisenberg equation of motion,

dy
ih— =[H
G = H,
wherefi is Planck’s constant. By the canonical anticommutation relations, this dynami-
cal equation is equivalent to a system of linear differential equations for the coefficients

vi and fi:
i =% (A Vi +Bi f)
—ihf; = Zj (ET.J Vj—l—A_ij fj) .
If these are assembled into a column veetdhe evolution equation takes the form
. i (A B
V=XV, X:_ﬁ <_§ —A) .

The matrix elements of obey the relation8j; = —Biji (from cic; = —cjcj) andAjj =
A,I (from the physical requirement of self-adjointnes$Qf

To recast all this in concise mathematical terms, recall the grading of the Clifford
algebraC(W) =Ca& C1(W)@®C?(W)a.... From the Clifford algebra perspective,
the HamiltoniarH is viewed as an operator in the degree-two compo@é(tV ).
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For our purposes it is therefore important to accumulate some information about
C2(W). Itis well known [B] thatC?(W ) is a Lie algebra with the commutator playing
the role of the Lie bracket; in fad?(W) is canonically isomorphic to the complex
orthogonal Lie algebrao(\W ,b) associated with the vector spadé =V @V * and
its canonical symmetric complex bilinear forlm Here the Lie algebrao(W ,b) is
defined to be the subspace of elemdnts End\W ) satisfying the condition

b(EW, D) +b(w,EQ) =0.
If E is any endomorphism in Eifef @V *), decompose it into blocks as

A B
= (¢ 0)-
whereA € EndV), B € Hom(V*,V), C € Hom(V,V *) andD € EndV *). Let the
adjoint (or transpose) df € EndV ) be denoted bt € End(V *).

Proposition 2.3 — An endomorphism E e EndV @V *) lies in the com-

C D
plex orthogonal Lie algebrao(V @V *,b) if and only ifB, C are skew and = —A!.
Proof — Consider first the cad® = C =0, and letp = v+ f and) = ¥+ f. Then
b(Ew, ) = b(Av—Af, 7+ f) = f(Av) — A'f(¥)
= AYf(v) — f(AV) = —b(v+ f,AV— A'f) = —b(y,ED) .
A similar calculation for the casé = 0 gives
b(Ew, ) = b(Bf+Cf,0+f)=f(Bf)+Cv(V)
= —f(Bf)—C¥(v) = —b(v+ f,Bf +C¥) = —b(y,ED) .
Since these two cases complement each other, the statement follows. O
By fixing orthonormal baseél,c;,... of V andcy,cy,... of V* as before, we assign

matrices with matrix elementj, Bjj, Gjj to the linear operator&, B, C. A straight-
forward computation using the canonical anticommutation relations then yields:

Proposition 2.4 — TheC-linear mapping fronso(W , b) to C?(W ) given by
A B
(c _At> — 35 Ai(ce —cic) +3 Y (Bij¢c] +Gijaic)
is an isomorphism of Lie algebras.

In addition to acting on itself by the commutator, the Lie algebféWV ) acts (still
by the commutator) on all of the componefit§ W ) of degreek > 1 of the Clifford
algebraC (W). In particular,C>(W ) acts on the degree-one compon@hfW ). By
the isomorphism€2(W) 2 so(W ,b) andC1(W) = W, this action coincides with
the fundamental representationsef{ W ,b) on its defining vector spad&/ . In other
words, taking the commutator of the Hamiltonieine C2(W ) with a field operator
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W € C1(W) yields the same answer as viewiRgas an element ofo(W ,b), then

applyingH = (é _BAt> to the vectolp =v+ f eV &V * by

H-(v+ f) = (Av+Bf)+ (Cv— Atf)

and finally reinterpreting the result as a field operatdZ W ).

The closure relatiofiC2(W),C*(W)] c C1(W) and the isomorphisns! (W) =
W andC?(W) = s0(W , b) make it possible to reduce the dynamics of field operators
to a dynamics on the Nambu spabe As we have seen, after reduction the generators
X e EndV @V *) of time evolutions of the physical system are of the special form

i (A B
X= _% <B* _At> ’
whereB € Hom(V *,V) is skew, andA = A* € End(V ) is self-adjoint w.r.t{, )y .

Proposition 2.5 — The one-parameter groups of time evolutioas &% in the Nambu
space model preserve both the canonical unitary structuyeand the canonical sym-
metric complex bilinear formb dV =V ¢V *.

Proof. — By Prop. 2.3 the generatof is an element of the complex Lie algebra
so(W,b). Hence the exponential = €X lies in the complex orthogonal Lie group
SQO(W,, b), which is defined to be the set of solutiognsr End(W ) of the conditions

b(gw,90) =b(y,P), and Defg) =1.

SinceA = A*, andB* € Hom(V ,V *) is the adjoint o8 € Hom(V *,V ), the gener-
ator X is antihermitian with respect to the unitary structurdf The exponentiated
generatotJ; therefore lies in the unitary group(M ), which is to say that

(U, Ui Q) = (P, D)

for all realt. ThusU; preserves both and(, ). O

Remark — In physical language, the invariance lmunder time evolutions means
that the canonical anticommutation relations for fermionic field operators do not change
with time. Invariance of , ) means that probability in Nambu space is conserved. (If
the quadratic Hamiltoniail arises as the mean-field approximation to some many-
fermion problem, the latter conservation law holds as long as quasiparticles do not
interact and thereby are protected from decay into multi-particle states.)

We now distill the essence of the information conveyed in this section. The quantum
theory of many-fermion systems is set up in a Hilbert space called the fermionic Fock
space in physics (or the spinor representation in mathematics). The field operators of
the physical system span a vector sp&lée=V ¢V *, which generates a Clifford
algebraC (W) whose defining relations are the canonical anticommutation relations.
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Since[C?(W),CL(W)] c CY(W), the discussion of the field operator dynamics for
the important case of quadratic Hamiltoniahs: C%(W ) can be reduced to a discus-
sion on the Nambu spat¥ = C1(W). Via this reduction, the vector spaldé inherits
two natural structures: the canonical symmetric complex bilinear foemcoding the
anticommutation relations, and a canonical unitary structuiedetermined by the
Hermitian scalar product o . Both of these structures are invariant, i.e., are pre-
served by physical time evolutions. Under the reductiowtpthe commutator action
of C2(W) onC*(W) becomes the fundamental representatiosp¢¥V ,b) on W .

2.2. Symmetry groups. —Following Dyson, the classification of disordered fermion
systems will be carried out in a setting that prescribes two pieces of data:

e One is given a Nambu spat¥ =V ¢V * equipped with its canonical unitary
structure(, ) and canonical symmetric-bilinear formb.

e OnW there acts a grou@ of unitary and antiunitary operators (the joint sym-
metry group of a multi-parameter family of fermionic quantum systems).

Given this setup, one is interested in the linear space of Hamiltokiamsh the prop-

erty that they commute with th8-action onW, while preserving the invariant struc-
turesband(, ) of W under time evolution by @/ Such a space of Hamiltonians is

of course reducible in general, i.e., the Hamiltonian matrices decompose into blocks.
The goal of classification is to enumerate all fyenmetry classese., all the types of
irreducible block which occur in this way.

In the present subsection, we provide some information on what is meant by unitary
and antiunitary symmetries in the present context. We begin by recalling the basic
notion of a symmetry group in quantum Hamiltonian systems.

In classical mechanics the symmetry grdgg of a Hamiltonian system is under-
stood to be the group of symplectomorphisms that commute with the phase flow of the
system. Examples are the rotation group for systems in a central field, and the group
of Euclidean motions for systems with Euclidean invariance.

In passing from classical to quantum mechanics, one replaces the classical phase
space by a complex Hilbert spaWe and assigns to the symmetry groBpa (projec-
tive) representation by unitaf§+linear operators ol . While the consequences due to
one-parameter continuous subgroup&efare particularly clear from Noether’s theo-
rem, the components &y not connected with the identity also play an important role.

A prominent example is provided by the operator for space reflection. Its eigenspaces
are the subspaces of states with positive and negative parity, and they reduce the matrix
of any reflection-invariant Hamiltonian to two blocks.

Not all symmetries of a quantum mechanical system are of the canonical, unitary
kind: the prime counterexample is the operatgnof inverting the time direction —
called time reversal for short. In classical mechanics this operation reverses the sign of
the symplectic structure of phase space; in quantum mechanics its algebraic properties
reflect the fact that the timeenters in the Dirac, Pauli, or Sadihger equation as



SYMMETRY CLASSES OF DISORDERED FERMIONS 13

ihd/dt: there, time reversajr is represented by amtiunitaryoperatorT, which is to
say thafT is complex antilinear:

T(zv=2zTv (zeC,veV),
and preserves the Hermitian scalar product up to complex conjugation:
vy =(TyTOy .

Another example of such an operation is charge conjugation in relativistic theories.
Further examples are provided by chiral symmetry transformations (see Sect. 2.3).

By the symmetry grouiss of a quantum mechanical system with Hamiltontdn
one then means the group of all unitary and antiunitary transformagiarfis/ that
leave the Hamiltonian invariangHg 1 = H. It should be noted that finding the total
symmetry group of a quantization of some Hamiltonian system is not always straight-
forward. The reason is that there may exist nonobvious quantum symmetries such as
Hecke symmetries, which are of number-theoretic origin and have no classical limit.
For our purposes, however, this complication will not be an issue. We take the group
G and its action on the Hilbert space to fomdamental and giverand then ask what
is the linear space of Hamiltonians that commute with@Gaaction.

For technical reasons, we assume the gi@ypo be compact; this is an assumption
that covers most (if not all) of the cases of interest in physics. The noncompact group
of space translations can be incorporated, if necessary, by wrapping the system around
a torus, whereby translations are turned into compact torus rotations.

What we have sketched — a symmetry gré@ipcting on a Hilbert spac¥ — is the
framework underlying Dyson’s classification. As was explained in Sect. 2.1, we wish
to enlarge it so as to capture all examples that arise in disordered fermion physics.

For this, recall that in the Nambu space model for fermions, the Hilbert space is not
V but the space of field operato¥8 =V @V *. The givenG-representation oV
therefore needs to be extended to a representatidM omhis is done by the condition
that the pairing betweev andV * (and thus the pairing between fermion creation and
annihilation operators) be preserved. In other words), ifV — V andA:V —V
are unitary resp. antiunitary operators, their induced representatiovi$ gmhich we
still denote by the same symbols) are defined by requiring that

(U f)(Uv) = f(v) = (Af)(Av)
forallve V andf € V*. In particular theGp-representation oN * is thedual one,
U(f)=fout.

Equivalently, the-representation oW is defined so as to be compatible with particle-
hole conjugatior€ : W — W in the sense that operations commute:

CuU=UC, and CA=AC.
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Indeed, if f = Cvthen f (V) = (v,V) and from the invariance of the pairing between
V andV * one infers the relation&, V) = (U f)(U¥) = (U~IC7IUCV¥) and(v,V) =
(AT)(AV) = (A-1ICtACy V).

While the framework so obtained is flexible enough to capture the situations that
arise in the nonrelativistic quasiparticle physics of disordered metals, semiconductors
and superconductors, it is still slightly too narrow to accommodate some much studied
examples that have emerged from elementary particle physics. Let us explain this.

2.3. The Euclidean Dirac operator. —An important developmentin random-matrix
physics over the last ten years was the formulatiég][and study of the so-called
chiral ensembles, which model Dirac fermions in a random gauge field background,
and lie beyond Dyson’s 3-way classification. From the viewpoint of applications, these
random-matrix models have the merit of capturing some universal features of the Dirac
spectrum of quantum chromodynamics (QCD) in the low-energy limit. In the present
subsection we will demonstrate that, but for one minor difference, they fit naturally
into our fermionic Nambu space model with symmetries.

Let M be a four-dimensional Euclidean space-time (more genendllgould be
a Riemannian 4-manifold with spin structure), and consider 8er unitary spinor
bundleStwisted by a modul®&for the action of some compact gauge gréuenote
by V the Hilbert space df?-sections of the twisted bund&z R.

Now letDa be a self-adjoint Dirac operator fot in a given gauge field background
(or gauge connectiord. AlthoughDp is not a Hamiltonian in the strict sense of the
word, it has all the right mathematical attributes in the sense of Sect. 2.1; in particular
it determines a Hermitian form, called the action functional, on differentiable sections
Y € V. In physics notation this functional is written

um/w .(DAW) (9%, Da=iy(0u—Ay),

wherey = y(e!) are the gamma matrices [i.e., the Clifford actionT*M — End(S)
evaluated on the dua! of an orthonormal coordinate franeg of T M], the operators

0, are the partial derivatives corresponding togheandA,(x) € Lie(K) are the com-
ponents of the gauge field. If the physical situation calls for a mass, then one adds a
complex numbemn (times the unit operator o¥ ) to the expression fdDa.

The Dirac operators of prime interest to low-energy QCD have zero (or small) mass.
To express the massless naturdgfone introduces an object called tbigrality op-
erator” in mathematicsB], or ys = Yy'y2y in physics.I' = ys is a section of Enb)
which is self-adjoint and involutory @ = Id) and anticommutes with the Clifford ac-
tion (My"+ I = 0). By the last property one has

Da+Dal =0

in the massless limit. This relation is called chiral symmetry in physics. Note, however,
that chiral ‘'symmetryis not a symmetrin the sense of the present paper. (Symmetries
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alwayscommutewith the Hamiltonian, never do they anticommute with it!) Nonethe-
less, we shall now recognize chiral symmetry as being equivalent to a true symmetry,
by importing the Dirac operator into the Nambu space model as follows.

As before, take Nambu space to be the 8¢m=V &V * equipped with its canoni-
cal unitary structuré, ) and symmetric complex bilinear form The antilinear bijec-
tionC:V — V*andC:V* —V is still defined by(wi,wy) = b(Cwi,w»).

Now extend the Dirac operat®a € iu(V) to an operatobp that acts diagonally
onW =V ¢ V*, by requiringDa to satisfy the commutation l[a®iDa = iDAC, or
equivalentlyCDa = —DaC. Thus,

Da € EndV) @ EndV *) s EndW ) ,

andDa on EndV *) is given by—D},. The diagonally extended operaip lies in
the intersection ofo(W ,b) with iu(W) — as is required in order for the statement of
Prop. 2.5 to carry over to the one-parameter group &Pa The property thabDa
does not mix/ andV * can be attributed to the existence of asymmetry group that
hasV andV * as inequivalent representation spaces.

To implement the chiral symmetry of the massless limit, extend the chirality operator
[ to a diagonally acting endomorphism in EM) @ End(V *) by CTC 1 =T. The
extended operators still satisfy the chiral symmetry relafi@n + DAl = 0. Then
define an antiunitary operatdr by T := CI'. Note that this isnot the operation of
inverting the time but will still be called the ‘time reversal’ for short.

BecauseéDa anticommutes with bot@ andl’, one has

TDAT_l =Da.

ThusT is a true symmetry of the (extended) Dirac operator in the massless limit.

Note thatCT = TC from CI' =T'C. As was announced above, the situation is the
same as before but for one difference: while the time reversal in Sect. 2.2 was an
operatorT : V — V andT : V* — V*, the present one is an operafor V — V*
andT : V* — V. We refer to the latter type amixing and the former asonmixing

To summarize, physical systems modelled by the Euclidean (or positive signature)
Dirac operator are naturally incorporated into the framework of Sects. 2.1 and 2.2.
The Hilbert spac&/ here is the space df-sections of a twisted spinor bundle over
Euclidean space-time, and the role of the Hamiltonian is taken by the quadratic ac-
tion functional of the Dirac fermion theory. When transcribed into the Nambu space
W =V @V *, the chiral ‘symmetry’ of the massless theory can be expressed as a true
antiunitary symmetnyl', with the only new feature being thatmixesV andV *.

The most general situation occurring in physics may exhibit, bésidae or several
other antiunitary symmetries. In the example at hand this happens if the representation
spaceR carries a complex bilinear form which is invariant under gauge transformations
(see Sects. 6.2.2 and 6.2.3 for the details). The Dirac opdtatdhen has one extra
antiunitary symmetry, sa¥s, which is nonmixing. Forming the compositionBfwith
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T we get amixing unitary symmetry B TTy : V < V *. This fact leads us to adopt
the final framework described in the next subsection.

2.4. The mathematical model. —The following model is now well motivated.

We are given a Nambu spa¢®/ ,b, (, )) carrying the action of a compact group
G. The groupGo is defined to be the subgroup Gfwhich acts by canonical unitary
transformations, i.e., unitary transformations that preserve the decompdaitien
V @V *. The full symmetry groui® is generated by and at most two distinguished
antiunitary time-reversal operators. If there is just one, we denote &,bgnd if
there are two, byl andT;. In the latter case we adopt the convention thahixes,
i.e.,,T:V — V* while Ty is nonmixing. The distinguished time-reversal symmetries
always satisfyT 2 = +Id adel2 = +1d. In the case that there are two, it is assumed that
they commute or anticommute, i.d3T = £TT;. Consequently the unitary operator
P = TT: (which mixes) also satisfieB? = +Id. In the situation withP present we
let G1 denote theZ-extension 0iGy defined byP and refer to it as the full group of
unitary symmetries.

We emphasize that the original action®§ onV has been extended W via its
canonically induced action 0 *. In other words, iff € V * theng(f)(v) = f(g~1(v)).

This is equivalent to requiring that a unitary operaioe Go commutes with particle-
hole conjugatiol© : W — W . In fact we require that all operators Gfcommute with
C. Whereas the unitary operators preserve the Hermitian scalar produdor an
antiunitary operatoA we have thatAw;, Awy) = (w1, ws) for all wy,w, € W.

If U is an operator coming froi@g andT is a distinguished time-reversal symmetry,
thenTUT 1 is unitary and nonmixing, i.e., it is ig. Thus, for the corresponding
operatorgT in G, we assume thajr normalizesGg andg% is in the center o6.

According to Prop. 2.5 the time evolutions of the physical system leave the struc-
ture of Nambu space invariant. The infinitesimal version of this statement is that the
HamiltoniangH lie in the intersection of the complex orthogonal Lie algedar@V , b)
with iu(W ), the Hermitian operators oV .

Let us summarize our situation in the language and notation introduced above.

Definition 2.6. — The data in the Nambu space model for fermions with symmetries is
(Wb, (,);G), where the compact group G is called the symmetry group of the system.
G is represented oV =V ¢V * by unitary and antiunitary operators that preserve
the structure otV ; i.e., for every unitary U and antiunitary A one has

(B, 0) = U, Ud) = (Ap,AD) ,  b(w, D) =b(Uy,UD) = b(A,AD)

for all Y, € W. The space of ‘good’ Hamiltonians is thievector spaced of
operators H inso(W ,b) Niu(W') that commute with the G-action:

UHU '=H=AHA'.
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At the group level of time evolutions this means that

UefitH/h — efitH/hU AefitH/h — e+itH/hA
for all unitary U, antiunitary A, He H, and te R.

We remind the reader that the subgroup of unitary operators which preserves the
decompositioWW =V &V * is denoted byGp, and the full group of unitaries b@;.

Several further remarks are in order. First, for a unitary G1 (resp. antiunitary),
the compatibility ofb with the G-action is a consequence of Prop. 2.2 and the commu-
tation lawCU =UC andCA= AC. Second, it is possible that the fermion system does
not have any antiunitary symmetries a@d= Gg. When some antiunitary symmetries
are presentG is generated b¥sy and one or at most two distinguished time-reversal
symmetries as explained above. Third, motivated by the prime physics example of time
reversal, we have assumed that the (one or two) distinguished time-reversal symmetries
T satisfyT2 = +Id. The reason for this can be explained as follows.

The operatofT has been chosen to represent some kintheérsionsymmetry.
Since this means that conjugation BY represents the unit operatd? must be a
unitary multiple of the identity on any subspaceWf which is irreducible under time
evolutions of the fermion system. Thus for all practical purposes we may assume that
T is a projective involution, i.eT? = z x Id with za complex number of unit modulus.

Proposition 2.7 — If a projective involution T W — W of a unitary vector space
W is antiunitary, then either ¥ = +1d\y or T? = —Idyy .

Proof. — A projective involutionT has squard? = zx Id with z€ C\ {0}. Since
T is antiunitary,T2 is unitary, and hencéz| = 1. But an antiunitary operator i§-
antilinear, and therefore the associative letv T = T - T2 forcesz to be real, leaving
only the possibilitie§ 2 = +Id. O

Since this work is meant to simultaneously handle symmetry at both the Lie algebra
and Lie group level, a final word should be said about the notion that a bilinear form
F is respected by a transformati@ At the group level whemB is invertible and is
regarded as being in GW), whereW is the underlying vector space bf: W x W —

C, this means thaB is an isometry in the sense tHatBw;, Bwo) = F (w1, wo) for all

wi, W2 € W. On the other hand, at the Lie algebra level wigreEndW), this means

that for allw,,w, € W one has

% F (€Bwy, €Bws) = F (Bwy,wa) + F (W1, Bwe) =0.
t=0
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3. Reduction to the case 06 = {Id}

Recall that our main goal, e.g., on the Lie algebra level, is to describe the space of
Go-invariant endomorphisms which on a block in Nambu space are compatible with
the unitary structure, time reversal and the symméirmlinear form.

Here we prove results which allow us to transfer this space to a certain space of
Go-equivariant homomorphisms. The unitary structure, time reversal and the bilinear
form are essentially canonically transferred, and as before, compatibility with these
structures is required. However, in the new settBygacts trivially. This is of course
an essential simplification.

3.1. Spaces of equivariant homomorphisms. —Throughout this sectioi € Gg
denotes a fixed isomorphism class (i.e., an equivalence class of irreducible repre-
sentations of5p), andA* denotes its dual. Alockis determined by a choice of finite-
dimensionalGy-invariant subspacé =V, (in the given Hilbert spac¥ ) such that alll
of its irreducible subrepresentations have isomorphism alass

The full groupG of (unitary and antiunitary) symmetries is generated3gyand at
most two distinguished time-reversal symmetries. In this section it is assumed through-
out that these time-reversal operators stabilize the truncated subpadéd V* of
Nambu space. The case where one or both time-reversal symmetries do not stabilize
W, i.e., where a larger block is generated, is handled in later sections.

If (,)v is the initial unitary structure oW, one define€ :V — V* by C(v)(w) =
(v,w)y. TakingCl|y+ to be the inverse of this map, one obtains the associ@ted
antilinear isomorphisn® : W — W. All symmetries inG are assumed to commute
with C. We remind the reader th@&p acts orvV* by g(f) = fog™™.

Let R be a fixed irreduciblé&sgp-representation space which isin Denote byd
its dimension. Of cours®* is a representative gf*. We fix an antilinear bijection
| : R— R* which is defined by &p-invariant unitary structuré, )r onR.

In the sequel we will often make use of the following consequence of Schur’s
Lemma.

Proposition 3.1 — If two irreducible G-representation spaces;Rnd R are equi-
variantly isomorphic by : Ry — Ry, thenHomg,(Ry,R2) = C- ¢, i.e., the linear
space of @-equivariant homomorphisms fromy B0 R, has complex dimension one
and every operator in it is some multiple f

The following related statement was essential to Dyson’s classification and will play
a similarly important role in the present article.

Lemma 3.2 — If an irreducible G-representation space R is equivariantly isomor-
phic to its dual R by an isomorphismp : R — R*, theny is either symmetric or
alternating, i.e., eithetp(r)(t) = W(t)(r) or W(r)(t) = —Y(t)(r) forallr,t € R.
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Proof. — Itis convenient to think o) as defining an invariant bilinear forBy(r,t) =
Y(r)(t) onR. We then decompodinto its symmetric and alternating parB= S+ A,
where

S(r,t) = 2(B(r,t) +B(t,r)) and A(r,t) = 3(B(r,t) —B(t,r)).

Both are Gp-invariant, and consequently their degeneracy subspaces are invariant.
Since the representation spdees irreducible, it follows that each is either nonde-
generate or vanishes identically. But both being nondegenerate would violate the fact
that up to a constant multiple there is only one equivariant isomorphism i(Rgnd
ThereforeB is either symmetric or alternating as claimed. O

Now letH := Homg, (R,V) be the space dBo-equivariant linear mappings froRto
V. Its dual space ibl* = Homg,(R*,V*). The key space for our first considerations is
(H®R)® (H*® R*). Note thatGp acts on it by

gher+fet)=heg(r)+ fg(t) .

We can applyh € H tor € Rto form h(r) € V. Sinceh is Gp-equivariant we have
g-h(r) =h(g(r)). The same goes for the corresponding objects on the dual side. Thus
in our finite-dimensional setting the following is immediate.

Proposition 3.3 — If H = Homg,(R,V) and H* = Homg,(R*,V*) the map
e:(HOR G (H*®R) — VeV =W,
her+fet — h(r)+f(t),
is a G-equivariant isomorphism.
Transferring the unitary structure fromi to (H ® R) @ (H* ® R*) induces a unitary

structure orH & H*. For this, note for example that fog @ r{ andh, ®r> in H @R
we have

(h®r,ha@r)ngr:= (hi(ri),ha(r2))v .

Observe that foh; andhy fixed, the right-hand side of this equality define&g
invariant unitary structure oR which is unique up to a multiplicative constant. Thus
we define(, )y by

(hh®ry,hy®@rayngr= (h1,h2)n - (r,r2)r.

Given the fixed choice of, )r this definition is canonical.

We will in fact transfer all of our considerations fgrpV* to the spacél & H*, the
latter being equipped with the unitary structure defined as above. One of the key points
for this is to understand how to expres&ginvariant endomorphism

Se Endg,(VaV™*) = Endg,(H®R®&H*®R")
as an element of Erill & H*). Also, we must understand the role of time reversal.
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In this regard the two cas@s# A* andA = A* pose slightly different problems. Be-
fore going into these in the next sections, we note several facts which are independent
of the case.

First, letVy andV, be vector spaces whef& acts trivially, and letR; and R, be
arbitraryGo-representation spaces.

Proposition 3.4 —
Homg, (V1 ® R, V2 @ Ro) = Hom(Vy, V2) ® HOI’ﬂGO(Rl, Ro) .

Proof. — Note that HonfV; ® R1,Vo ® Ro) = Hom(Vy,V2) ® Hom(Ry, R2), and let
(¢1,...,0m) be a basis of Hoifv1,V,). Then for every elemer of Hom(V1,V) ®
Hom(Ry, Ry) there are unique elements,...,ym so thatS= S ¢; @ Y. If Sis Go-
equivariant, then

S—= goSog_lz zq)l ®(gol_|J| Og_l) )
and the desired result follows from the uniqueness statement. O

Our second general remark concerns the way in which a distinguished time-reversal
symmetryT is transferred to an antilinear endomorphismtbf R®& H* @ R*. Let

us consider for example the case of mixing where it is sufficient to under3tand
H®R— H*®R*. For that purpose we view Efld ® R) as EndH) ® EndR), let
(¢1,...,6m) be a basis of EndH) and write

Fr=CT=>%¢i®y

for Yi,...,Um € EndR). Now T is equivariant in the sense thaétog=a(g)o T,
wherea is the automorphism oBg determined by conjugation witlyr. Thus, since
the C-antilinear operato€ intertwinesGg-actions, theC-linear mapping” =CT is
invariant with respect to the twisted conjugatior a(g)F'g—1. Consequently, every
Y is invariant with respect to this conjugation.

This means that the); : R — R are equivariant with respect to the originas-
representation on the domain space and the@guwaction,v — a(g)(v), on the image
space. But by Prop. 3.1, up to a constant multiple there is only one such element of
EndR), i.e., we may assume that

r=¢xu,

wherey is unique up to a multiplicative constant.
Note further tha€ is also of this factorized form. Indeed, we have

<h®r">H®R: <h">H <r">R’

and ify: H — H* is defined byh— (h, -)i;, thenC = y®1. Furthermore, since andC
are pure tensors, so 5= CI' = Ty ® Tr, with the factors being antilinear mappings
Ty=Yyod:H—-H"andTr=10y:R— R".
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Of course we have only considered a piec& pand that only in the case of mixing.
However, exactly the same arguments apply to the other piece and also in the case of
nonmixing. Thus we have the following observation.

Proposition 3.5 — The induced map
T:H3R®(H*®R') - (H®R)® (H*®R"),
is the sum T= A; ® B; + A2 ® B> of pure tensors.

In the case of mixing this means thai ® B, is an antilinear mapping froH ® R
to H* ® R* and vice versa foA; ® B».

If T doesn’t mix, therAij®B1:H®R—H®RandA;®B;: H*®R* — H* @ R*.
In this case we impose the natural condition thatAhandB; be antiunitary. For later
purposes we note that this condition determines the factors only up to multiplication
by a complex number of unit modulus. Using the formQla- y® 1 and the fact that
C commutes withl', one immediately compute® ® B, from A; ® By (or vice versa).
The involutory propertyl 2 = +1d also adds strong restrictions. Of course there may be
two distinguished time reversal§,and Ty, and we require that they commute with
andT1 T = +£T Ty. These properties are automatically transferred at this level, because
the transfer process frofH ® R) & (H* @ R*) toV &V * is an isomorphism.

Finally, we prove an identity which is essential for transferring the complex bilinear
form. For this we begin with

her+feote HaR @ (H*®@R"),

applye to obtainh(r) + f(t), and then apply the linear functidiit) € V* to the vector
h(r) € V. The resultf (t)(h(r)) is to be compared to the produicth)t(r). Recall that
the dimension of the vector spaRas denoted byl.

Proposition 3.6 —
f(t)(h(r)) =d~* f(ht(r).

Before beginning the proof, which uses bases for the various spaces, we set the no-
tation and prove a preliminary lemma. Lratdenote the multiplicity of the component
V and fix an identification

VeV =R®...RAeR®...R*

with m summands oR andR*. Let (ey,...,e4) be a basis oRand(91,...,9q) be its
dual basis. These define bages ..., €5) and(8K,...,9%) of the corresponding-th
summands above. L#f andl¥. be the respective identity mappings.

Lemma 3.7 —
16 (1K) = 8 d .
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Proof. — Expressing the operators in the bases, i.e.,
k= 9ed and 1k =Y as],
one has
() =5, 9ol =y, & =odua,
which is the statement of the lemma. O

Proof of Prop. 3.6 — We expandh € H = Homg, (R,V) ash= S h¥ , andf € H* =
Homg,(R*,V*) asf =5 f/l& . If r = Srig andt = 3 t;9; , then

h() =3, e and f(t)=3,, ft;d].
Thus
FO(NN) = 3 15 B fehitiri = (3, fih) t(r) -
Prop. 3.6 now follows from the above lemma which implies tht) = d 5 fxhy.

3.2. The case whera == A*. — Recall that our goal is to canonically transfer the data
onV a&V* to HdH*, thus removingsg from the picture. In the case wheke# A*
this is a particularly simple task.

First, we apply Prop. 3.4 to transfer elements of £/fd & V*). In the case at hand
Homg, (R, R*) and Hong, (R*, R) are both zero, and both EggR) and Eng,,(R*) are
isomorphic toC. Thus it follows from Prop. 3.4 that

Ends,(V®V*) = Ends,(H®R®H*®R")
>~ EndH)®EndH*) — EndH ®H*).

We always normalize operators in EgdH ® R) to the form¢ ® Idr and normalize
operators in Eng,,(H* ® R*) in a similar way. Thus we identify Erg(V &V*) with
EndH) @ EndH*) as a subspace of Ef{d & H*) and have the following result.

Proposition 3.8 — The condition that an operator i&nds,(V € V*) respects the
unitary structure on MbV* is equivalent to the canonically transferred operator in
End(H & H*) respecting the canonically transferred unitary structure omH *.

Now let us turn to the condition of compatibility with a transferred time-reversal
operatorT :H® R®eH*®R* - H®R®H*®R*. There are a number of cases,
depending on whether or ndtmixes and which of the conditiods® = —Id or T2 = Id
are satisfied. The arguments are essentially the same in every case. Let us first go
through the details in one of them, the mixing case wiigre- —1d. To be consistent
with the slightly more complicated discussion in the case wheteh*, let us write
this in matrix notation.

ForA < EndH) andD € EndH*), we regard

M — AR Ildr 0
o 0 D ® Ildr:
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as the associated transformation in Ef(tH ® R® H* ® R*). To construct the trans-
ferred time-reversal operator recall the statement of Prop. 3.5. In the setting under
consideratiom squares to minus the identity; it is therefore expressed as

(0 —alept
T_<a®[3 0 >’

wherea : H — H* and3 : R — R* are complex antilinear. Note that sinaex 3 =
za ® z 1B, the mappingst andp are determined only up to a common multiplicative
constant € C\ {0}. Conjugation oM in Endz,(H @ R&H*®R*) by T yields

o Da®ldg 0 )

-1 _
TMT == ( 0 aAd 1 ®Idg:

Clearly, compatibility oM with T here means thd = aAa L.
Formulating this in a less detailed way gives the appropriate statement: conjugation
of M in Endg,(H® R®& H*® R*) by T yields the same compatibility condition as

conjugating
A 0 0 Fal
(00) » (075)

Here the sign in front ofi—1 is arbitrary. For definiteness we choose it in such a way
that the transferred time-reversal operator has the same involutory prapesty-Id

or T? = Id as the original operator; in the case under consideration this means that we
choose the minus sign.

Proposition 3.9 — There is a transferred time-reversal operator H dH* — H &
H* which satisfies either ¥= —Id or T2 = Id. It mixes if and only if the original
operator mixes, and a canonically transferred mappindgemdH & H*) commutes
with it if and only if the original mapping iEndg, (V &V*) commutes with the original
time-reversal operator.

Proof. — It only remains to handle the case of nonmixing, e.g., whéa= —Id. As
we have seernl : H® R— H ® Ris a pure tensor:

TlHer=0® B,
which givesT?|ygr = 02 ® B2 = —Idy ® Idg in the case at hand. Since the induced

mapp : R — Ris antiunitary by convention, we ha@é = z x Idr with |z = 1. Asso-
ciativity (8- B = B-B?) then impliesz = +1. Unlike the case of mixindg3 now plays

a role through its parity. IB? = +Idg, the transferred time-reversal operatoon H

still satisfiesa? = —ldy. On the other hand, B2 = —ldr we haven? = +Idy instead.
Thus the involutory propertf? = =+Id is passed on to the transferred time-reversal
operator, but depending on the involutory charactds thfe parity may change. [

We remind the reader that two distinguished time-reversal symmetries may be present.
The above shows that both can be transferred with appropriate involutory properties.
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Further, it must be shown that they can be transferred (along@yitlo thatT C=CT,
T1C =CTy, andT,T = +T Ty still hold. Even if there is just one such operator, it must
be shown that the transferred operator can be chosen to sasfyCT. Since the
discussion for this is the same as in the case whete\*, we postpone it to Sect. 3.4.

Finally, we turn to the problem of transferring the complex bilinear fornvemnV *
toH @ H*. If b denotes the pullback kg/of the canonical symmetric bilinear form on
V & V*, then by Prop. 3.6

b(h]_ Rr+ f1t,hh@ro+ fo ®t2) = dil( fz(hl)tz(rl) + fl(hz)tl(rz)) .

Now in this case, i.e., wherg # A*, the Gg-invariant endomorphisms are acting on

HoR®H* QR by (A@OIdR D®O|dR*> , where

A®D € EndH) & EndH*) < EndH & H*) .

Inserting the operatdk @ D into the above expression fbiwe have the following fact
involving the canonical symmetric bilinear forsonH & H*,

S(hl—l— f1,ho + fz) = fl(hz) + fz(hl) .

Proposition 3.10 — A map inEndg,(V @ V*) respects the canonical symmetric bi-
linear form if and only if the transferred map BndH) & EndH*) < End(H & H*)
respects the canonical symmetric bilinear form s omH*.

In summary, we have shown thathf A*, then all relevant structures dhad V*
transfer to data of essentially the same typetbm H* (the only exception being
that the parity of the transferred time-reversal operator may be reversed). In this case
Ends,(V &V*) is canonically isomorphic to Eritl) ® End H*) < EndH & H*). An
operator in End,(V @ V*) respects the original structures if and only if the corre-
sponding operator in Eftl & H*) respects the transferred structuredb@ H*. The
latter are the transferred unitary structure, induced time reversal and the symmetric
bilinear forms.

3.3. The case wher& = A*. — Throughout this section it is assumed that A*,
andy : R— R* is aGg-equivariant isomorphism. Thus we have the identification
H®RPH*®R & HRMH*®QR,

her+fot — her+fey(t).
Applying Prop. 3.4 to each component of an operator ind;(ld ® R&H* ®R) it
follows that
Ends,(H®R®H*®@R*) X EndH & H*) .
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We therefore identify EnH @ H*) with Ends,(H @ R&@H* ® R*) = Endg,(V & V*)

by the mapping
(A B A®ldr Bay?
'V'—(c D)'_><C®lp Dolde )

Recall the induced unitary structure which is defined, e.gH @R by

(Mer,h®r)per = (h(ry),ha(r2))v = (hy,h2)n (re,r2)r -

It is easy to verify that this defines a unitary structuretb® H* with the desired
property: a map in Engl(V & V*) preserves the given unitary structure\omV* if
and only if the transferred mayd preserves the induced unitary structure-bm H*.

Now let us consider time reversal. For example, take the case of nonmixing where
T1:H®R— H®R. Using Prop. 3.5 we have

_(a®B 0 _
Tl_( 0 &®B>’

A®ldg Bey?

and conjugating the transformatm(nc 20 D® IdR*> at the level of operators on

H®R®H*®R* yields

aAa~t®Idr aBa& e pY-1p-1
GCatepYp?t &b '®Idgr '

Now, as has been mentioned in Sect. 3.1, the equivariant antiunitaryeeqoif are

only unique up to multiplicative constants of unit modulus. They will be chosen in
the next subsection so that the distinguished time-reversal operator(s) and the unitary
structureC commute. These choices having been made, we chpssdahaf3pp—! =

Y. In this way, in the case whefi is nonmixing as above, conjugation of the matrix

M by T; is given by
A B N aAo! aBa? 1)
C D aCa-1 aba-1) -

Thus the transferred time-reversal operator is simply givefuby a & & onH & H*.
If T2 =e7ld (with 7 = +1), the compatibility condition for the mixing operator

_ 0 atept
T_<8TG®B 0 )

ispY 1B = egP (with eg = 4-1). If this holds, conjugation d¥1 by T is given by

A B . o 1Da ega~1Ca~? @
C D eq0Ba  oAal '
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with €5 = €g€r. In this case the appropriate transferred operator is given by

0 o'l
T= <sa0( 0 ) '
Given the (essentially unique) choices of the tensor-product representatidong of
andC which are defined by T = +T T; and by the conditions thdt andT; commute
with C, we show in Sect. 3.4 that there is a unique choic& g that both of these
compatibility conditions hold.

If we are in the nonmixing cagé: R — R, and it so happens thftis Gg-invariant,
then the two alternatives for the involutory propertyTotan be distinguished by the
type of the unitary representatiéhas follows. Defining : R— R* by r — (r,-)r as
before, consider the unitary mappigg R — R* given as the compositioh =1 o 3.
Sincef is Go-invariant, is Gp-equivariant, and the statement of Lemma 3.2 applies.
Using the antiunitarity of one has

W(r)(t) = (Br,t)r= (B2r,Bt)r = W(t) (B°r) ,

and therefore the following statement is immediate.

Lemma 3.11 — The parity of an antiunitary and gsinvariant mappind3: R— R is
determined by the parity of the irreducible@presentation space R; i.€3,satisfies
B2 = Idr resp.p? = —ldr if R carries an invariantC-bilinear form which is symmetric
resp. alternating.

If B2 = IdR, the transferred time reversal satisfiés= —Id or T? = Id if the original
time reversal has these properties. On the other hafiél=f—Idg, then the properties
are reversed; e.g., T2 = —Id on the original space, then transferred time reversal
satisfiesT2 = Id. We again remind the reader that we must check that the transferred
time-reversal operator(s) a@ican be compatibly chosen. It turns out that there is in
fact just enough freedom in the choice of the constants to achieve this (see Sect. 3.4).

Example — An example of particular importance in physics is the transfer of the
(true) time reversal in the case where all spin rotations are symmetries. On funda-
mental groundsT is a (nonmixing) operator which commutes with the spin-rotation
group SY and satisfie$ 2 = (—1)"ld on quantum mechanical states with sBia n/2.
LetV = H® C"! be the tensor product of a vector spatavith the spinn/2 re-
presentation space of SIUFor simplicity assume that there are no further symmetries.
Our Nambu space is already in the fopV* = (H®@R) & (H* ® R*). Thus the
reduced space id @ H*. Let the time-reversal operator 8= H ® C"*! be written
T = a®B. The SY-representation space with spiy2, C**1, is known to have parity
+1 (symmetric invariant form) fon even, and-1 (alternating invariant form) fon
odd. By Lemma 3.11 this implig¥ = (—1)"Id. The situation on the dual spaxé is
the same. Thus in this case the transferred time-reversal operatob H* — H HH*
always satisfies? = +IdngH+, independent of the spin. 0O
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Now let us turn to the problem of transferring the complex bilinear form. For this
Lemma 3.2 is an essential fact. Earlier we identifitc R H* @ R* with V & V*
by the mape : h®r + f ®t — h(r) + f(t). Using this along with Prop. 3.6 we now
transfer the canonical symmetric bilinear form \érpV* to H @ H*. For this lets
(resp.a) denote the canonical symmetric (resp. alternating) forral epH*.

Proposition 3.12 — Depending onp being symmetric or alternating, a transferred
map inEndH & H*) respects the canonical symmetric form s or alternating form a
if and only if the original endomorphism iBnds,(V ¢ V*) respects the canonical
symmetric complex bilinear form onéyV*.

Proof. — We give the proof for the case whegeis alternating. The proof in the
symmetric case is completely analogous.

LetM = <A B

C D) € EndH @ H*) act as &p-invariant operator

A®Ildrg By

onH®R® H*®R* and letb be the symmetric complex bilinear form on this space
which is induced from the canonical symmetric form\om V*. We assume thail €
GL(H @ H*) and give the proof in terms of the isometry propéativlv, Mw) = b(v,w).
Let us do this in a series of cases. First,ipr; andho@r2inH® R,
b(M(hy®r1),M(ha®7r2))

= b(Ah®r1+Chy@Y(r1),Ahp@rz+ Chy @ Y(rz))

= Chz(Ahy) (r2)(r1)/d+ Chy(Ah2) W(r1)(r2)/d

= a(Ahy + Chy,Ahy + Chp) W(r2)(r1)/d .
WhenM is the identity this becomes

b(hy®r1,ha®r2) =a(hg, h) W(ra)(r1)/d.

Thereforeb(hy ® r1,hy ® ro) = b(M(hy ®r1),M(ha ®r2)) if and only if a(hy, hy) =
a(M(hy),M(hp)). For fy ®1;, fo®1t, € H* ® R* the discussion is analogous.
Forh@re H®Randf ®t € H* ® R* we have a similar calculation:

b(M(h®r),M(f®t))
= b(Ah®@r+Chey(r),Bf @ 1(t)+Df ®t)
= Df(Ah)t(r)/d+Ch(Bf) (r)(W*(t))/d
= a(M(h),M(f))t(r)/d.
Of course the analogous identity holds B§M (f ®t),M(h®r)). O

Remark — To avoid making sign errors and misidentifications in later computations,
we find it helpful to transfer the particle-hole conjugation oper&a@ong with the
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complex bilinear form. This is done by insisting that the statement of Lemma 2.2
remains true after the transfer. Thus the relathg@w;,w,) = (w1, wp) continues to

hold in all cases. By an almost identical variant of the computation that led to Lemma
3.11, the transferred operat®has parityC?> = +Id orC?> = —Id depending on whether

the transferred bilinear form is symmetric or alternating. O

3.4. Precise choice of time-reversal transfer. —Recalling the situation of this sec-

tion, we have assumed that the distinguished time-reversal operator(s) stabilize the
initial block V @V*, and we have transferred all structures to the sgéte R) @

(H* ® R*) which is isomorphic t&/ & V*.

The time-reversal operator(3) and the operato€ are given by(2 x 2)-matrices
of pure tensors on this space. The space of endomorplgiet commute with the
Go-action is identified with EnH H*) or EndH) & End(H*) depending on whether
or notA = A*. The good HamiltonianB anticommute wittC, and commute with the
time-reversal operator(3). If the matrices of pure tensors representing the antiunitary
operator< andT have entrieg® 9, this means tha anticommutes (resp. commutes)
with the matrices defined by the operatgrAlthough the pure tensor decomposition
IS not unique, this statement is independent of that decomposition.

It has been shown above that the transferred operaétarglC onH & H*, i.e., those
defined by the operatoys can be chosen with the desired involutory properties. It will
now be shown that there is just enough freedom to insureli@at CT, T1C = CTy,
andTyT = £TT; still hold after transferral. After these conditions have been met,
we show as promised thdi : R — R* can be chosen in a unique way so that the
compatibility conditions of Sect. 3.3 hold, i.e., so that it makes sense to define the
transferred operators by the first factors of the tensor-product representations.

We carry this out in the case wheke= A* and two distinguished time-reversal
operators are present. All other cases are either subcases of this or are much simpler.

The operato€ always mixes. We will always choose it to be of the fdde y®1 :
HoR—H*®R andC=y @1 1: H*®R* — H ® R. Of course this is in the case
whereb is symmetric. Ifb is alternating, then we ha@® = —Id, and we make the
necessary sign change.

Here we restrict to the case whefé = T? = Id. The various other involutory
properties make no difference in the argument. Just as in the c&Sevefchoose
T=a®B:HR—-H*®R andT =a 1®@B1:H*®R* — H®R. Similarly, we
choosel; = a1 ®B1:HIR—H®RandT; =, B H* @ R* — H*® R*,

On (H®R) @ (H* ® R*), the operator§ and Ty commute withC, and we have
TiT = £TT;. We now choose the tensor representations so that the same relations
hold for the induced operators on the first factors.

If a, ai, az, andy are any choices for the first factors of the tensor-product repre-
sentations off, T; andC, then there exist constantsg, ¢, andcs so thato,o = cio01
(fromTTy = +T4T), ya1 = cazy (from CTy = T1C), andya~ly=csa (CT = TC).
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Let & = &a, Yy=ny, anda; = za (for i = 1,2), where&, n andz are complex
numbers yet to be determined. Just asgh&hese constants are of modulus one.

The scaled operators satigigd = x1c1661, Y1 = X2C205Y, andyd 1y = x3csd,
wherex1 = £ 22125, X2 = N%(z122) "%, andyz = £2n2. Observe that the characteqs
satisfy the relatiorx1X2 = X3, and that, e.gx» andys are independent.

The constants; satisfy an analogous relation. For this first ysay ! = coa»
andya 1y = cza to obtainyo;a—ly = (cp/c3)aza. Then compose both sides of this
equation with the inverse ai; on the right and use the relaticorgcxafl = c10 to
obtainyoo~tyo; 1 = (c162/c3)a. Nowyo; = (co02)~ty. Thus

-1,,~—1 —-1,-1.-—1 -1 -1 -1
YO0 YO T = YO0 0, Gy Y =Gy Y10 Y = (C1C2) TG0

and hence;c,/c3 = C3/C1Cy, i.€.,C3C5 = C3.

Sincexz andxs are independent, we can choose the scaling numbers soythat
c3 = 1, thereby arranging th&T = TC andCT; = T;C still hold after transferral.
To preserve these relations we must now kge@and s fixed at unity, which from
X1X2 = X3 implies thatx; = 1. Sincec3 = c2c3, we then conclude thay takes one of
the two valuest-1, and further scaling does not change this constant.

In summary we have the following result.

Proposition 3.13 — The transferred operators;T T and C can be chosen so that
TiIC=CTy, TC=CT, and 1T = +TT;. Assuming that the time-reversal operators
have been transferred to commute with C in this way, the relatid@h= +TT; is
automatic and further scaling does not change the sign. FurthermoreC4ieear
isomorphismy : R — R* can be chosen to meet the compatibility conditions which
determine the conjugation rules (1) and (2).

Proof. — It remains to prove thap can be chosen as stated. For the nonmixing op-
eratorT; the compatibility condition isquJBI1 = . Given some choice af (which
we will modify) there is a constamte C so thathl]JBIl = cy. This constant is uni-
modular sincg31 andf3, are antiunitary. To satisfy the compatibility condition, replace
P by &, where€€ —1c = 1. Note that this choice & only determines its argument.
Turning to the compatibility conditiofy—1p = gy for the mixing operatof, we
start fromey = By~ for some othec € C, and use th€-antilinearity ofp to deduce
g~ =cBlYp—1. Multiplying expressions gives= ¢ € R. Then, rescaling to &y,
the compatibility condition is achieved by settiag:= c/|c| and solving|§|? = |c].
Since this rescaling (with € R) does not affect the compatibility condition for the
nonmixing operator, we have determined the desired isomorphism O

Finally, sinceC is a pure tensor, it follows from our representation of the transferred
bilinear formb thatcb(Chy, hy) = (hs, hp) for some constart. Thus we replacé by
cb and obtain the following final transferred setuptbr H*:

e The canonical bilinear forrh which is either symmetric or alternating.
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e A unitary structure, ) which is compatible witlp in the sense thadi(Chy, hy) =
(h1,hp). The operato€ : H « H* satisfies eithe€? = Id or C?> = —Id, depending
onb being symmetric or alternating.

e Either zero, one, or two time-reversal operators. They are antiunitary and com-
mute withC. In the case of twoJ is mixing andT; is nonmixing. In the case
of one, both mixing and nonmixing are allowed. The same involutory properties
hold as before transfer, but signs might change, i.&2 i Id holds before trans-
fer, then it is possible that? = —Id afterwards. Furthermor@; T = +T Ty, and
consequently the unitary produet= T T, satisfiedP? = +Id.

In the following sections all of the symmetric spaces which occur in our basic model
will be described, using the transferred setup. This means that we describe the sub-
space of Hermitian operators in Etl) © EndH*) or EndH & H*) which are com-
patible withb and thel -symmetries. We first handle the case of one or no time-reversal
operator (Sect. 4), and then carry out the classification whenTbatidT; are present
(Sect. 5). The final classification result, Theorem 1.1, then follows.

4. Classification: at most one distinguished time reversal

This section is devoted to giving a precise statement of Theorem 1.1 and its proofin
the case where at most one distinguished time-reversal symmetry is present. Combin-
ing this with the results of Sect. 3, we obtain a precise description of the blocks that
occur in the model motivated and described in Sects. 1 and 2.

4.1. Statement of the main result. —Throughout this sectiol denotes a finite-
dimensional unitary vector space. The associated 3paed/ oV * is equipped with
the canonically induced unitary structufe) andC-antilinear mapC :V — V*, v—
(v,-). The results of the previous section allow us to completely elimi@atieom the
discussion so that it is only necessary to consider the following data:

e The relevant space E of endomorphisffiis is either the full space E(\d/) or
EndV) @ EndV*) embedded as usual in E{Wi).

e The canonical complex bilinear form iV x W — C. This is either the symmetric
form swhich is given by

S(V]_—I— fl,Vz—I— f2) = f1(V2) + f2(V1) ,
or the alternating forna which is given by
a(v1+ f1,vo + f2) = fl(Vz) - fz(Vl) .

Equivalently,C : V — V* is extended to &-antilinear mapping : W — W by
C? = +1d resp.C? = —Id, andb(Cw,W,) = (w1, W) holds in all cases.

e The antiunitary mapping TW — W, which satisfies eitheF2 = —Id or T2 = Id.
We say thaf is nonmixingifT|y :V —V andT|y+ :V* = V*. If T|y :V — V¥,
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then we refer tal' as mixing. In all case$ commutes withC. We also include
the case wher€ is not present.

Fixing one of these properties each, we refef\pE,b, T) asblock data e.g.,E =
EndW), b=s, T2 = —Id andT being nonmixing would be such a choice.

Our main result describes the symmetric spaces associated to given block data. Let
us state this at the Lie algebra level, where for convenience of formulation we only
consider the case of trace-free operators. In order to state this result, it is necessary to
introduce some notation.

Given block datgV,E,b, T), let g be the subspace & of antihermitian operators
Awhich are compatible witb in the sense that

b(Aw, Wo) 4+ b(wyg, Awp) =0

for all wi,wo € W. It will be shown thatg is a Lie subalgebra d& which is invariant
under conjugatior — TAT 1 with T. This defines a Lie algebra automorphism

B:g—g, A—TAT !,

which is usually called &€artan involution If ¢ :=Fix(8) = {A€ g: 8(A) = A} andp
is the spacdA € g : 6(A) = —A} of antifixed points, then

g=top

is called the associatdécartan decompositian

The spac#d = H (V,E,b, T) of Hermitian operators which are compatible with the
block data isp, which is identified with the infinitesimal versiqn= g/¢.

In order to give a smooth statement of our classification result, we recall that the
Lie algebrassuy, usp,,, andsoo, are commonly referred to as being of typeC, and
D, respectively. By an irreducibldCD-symmetric space of compact type one means
an (irreducible) compact symmetric space of any of these Lie algebras. With a slight
exaggeration we use the same terminology in Theorem 4.1 below. The exaggeration
is that the caseozn/ (s0p @ s0q) With p andq odd must be excluded in order for that
theorem to be true. For the overall statement of Theorem 1.1 there is no danger of
misinterpretation, as the case wh@randq are odd does occur in the situation where
two distinguished time-reversal symmetries are present (see Sect. 5).

Theorem 4.1 — Given block datgV, E,b,T), the spacdH =H (V,E,b,T) = g/¢tis

the infinitesimal version of an irreducible ACD-symmetric space of compact type. Con-
versely, the infinitesimal version of any irreducible ACD-symmetric space of compact
type can be constructed in this way.

There are several remarks which should be made concerning this statement. First,
as we have already noted, in order to give a smooth formulation, we have reduced to
trace-free operators. As will be seen in the proof, there are several cases where without
this assumptiog would have a one-dimensional center.
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Secondly, recall that one of the important cases of a compact symmetric space is that
of a compact Lie grouf with the geodesic inversion symmetry at the identity being
defined byk — k1. Usually one equipk with the action ofc = K x K defined by left-
and right-multiplication, and views the symmetric spacé&ak, where the isotropy
groupK is diagonally embedded i®. The infinitesimal version is theft & ¢) /¢,
and the automorphis®: g — g is defined by(X1, X2) — (X2, X1). In this setting one
speaks of symmetric spaces of type Il.

In our case the classical compact Lie algebras do indeed arise from appropriate

block data, but in the situation whefedoes not leave the original spadéinvariant.
In that setting,T mapsW =W, =V, &V toW, =V, & V., which has differenGo-
representations from those\. Thus the relevant block 184 ®Ws. Using the results
of the previous section, in this case we also rem@yé&om the picture.

Nevertheless, we are left with a situation where the blo&iWs, andT : W, —
W.. Thus we wish to allow situations of this type, i.e., wher@V* is notT -invariant,
to be allowed block data. These cases are treated separately in Sect. 4.4.

The case where the symmetric space is just the compact group associgi@ddo
arises wherT is not present, i.e., when there is no condition which creates isotropy.

Finally, as has already been indicated in Sect. 1, the appropriate homogeneous space
version of Theorem 4.1 is given by replacing the infinitesimal symmetric spédey
the Cartan-embedded symmetric spté= G/K. HereG is the simply connected
group associated tg a mapping : G — G is defined as the Lie group automorphism
whose derivative at the identity is the Cartan involution of the Lie algebraMail
the orbit ofe € G of the twistedG-action given byx — gx8(g) .

4.2. The associated symmetric space. - this and the next subsection we work in
the context of simple block dat¥, E,b, T) whereW =V ¢ V* is T-invariant.

In the present subsection we prove the first half of Theorem 4.1, namelif tBat
g/€is an infinitesimal version of a classical symmetric space of compact type. This
essentially amounts to showing that all the involutions which are involved commute.

Let 0 : E — E be theC-antilinear Lie-algebra involution that fixes the Lie algebra
of the unitary group irkE. If the adjoint operatioi — A* is defined by

<AW1,W2> = <W1,A*W2> ,
theno(A) = —A*. The transformation$ € E which are isometries of the canonical
bilinear form satisfy

b(Swi, Swp) = b(wy, wo)
for all wi,wo € W. Thus the appropriate Lie algebra involution is théinear auto-
morphism

T:E—-E, A—-A",
whereA — Alis the adjoint operation defined by

b(AWl,Wz) = b(W]_,AtWZ) .
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Finally, let8 : E — E be theC-antilinear map defined b +— TAT L.
Proposition 4.2 — The operations A+ A* and A— Al are related by A= CAC 1,

Proof. — Fromb(Cwy, W) = (w1, w,) and the definition oA — A* we have
b(Awg, w2) = (C1Aw, wo) = (C 1wy, (C1AC)*ws) = b(wy,C A*Cw,) ,
i.e., A= C~1A*C, independent of the cage=sorb=a. O

Proposition 4.3 — The involutionss, T and6 commute.
Proof. — Using(C~tA*Cwy,w,) = (wy,C~1ACw,) along withA' = C~1A*C we have
(At)* —_clac= (A*)t :

and consequentlyt = 10.

SinceT is antiunitary, one immediately shows from the definitiorAbtthat

(W, TAT " twy) = (TAT twy, wa) .
In other words,
B(0(A) = —TAT 1= —(TAT H)*=05(6(A)).
Finally, since9(A) = TAT -1 andT commutes witlC, it follows thatt =16. [

Let s := Fix(1). Since® and o commute witht, it follows that they restrict taC-
antilinear involutions of the complex Lie algebraWe denote these restrictions by the
same letters. For future reference let us summarize the relevant formulas.

Proposition 4.4 — For A € s it follows that
o(A)=CAC?! and 6(A)=TAT L
The parity of C is € = +Id for b = s symmetric, and €= —Id for b = a alternating.

The spacg of antihermitian operators i that respedb is therefore the Lie algebra
of o-fixed points ins. Sinceo defines the unitary Lie algebra i it follows thatg is
a compact real form of. Let us explicitly describe andg.

If E=EndW) andb = sis symmetric, thew is the complex orthogonal Lie algebra
s0(W,s) = soon(C). If E=EndW) andb = a is alternating, thew is the complex
symplectic Lie algebrap(W,a) = sp,,(C). If E =EndV) & End(V*), then in both
cases forb it follows that its isometry groufs is SLc(V) acting diagonally by its
defining representation ovi and its dual representation d. In this case we have
s = sl(V) =2 slh(C). Note that this is a situation where we have used the trace-free
condition to eliminate the one-dimensional center.

For the discussion df it is important to note that sinae(A) = CAC ™1, it follows
thatg just consists of the elements ©Which commute witlC.

In the symmetric cade= s, whereC defines a real structure 9, it is appropriate to
consider the set of real poirtg = {v+Cv:v e V}. Thinking in terms of isometries,
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we regardG = exp(g) as being the group dR-linear isometries of the restriction of
b = sto Wk which are extended complex linearly\té. Note that in this casb|w, =
2Re(, ), and that everR-linear transformation oMz which preserves Re ) extends
C-linearly to a unitary transformation &Y. Thus, ifE = EndW) andb = s, theng is
naturally identified withso (Wg, Sjw, ) =2 so2n(R).

In the alternating case = a, if E = EndW), then as in the previous case, since
definesu(W) C E, it follows that its sey of fixed points ins is a compact real form of
s. Sinces is the complex symplectic Lie algebsa(W, a) = sp,,(C), it follows thatg
is isomorphic to the Lie algebnasp,,, of the unitary symplectic group.

It is perhaps worth mentioning th&tfor b = a defines a quaternionic structure on
the complex vector spad®’. Thus the conditiorA = CAC™! defines the subalgebra
gl (H) in EndW). The further conditioA = —A* shows thay can be identified with
the algebra of quaternionic isometries, another way of seeing tHatsp,,,.

Finally, in the case wherkE = EndV) @ EndV*) we have already noted that=
s[(V) which is acting diagonally. It is then immediate that in both the symmetric and
alternating caseg = su(V) = suy,. Of courseg acts diagonally as well.

Let us summarize these results.

Proposition 4.5 — In the case where E EndW) the following hold:

e If b = s is symmetric, thep = soon(R).
e If b = ais alternating, therg = usp,,.

If E = EndV)®EndV*), theng is isomorphic tasun and acts diagonally.

Since® commutes witho, it stabilizesg. Hence,|, is a Cartan involution which
defines a Cartan decomposition

g=top
of g into its (+1)-eigenspaces. The fixed subspéce {A € g: 6(A) = A} is a subal-
gebra andy/t is the infinitesimal version of a symmetric space of compact type.
Recall that, given block dat®/,E,b, T), the associated space

H =H(V,E,bT)~ip

of structure-preserving Hamiltonians has been identified withg/¢. Thus we have
proved the first part of Theorem 4.1. The second part is proved in the next section by
going through the possibilities in Prop. 4.5 along with the various possibilitieE.for

It should be noted that If = +C, theng = ¢, i.e., the symmetric space is just a point.
Such a degenerate situation, where the set of Hamiltonians is empty, never occurs in a
well-posed physics setting.

4.3. Concrete description: symmetric spaces of type I. —Here we describe the
possibilities for each set of block dafe, E, b, T) under the assumption that =V &

V* is T-invariant. The results are stated in terms of A@&D-symmetric spaces, with
n:=dim¢V. The methods of proof of showing which symmetric spaces arise also show
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how to explicitly construct them. In the present subsection, all of these are compact
irreducible classical symmetric spaces of type | in the notatiom{f [

4.3.1. The case E EndV) ® EndV*). — Under the assumptioB = EndV) &
EndV*) it follows thatg is just the unitary Lie algebrau(V) = su, which is acting
diagonally onWW =V @ V*. This is independent df being symmetric or alternating.
Thus we need only consider the various possibilitiesTorlf T is not present, the
symmetric space ig = sup,.

1. T? = —Id, nonmixing:sun/uspp,.
SinceT is nonmixing and satifie§? = —Id, it follows that (T vy, Vo) = a(va, V)
is aC-linear symplectic structure ovi which is compatible with(v1,v>). Thus
the dimensiom of V must be even here. The facts thgais acting diagonally
assu(V) and that the elements éfare precisely those which commute with
imply thatt = usp,, as announced.

2. T? = Id, nonmixing:sun/sop.
SinceT andg are acting diagonally, as in the previous case it is enough to only
discuss the matter ovi. In this casel defines a real structure dwith Vr =
{v+Tv:veV}, and the unitary isometries which commute witlare just those
transformations which stabilizéz and preserve the restriction ¢f). Since
(X, Y)vp, = Re(X,y)v for x,y € VR, it follows thatt = so(Vr) = son(R).

3. T2 = +£Id, mixing: sun/s(up®ug).
Here it is convenient to introduce the unitary operd@oe CT, which satisfies
P2 = Id or P? = —Id, depending on the parity df. Denote the eigenvalues Bf
by uand—u. SinceP does not mix, the condition that a diagonally acting unitary
operator commutes witl (or equivalently, withP) is just that it preserves the
P-eigenspace decompositidh=\V, @ V_. Since the two eigenspac¥g and
V_, are (, )-orthogonal, we havé = s (u(Vy) ®u(V_y)), and the desired result
follows with p = dimV, andg = dimV_,.
In the caseP? = —Id, if there existed a subspawg of real points that was sta-
bilized by P, thenP would be a complex structure dk and the dimensions of
W, andV_, would have to be equal. In general, however, no such sgaesists
and the dimensiong andq are arbitrary.

4.3.2. The case E EndW), b=s. — In this case we have the advantage that we
may restrict the entire discussion to the set of real points

Wk = Fix(C) = {v+Cv:veV}.
Thust is translated to being the Lie algebra of the group of isometries of(2 Ren

V. Here the Lie algebrg is so(Wg). Thus in the case whefE is not present, the
symmetric space isoon(R).
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1. T2 = —Id, nonmixing or mixing:sozn(R) /un.
Independent of whether or not it mixeB|w, : W — Wk is a complex struc-
ture onWg. A transformation in SQMz) commutes withT if and only if it is
holomorphic. Since Rg ) is T-invariant, this condition defines the unitary sub-
algebrat 22 up in g = soon(R).

2. T2 =1d, nonmixing:so2(R) / (son(R) & son(R)).
SinceT |w, : Wk — Wk, we have the decompositiohz = Wg" & W, into the
(+1)-eigenspaces of . We still identify g with the Lie algebra of the group
of isometries ofAz equipped with the restricted form Rg). The subalgebrég,
which is fixed byd : X — TXT~1, is the stabilizeso (W) ®s0(W; ) of the above
decomposition. Now let us compute the dimensions of the eigenspaces. In the
case at hand defines a real structure on bothandV*. SinceC commutes with
T, it follows that FiXT) = Vg & V;; is C-invariant. ThusMy = {v+Cv:ve Vg}.
A similar argument shows th&, = {v+Cv:veiVg}.

3. T2=1d, mixing: s02n(R)/(s02p(R) & 5024(R)).
The exact same argument as above showstthato(Wy ) & so(W ). It only
remains to show that the eigenspaces are even-dimensional. For this we consider
the unitary operatoP = CT which leaves botly andV* invariant. Its(+1)-
eigenspac#&V, ; is just the complexification dMg The intersections oV, 1
with V andV* are interchanged b@, and therefore digW, 1 =: 2p is even. Of
course the same argument holds\\ar;.

4.3.3. The case E EndW), b =a. — Since in this casg is the Lie algebra of
antihermitian endomorphisms which respect the alternating Boon W, it follows
thatg = usp,,. ThusifT is not present the associated symmetric spaaepis,.

If T is present, we leP := CT. The unitary operatoP always commutes with
T, and froma(wy, w2) = (C~1wy,w,) one infers thag(Pw, Pw,) = a(wy,w») in all
cases, independent ©fbeing mixing or not.

The classification spelled out below follows from the fact that commutationith
is equivalent to preservation of tiieeigenspace decomposition\df.

1. T?2 = —Id, nonmixing:usp,,/ (usp, ® usp,).
In this caseP? = Id, and T2 = —Id forcesn to be even. LeW be decomposed
into P-eigenspaces & =W, 1 ®W_1. If w; € W, 1 andw, € W_4, then

a(wg,wp) = a(Pwy, Pwo) = —a(wg,wp) =0,

and we see that/, ; andW_1 area-orthogonal. The mixing operatéris trace-
less. Therefore the dimensionswf 1 andW._; are equal, and both of them are
symplectic subspaces W. The fact that the decompositid =W, 1 W _; is
also(, )-orthogonal therefore implies thtat= usp(W, 1) ® usp(W_1).
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2. T2 = —Id, mixing: uspan/ (uspap & uspyg).
Here, using the same argument as in the previous case, one shows tRat the
eigenspace decompositigvh =W, 1 W_1 still is a direct sum ob-orthogonal,
complex symplectic subspaces. Since these are(alsorthogonal, it follows
thatt = usp(W,1) ® usp(W_1). Note that in the present case the nonmixing op-
eratorP stabilizes the decompositiol =V &V *. Thus, sincd®> commutes with
C, itfollows thatW, , =V_, &V} andW_; =V_; &V*,.

3. T2 = Id, mixing or nonmixing:uspo, /.
In this casé®? = —1d. Herea(Pw, Pw,) = a(wy, W,) implies that théP-eigenspace
decompositiolV =W, ;W is Lagrangian. (This means in particular divip; =
dimW._;.) Thus its stabilizer imp(W) is the diagonally acting((W,;). Since the
decomposition ig, )-orthogonal, it follows that = u(W,) = up.

4.4. Concrete description: symmetric spaces of type Il. —Recall the original sit-
uation where the symmetry gro@y is still in the picture. As described in Sect. 1 we
select from the given Hilbert space a basic finite-dimensi@gahvariant subspacé
which is composed of irreducible subrepresentations all of which are equivalent to a
fixed irreducible representatidf

Although the initial block of interest iV =V @V*, it is possible that it is noT -
invariant and that it must be expanded. Let us formalize this situation by denoting
the initial block byW, =V, ®V;'. We then letP = CT and regard this as a unitary
isomorphism

P:W, —W,,

whereW, =V, @V, is another initial block.

Fori € {1,2}, letR be theGp-representation ov which induces the representation
onW. The mapP is equivariant, but only with respect to the automorphenf G
which is defined byr-conjugation:Pog= a(g) o P.

Now two situations arise. IRy = Ry or R} = R,, then we may build a new block
W =V @& V* which is T-invariant so that the results of the previous section can be
applied: ifR; = Ry, then we lelV .=V, &V, and ifR; = R5, thenV =V, V5.

We assume now that neithRg = R; norR; = R}, and consider the expanded block
W =W; ®Ws. Recall thatW, andWs are in the Nambu spad® which decomposes as
a direct sum of nonisomorphic representation spaces that are orthogonal with respect to
both the unitary structure and the canonical symmetric form. Thus the decomposition
W =W; W is orthogonal with respect to both of these structures.

Under the assumption at hand it is immediate that

Ends, (W) = Endg, (W) & Endg,(Ws) .

Thus we are in a position to apply the results of Sect. 3.
To do so in the case wheiR, = R, we lety, : R; — Rj denote an equivariant
isomorphism, and organize the notation so av; — V,. Of courseR; andR; are
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abstract representations, but we now choose realizations of the€maimdV, so that
Yo = PL|J1P_1 : R, = R makes sense. Since

PP *(g(v2)) = P(da(a *(Q)P *(v2)))
= P@(gyi(PH(v2))) = g(PW1P~*(v2)) ,

it follows thaty, : R, — R} is aGo-equivariant isomorphism.

Assume for simplicity thaty; is even, i.e., thap1 (v1) (V1) = P1(V1)(v1). Then

W2(v2) (%2) = PWiP~H(v2) (V2) = Wi (P~*(v2)) (P~H(72))
= Yi(P (%)) (P H(v2)) = PWiP *(V2) (v2) = Wa(%2) (v2) .

The computation in the case whaje is odd is the same except for a sign change.
Thusy andy, have the same parity.

Now letE; (for i = 1,2) be the relevant space of endomorphisms that was produced
by our analysis of\f in Sect. 3. Recall that this is either the space Ehpkp EndH*)
or EndH, ® H*). Let g; be the Lie algebra of the group of unitary transformations
which preservé;. The key points now are that the unitary structurdsans- E; $ Ez is
the direct sum structure, the complex bilinear formeois b = b1 & by, and the parity
of by is the same as that bp. Thusg; = go.

For the statement of our main result in this case, let us recall that the infinitesimal

versions of symmetric spaces of type Il are of the farm g/g, where the isotropy
algebra is embedded diagonally.

Proposition 4.6 — If Ry is neither isomorphic to Rnor to R}, then the infinitesimal
symmetric space associated to the T -invariant block data is a type-Il ACD-symmetric
space of compact type. Specifically, the classical Lie algebiasoon(R), andusp,,

arise in this way.

Proof. — ldentify g1 andg, by the isomorphisnf. Call the resulting Lie algebrg.

The transformations that commute withare those in the diagonal g g. Thus the
associated infinitesimal version of the symmetric space is of type II. The fact that the
only Lie algebras which occur are those in the statement has been proved in 4]2.

This completes the proof of Theorem 4.1. In closing we underline that under the
assumptions of Prop. 4.6 the odd-dimensional orthogonal Lie algebra does not appear
as a type-ll space; only the even-dimensional one does.

5. Classification: two distinguished time-reversal symmetries

Here we describe in detail the situation where both of the distinguished time-reversal
operatorsl andT; are present. As would be expected, there are quite a few cases. The
work will be carried out in a way which is analogous to our treatment of the case where
only one time-reversal operator was present. In the first part (Sect. 5.1) we operate
under the assumption that the initial truncated spagev* is invariant under both of
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the distinguished operators. In the second part (Sect. 5.2) we handle the general case
where bigger blocks must be considered.

5.1. The case wher& &V* is G-invariant. — Throughout,T is mixing, Ty is non-
mixing andP := T T;. Our strategy in Sects. 5.1.3 and 5.1.4 will be to first compute the
operators which arb-isometries, are unitary and commute wirh This determines
the Lie algebrg and its action oV $V*. Thent is determined as the subalgebra of
operators which commute with or T1, whichever is most convenient for the proof.
The space of Hamiltonians is identified wight as before.

In the case oE = EndV) @ EndV*), whereg acts diagonally, the answer fgy'¢
does not depend on the involutory propertie€oT, andT; individually, but only on
those of the nonmixing operato® = CT T, andT;. The pertinent Sects. 5.1.1 and
5.1.2 are organized accordingly.

5.1.1. The case E EndV)®EndV*), (CP)2=1d. — Recall thatin the case & =
EndV) @ EndV*) it follows that theb-isometry group is Sk(V) acting diagonally.
Thus the Lie algebrg consists of those elements of the unitary algeiw@/') which
commute with the mixing unitary symmetB. Equivalently,g is the subalgebra of
su(V) defined by commutation with the antiunitary opera@ét.

In the present caséP defines a real structure an, and we have thg-invariant
decompositio’/ = Vg @iVk. Since the unitary structurg ) is compatible with this
real structure, it follows thag = so(Vg). Our argumentation is based arouhd If
it anticommutes withP, then we replac® by iP so that it commutes. Of course this
has the effect of changing to the c4&P)? = —Id which is, however, handled below.
Hence, in both cases we may assume EhahdT; commute.

1. T2 =1d: sop/(sop @ s0q).
The space o€P-real pointsvg is Ti-invariant and splits into a sukr‘k+ @V, of
T1- eigenspaces. The Lie algeliras the stabilizer of this decomposition, which
is (, )-orthogonal. Thug = so (V) & so(Vg ).
Observe that in this cagecan be any even or odd number and thandq are
arbitrary with the condition that= p+q.

2. T12 = —Id: 502n/Un.
In this caseT; is a complex structure ovik which is compatible with the unitary
structure. Thu$ = u(Vg, T1) and the desired result follows witm2= dim¢V.

5.1.2. The case E EndV) @ EndV*), (CP)?> = —Id. — The first remarks made at
the beginning of Sect. 5.1.1 still apply: is the subalgebra of the diagonally acting
su(V) which commutes with the antiunitary opera®P. But nowCP defines aC-
bilinear symplectic structure oW =V & V* by a(wg,ws) := (CPw,wp). Actually
CPis already defined o¥ and transported tg* by C. Thusg = usp(V).

1. T2 = —ld: uspan/ (uspy, @ uspy,).
In this casd™ :=CT :V — V is a unitary operator which satisfi€$ = Id, and
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which defines the eigenspace decompositoaV "™ &V ~. This decomposition
is botha- and(, )-orthogonal, and consequently= usp(V ") & usp(V 7).
Note that there is no condition gnandq other thanp+qg=n.

2. T2 = 1d: usp,p/un.
Let Vg be theT;-real points ofV. Thent is the stabilizer oMg in g = usp(V).
Here the symplectic structugeonV restricts to a real symplectic structuag
onVg. Since the unitary structurg ) is compatible with this structuré,is the
maximal compact subalgebng of the associated real symplectic algebra.

5.1.3. The case E EndV @V*), b=s. — Recall that in this case? = Id, and the
b-isometry group oW =V & V* is SQW). Before going into the various cases, let us
remark on the relevance of whether or not time-reversal operators commute. with

If P2 = u?ld, where eitheu = +1 oru = +i, we consider thé-eigenspace decom-
positionW =W, #W_,. Note dinW, = dimW_,, from TrP = 0. The Lie algebrg C
so(W) of operators which presenie= sand commute witt® is sog (W) b sor (W_y).

An antiunitary operator which commutes wighpreserves the decompositidh=
W, dW._ if u= +1, and exchanges the summands i +i. Similarly, if it anticom-
mutes withP, then it exchanges the summanddin=W, 1 W _1 and preserves the
decompositioW = W, ; @W_;. For this reason, as will be clear from the first case
below, the sign off T = +£T1 T has no bearing on our classification.

1. T2=TZ =1d: (son/(s0p® s0q))  (50n/(50p ® 50q))-
Suppose first tha®? = Id, giving the P-eigenspace decomposititvh = W, ; &
W_1. Each of the time-reversal operators commutes WithTo determinet
we consider the unitary operatbr= CT; which is a mixingb-isometry satis-
fying 'P =PI and 2 =1d. ThusW, further decomposes into a direct sum
W, 1= W“@W /1 of I'-eigenspaces, which are orthogonal with respect to both
band(, ) The same discussion holds #t 1. The stabilizer of this refined de-
composition ist = (sog (W) @ sor(W, ) & (sor (W) @50R(W 1)) From
TrP=TrI =0 one infers diMV,';' = dimW ' = pand dinW,{ = dlmW+l =q.
Now consider the case wheR8 = —Id but the time-reversal operataasticom-
mute with each other and hence wRh In this situation theéP-eigenspace de-
compositionV =W, ; @W_; is still T-invariant. Therefore we are in exactly the
same situation as above, and of course obtain the same result.
This happens in all cases below. Thus, for the remainder of this section we as-
sume that the time-reversal operators commute Rith

2. T?2=TZ = —Id: (sozn/ (500D 50n))  (502n/ (500 50n)).
The situation is exactly the same as that above, excepl thaL T; now satisfies
M2 = —Id. Sincel preserves the sets Gfreal points oW, andW_1, I defines

a complex structure of these real vector spaces. Therefore we have the additional

condition dimW;i =

NES d|mW 1 on the dimensions of thie-eigenspaces.
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3. T?2= —TZ: (s0n® s0n)/s0n.
The argument to be given is true independent of whetifet Id or T2 = —Id.
As usual we consider tHe-eigenspace decompositidh=W,; W ;. SinceP is
an isometry of bottb and(, ), the decomposition is- and(, )-orthogonal. Thus
g = sorp(W,) ® sor(W_i). Now T is antilinear and commutes witR. Thus
it permutes theP-eigenspaces, i.eT, : W,; — W_;. Sincet consists of those
operators ing that commute withl, andT is compatible with both the unitary
structure and the bilinear fortn, it follows that (A,B) € g is in ¢ if and only if
B = TAT L. In other words, after applying the obvious automorphigiis, the
diagonal ing = son @ son.

5.1.4. The case E EndV ®V*), b=a. — Recall thatin this cage? = —Id, and the
b-isometry group ofN =V & V* is SQW). For the same reasons as indicated above
we may assume that the time-reversal operators commutdPwith

1. T2=TZ =1d: (uspan/un) ® (uspon/un).
Observe that thé&-eigenspace decompositiod = W, 1 $W_1 is a- and (, )-
orthogonal and that therefoge= usp(Wy 1) ® usp(W-1). Let the dimension be
denoted by dima(W,1) = dim¢(W_1) = 2n.
Now T defines real structures 8, ; andW_1, and these are compatible wih
Hence in both cases the restrictiagto the seW¥, of fixed points ofT is a real
symplectic structure. The algebraonsists of the pair§A, B) of operators irg
which stabilizeW®, & WEF,. This means that, e.g., is in the maximal compact
subalgebra of the real symplectic Lie algebra determineaijgnWﬁ, i.e.,ina
unitary Lie algebra isomorphic tg,. A similar statement holds fd3.

2. T2=TZ = —Id: (uspan/(uspop ® uspyg) @ (uspan/ (uspyp @ uspyy)).
The argument made above still shows that usp(W, 1) & usp(W_1).
Now, to determinet we consider the operatdr := CT; which stabilizes this
decomposition and satisfi€$ = Id. Thus the further condition to be satisfied in
order for an operator to be ihis that thel'-eigenspace decomposition of each
summand must be stabilized, i.é.+= @svazilugp(vvf). The dimensions must
match pairwise because e TrI" = 0.

3. T?2 = —T#: sup/son.
The answer fog/¢ is the same for the two cas&$ = Id or T2 = —Id.
In either case it follows frona(wy, w,) = a(Pwy, Pw,) that the summands of the
P-decompositiohV =W, ;&W_; area-Lagrangian. Thus aarisometry stabilizes
the decomposition if and only if it is @-linear transformation acting diagonally,
and consequently = su(W,;) (which is acting diagonally as well).
Without loss of generality we may assume tfidt= Id (or else we replac& by
T1). ThenT is a real structure which permutes fAeigenspaces. Thus the diago-
nal action(w*,w~) — (Bw",Bw~) commutes witHT if and only if TBT % = B.
SinceT is compatible with the initial unitary structure, if follows thais in the
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associated real orthogonal group. For example, if unitary coordinates are chosen
so thatT is given by(z,w) — (W, Z), thenTBT~! = B simply means thaB = B.

5.2. Building bigger blocks. — Before Gp-reduction we must determine the basic
block associated to tH8y-representation spase This has been adequately discussed

in all cases with the exception of the one where there are two time-reversal operators.
Here we handle that case by reducing it to the situation where there is only one.

Write the initial block as/; ®V;* and build a diagram consisting of the four spaces
VieV* i=1,...,4, with the mapd’, T1, andP emanating from each of them. To be
concrete,T 1V, @V =V, @Vy definesV,, Ty 1V, V) — V; @ V5 definesvs, and
T1:V,®Vy — V,®V, definesv,. The relationP = TT, defines the remaining maps.

At this point there is no need to discuss mixing.

We also underline that, by the nature of the basic model, any two sgae&s and
V @Vj* are either disjoint in the big Nambu space or are equal.

Let us now complete the proof of our classification result, Theorem 1.1, by running
through the various cases which occur in the present setting where the initial block
must be extended. We only sketch this, because given how the extended block case
was handled in the setting of one distinguished time-reversal symmetry (Sect. 4.4) and
the detailed classification results above, the proof requires no new ideas or methods.

1) V, @ Vf is T-invariant and is not fFinvariant — Here it is only necessary to
consideP : W, =V, @V — V; V3 =Wa. If g is the Lie algebra of unitary operators
which commute with thé&g-action and respect thig-structure ornv; © V', then the
further condition of compatibility witi? means that the algebra in the present case is
g acting diagonally vid® onW; &@W5. Thus we have reduced to the case of only one
time-reversal operator di;, which has been classified above.

Note that this argument has nothing to do with whether orinst mixing. Hence,
in this and all of the following cases there is no need to differentiate betWeer T;.

2) V; @ Vy is neither T- nor T-invariant — Consider the diagram introduced above
where all the spacedf =V, ®V* occur. If any of theW is invariant by eithefm

or T1, then we change our perspective, repldgeby that space and apply the above
argument. Thus we may assume thatijds stabilized by eithe or T;. It is still
possible, however, th&t = W;, and in that case it follows that, = Ws.

2.1) M = W;. — Here bothWy, andW, are P-invariant. We leave it to the reader to
check thaP can be transferred to the level of Bt & End(H*) or EndH & H*) just
as we transferred the time-reversal operators. Thus, e.g., it is enough to know the Lie
algebra of operatorg on Wy which are compatible with the unitary structure, are
isometries and are compatible wih This has been computed in Sect. 5.1. Of course
we did this in the case wheked V* is T- andT;-invariant, but the compatibility with
P had nothing to do with time reversal.

In the present case boihandT; exchang&V; andWs. Thus our symmetric space

is(g®g)/g.
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2.2) The spaces,Vdre pairwise disjoint— Here we will go through a number of sub-
cases, depending on whether or not there exist (equivariant) isomorphisms between
various spaces. Such an isomorphism is of course assumed to be unitary and to com-
mute withC; in particular it is a-isometry.

2.2.1) W =W,. — If ¢ is the isomorphism which does this, thepT 1 =: @ is an
isomorphism o\, andWs. Using these isomorphisms, we bui .= W, & W, and
W :=Wb &Ws which are of our initial type; they are stabilized Byand exchanged by
T. Thus, asirR.1), if g is the Lie algebra of operators viwhich are compatible with
the unitary structure, afeisometries and are compatible wig) then our symmetric
space ig®g)/g.

2.2.2) W =W,. — For the reasons given aboWi; = W, and we buildV andW as in
that case. In the present situatiBrexchangesV and\W. We must then consider two
subcases during our procedure for identifying

The simplest case is wheéé andW are not isomorphic. In that setting the Lie alge-
brag of unitary operators ow which commute with th&g-action and are compatible
with b acts diagonally okV &W. This is exactly our algebra of interest.

Thus in this case we can forgét, and regard; as acting o'W. HereT stabilizes
W and thus the associated symmetric spagg éswheret consists of the operators in
g which commute withT . This situation has been classified above; in particular, only
classical irreducible symmetric spaces of compact type occur.

Our final case occurs under the assumptare= W, in the situation wherg&V and
W are isomorphic. Here we view an operator which commutes witiGghaction as a

matrix
A B
C D)~

Compatibility with P can then be interpreted & andD being determined froni

andC by P-conjugation. In this notatioA : W — W andC : W — W. But we may

also regardC as an operator oW which is transferred to a map froW to W by

the isomorphism at hand. Therefore the Lie algebra of interest can be identified with
the set of pairgA, C) of operators oW which are compatible with the unitary and
b-structures and commute with tlki&-action onW. Hence the associated symmetric
space is the direct sugyt @ g/¢ wheret is determined by compatibility witfi : W —

W, i.e., a direct sum of two copies of an arbitrary example that occurs with only one
T-symmetry.

6. Physical realizations

We now illustrate Theorem 1.1 by the two large sets of examples that were already
referred to in Sect. 2: (i) fermionic quasiparticle excitations in disordered normal-
and superconducting systems, and (ii) Dirac fermions in a stochastic gauge field back-
ground. In each case we fix a specific Nambu spaAceand show how a variety of
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symmetric spaces (each corresponding to a symmetry class) is realizadying the
group of unitary and antiunitary symmetries.

The invariable nature oV is a principle imposed by physics: electrons, e.g., have
electric charge= —1 and spirS= 1/2 and these properties cannot ever be changed.
What can be changed, however, by varying the experimental conditions, are the sym-
metries of the Hamiltonian governing the specific situation at hand. For example,
turning on an external magnetic field breaks time-reversal symmetry, adding spin-orbit
scatterers to the system breaks spin-rotation symmetry, lowering the temperature en-
hances the pairing forces that may lead to a spontaneous breakdown of the global U
charge symmetry, and so on.

6.1. Quasiparticles in metals and superconductors. —The setting here is the one
already described in Sect. 2.1: given the complex Hilbert spacd single-electron
states, we form the Nambu spadé =V ¢V * of electron field operators. OW
we then have the canonical symmetric bilinear fdwrthe particle-hole conjugation
operatorlC : W — W, and the canonical unitary structufg).

The complex Hilbert space¢ andV * are to be viewed as representation spaces
of a Up group, which is the global Ygauge degree of freedom of electrodynamics.
Indeed, creating or annihilating one electron amounts to adding one unit of negative or
positive electric charge to the fermion system. In representation-theoretic terms, this
means thaV carries the fundamental representation of thegaluge group whild/ *
carries the antifundamental one. Thass U; here acts oV by multiplication withz,
and onV * by multiplication withz

Extra structure arises from the fact that electrons carry spin 1/2, which implies that
V is a tensor product of spinor spad&?, with the Hilbert spaceX for the orbital
motion in real space. The spin-rotation group $pnSU, acts trivially onX and by
the spinor representation on the factBr (In a framework more comprehensive than is
of relevance to the disordered systems setting developed here, the spinor representation
would enter as a projective representation of the rotation group &w@ SQ would
act on the factoK by rotations in the three-dimensional Euclidean space.) On physical
grounds, spin rotations must preserve the canonical anticommutation relations as well
as the unitary structure & . Therefore, by Prop. 2.2 spin rotations commute with the
particle-hole conjugation operatGr

Another symmetry operation of importance for present purposes is time reversal. As
always in quantum mechanics, time reversal is implemented as an antiunitary operator
T on the single-electron Hilbert spaté. Its algebraic properties are influenced by
the spin 1/2 nature of the electron: fundamental physics considerations diétate
—Id. A closely related condition is that time reversal commutes with spin rotations.
extends to an operation MW byCT =TC.

In physics one uses the wogliasiparticlefor the excitations that are created by
acting with a fermionic field operator on a many-fermion ground state.
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6.1.1. Class D— In the general context of quasiparticle excitations in metals and
superconductors, this is the fundamental class whesymmetries are present.

A concrete realization takes place in superconductors where the order parameter
transforms under spin rotations as a spin tripget; 1 (i.e., the adjoint representation
of SU,), and transforms under S@otations of two-dimensional space agp-avave
(the fundamental representation of §OA recent candidate for a quasi-2d (or layered)
spin-tripletp-wave superconductor is the compoundf8rO, [M, E]. (A noncharged
analog is theA-phase of superfluidHe [VW].) Time-reversal symmetry in such a
system may be broken spontaneously, or else can be broken by an external magnetic
field creating vortices in the superconductor. Further realizations proposed in the recent
literature include double-layer fractional quantum Hall systems at half filkRjgrhore
precisely, a mean-field description for the composite fermions of such systems), and a
network model for the random-bond Ising modgH.

The time-evolution operatotd = e /% in this class are constrained only by the
requirement that they preserve both the unitary structure and the symmetric bilinear
form of W. If Wy is the set of real point§v+Cv:v e V}, we know from Prop.

4.5 that the space of time evolutions is a real orthogonal group\&Q. In Cartan’s
notation this is called a symmetric space of theamily. The Hamiltonian$i are such
that H € so(Wg); this means that the Hamiltonian matrices are imaginary skew in a
suitably chosen basis (called Majorana fermions in physics).

Note that sincély is a real form of(X ® C?) & (X ® C?)*, the dimension otWg
must be a multiple of four (for spinless patrticles it would only be a multiple of two).

6.1.2. Class MI. — Let now time reversal be a symmetry of the quasiparticle sys-
tem. This means that magnetic fields and scattering by magnetic impurities are absent.
On the other hand, spin-rotation invariance is again required to be broken.

Known realizations of this situation exist in gapless superconductors, say with spin-
singlet pairing, but with a sufficient concentration of spin-orbit impurities to cause
strong spin-orbit scatteringsF]. In order for quasiparticle excitations to exist at low
energy, the spatial symmetry of the order parameter shoulleMzeeve (more precisely,

a time-reversal invariant combination of the angular momentua+2 andl = —2
representations of SQ A noncharged realization occurs in tBgphase ofHe [VW],

where the order parameter is spin-triplet without breaking time-reversal symmetry.
Another candidate are heavy-fermion superconductjrsyhere spin-orbit scattering

often happens to be strong owing to the presence of elements with large atomic weights
such as uranium and cerium.

Time-reversal invariance constrains the set of good HamiltoramgH = THT L.
SinceT? = —Id for spin 1/2 particles, we are dealing with the case treated in 4.3.2.1.
The space of time evolutions therefore is@®@k)/U(V ), which is a symmetric space
of theDIII family. The standard form of the Hamiltonians in this class is

(23,
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whereZ € Hom(V *,V) is skew. (Note again that the dimensionWf; is a multiple
of four, and would be a multiple of two for particles with spin zero).

6.1.3. Class C— Next let the spin of the quasiparticles be conserved, and let time-
reversal symmetry be broken instead. Thus magnetic fields (or some equiValent
breaking agent) are now present, while the effect of spin-orbit scattering is absent. The
symmetry group of the physical system theisis- Go = Spirgy = SUs.

This situation is realized in spin-singlet superconductors in the vortex pBdke [
Prominent examples are the cuprate (or highsuperconductorsI]], which are lay-
ered and exhibil-wave symmetry in their copper-oxide planes. It has been speculated
that some of these superconductors break time-reversal symmetry spontaneously, by
the generation of an order-parameter componggtar is[S3. Other realizations of
this class include network models of the spin quantum Hall effgt [

Following the general strategy of Sect. 3, we eliminGgte= SU, from the picture
by transferring fronV &V * to the reduced spacé® X*. In the process the bilinear
form b undergoes a change of parity. To see thiRlet C? (a.k.a. spinor space) be the
fundamental representation space obSRH is isomorphic taR* by Y : r — (io2r, )R
where o, is the second Pauli matrix. This isomorphigm R — R* is alternating.
Therefore, by Prop. 3.12 the symmetric bilinear form\bfp V * gets transferred to
the alternating forna of X ¢ X*.

From Prop. 4.5 we then infer that the space of time evolutions iIgFKSpX*) — a
symmetric space of theé family. The standard form of the Hamiltonians here is

A B
H= (B* _At> )

with self-adjointA € End(X) and complex symmetriB € Hom(X*, X).

6.1.4. Class C — The next class is obtained by taking spin rotations as well as the
time reversal to be symmetries of the quasiparticle system. Thus the symmetry group
is G = GoU T Gg with Gg = Spiny = SUs.

Like in the previous symmetry class, physical realizations are provided by the low-
energy quasiparticles of unconventional spin-singlet supercondudtprsie differ-
ence is that the superconductor must now be in the Meissner phase where magnetic
field are expelled by screening currents. In the case of superconductors with several
low-energy points in the first Brillouin zone, scattering off hard impurities is needed to
break additional conservation laws that would otherwise emerge (see Sect. 6.1.5).

To identify the relevant symmetric space, we again transfer fsom V * to the
reduced spack ¢ X*. As before, the bilinear forrb changes parity from symmetric
to alternating under this reduction. In addition now, time reversal has to be transferred.
As was explained in the example following Lemma 3.11, the time-reversal operator
changes its involutory character froht = —Idy gy« t0 T2 = +ldxgx--

In the language of Sect. 4 the block data ¥re- X, E =EndV &V*),b=a, T
nonmixing, andT? = Id. This case was treated in 4.3.3.2. From there, we know that
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the space of time evolutions is USp® X*)/U(X) — a symmetric space in thel
family. The standard form of the Hamiltonians in this class is the same as that given in
(3) but now withZ € Hom(X*, X) complex symmetric.

6.1.5. Class Al. — This class is commonly associated with random-matrix models
for the low-energy Dirac spectrum of quantum chromodynamics with massless quarks
(see Sect. 6.2.1). Here we review an alternative realization, which has recently been
identified JA3] in d-wave superconductors with soft impurity scattering.

To construct this realization one starts from cl@sg.e. from quasiparticles in a su-
perconductor with time-reversal invariance and conserved spin, and enlarges the sym-
metry group by imposing anotherldymmetry, generated by a Hermitian operagor
with Q% = Id. The physical reason for the extra conservation law is approximate mo-
mentum conservation in a disordered quasiparticle system with a dispersion law that
has Dirac-type low-energy points at four distinct places in the Brillouin zone.

Thus beyond the spin-rotation group Sthhere now exists a one-parameter group
of unitary symmetries'®. The operators'®& are defined oV, and are diagonally
extended t&V =V @V *. They are characterized by the property that they commute
with particle-hole conjugatio@, time reversall, and the spin rotationg < SU,.

The reduction to standard block data is done in two steps. In the first step, we
eliminate the spin-rotation group SUFrom the previous section, the transferred data
are known to b& = End(X @ X*), b = a, T nonmixing, andT® = Id.

The second step is to reduce by thedyoup generated b§. For this consider the
C-linear operatod := iQ with J?> = —Id, and let thel-eigenspace decompositionf
be writtenX = X, & X _j. There is a corresponding decompositiin= X*,; & X* ;.
SinceJ commutes withT, a complex structure is defined by it on the seflTefeal
points of X. Therefore dinX,; = dimX_;. Another consequence 6 = TJ is that
the C-antilinear operatof exchange&,; with X_;. ThusT is mixing with respect to
the decompositionX = X & X_j andX* = X*,; & X*_;. TheC-antilinear operator
C mapsXy;j to X* .

The fully reduced block data now axe:= X,; & X*,j, E = EndV) & EndV*),
b=a, T mixing, andT2 = Id. The finite-dimensional version of this case was treated in
4.3.1.3. Our answer for the space of time-evolution operators was38(Up x Ug),
which is a symmetric space in tiAdll family.

Unlike the general case handled in 4.3.1.3, it here follows from the fundamental
physics definition of particle-hole conjugati@and time reversal that the operator
CT stabilizes a real subspadg. We also havéCT)? = —Id. Therefore, the operator
CT defines a complex structure @k, and hence the integepsandq, which are the
dimensions of th€T-eigenspaces M, must be equal.

6.1.6. Class A— At this point a new symmetry requirement is brought into play:
conservation of the electric charge. Thus the globagBuge transformations of elec-
trodynamics are now decreed to be symmetries of the quasiparticle system. This means
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that the system no longer is a superconductor, whargailige symmetry is sponta-
neously broken, but is a metal or normal-conducting system. If all further symmetries
are broken (time reversal by a magnetic field or magnetic impurities, spin rotations by
spin-orbit scattering, etc.), the symmetry grougsis- Go = U;.

All states (actually, field operators) M have the same electric charge. Thus the
irreducible U representations which they carry all have the same isomorphism class,
sayA. States inV * carry the opposite charge and belong to the dual dlassSince
A # N*, we are in the situation of Sect. 4.3.1, wh&e- EndV ) @ EndV *). With T
being absent, the space of time evolutions (¥ acting diagonally oV ¢V *.

In random-matrix theory, and in the finite-dimensional case wh¢ké)= Uy, one
refers to these matrix spaces as the circular Wigner-Dyson class of unitary symmetry.
The Hamiltonians in this class are represented by complex Hermitian matrices.

If we make the restriction to traceless Hamiltonians, the space of time evolutions
becomes SY, which is a type-Il irreducible symmetric space of th&mily.

6.1.7. Class A. — Beyond charge conservation o lgauge symmetry, time rever-
sal T is now required to be a symmetry of the quasiparticle system. Physical realiza-
tions of this case occur in metallic systems with spin-orbit scattering. The pioneering
experimental work (of the weak localization phenomenon in this class) was done on
disordered magnesium films with gold impurities.

The block data now i€ = EndV) @ EndV*), b =s, T nonmixing, T? = —Id.
This case was considered in 4.3.1.1. The main point there was that time reversal
defines aC-linear symplectic structuraonV by a(vi,v2) = (Tw,v2). Conjugation
by T therefore fixes a unitary symplectic group USp inside of UV ), and the space
of good time evolutions i§/K = U(V)/USp(V). In the finite-dimensional setting
whereG/K = Uy /USpyy, this is called the circular Wigner-Dyson class of symplectic
symmetry in random-matrix theory. The Hamiltonians in this class are represented by
Hermitian matrices whose matrix entries are real quaternions. The irreducible part
SUxn/USp,y, Obtained by restricting to traceless Hamiltonians, is a type-I symmetric
space in thll family.

6.1.8. Class A — The next class is the Wigner-Dyson class of orthogonal symmetry.
In the present quasiparticle setting it is obtained by imposing spin-rotation symmetry,
U1 gauge (or charge) symmetry and time-reversal symmetry all at once.

Important physical realizations are by disordered metals in zero magnetic field.
Families of quantum chaotic billiards also belong to this class.

The group of unitary symmetries here@ = U1 x SUp. We eliminate the spin-
rotation group Sk from the picture by transferring frodd = X ® C? to the reduced
spaceX. Again, the involutory character dfis reversed in the process: the transferred
time reversal satisfies? = +1d. The parity of the bilinear form also changes, from
symmetric to alternating; however, this turns out to be irrelevant here, as there is still
the U; charge symmetry and we are in the situatiog A*.
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The block data now i& = EndX) @ EndX*), b = a, T nonmixing, T2 = Id. Ac-
cording to 4.3.1.2 these yield (the Cartan embedding ¢&)YO(X) as the space of
good time evolutions. The irreducible part 8U/SO(X), or SUy/SOy in the finite-
dimensional setting, is a symmetric space inAhéamily. The Hamiltonian matrices
in this class can be arranged to be real symmetric.

6.2. The Euclidean Dirac operator for chiral fermions. — We now explore the
physical examples afforded by Dirac fermions in a random gauge field background.
These examples include the Dirac operator of quantum chromodynamics, i.e., the the-
ory of strong SiJ gauge interactions between elementary particles called quarks.

The mathematical setting for this has already been described in Sect. 2.3. Recall
that one is given a twisted spinor bund@e R over Euclidean space-time, and that
is taken to be the Hilbert space bf-sections of that bundle. One is interested in the
Dirac operatoDp in a gauge field backgrourdand in the limit of zero mass:

Da = iy4 (3 — Ay) -

We extend the self-adjoint operatbi diagonally fromV to the fermionic Nambu
spacelV =V @V * by the conditiorDy = —CDAC™L. The chiral ‘symmetryT Dp +
Dall = 0, wherel” = y5 is the chirality operator, then becomes a true symmBgy-
T DAT 1 with an antiunitary operatdf = CI' = I'C, which mixesV andV *.

6.2.1. Class Al. — Let now the complex vector spade= CN be the fundamental
representation space for the gauge groug 8lith N > 3. (N is called the number of
colors in this context.) Quantum chromodynamics is the specialidas@8.

The fact that the extended Dirac operdigyacts diagonally oWV =V @V * is at-
tributed to a symmetry grouBo = U; which hasV andV * as inequivalent representa-
tion spaces. For a generic gauge-field configuration there exist no further symmetries;
thus the total symmetry groupG= GoU T Gp.

The block data here i =V, E = EndV) @ EndV*), b=s, T mixing, T? = Id,
which is the case considered in 4.3.1.3n K= dimV, we have

p = sun/s(up®ug) -

The difference of integerp — q is to be identified with the difference between the
number of right and left zero modes Bﬁ (‘Right’ and ‘left’ in this context pertain
to the (+1)- and (—1)-eigenspaces of the chiralify = ys.) The latter number is a
topological invariant called the index of the Dirac operator.

6.2.2. Class BD — We retain the framework from before, but now consider the
gauge group SkJ where the number of colof$ = 2. In this case the massless Dirac
operatoDa has an additional antiunitary symmetiy1[], which emerges as follows.

Recall that the unitary Sirepresentation spade= C? is isomorphic to the dual
representation spad€ by a C-linear mapping) : R — R*. Combining the inverse
of this with 1 : R — R* defined byi(r) = (r,-)r, we obtain aC-antilinear mapping
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B:=ytor:R— R The mam thus defined commutes with the Sdction onR. By
Lemma 3.11 it satisfie8? = —Idg sincey is alternating.

Now, on the (untwisted) spinor bund&over Euclidean space-tinid there exists
a C-antilinear operaton, calledcharge conjugationn physics, which anticommutes
with the Clifford actiony: T*M — End(S); thusaiy = iya. Sinceys = VPyly?y3, this
implies thata commutes withys = I' and stabilizes th€-eigenspace decomposition
S=S, &S into half-spinor componentS.. The charge conjugation operator has
squaren® = —Ids.

For the case of three or more colors, the existenaeisfof no consequence from a
symmetry perspective, as the fundamental and antifundamental representatiogs of SU
are inequivalent foN > 3. ForN = 2, however, we also hay& anda combines with
it to give an antiunitary symmetrfs = a ® 3. Indeed,

T,D, T/ ' = (@@B)Da(a®B) = a(iy)a e pOu—A)B ™.
Since gauge transformatiog&) € SU, commute withB, so do the componentg(x) €
sup of the gauge field. ThuBA,B 1 = A, and sincex(iy)a 1 =iy, we have

Note that the antiunitary symmetfly : V — V is nonmixing, andl'l2 =1d. As usual,
the extension to an operatdy : W — W is made by requirin@ T, = T:C.

Thus we now have two antiunitary symmetridsand T;. Becauserl is mixing
and T, nonmixing, the unitary operatd® = TT; = T; T mixesV with V*. Since
T2=TZ=1d, and(CP)? = Id, this is the case treated in 5.1.1.1, where we found

p=s0(VR)/(s0(Vg) ®50(Vg)) -

After truncation to finite dimension this ipq/(s0p @ soq). The differencep —q
still has a topological interpretation as the index of the Dirac operator.

Although our considerations explicitly referred to the case of the gauge group being
SU,, the only specific feature we used was the existence of an alternating isomorphism
Y : R— R*. The same result therefore holds for any gauge group represeniation
where such an isomorphism exists. In particular it holds for the fundamental represen-
tation of the whole series of symplectic groups Usfwhich includes SY = USp,).

6.2.3. Class @. — Now takeR to be the adjoint representation of any compact Lie
(gauge) grougK with semisimple Lie algebra. This case is called ‘adjoint fermions’ in
physics. A detailed symmetry analysis of it was presentedin]|

The Cartan-Killing form on Li¢K),

B(X,Y) =TradX)adY),
is nondegenerate, invariant, complex bilinear, and symmeriterefore defines an
isomorphismp : R — R* by @(X) = B(X,-). SinceB is symmetric, so ig.
The change in parity af reverses the parity of the antiunitary opergiee ¢ 1o1,
which now satisfie§? = +Idg. By a? = —Id this translates 32 = (a ® )% = —Id.
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Thus we now have two antiunitary symmetrieand T, with T? = Id = —T?, and
(CP)2 = (CTT)? = —Id. This case was handled in 5.1.2.1 where we found

p=usp(V)/(usp(V ") Susp(V 7).

In a finite-dimensional setting this would b&p, ;. oq/ (1spo, © Uspyy).

In summary, the physical situation is ruled by a mathematical trichotomy: the iso-
morphismy : R — R* is either symmetric, or alternating, or does not exist. The cor-
responding symmetry class of the massless Dirac opera@dk, iBDI, or Alll, respec-
tively. As was first observed by Verbaarschwf]| this is the same trichotomy that
ruled Dyson’s threefold way.
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