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We study the limit distribution of-normsRy (t) = || X ||+ (of ordert) of samplesX y =
(X1,...,Xy) of i.i.d. positive random variables, @as— oo, N — oco. This problem,
motivated by a recent work by Schlather (2001), is closely related to the behaviour of
the sumsSy(t) = S| X!, which is of interest in its own right. It is assumed that
the functioni(xz) = —log P{X; > z} is regularly varying at infinity with index <

o < oco. The appropriate growth scale &f relative tot is of the forme®'/¢. We show
that there are two critical pointsy; = 1 andas = 2, below which the Law of Large
Numbers and the Central Limit Theorem, respectively, break down. oFer 2, we
impose a slightly stronger condition of normalised regular variatioh. dfiere the limit
laws for .Sy (t) appear to be stable, with characteristic exporest (0, 2) and skewness
parameterd = 1. Limit laws for the normsRy (¢) are also obtained. In particular, our
results corroborate a conjecture by Schlather (2001) regarding the ‘endpeints'co
anda — 0+ of the limits of Ry ().
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1. Introduction

Let us consider a family of random variables

N 1/t
Ry(t) == (Z Xf) , t >0, (1.2)

where X1, X5, ... is a sequence of i.i.d. positive random variables. Note that
Rx(t) has the meaning of thig-norm (of ordert) of the random vectoX y =
(Xl,. .. ,XN):

Ry (t) = [IXnl:-

Our goal is to study the limiting distribution ok (¢) as bothN andt tend to
infinity.
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Clearly, the asymptotic behaviour &fy(¢) depends heavily on the relation-
ship between the paramete¥sandt. If, for instance, one letd/ tend to infinity
with ¢ fixed or growing slowly enough, then, under appropriate moment condi-
tions, the usual Law of Large Numbers (LLN) and the Central Limit Theorem
(CLT) should be valid. In contrast, if the growth rate &fis small enough as
compared td, then the asymptotic behaviour &fy(¢) is dominated by the max-
imum of the sampleX, ..., Xy. Therefore, one can expect that such a setting
provides a tool to interpolate between the classical limit theorems concerning the
bulk of the sample (i.e., the LLN and CLT) and limit theorems for extreme values.

One can also anticipate that the results will depend upon the structure of the
upper distribution tail of the random variablés. In this paper, we will focus
on a particular case wherg; are unbounded above and have the upper tail of the
Weibull form:

P{X; > 2} ~ exp(—cz?) (r — +00), (1.2)
where0 < p < oco. More precisely, we will be assuming that the log-tail dis-
tribution functionh(z) := —logP{X; > =z} is regularly varying with index

o € (0,00) asx — +o00. For example, an exponential distribution is contained in
this class witho = 1.

Note that the above problem is closely related to the limiting behaviour of the
partial sums

N
Sn(t) =>_ X1, (1.3)

which is of interest in its own right. As we will see, it is most convenient to obtain
the limit of the sumsSy (¢) first, using the well-elaborated classical techniques,
and then derive results for the noriig (1) = S, (t)'/* using an elementary ‘trans-
fer lemma (see Lemma 9.1 below).

Limits of the norms of the form (1.1) were first considered in the recent paper
by Schlather (2001) with the aim to combine the CLT with limit theorems in
extreme value theory. Qualitatively speaking, Schlather has demonstrated that
under a suitable parametrisation of the functional relation between the norm order
t and the sample siz&, there exists a ‘homotopy’ for the limit distributions of
Ry (t) extending from the CLT to a limit law for extreme values. The situation
where bothN andt tend to infinity arises in Schlather (2001, Theorem 2.2, p.
864), where the random variabl&s are assumed to be bounded above and, in the
sense of extreme value theory, belong to the domain of attraction of the Weibull
distribution ¥, (z) = exp (—(—z)*) (o > 0, x < 0). In contrast, in Theorem
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2.3 (Schlather 2001, p. 865), whekg are unbounded and are in the domain of
attraction of the Fechet distribution?, (z) = exp(—z~%) (o > 0, z > 0), the
norm ordert is supposed to be fixed.

Let us point out that for random variablé§ with Weibull tails of the form
(1.2), the distribution of the maximum of the sample, ..., Xy can be shown
to converge (under a slightly more restrictive assumptionarfnalised regular
variation, see below) to the Gumbel (double exponential) distributidm) =
exp (—e™®) (z € R). Note that in this case Schlather (2001) has obtained a
partial result and only for exponential random variables (Theorem 2.4, p. 867).
However, he has conjectured (p. 867) that in the general case of attrachotht
weak limit of the properly centered and normaliseg (¢) does exist; moreover,
the endpoints of the parametric family of the limits should be represented by the
normal distribution and the Gumbel distribution (heuristically, corresponding to
the casesV > t andt > N, respectively).

The results obtained in the present paper do corroborate this conjecture. More-
over, we have found explicitly the full spectrum of the limiting laws for the un-
derlying sumsSy(¢) (and hence fo?y(t)). In particular, we have shown that
the non-Gaussian limits &f i (¢) are given by the family of stable laws, with
characteristic exponent € (0, 2) and skewness paramefge= 1.

Another class of examples within this setting is provided by Ben Arous, Bo-
gachev and Molchanov (2003), where the sfig(t) has the terms of the form
X, = exp(X;) and X; are either unbounded above and have Weibull tails of the
form (1.2) with indexl < ¢ < oo (case B, or bounded above and have a sim-
ilar exponential behaviour in the vicinity of the upper edge of the support, with
0 < 0 < oo (case A. Note that for the Weibull tail (1.2), we have

P{f(z >} =P{X; > e"} = exp(—ce®),

which formally corresponds to case B in Ben Arous, Bogachev and Molchanov
(2003) with a ‘limiting’ valueg = oc.

As shown in Ben Arous, Bogachev and Molchanov (2003), under the assump-
tion of normalised regular variation @f(-), in both cases A and B the random
exponentials:xp(X;) belong to the domain of attraction of the double exponen-
tial distribution A, and the implications for thg-normsRy(t) are again in line
with Schlather’s conjecture. It is interesting that the family of the limiting distri-
butions forSy (t) (and hence folRy(t)) appears to be the same as in the present

paper. Such universality is quite remarkable and should be studied in more detail.
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2. Statement of the results

We will be working under the condition that the log-tail distribution function
h(z) := —log P{X; > x} is regularly varying at infinity with index < (0, co)
(we writeh € R,; see Assumption 2 below).

It follows that the moment generating function

m(t) := E[X"] (2.1)

is well defined for allt > 0. Note that the expected value of the s¥(¢) is
given by

E[Sw(6)] = D ELX/] = Nm(),

suggesting that the moment function(t) should be relevant to the appropriate
scale for the number of term¥ = N(¢). However, Kasahara's exponential
Tauberian theorem (see Lemma 3.2 below) showsrtt{a} grows likee(*/2) 1ot
while a suitable rate function should be choser®g. We will see that the val-
uesa; = 1 anday, = 2 are critical with respect to this scale, in that the LLN and
CLT break down belowy; andas, respectively. Moreover, it will be shown that
« plays the role of characteristic exponent in the limit laws.

The first two theorems state théi, (¢) satisfies LLN and CLT in their con-
ventional form providing that the number of term&in the sumSy(¢) grows
fast enough (roughly speaking] > e/? and N > e?!/¢, respectively). More

precisely, set

log N
o := lim inf 2 Of : (2.2)

t—o0
Theorem 2.1. Suppose thak € R, anda > 1. Set

con SNt 1 R,
Swll) = E[Sx(t)]  Nm(t) ;X

Then
Sy (t) AN (t — 0).
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Theorem 2.2. Suppose that € R, anda > 2. Then

Sn(t) — E[Sn(1)]

Var[Sw (1)] —NOY (=),

whereN (0, 1) is the standard normal distribution.

Below the critical points, the rate of growth 8f = N(¢) must be specified
more accurately. Namely, we will require the following

Scaling Assumption.The numbertV of terms in the sundy (¢) satisfies the con-
dition
lim N(t)e ¢ =1, (2.3)

t—o00

wherea > 0 is a parameter.

We also need to impose a slightly stronger condition on regularity of the log-
tail distribution functionh —that of normalised regular variationh € NR,.
This property will be discussed in detail in Section 5. In particular, a function
h(z) € NR, is ultimatelystrictly increasing and hence its inversie! (¢) exists
for sufficiently larget. Letn,(¢) be a (unique) solution of the equation

oh(m(t)) = at. (2.4)

Theorem 2.3. Assume that € NR, and the scaling condition (2.3) is fulfilled.
Suppose that < o < 2 and set

B(t) = ﬁl(t)t = ethgnl(t)’ (25)
Nm(t) (I<a<?2),

A(t) == Nmy(t) (a=1), (2.6)
0 0<a<l),

wheren, (t) is given by (2.4)mn(t) is the moment function defined in (2.1) and
m(t) is a truncated moment function,

ml(t) = E[Xt]-{XSm(t)}}- (27)

Then, ag — oo,
— Fa, (2.8)
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whereF, is a stable law with characteristic exponentand skewness parameter
(£ = 1. The characteristic function,, of the law.F,, is given by

o exp {—m — a)[ul* exp (—% sgnu)} (0 £1)
exp {iu(l—’y)—g|u| (1+isgnu~%log|u!)} (0 =1)
2.9)

wherey = 0.5772. .. is the Euler constant.

Remark. Forl < a < 2, we use the analytic continuation of the gamma function
in (2.9), given by the formul& (1 — o) =T'(2 — a)/(1 — ).

At the critical points,c = 1 anda = 2, the Law of Large Numbers and the
Central Limit Theorem, respectively, prove to be valid; however, the normalising
constants require some truncation.

Theorem 2.4. Under the hypotheses of Theorem 2.3¢let 1. Then

SN(t) 4
N (D)

(2.10)

wherem; (t) is given by (2.7).
Theorem 2.5. Under the hypotheses of Theorem 2.3plet 2. Then

Sn(t) — E[Sn(?)]

CES — N(0,1),

wherem,(t) is a truncated moment function of ‘second order’,
mg(t) = E[XQtl{Xgm(t)}}. (211)

Limit theorems for the norm$2y (¢) easily follow from the corresponding
results for the sums§y (7).

Theorem 2.6. (a) For a > 2,

tv/Nm(t) ( Ry (1)
ma(t) \(Nm(t))/*

- 1) LNO,1) (t - oo),
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wherem,(t) = m(2t) for a > 2 andms(t) = m»(t), and the functions:(-) and
mo(-) are given by (2.1) and (2.11), respectively.

(b)For1 < a <2,
tNm(t) ( Ry (t)
m(t) \ (Na(t)
wherem, (t) = m(t) for 1 < a < 2 andm,(t) = m4(t), with m,(-) given by
(2.7).
(c)Foro < a < 1,

t (iiv((tt)) - 1) L logFa (t — ),

wherelog F,, stands for the distribution of a random varialite; ¢ with ¢ having
distribution 7.

d
)l/t—1>—>.7-"a (t — 00),

3. Regular variation and Kasahara's Tauberian theorem
Using the log-tail distribution function
h(z) := —logP{X > z}, z € (0,00), (3.1)
the upper distribution tail is represented in the form
P{X >z} = "),
We now make our basic assumption on regularity of this tail.

Regularity Assumption. The function is regularly varying at infinity with index
o € (0,00) (we writeh € R,). That is, for every constamt > 0

lim Mlrz)

lim 55 _— (3.2)

The following result, known as thdniform Convergence TheorefdCT) is
a useful extension of the definition of regular variation (see Bingbtat. 1989,
Theorem 1.5.2, p. 22).

Lemma 3.1 UCT). If h € R, with o > 0 then (3.2) holds uniformly ir on each
interval (0, x4].
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The link between the asymptotic behaviour of the functioasidm at infinity

is characterised by an exponential Tauberian theorem by Kasahara (1978). Recall

that a generalised inverse/otan be defined by (y) := inf{z : h(z) > y} (see
Binghamet al. 1989, Sect. 1.5.7, p. 28). One can show that R, if and only if

h= € Ry, (see Binghanet al. 1989, Theorem 1.5.12, p. 28).

Lemma 3.2 Kasahara’s Tauberian theorenhetm(t) be given by (2.1) anél(z)

by (3.1). Therh € R, with0 < p < oo if and only if

logm(t) log h(t) — — 1+logo

; . (t — o0).
A useful implication of this result is
Lemma 3.3. Suppose that € R,. Then for any constant > 0

, m(rt) 7
tlgglo Zlog (i glog r.

Proof. Applying formula (3.3) and recalling that™ € R, ;, we obtain

t he(rt
log _m(r ) = rtlog (rt)

()" =0 + o(t) = rtlogre + o(t),

and the lemma follows.

4. Proof of Theorems 2.1 and 2.2

In this section, the parameteris defined by (2.2).

Proof of Theorem 2.1. By Chebyshev’s inequality, it suffices to check that for

somer > 1
lim E|S3() — 1" = 0.

By an inequality of von Bahr and Esseen (1965), for ary|1, 2]

Xt r
E|S% — 1" <2N'""E 1) .
i1l < <m<t>+ )

(3.3)

(3.4)

(4.1)
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Furthermore, by the elementary inequality-1)" < 2"~ Y(z"+1) (z > 0,7 > 1),
which easily follows from Jensen’s inequality applied:to the right-hand side of
(4.1) is bounded from above by

2N (E { X" } + 1) =O(1)N'""

m(t)"

i)
m(t)"

According to Lemma 3.3 and using the hypothesis of the theorem, we obtain

(4.2)

1-r r _
lim sup log (N W;(N)/m(t) ) _(d-ra " ogr
t—o00 0 0
(4.3)
— -1 _
S(l r)a+f(r_1):_(7" )« 7")<07
0 0 o
providing r is such thatl < r < «. It then follows that the right-hand side of
(4.2) tends to zero as— oo, and the theorem is proved. OJ

Proof of Theorem 2.2. First of all, note that by Lemma 3.3,
Var[X] = m(2t) — m(t)* ~ m(2t) (t — 00),

so one can replace the normalisatignV Var[X*] with \/Nm/(2t).
By the Lyapunov theorem (see Petrov 1995, Theorem 4.9, p. 126), we only

need to check that for an appropriate- 1
NY"m(2t) " E| X" —m(t)|* — 0 (t — 0). (4.4)

Arguing as in the proof of Theorem 2.1, one can show that the left-hand side of
(4.4) is dominated by

m(2rt)

22r—1N1—r 24) T 2t t 2r ~ 22r—1N1—r ]
m(2t) [m( rt) + m(t) } (20

(4.5)

Furthermore, analogously to (4.3) we obtain
log (N'="m(2 2t)" 1-— 2
lim sup og (N7'm(2rt)/m(2t)") _ (1—r)a 2 g
t—00 t 0 0
< (1-r)a N 2r(r—1) _ _(r=1)(a=2r) <0,
0 0 0
if ris such thatt < r < «/2. Hence, the right-hand side of (4.5) tends to zero as

t — oo, and the theorem is proved. O
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5. Normalised regular variation

As mentioned in Section 2, to characterise the limiting behaviour of thessy(i)
in the zonex < 2, we need slightly more regularity. From now on we impose the
following

Normalised Regularity Assumption.The log-tail distribution functiorh is nor-
malised regularly varyingat infinity, h € NR, (with 0 < o < o0). The latter
means that for every > 0 the functionh(z)/z¢~¢ is ultimately increasing and
the functionh(z)/x2*< is ultimately decreasing (see Binghatal. 1989, p. 24).

The next lemma provides an important characterisation of the alass(cf.
Binghamet al. 1989, p. 15).

Lemma 5.1. Let . be a positive (measurable) function. There NR, if and
only if i is absolutely continuous (and hence a.e. differentiable) and
xzh/(x)
h(x)
Integration of the relation (5.1) shows that the functlog NR, can be rep-
resented in the form

—0 (v —00). (5.1)

h(x) = h(0) + /O @ (0+e(w)) du, (5.2)

wheres(z) — 0 asz — oc.
The next lemma can be viewed as a refinement of the UCT (Lemma 3.1) for
the case of normalised regular variation.

Lemma 5.2. If h € NR, with o > 0 then, uniformly inx on each interval
[0, k1] € (0, 00),

h(kx) — h(x) = h(x)(k® —1)(1 + o(1)) (x — 00).

Proof. Suppose that > 1 (the case: < 1 is considered similarly). Using the
representation (5.2), after the substitutios= zy we have

h(kx) — h(z) _ / " h(zy)
h(z) 1 h(z)y
The UCT (Lemma 3.1) implies that the function under the integral sign in (5.3)

tends tooy?~! uniformly on [1,x,] asxz — oo. Therefore, the integral (5.3)
converges, uniformly im € [1, x4, to [ oy?~'dy = k¢ — 1. O

(Q + E(xy)) dy. (5.3)
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Forr > 0, denote

nr =n.(t) = Tl/th‘_(at/g). (5.4)
In particular, forr = 1 the expression (5.4) is reduced to
m =m(t) =h"(at/o), (5-5)
and we note
() =71 (t). (5.6)

Sinceh € NR,, for all t large enough a usual inverse /ofexists, and hence,
satisfies the equation (cf. (2.4))

oh(m(t)) = at. (5.7)
The next lemma plays a crucial role in further calculations.

Lemma 5.3. Uniformly in7 on each intervalry, 7] C (0, o),

lim [h(n-(t)) — h(m(t))] = alogT.

t—o00

Proof. Note that

Kr(t) == e (1) =7t 1 (t — 0),

uniformly in 7 € [ry, 71]. Therefore, for all large enoughthe functions. () is
uniformly bounded) < ko < k.(t) < k1 < oo. Applying Lemma 5.2, in the
limit ¢ — oo we obtain, uniformly inr,

at

h(n;) — h(m) ~ h(m)(k2 —1) = ” ( o/t _ 1)
at plogT
~ = alogT,
Y t

where we also used the identity (5.7). O
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6. Asymptotics of truncated moments
The goal of this section is to establish some estimates for truncated moments of

Lemma6.1. Foranyr > 0 andp > 0

Jim gy (£) 2 B[X (L <y, (o) — Lixemoy)]

(07

— p—oz(T_ -D rfe (6.1)

alog T, p=a.

Proof. The caser = 1 is obvious. Suppose that > 1. Integration by parts
yields

nr M
E[Xptl{m<X§nT}} = / xptd(l — e*h(m)) = —/ 2Pt de @)
" n (6.2)

Nr
— nflote*h(m) _ n}ftTpefh(nf) + / e~ M@) Pt

m
Using the substitution = 7, = /! and identity (5.7) we obtain
TP E[XP L xep] = 1 — TPk ) o / )=k qup (6.3)
1

By Lemma 5.3i(n1) — h(n,) — —alogy ast — oo, uniformly iny € [1, 7].
Hence, the right-hand side of (6.3) tends to

T

1 — rPeleT 4 / e logy qyp — 1 — 7P +p/ yP o dy,
1 1
and (6.1) follows. The cage< 7 < 1 is considered analogously. O

Lemma 6.2. (i) For anyr > 0 and eaclp > a,

tlif{.lo /oy (t) 7 E[X" 1 (x<n.1y] = p—a T (6.4)
(i) Foranyr > 0 and eacty < «,
: a — a -«
lim e t/gnl(t) pt E[Xptl{x>m(t)}} == TP, (65)

t—oo a—p
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Proof. In view of Lemma 6.1 it suffices to consider the case 1.
(i) Setd := e~ (@+9)/e) with § > 0, then

n e E[XP L x<pyy] < e®/egPt = o702 = o(1). (6.6)

Further, similarly as in the proof of Lemma 6.1 (see (6.3)), integrating by parts
and using the substitution= 7, and identity (5.7) we obtain

1
e E[XP L gy xany] = O(1) e — 1+ / fy)dy?,  (6.7)
0

where f,(y) = ehm)=hm) 14, 1. Noting thatd’ — 0 and using Lemma 5.3,
it is easy to see thdim, .., f;(y) = y~© for eachy > 0. We also note that
n,/m = y'/t € [0,1] fory € [¢*,1], and so Lemma 5.2 implies that for any- 0,
all ¢ large enough and ajl € [¢, 1]

h(nn) = () < h(m)(1—y¢")(1 +¢)
< %t : (_9)#(1“) = —a(l+¢)logy.
It follows that f,(y) is bounded by the functiop—=(!*%), which is integrable on

0, 1] with respect taly? if p > a ande is sufficiently small. Hence, by Lebesgue’s

dominated convergence theorem the limit of (6.7) equals

1
—“/yadyp:—u L= (6.8)
0 p—a p—a

in accord with (6.4).
(i) We start by showing that for anyy > 1

lim /e " E[XP 1 (x5, = 0. (6.9)

t—o00

Indeed, using that — a < 0 we have
E[XPLixsony] < (0m) P~ ELX™] = 00~ p ™ m(at).
By the Kasahara theorem (see (3.3)),

1 _ h=(at) logo
—log (e*/en=—tm(at)) = lo - 4+ o(1). 6.10
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Recall that the inverse functioimr! exists (see Section 2), so equation (5.5) re-
duces ton,(t) = h™*(at/p). Using thath™* € Ry, it is easy to see that the
right-hand side of (6.10) tends toast — oo. Hence,

(e P E[XP s ] = €10 = (1),

whereC' := (a — p)log 6 > 0, and (6.9) follows.
Similarly to (6.7) integration by parts gives

e E[XT Ly cxcony] = — 0Pt THOM) 11 / fly)dy”, (6.11)
1

wheref,(y) := e ="m) 1 4. Using Lemma 5.2 and the identity (5.7) we

note that ) -
fim P = RO @ ey o logn,
t—o00 t P
so the first term in (6.11) is estimated &y*~#)*le? (1+o(1) — o(1). Next, noting
that9® — oo and using Lemma 5.3, we obtaiim, .., f;(y) = y~ for each
y > 1. Moreover, similarly to the proof of part (i) one can show that the integral

in (6.11) converges to

/ y=o dy? = al_)p. (6.12)
1

The limit (6.5) now follows, and the proof is complete. O

In the caser = « not covered by Lemma 6.2, we obtain one crude estimate
that will nevertheless be sufficient for our purposes below.

Lemma 6.3. Ast — oo,
ba(t) == i (t) e E[X " 1(x <y )] — +00. (6.13)
Proof. Foranyd € (0, 1), using Lemma 6.1 we have
ba(t) > mi(t) e E[ X1 (5« x<nyy] — —alogd, (6.14)
hence

liminf b,(t) > —alogd.

t—o0

Settingd | 0, we obtainlim, ., b,(t) = +o0, as claimed. O
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For convenience of future references, let us record a few more estimates for
truncated moments. Denote

ma(t) = E[Xat]_{XSm(t)}} (615)
and set
Y =Y(t) = X (6.16)
T (N7 |

From (6.16) it is seen that the inequality(t) > 7 is equivalent taX > 7, ,(t),
where
Mo = Tlar () = TV (Nma (t) /. (6.17)

Using the scaling condition (2.3) and Lemma 6.3, one can check that

. log b,
log 7o+ = logm + it (1 + 0(1)).

Hence, for all sufficiently large
Nar(t) > m(t). (6.18)
Lemma 6.4. For anyp such that) < p < « and eachr > 0

t—o0

Proof. Substituting (6.16) and using inequality (6.18) we have

~ N
P - - pt
NE |:Y 1{Y>T}] S (Nma)p/a E |:X 1{X>771}:| (6 20)
~ b P 0 (t — 00),

a&—p

where we also used (2.3), (6.20) and Lemmas 6.2(ii) and 6.3. O
Denote (0
_ . ml

Ya = Yalt) := (Nma(t)) /e (6.21)

so thatY” > v, if and only if X > n,. From (2.3) and Lemma 6.3 it follows that

Ya(t) ~Do(t)™Y =0  (t — 00).
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Lemma 6.5. Suppose that > 0. Then for anyr > 0
NE[Y(t) 1y, evmen] =0  (t— o0). (6.22)

Proof. Picking a numbey such that) < ¢ < min{«, p}, the left-hand side of
(6.22) is estimated from above by
N7P=4

NTPIE[YI1,, 5] = N

E[X%"1{xsn}] — O,

as was shown above (see (6.20)). O

7. Proof of Theorem 2.3

7.1. Convergence to an infinitely divisible law

As the first step towards the proof of Theorem 2.3, we establish convergence to an
infinitely divisible law. Denote

Xt
: = 1,2 (7.1)

Y, =Y(t) = B i=1,2,...

According to classical theorems on weak convergence of sums of independent
random variables (see Petrov 1975, Ch.§\2, Theorem 8, p. 81-82; cf. also
Theorem 7, p. 80-81), in order for the sum

N

Su(t) = SO Vilt) — A°(1)

=1

to converge in distribution to an infinitely divisible law with characteristic function

¢(u) = exp {iau - 02;2 + /I ) <e“”” -1 12122) dL(x)} 5 (7.2)

it is sufficient that the following three conditions are fulfilled:
1) In all points of its continuity, the functioh(-) satisfies

lim NP{Y <z}  for z <0,
Lz)=q "~ (7.3)
—thm NP{Y >z}  for z >0.
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2) The constant? is given by
o = lim lim NVar[Y 1y <] (7.4)

T—04 t—00

3) For eachr > 0, the constant satisfies the identity

_ . Toas *
t%{NE[m{M}}_A(t)}:a+/0 - dL(x)—/T s dL().
(7.5)

Theorem 7.1. Suppose that < o < 2. Then, ag — oo,

Sny(t) —A(t) «
~Bwm

where A(t) and B(t) are defined in (2.6) and (2.5), respectively, afg is an
infinitely divisible law with characteristic function

, 1w ux dx
¢a(u) = exp {zau - 04/0 (e —-1- m) W} , (7.6)

where the constant is given by
T

a = 2 cos (7.7)
0 (a=1).

7.2. Proof of Theorem 7.1

The proof is broken down into several steps according to formulas (7.3), (7.4) and
(7.5).

Proposition 7.2. The functionl defined in (7.3) is given by
Lz) = { 0, z <0, (7.8)

-z x>0.

Proof. SinceY > 0, itis clear thatZ(x) = 0 for x < 0. Forz > 0, using (7.1),
(2.3) and Lemma 5.3 we obtain

NP{Y >z} =NP{X > xl/tm} ~ e P{X > p,)

— ohlm)=h(ne) _, j—alogz _ e,

and (7.8) is proved. O
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Proposition 7.3. For o*defined in(7.4), for all « € (0, 2) we haver? = 0.
Proof. Since0 < Var[Y1jy<,] <E[Y?14y<.], it suffices to prove that

lim lim NE[Y?1y<] =0.

T—0+4 t—o00

Let us fixT > 0. Recalling (7.1) and (2.3) and using Lemma 6.2(i) with- 2,
we obtain, ag — oo,

(0%
N ED/2 1{y§7-}] ~ eat/gnl—Qt E[XQt]_{XSnT}} ~ 5o T2, (7.9
As 7 — 0+, the right-hand side of (7.9) tends to zero, sifce o > 0. O

Proposition 7.4. Let B(t) and A(t) be specified by (2.5) and (2.6), respectively,
and setA*(t) := A(t)/B(t). Then the limit

Do(7) == lim {NE[Y1{y<n| — A*(t)} (7.10)

t—o0

exists for allo € (0,2) and is given by

{ T (et ),

l-—a (7.11)
log T (a=1).

Do(7) =

Proof. 1) Let0 < « < 1. Using the scaling condition (2.3) and applying Lemma
6.2(i) withp = 1, we obtain

N a

NE[Y1ly<ny] = FE[Xt1{xgm}] ~ 7 (t— 00), (7.12)
1

11—«

in accord with (7.11).
2) Let1l < a < 2. Similarly to (7.12), application of Lemma 6.2(ii) with
p = lyields

N
NE[Y Liyen] - A%(t) = ;(E[th{xw}] —~E[x1])
1

N

= —— E[X 1 (xo]
Ui
[0

ri-e (t — o00).

Y

1l—«
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3) Leta = 1. Similarly as above, we obtain using condition (2.3) and Lemma
6.1 (witha = 1):
NE[Y Lyy<n] = A°() = N (E[X" T pxsqn] — E[X L] )

— log T (t — 00),
and the proof of (7.11) is complete. 0J

Proposition 7.5. The parameter defined in (7.7) satisfies the ident{§.5) with
L(-) specified by (7.8), that is,

2—a

T T oo x—a
Da(T):a—i—a/O 1+x2dx—a/T 1+$2dx (1 >0), (7.13)

whereD,, () is given by (7.11).

Proof. 1) Let0 < a < 1. Observe that

T 2—a 1 T —a
/ ’ de = i — / T da
o 1+ l1—« o 1+

Taking into account (7.11) and (7.7), we see that equation (7.13) amounts to

/ A [ — (7.14)
0

1+ 22 _26057

which is true by a formula in Gradshteyn and Ryzhik (1994, #3.241(2)).
2) Forl < a < 2, we note that

00 e Tl—a 00 xZ—a
de = — d
/T 1122 ' a—1 /T 1122
and hence, in view of (7.11) and (7.7), equation (7.13) is reduced to

T 00 5(7270[
dr = 7.15
2 cos & * /0 1122 " 0 (7.15)

which again follows from Gradshteyn and Ryzhik (1994, #3.241(2)).
3) Finally, fora = 1 equation (7.13) takes the form

T o 1
1 = dx — ———dx. 7.16
8T /0 T+a2 " /T (14 22)x ! (7.16)
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The integrals on the right of (7.16) are easily evaluated to yield

1 N 2%
§log(1+x ) ) — §log1+x2 ] = log T,
and this completes the proof of Proposition 7.5. O

Proof of Theorem 7.1. Gathering the results of Propositions 7.2, 7.3, 7.4 and 7.5,
which identify the ingredients of the limit characteristic functign we conclude
that Theorem 7.1 is true. OJ

7.3. Stability of the limit law

In this section, we show that the infinitely divisible gy, with the characteristic
function (7.6) is in fact stable.

Theorem 7.6. The characteristic function,, determined by Theorem 7.1 corre-
sponds to a stable probability law with exponeng (0, 2) and skewness param-
eter 3 = 1, and can be represented in a canonical form (2.9).

Remark. Formula (7.8) and Proposition 7.3 imply that corresponds to a stable
law (see Ibragimov and Linnik 1971, Theorem 2.2.1, p. 39-40). We give a direct
proof of this fact by reducing,, to the canonical form (2.9), which allows us to
identify all the parameters explicitly.

Proof of Theorem 7.6. According to general theory (see, e.g., Zolotarev 1957,
p. 441), the characteristic function of a stable law with characteristic exponent
a € (0,2) admits a canonical representation

exp {iuu—b|u|a(1—@ﬂsgnu-tan%)} ( # 1),

exp {iuu — blul (1 +ifsgnu - % log ]u\)} (a=1), (7.17)

ba (’LL) =

wherey is a real constant, > 0 and—1 < 5 < 1.
1) Suppose thal < a < 1. It is easy to verify that, due to (7.7) and (7.14),
the characteristic function (7.6) can be rewritten in the form

¢a(u) = exp {a/o e’li; ! d:p} . (7.18)
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The integral in (7.18) can be evaluated (see Ibragimov and Linnik 1971, p. 43-44):

/oo eiuw _1 1 dr — _M |u|ae_(iwa/2) sgnu
0 xrot (0%

Y

and (7.17) follows withy = 0, b =T'(1 — «) cos(ma/2) > 0, 8 = 1.
2) Let nowl < « < 2. Using (7.15), we can rewrite (7.6) in the form

< . dx
Go(u) = exp {a/ﬂ ("™ — 1 — qux) poes) } : (7.19)
The integral in (7.19) is given by (see Ibragimov and Linnik 1971, p. 44-45)

< d re-— , i
/ (ezu:v —1- ZUZL’) 'Tl _ ( Oé) |u|ae(z7ra/2) sgnu’
0 xot ala—1)

whichyieldsy =0, b= -T'(2 — a)/(a — 1) - cos(ma/2) > 0, B = 1.
3) If « = 1, by the substitutiony = |u|x in (7.7) we get

*1 —cosy , /Oo . u?y )d?/}
u) =exps —|u — 2 dy —iu siny — —= 5.
Pi{u) p{ | |/0 v 0 ( Tt g) oy

(7.20)
It is well known (see Gradshteyn and Ryzhik 1994, #3.782(2)) that
*1 — cos T
/ — Py = (7.21)
0 Y 2
To evaluate the second integral in (7.20), let us represent it in the form
> (si 1 d </ 1 2 d
/ (Smy——)—er/ ( i >—y. (7.22)
0 y  1+y) oy Jo \1+y @*+¢°) y
It is known that (see Gradshteyn and Ryzhik 1994, #3.781(1))
/ (Smy . —) B _qy_. (7.23)
0 Yy L+y/) y
where~ is the Euler constant. Furthermore, note that
o 1 u? dy 1 u? +y? |~
_ — =1 =—1 . 7.24
/0 (Hy u2+y2) y 2 PP, 8 (7.24)
Returning to (7.22), from (7.23) and (7.24) we get
00 u2y dy
iny — —=1—-7y-1 : 7.25
/0 (Smy u2+y2) )2 v — log |u| (7.25)

Therefore, substituting expressions (7.21) and (7.25) into (7.20), we obtain a re-
quired canonical form (7.17)with =1 —~, b=7/2, f = 1. O
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8. Proof of Theorems 2.4 and 2.5

Proof of Theorem 2.4. The result follows from Theorem 2.3 (far= 1). Indeed,
according to (2.3), (2.5), (2.6) and Lemma 6.3 we have

A(t)

*(t) ::%:Nm(t)_tml(t) ~ by (t) — oo (t — 0).

Therefore, dividing (2.8) byl*(t) — oo we obtainSx(t)/A(t) = 1 + o,(1) as
t — oo, which is in agreement with (2.10). O

Proof of Theorem 2.5. Denote

Y= Vi) = 8.1)

\/ ng (t)
(cf. (6.16)). According to a classical CLT for independent summands (see Petrov

1975, Ch. IV,§ 4, Theorem 18, p. 95), it suffices to check that for any 0 the
following three conditions are satisfiedias»> oco:

NP{Y(t) >} —0, (8.2)
N(E[Y(t)”mt)grﬂ - (E[Y(t)l{m)gf}})Z) — 1, (8.3)

Firstly, note that conditions (8.2) and (8.4) are guaranteed by Lemma 6.4 (with
p = 0 andp = 1, respectively). To check (8.3), let us first show that

EVlpen))’  EXTxenn]) o (Lo @5

E[YZ]-{YST}} E[XZtl{XSnz,r}}

wheren, . is defined in (6.17). Indeed, taking into account inequality (6.18) and
Lemma 3.3 (withr = 2), the ratio in (8.5) is estimated from above by

EXTD°  m(t)

_ o e,t(g/g) log o (1+0(1)) _ o(1). (86)
E[X?1ixcon]  ma(t) .

Hence, condition (8.3) amounts to

NE[Y?’1iy<n] =1 (t— o). (8.7)
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Noting that, according to (8.1), (6.21) and (6.15),
1
NE[Y21{Y§y2}} = E E[X%I{Xﬁm}} =1,
2

we can rewrite (8.7) in the forny E[Y21{y2<Y§T}] — 0. But the latter is true by
Lemma 6.5, and (8.3) follows. O

9. Limit theorems for l;-norms

In this section, we derive the limit distribution of the random variables

N 1/t
RN(t) = SN(t)l/t = (ZX;) .

First, let us prove a general ‘transfer’ lemma.

Lemma 9.1. Let {S(¢), ¢ > 0} be a family of positive random variables, such
that for some (non-negative) functiodst) and B(t),

S(t)—A(t) «

S*(t) = B — F (t — o0). (9.2)

SetR(t) := S(t)"/* and A*(t) := A(t)/B(t).
(@)If A*(t) — oo ast — oo, then

MWK%%%—Q—L? (t = o0).

(b) If A(t) =0then

t(B]?f)tl)/t - 1) LlogF (t— ).

Proof. (a) Note thatS(¢) can be represented as

ﬂﬂzﬂﬂ0+i$0, 9.2)
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whence

R(t) = S(Y = A exp G log(l + iig )) | 9.3)

The conditionA*(t) — oo implies thatS*(¢) /A*(t) = o,(1), hence

exp (% log(l + i; ((;)) )) _ exp(ti((tt)) (1+ op(1)))

S*(t)
tA*(t) (1 +0p(1)).

=1+
Substituting this into (9.3) yields
tA*(t) (% - 1) =S (t)(1+0,(1)) - F  (t — o0).
(b) We haveS(t) = S*(t) B(t), whence

Rt) exp(logf*_“)) — 1+ 250 (4 o)

B(t)l/t
Therefore,
R(t .
t(# — 1) = log S*(t) (1 + 0,(1)),
which converges weakly tlog F ast — oo. O

Applying this lemma to the sumSy (¢), we obtain

Proof of Theorem 2.6. In view of Lemma 9.1, the assertions of the theorem will
follow from the limit theorems for the surfiy (¢) obtained in Sections 3, 7 and
8, according as the functioA*(t) = A(t)/B(t) tends to infinity or vanishes as
t — 00.

(@) Fora > 2, the CLT is valid (see Theorems 2.2 and 2.5), so we have
weak convergence of the form (9.1) witt{t) = Nm(t) and B(¢) given by (2.5).
Clearly,m»(t) < E[X*] = m(2t), and hence for ath > 2

log A*(t logN 1 t)?
log (1) > lim inf (—Ogt % log mg%))
m
e log2>1—log2
20 o~ 0

lim inf
t—o0 t—o0

(9.4)

> 0,
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where we used (2.2) and Lemma 3.3 with= 2. Therefore, A*(t) — oo, and
application of Lemma 9.1(a) proves part (a).

(b) If 1 < a < 2 then, according to Theorem 2.B(t) = n;(¢)" and A(¢) is
defined in (2.6). Noting that.(t) > m;(t) and using (2.3) and Lemma 6.5, we
obtain

m(t)!
Hence, Lemma 9.1(a) applies and part (b) is proved.

(c) In the casé) < o < 1, the assertion of the theorem readily follows from
Lemma 9.1(b), since by Theorem 2.3 we ha\(¢) = 0, so thatd*(¢) =0. O

10. Discussion and an example

In order to clarify the link with the setting in Schlather (2001), let us show that
under our conditions, the random variablésbelong to the domain of attraction
of the Gumbel (double exponential) distributidn

Proposition 10.1. Assume that € NR,. DenoteX;, := max{X,...,X,},
and set

a, = h~(logn), by = — (10.1)
ologn
Then ¥
lim P{l’nb—_an < x} = exp(—e "), z € R. (10.2)

Proof. It is not difficult to verify available sufficient conditions for convergence
of the maximum'’s distribution ta (see, e.g., Galambos 1978, Theorem 2.1.3, p.
52). However, it is even simpler to prove (10.2) directly. Indeed, sefiijrg) :=

a, + b, we have

p{w < x} _ (P{X <a,+ xbn})n _ (1 - e*h“n(l‘)))”. (10.3)

n

Note that, according to (10.1),
L,(0) =a, =h"(logn) — +o0 (n — 00), (10.4)
sinceh ™ (x) € Ry/,, and

b, 1

G, - ologn

— 0 (n — 00).
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Therefore,

Lo(z)  an+ab, by,
= = = ]_ _— ]_ — OO ). 105

Recalling (10.3), it is then easy to see that (10.2) is reduced to
h(L,(z)) —logn — x (n — 00). (10.6)

Furthermore, sincé € NR,, a usual inversé~! exists and so (10.4) implies that
h(L,(0)) = logn. Hence, (10.6) takes the form

h(L,(x)) — h(L,(0)) — x (n — 00). (10.7)
To show (10.7), we use (10.5) and apply Lemma 5.2 to obtain

(L (x)) = (L (0)) ~ h(Ln(0)) (#n(2)® — 1)

4
=logn <(1 + xb") — 1)
an

oxby,
~ logn - =z,

n

according to the choice @f, (see (10.1)). Thus, (10.7) is proved. O

As mentioned in the Introduction, in the case of attraction to the double expo-
nential distribution Schlather (2001) considered a concrete example of the random
variablesX; with the unit exponential distribution (therefore, fitting in the class
of distributions (1.2) witho = 1). Namely, in our notation he has shown (Theo-
rem 2.4, p. 867) that under the scalifg= e the limit distribution of Ry (¢) is
Gaussian itv > 2 and non-Gaussian #log2 < o < 2.

Note that our results (see Theorem 2.6) show that 2 is indeed a critical
point, in that a Gaussian law breaks down fok 2. (However, the valuex =
2log 2 does not seem to play any special role.) Furthermore, it is not difficult
to check that our results corroborate a general conjecture by Schlather (2001, p.
867) asserting (in our terms) that in the case of attractigntteere exist functions
a(t), b(t) such that, under an appropriate scaling cp(N), a(t)/b(t) = p(N),
the distribution of( Ry (t) — a(t)) /b(t) weakly converges to a distribution which,
in turn, tends ta\ asc — +oo and, properly re-centered and re-normalised, to
N(0,1) asc — 0+. Comparing this conjecture with our Theorem 2.6, one can
see that the role aofis played byl /«a, so thate — +oo is equivalent tax — 0+.
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As a result, normality in the limi¢ — 0+ (that is,a« — +0o0) is obvious from
Theorem 2.6(a). To obtain the limit as— +oo (that is,a — 0+), note that in
Schlather’s terms Theorem 2.6(c) takes the form

Ry (t) — Bt)Vt 4
B j(at)  “lo8G (=),

where(, has the distributioif,. An application of a general result by Zolotarev
(1957, Theorem 5, p. 447-448; see also Ben Arous, Bogachev and Molchanov
2003, Proposition 8.29, p. 47) provides a required limit theorem for the stable
distribution F,, as its parameter tends to zero.

Lemma 10.2. Let a random variable, have the stable distributiorF, deter-
mined by (2.9). Then, as — 0+, the distribution ofa log ¢, weakly converges
to the double exponential distribution,

alil& P{alog(, < x} =exp(—e™™), z € R. (10.8)
Proof. By Theorem 5 in Zolotarev (1957) we have,@as- 0+,
P{alog(, <z} =P{¢, <e'/*} ~ ! ; b + ! —g b exp(—be™"),  (10.9)
where, according to (2.9 = 1 andb = I'(1 — «) cos(ma/2) — 1. Hence, the
right-hand side of (10.9) tends tap(e ") asa — 0. OJ

Example 10.3.Let us specify Theorem 2.6 in the case wh&réas a unit expo-
nential distribution, that is,

P{X >za}=e", x> 0.

Therefore,o = 1 andh(z) = z. The moment functiomn(t) defined in (2.1) is
given by

m(t) = / rle ™ dz =T(t+1),
0
and the known Stirling asymptotic formula yields
m(t) ~ V2 tH1/2e ! (t — 00). (10.10)

Furthermore, from (5.5) it is seen that(t) = ot and

at 1
me(t) = / e dr ~ 5 Flat+1) ~ \/g (at)*tH1/2 g7t (10.11)
0
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Hence, Theorem 2.6 implies the following:
(@) For a > 2,

7.{.1/4 eat/? t5/4 RN(t)
] ((NF(t 1

d 2
D 1) — N(0,0),

whereg? = 1 for a > 2 anday = 1/2.
(b)Forl < a < 2,

2 el ¢3/2 Ry (t) ) 4 £
(N )1/t - — (0%]

C,at M (1)
where
- m(t), l<a<2, 1, 1<a<2,
ma(t) = { my(t), a=1, Co = { 2, a=1,

with m, (-) given by (10.11).
(c)For0 < a < 1,

Rn(t) — at L, alog F.
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