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Many signalling functions in molecular biology require proteins to bind to substrates such as
DNA in response to environmental signals such as the simultaneous binding to a small molecule.
Examples are repressor proteins which may transmit information via a conformational change in
response to the ligand binding. An alternative entropic mechanism of “allostery” suggests that the
inducer ligand changes the intramolecular vibrational entropy, not just the mean static structure.
We present a quantitative, coarse-grained model of entropic allostery, which suggests design rules
for internal cohesive potentials in proteins employing this effect. It also addresses the issue of how
the signal information to bind or unbind is transmitted through the protein. The model may be
applicable to a wide range of repressors and also to signalling in trans-membrane proteins.

Introduction. It is becoming increasingly clear that
dynamics, as well as static structure, are important in
molecular biology. For example simulations of dynamical
transitions in proteins [1] suggest that collective global
modes are correlated with protein function. This letter
focuses on repressor proteins which bind to DNA to “turn
off” genes when the cell does not require their expression.
The binding is “allosteric”: it is activated depending on
the presence of inducer ligands, small molecules which
themselves bind to the protein at a site distant from the
active site. The “holorepressor” (“aporepressor”) is the
protein with (without) a bound ligand. In allosteric re-
pressor proteins the ligand binding site is distant from
that of the DNA. For this reason ligand binding has often
been assumed to cause a conformational change within
the repressor protein, decreasing its affinity for DNA in
one state compared to the other state. However, this is
evidence that dynamically induced entropic changes may
contribute to allostery [2–4].

A classic example of a repressor system is the E-coli
lac repressor [5–9]. In this case the aporepressor binds to
DNA, suppressing the genes for the metabolism of lac-
tose. A second example is the E-coli trp repressor [10–12]
that, on binding, prevents the expression of the gene for
tryptophan synthesis. But in contrast to the lac, trp-type
holorepressor proteins bind to DNA and the aporepres-
sors do not. There are many such repressor systems but
the lac and the trp will act as representative cases for this
Letter. Our challenge is to explore whether the Brownian
fluctuations in protein structure may carry information
between the two binding sites, thereby producing cooper-
ative lac-type or trp-type behaviour. This mechanism of
cooperativity is one of the key questions in understanding
protein function [13].

As generally true for the functional roles of protein dy-
namics, the lower-frequency softer modes will dominate
[14]. Although higher modes are more numerous, they
are spatially localised due to elastic disorder [15]. Lig-
and binding at sites where high frequency modes have
significant amplitude will therefore generally have only

local effects; long distant allosteric signalling will be ex-
ponentially suppressed beyond the localisation length of
the mode. Focusing on the slower, global modes addi-
tionally motivates a spatially coarse-grained model.
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FIG. 1: Plates and springs model for the interaction of the
two domains of a repressor dimer. The x-ray structure (PDB
1EFA [7]) of the lac repressor dimer (with DNA at the bot-
tom) is shown behind the model.

A coarse-grained model. In a coarse-grained represen-
tation we model a repressor protein dimer as two rigid
plates of length l and width w, representing the two pro-
tein monomers motivated by the common dimer motif
(see Figure 1). We parameterise the relative motion of
the plates by three relative translation displacements (x,
y, z) and three rotation angles (θx, θy, θz). The sta-
bilising contact interaction between the two dimers is
characterised by 5 quadratic (3D) potential wells. Fig-
ure 1 shows 5 of the effective springs that arise, λx

i which
are perpendicular to the plates. We find that a min-
imal model requires just 4 other springs in the plane
of the plates (summations of diagonal springs between
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the plates), which we label as λy
00, λz

0−1, λz
00, λz

01, rep-
resenting the resolved y and z relative displacements.
These local interactions represent a minimal set of “sticky
patches” which could arise from hydrophobic, side chain,
or electrostatic forces. The corresponding spring con-
stants λi could be calculated in principle from the details
of these interactions. We allow only local modifications
of the contact interactions on binding. The springs local
to the ligand binding site will be affected by the binding
of an inducer or corepressor. (Lac actually binds two in-
ducer ligands, which we simplify here with a single bound
state.) Similarly springs local to the DNA binding site
will be affected by binding to DNA. The other springs
act as anchoring potentials.

We consider vibrations of the plates in 3 different
planes: (i) in the x, y plane (translational vibrations
along the x-axis and rotations about the z-axis); (ii) in
the x, z plane (translation along the x-axis and rotation
about the y-axis); and (iii) in the y, z plane (translation
along the z-axis and rotation about the x-axis).

The Tirion potential [16] replaces the full MD potential
with a simple pairwise quadratic potential of universal
strength and this is found to be sufficient to describe
the low frequency modes involving coherent motion of
large groups of atoms. In our model we similarly look
only at these low frequency modes and describe them by
harmonic potentials between the protein domains, but
allow the potentials between the protein monomers to
acquire locally specific values.

As an example of detailed calculations we take the 2×2
system of motions in the y, z plane. We write z01 =
z00 − lθx

2
and z0−1 = z00 + lθx

2
(where θx is the angle of

rotation about the x-axis) to obtain the Hamiltonian in
terms of the mutual translational vibration coordinate
z00 and mutual rotational vibration coordinate θx.

H =
1

2
pM−1p +

1

2
xKx (1)

where the interaction matrix for the y, z plane

K =

(

−(λz
01 + λz

0−1 + λz
00)

1
2
(λz

01 − λz
0−1)

1
2
(λz

01 − λz
0−1) − 1

4
(λz

01 + λz
0−1)

)

,

the inertial matrix

M =

(

m 0
0 I

l2

)

, and x =

(

z00

lθx

)

where m is the reduced mass and I is the reduced moment
of inertia of the dimer pair. This leads to the partition
function in the relevant classical limit

Z =

∫

...

∫

e
−H(x0i

,θi)

kT dx0i
dθi =

2πkT

(|M−1||K|)1/2
. (2)

Finally from (2) the entropy of the protein dimer for a
single plane is

S = Nk(ln 2πkT
√

mI/l+1−1/2 ln(λ1λ−1+λ0(λ1+λ−1)/4))
(3)

where λz
0i has been abbreviated to λi for convenience.

We are interested in the difference between the change
in entropy on binding at the DNA binding site of the two

cases in which the protein is, and is not also bound to the

inducer. We call this ∆∆S = ∆Sholo − ∆Sapo. A result
with ∆∆S 6= 0 would signify cooperative behaviour i.e.
the binding to DNA is affected by the binding to the
inducer. We write ∆∆S in terms of dimensionless spring
constants λ̃1 = λ1

λ0
and ˜λ−1 = λ

−1

λ0
and bound to unbound

ratios Λ1 = λ1B

λ1
and Λ−1 = λ

−1B

λ
−1

. This gives us

∆∆S =
1

2
Nk ln





(4Λ1 + Λ1
˜λ
−1

+ 1

λ̃1
)(4Λ−1 + Λ

−1

λ̃1
+ 1

˜λ
−1

)

(4Λ1Λ−1 + Λ1
˜λ
−1

+ Λ
−1

λ̃1
)(4 + 1

˜λ
−1

+ 1

λ̃1
)



 .

(4)
The other modes can be modelled in the same way to
give additional contributions to ∆∆S. The 2-plate model
generates a 3× 3 form of M and K for coupled rotations
about y and z and translations along x plus one simple
y-translation.

We take N = 2 for the lac since it is a tetramer of two
dimers and similarly for the trp since it represses as a
dimer of dimers so also has two dimers.

∆∆S > 0 gives the trp case whereby the affinity for
the holorepressor binding to DNA is greater than the apo
repressor. ∆∆S < 0 however gives the lac case since the
apo lac repressor is the one with the higher affinity for
DNA. Applying these inequalities to equation (4) gives
the following rule determining which case arises.

Λ1Λ−1 + 1

{

>
<

}

Λ1 + Λ−1

{

trp
lac

}

. (5)

The trp case occurs when both spring constants increase
(Λ1 > 1, Λ−1 > 1) or decrease (Λ1 < 1, Λ−1 < 1) on
ligand binding. The lac case occurs when one spring
constant increases and the other decreases (Λ1 > 1 and
Λ−1 < 1 or Λ1 < 1 and Λ−1 > 1). Figure 2 plots the
function ∆∆S(Λ1, Λ−1) (equation 4). Biologically rele-
vant values for the original spring constants were chosen
using protein B-factor data (related to the RMS positions
of the atoms B = 8π2 < ū2 > [17]) and steered simula-
tions (see later) giving the case for a potential which is
stronger at the inducer binding site (λ̃1 > ˜λ−1). It can
be seen that the negative ∆∆S lac-type effect is max-
imised when the ligand binding at the inducer binding
site decreases the spring constant λ̃1 but ˜λ−1 increases
on DNA binding. The trp-type effect (positive ∆∆S) is
maximised when both spring constants decrease as much
as possible on binding. This reduction will however be
limited by the physical requirement for overall stability
of the complex. Requiring that the RMS displacement of
the monomers be less than the average separation of the
atoms leads to the estimation that λi > 0.1kT Å−2.

Physically, “entropic allostery” allows the lac inducer
binding to communicate via the large amplitudes of the
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FIG. 2: Graph showing ∆∆S against Λ1 and Λ−1. The con-
tour plot on the base shows regions where lac-type (black)
and trp-type (grey) behaviour is optimised.

internal modes of the protein to the “read-head” binding
regions near the DNA which as a result move too much
to be inserted into the DNA.

Estimating the spring constants. We evaluate our
model in the real example of the lac repressor as an illus-
tration. Firstly we converted the protein data for the B-
factors [7, 8, 18] into RMS vibration values and estimated
the spring constants λi and Λi (in this case averaged over
the vibrations in the different planes) from the expression
λ ∼ 1/ < ū2 > giving λ̃1 ≈ 1.2, ˜λ−1 ≈ 0.1 (estimated
from [19]), Λ1 ≈ 0.07 and Λ−1 ≈ 6.7 (so supporting our
prediction that the lac case has Λ1 < 1 and Λ−1 > 1).
We then calculated an estimate of ∆∆S using equation
(4). Including a factor of three due to the three planes of
vibration, we obtain for our plate-dimer model a value of
T∆∆S ∼ −1.4kT . Since the experimental values for the
change in binding energy between holo and aporepressor
binding to DNA are ∆∆G ∼ 6kT [20–22] this indicates
that the entropic contribution is likely to be significant
since the crystal dynamics can only be a lower bound for
the amplitudes of vibration.

To improve upon this rough estimate we calculated
the interaction energy between the lac monomers in a
fully atomistic computation using the software “cns” [23]
and steering the relative positions of the two monomers.
We used the x-ray crystal structure coordinates PDB
ID 1LBI [7] for the aporepressor and 1TLF [18] for the
holorepressor. By relative translation along the 3 axes,
and rotation about axes at the extremities of the pro-
tein dimer, and recalculating the total interaction en-
ergy at each increment, we were able to build up curves
for the potential energy wells (see Figure 3). By curve
fitting the bottom of these wells to a quadratic (to fit
with our harmonic approximation) we were able to ex-
tract the curvature and therefore the spring constants
for each global mode of both the holo and aporepressors.
We then used these to calculate ∆Sinducerbind which is an
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FIG. 3: Graph showing an example of a change in spring
constant with and without the inducer for the lac repressor.
The mode shown is rotation about the y axis (rotation point
(0,0,20)Å). The squares are cns data for 1LBI the aporepres-
sor and the stars are cns data for 1TLF the holorepressor.
The lines are quadratic fits.

estimate for −∆∆S in the case of large Λ−1. For the mo-
tion in the x, y and x, z planes (translation along x and
rotation about y and z) this gave T∆∆S ∼ −1.66kT , for
the y, z plane −0.42kT and for the relative translation
along y (which does not have rotation modes coupled to
it) −0.28kT . Interestingly the softest mode, contributing
most to the allostery, is the one which shifts the DNA
read heads (which point in the plane perpendicular to
the core) away from the DNA perpendicular to it (the
x, z plane). Therefore in total we have an estimate for
∆∆S ∼ −2.36kT .

FIG. 4: Graph showing the fraction of DNA sites bound by
repressors against the concentration of inducer lactose. The
solid curve includes the entropic component and the dashed
curve is without the entropic component.

To check how significant this entropy contribution is
to the total ∆∆G ∼ 6kT we compared the probability of
genes being repressed (bound by repressor) against lac-
tose concentration with and without this entropic contri-
bution (following Yildirim [24])(see Figure 4). For 95%
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activation (operators not bound) 18 lactose molecules are
required with the entropic contribution but 50 would be
required if there was no entropic contribution. Note there
are only of order 100 repressors in the cell [5]. This would
imply that the entropic contribution to allostery is sig-
nificant in controlling the lactose level at which the gene
expression is turned on.

Conclusions. We conclude that inducer binding affects
the Brownian motion within the repressor protein and
this entropic effect contributes to the allosteric mecha-
nism in DNA binding proteins alongside static confor-
mational changes. We can relate the communication of
the signal across the protein to “design rules” for the
potentials within it.

Several extensions of this approach suggest themselves.
A discrete many-springs model naturally extends to the
case of a continuous potential between the plates. Sec-
ondly, the case of multiple, sequential ligand binding will
lead to additional structure. To make the model even
more realistic we should also include bending modes of
the protein monomers themselves. Significantly, addition
of such bending modes must increase the predicted ∆∆S
value if the ligand binding changes the bending rigidity.
For lac any such increase might give values of ∆∆S that
actually dominate the binding free energy.

We expect this model can be also applied to trans-
membrane proteins that transmit signals across mem-
branes into cells and organelles [25, 26]. These systems
are similar in that an inducer ligand (e.g. adrenaline)
binds to the receptor trans-membrane protein which in
turn allows it to bind or unbind proteins on the interior of
the membrane (e.g. to bind to a G-protein in the control
cycle for glycogen). Within the restricted environment
of the membrane we expect entropic allostery to play an
important role in the transmission of the signal through
the receptor protein.

The calculated values of the contribution to the free
energy change from the change in intramolecular vibra-
tional entropy of the protein easily reach the order of a
few kT per molecule, within the experimentally observed
range for these systems.
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