
Existene of Global Weak Solutionsfor Some Polymeri Flow ModelsJohn W. Barrett?, Christoph Shwaby and Endre S�uliz? Department of Mathematis, Imperial College London, London SW7 2AZ, UK.y Seminar for Applied Mathematis, ETH-Zentrum, HG G 58.1, CH-8092 Z�urih, Switzerland.z University of Oxford, Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK.September 4, 2004Abstrat. We study the existene of global-in-time weak solutions to a oupled mirosopi-marosopi bead-spring model whih arises from the kineti theory of diluted solutions of polymeri liquids with noninteratingpolymer hains. The model onsists of the unsteady inompressible Navier{Stokes equations in a bounded domain
 � Rd , d = 2; 3, for the veloity and the pressure of the uid, with an extra-stress tensor as right-hand side inthe momentum equation. The extra-stress tensor stems from the random movement of the polymer hains andis de�ned through the assoiated probability density funtion whih satis�es a Fokker{Plank type degenerateparaboli equation. Upon appropriate smoothing of the onvetive veloity �eld in the Fokker{Plank equation,and in some irumstanes, of the extra-stress tensor, we establish the existene of global-in-time weak solutions tothis regularised bead-spring model for a general lass of spring-fore-potentials inluding in partiular the widelyused FENE (Finitely Extensible Nonlinear Elasti) model.1 IntrodutionThe purpose of this paper is to explore the question of global existene of weak solutions to aset of partial di�erential equations whih arises from the kineti theory of the ow of a dilutedsolution of polymeri liquid in a domain 
 � Rd , d = 2; 3. The simplest model of this kind toaount for noninterating polymer hains is the so-alled dumbbell model (f. [3℄); a dumbbellonsists of two beads onneted by an elasti spring. Following [4℄, at time t the dumbbellis haraterised by the position of its entre of mass X� (t) and its elongation vetor Q� (t) (seeFigure 1). When a dumbbell is plaed into a given veloity �eld u�(x�; t), three fores at on eahbead: the �rst fore is the drag fore proportional to the di�erene between the bead veloityand the veloity of the surrounding uid partiles; the seond fore is the elasti fore F� dueto the spring sti�ness; the third fore is due to thermal agitation and is modelled by Brownianmotion.On resaling the elongation vetor, Newton's equations of motion for the beads give rise to
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Figure 1: Noninterating polymer hains, immersed into an inompressible ow with veloity u�,are modelled by using dumbbells, eah dumbbell representing a polymer hain. A dumbbell is apair of beads onneted with an elasti spring. At time t � 0, the dumbbell is haraterised bythe position X� (t) of its entre of mass and its elongation vetor Q� (t).the following set of stohasti di�erential equations:dX� = u�(X� (t); t) dt; (1.1a)dQ� = �r� X u�(X� (t); t)Q� (t)� 12� F� (Q� (t))� dt� 1p� dW� (t); (1.1b)where W� is a vetor of independent salar Wiener proesses, F� (Q� ) denotes the elasti foreating on the hain due to elongation, the positive parameter � = �=(4H) haraterises theelasti property of the uid, with � denoting the drag oeÆient and H the spring sti�ness. Fordetails, we refer, for example, to [3, 6, 10, 17℄.The present paper is onerned with the well-posedness of the deterministi restatementof this problem. For this purpose, let  (x�; q�; t) denote the probability density funtion or-responding to the vetor-valued stohasti proess (X� (t); Q� (t)); thus,  (x�; q�; t) represents theprobability, at time t, of �nding the entre of mass of a dumbbell at a position `between' x� andx� + dx� and having elongation `between' q� and q�+ dq�.Now, let us suppose that the elasti fore F� : D � Rd ! Rd , d = 2; 3, of the spring isde�ned through a (suÆiently smooth) potential U : R�0 ! R viaF� (q�) = U 0(12 jq�j2) q�: (1.2)Then, the evolution of the probability density funtion  (x�; q�; t) of the stohasti proess(X� (t); Q� (t)) de�ned by (1.1a,b) satis�es the Fokker{Plank equation (2.4a) below for (x�; q�; t) 2
 � D � R>0 , subjet to appropriate initial and boundary onditions; f. (2.4b,). Due tothe fat that, unlike (1.1b), the di�erential equation (1.1a) does not involve random e�ets, theFokker{Plank equation for the assoiated probability density funtion is a degenerate paraboliequation for  (x�; q�; t), with no di�usion in the x�-diretion. The veloity �eld u� appearing in2



(2.4a) is, in turn, found by solving the inompressible Navier{Stokes equations (2.1a,b) below,subjet to the initial and boundary onditions (2.1,d). The right-hand side of the momentumequation (2.1a) models the non-Newtonian e�ets through the presene of the extra-stress ten-sor �� whih depends on the probability density funtion  (see, (2.2), (2.3)). Our aim hereis to explore the existene of global-in-time solutions of this oupled `mirosopi-marosopi'model.An early e�ort to show the existene and uniqueness of loal-in-time solutions to a familyof bead-spring type polymeri ow models is due to Renardy [18℄. While the lass of potentialsF� (q�) onsidered in [18℄ (f. hypotheses (F) and (F') on pp.314{315) does inlude the aseof Hookean dumbbells, with F� (q�) = q�, it exludes the pratially relevant ase of the FENE(Finitely Extensible Nonlinear Elasti) model whereF� (q�) =  1� jq�j2b !�1 q�; jq�j < b; b > 0:In a reent paper Jourdain, Leli�evre and le Bris [11℄ studied the existene of solutions to theFENE model in the ase of a simple Couette ow; by using tools from the theory of stohastidi�erential equations, they established the existene of a unique loal-in-time solution to theFENE model in two spae dimensions (d = 2) when the veloity �eld u� is unidiretional and ofthe partiular form u�(x1; x2) = (u1(x2); 0)>. The notion of solution for whih existene is provedin [11℄ is mixed deterministi-stohasti in the sense that it is deterministi in the `marosopi'variable x, but stohasti in the `mirosopi' variable q�. In ontrast, our notion of solution (f.Setion 3 below) is deterministi both marosopially and mirosopially, sine the mirosalesare modelled here by the probability density funtion  (x�; q�; t). The hoie between these dif-ferent notions of solution has far-reahing reperussions onerning omputational simulation:mixed deterministi-stohasti notions of solution neessitate the use of Monte Carlo-type al-gorithms for the numerial approximation of polymer on�gurations, as proposed, e.g., in [17℄and referenes therein as well as in [10℄; whereas weak solutions in the sense onsidered in thepresent paper an be approximated by entirely deterministi (e.g. Galerkin-type) shemes, ashas been done, for example, in [16℄.In the ase of Hookean dumbbells, the oupled mirosopi-marosopi model desribedabove yields, formally, on taking the seond moment of q� 7!  (q�; x�; t), the fully marosopi,Oldroyd-B model of viso-elasti ow (f. Setion 2.2). In [15℄, Lions and Masmoudi show theexistene of global-in-time weak solutions to the Oldroyd-B model in a simpli�ed ase whih,in our oupled mirosopi-marosopi setup, diretly orresponds to assuming that the dragterm in (2.4a) is orotational: that is, the tensor ��(u�) is skew-symmetri in the sense that��(u�) = �[��(u�)℄>. The argument in [15℄ is based on exploiting the propagation in time of theompatness of the solution. It is not known if an idential global existene result for theOldroyd-B model also holds in the absene of the ruial assumption that the drag term isorotational.The present paper is onerned with the proof of existene of global-in-time weak solutions tothe oupled mirosopi-marosopi model (2.1a{d), (2.4a{). Our hypotheses on the potentialU admit a fairly large lass of models, inluding the Hookean dumbbell model as well as generalFENE-type models. Unlike [15℄, we do not need to assume that the ow is orotational inthe FENE ase. However, the level of generality pursued here omes at a prie: in order toomplete our existene proofs, the veloity �eld appearing in the drift-term of the Fokker{Plank3



equation (2.4a) had to be suitably molli�ed in the ase of orotational mirosopi-marosopimodels, and in the ase of general, nonorotational models, the extra-stress tensor �� on theright-hand side of (2.1a) had to be molli�ed also. A possible physial justi�ation for theproposed modi�ation of the original mathematial model, through smoothing the veloity �eldin partiular terms in the model, is that many ows of diluted solutions of polymers tend to beslow, with a smoothly varying veloity �eld.The molli�ation of the veloity �eld onsidered here is stimulated by the Leray-� model ofthe inompressible Navier{Stokes equations (the visous Camassa{Holm equations), proposedby Foias, Holm and Titi [8℄, in a bounded open set 
 � Rd with boundary �
:Find u� : (x�; t) 2 Rd+1 7! u�(x�; t) 2 Rd , d = 2; 3, and p : (x�; t) 2 Rd+1 7! p(x�; t) 2 R suh that�u��t + (v� � r� x )u� � ��x u� +r� x p = f� in 
� (0; T ℄; (1.3a)r� x � u� = 0 in 
� (0; T ℄; (1.3b)u� = 0� on �
� (0; T ℄; (1.3)u�(x�; 0) = u�0(x�) 8x� 2 
; (1.3d)where u� is the veloity �eld, p is the pressure of the uid, � 2 R>0 is the visosity, f� is a givenbody fore, and v�(�; t) is a smoothing of u�(�; t) de�ned as the solution of the Helmholtz problemv�� ��x v� = u� in 
; (1.4a)v� = 0� on �
; (1.4b)where � > 0 is a regularisation parameter.With v� thus de�ned one annot dedue from (1.4a,b) that r� x �v� = 0 on 
. As we would likev� to resemble u� both in terms of its inompressibility and the boundary onditions it satis�es,instead of (1.4a,b) we shall seek the smoothing v� of u� from the following Helmholtz-Stokesproblem v�� ��x v�+r� x � = u� in 
; (1.5a)r� x � v� = 0 in 
; (1.5b)v� = 0� on �
; (1.5)where � is a pressure-like auxiliary variable. Sine, stritly speaking, � does not have a physialmeaning, it is best thought of as a Lagrange multiplier whose role is to enfore inompressibility.We remark that smoothing, albeit of a somewhat di�erent kind, is also oneivable on phys-ial grounds, sine equations (1.1a,b) ould be modi�ed todX� = u�(X� (t); t) dt+ "dW� (t); (1.6a)dQ� = �r� X u�(X� (t); t)Q� (t)� 12� F� (Q� (t))� dt� 1p� dW� (t); (1.6b)where " > 0 is a small parameter and W� (t) is an independent vetor of Wiener proessesmodelling, for example, thermal vibrations of the (enter of gravity) of the dumbbell. A loselyrelated smoothing on the marosopi level is onsidered in the work of El-Kareh and Leal [7℄.4



The paper is strutured as follows. In Setion 2, we formulate the lass of models onsidered.As an illustration, we show how the Hookean dumbbell model and the FENE model �t into thegeneral setting. In Setion 3 we introdue a family of weighted Sobolev spaes whih representthe natural setting for the problem; we also establish ruial density and trae results. In orderto motivate the energy estimates whih, ultimately, via weak ompatness, lead to the existeneof global weak solutions, we establish formal energy estimates and introdue our smoothingoperator. We then use these to rigorously de�ne our weak formulation of the problem. In Setion4 we embark on the proof of existene of global weak solutions, starting with the analysis ofthe simpler, orotational ase for both Hookean and FENE-type models. We onlude with theproof of existene of global weak solutions for the physially more realisti FENE-type modelsin the general ase, without assuming that the drag term is orotational.2 Polymer modelsWe term polymer models under onsideration here mirosopi-marosopi type models, sinethe ontinuum mehanial marosopi equations of inompressible uid ow are oupled to amirosopi model: the Fokker{Plank equation desribing the statistial properties of partilesin the ontinuum. We �rst present these equations and ollet assumptions on the parametersin the model.2.1 Mirosopi-marosopi polymer modelsLet 
 � Rd be a bounded open set with a Lipshitz-ontinuous boundary �
, and suppose thatthe set D � Rd , d = 2 or 3, of admissible elongation vetors q� in (1.1b) is an open set whihmay be bounded or unbounded. For the sake of simpliity of presentation, we shall supposethat D is either a bounded open ball in Rd , or D = Rd ; these two ases over all pratiallyrelevant senarios involving the mirosopi-marosopi models disussed here. Our argumentsin the ase when the on�guration domain D is a bounded open ball an be extended, withonly minimal hanges, to situations when D is any bounded open domain in Rd with smoothboundary (e.g. an ellipse, to aount for anisotropy in the moleule's on�guration).We onsider the following initial-boundary-value problem.(P) Find u� : (x�; t) 2 Rd+1 7! u�(x�; t) 2 Rd and p : (x�; t) 2 Rd+1 7! p(x�; t) 2 R suh that�u��t + (u� � r� x )u� � ��x u� +r� x p = r� x � ��( ) in 
� (0; T ℄; (2.1a)r� x � u� = 0 in 
� (0; T ℄; (2.1b)u� = 0� on �
� (0; T ℄; (2.1)u�(x�; 0) = u�0(x�) 8x� 2 
; (2.1d)where � 2 R>0 is the visosity and ��( ) : (x�; t) 2 Rd+1 7! ��( )(x�; t) 2 Rd�d is the symmet-ri extra-stress tensor, dependent on a probability density funtion  : (x�; q�; t) 2 R2d+1 7!5



 (x�; q�; t) 2 R, de�ned as ��( ) = k � (C� ( )� �( ) I�): (2.2)Here k; � 2 R>0 are, respetively, the Boltzmann onstant and the absolute temperature, I� isthe unit d� d tensor, andC� ( )(x�; t) = ZD  (x�; q�; t)U 0(12 jq�j2) q� q�> dq� and �( )(x�; t) = ZD  (x�; q�; t) dq�: (2.3)In addition, the real-valued, ontinuous, nonnegative and stritly monotoni inreasing funtionU , de�ned on a relatively open subset of [0;1), is an elasti potential whih gives the elastifore F� : D ! Rd on the springs via (1.2).The probability density  (x�; q�; t) represents the probability at time t of �nding a dumbbellloated `between' x� and x� + dx� having elongation `between' q� and q�+ dq�. Hene �(x�; t) is thedensity of the polymer hains loated at x� at time t. It follows from (1.1a,b) that  satis�es theFokker{Plank equation, together with suitable boundary and initial onditions:� �t + (u� � r� x ) +r� q � (��(u�) q� ) = 12� r� q � (r� q  + U 0 q� ) in 
�D � (0; T ℄; (2.4a) = 0 on 
� �D � (0; T ℄; (2.4b) (x�; q�; 0) =  0(x�; q�) � 0 8(x�; q�) 2 
�D: (2.4)When D = Rd , the boundary ondition (2.4b) on �D, the boundary of D, is replaed by a deayondition at in�nity whih demands that j j onverges to 0 suÆiently fast as jq�j tends to 1;we shall be more spei� about this in Lemma 3.2(b).In (2.4a) the parameter � 2 R>0 haraterises the elasti properties of the uid, and ��(x�; t) 2Rd�d is related to r� x u�, where (r� x u�)(x�; t) 2 Rd�d and fr� x u�gij = �ui�xj . For example, possiblehoies are (i) ��(u�) = r� x u�; (ii) ��(u�) = !� (u�) and (iii) ��(u�) = r� x v� ; (2.5)wherer� x u� = D� (u�) + !� (u�); D� (u�) = 12 [r� x u� + (r� x u�)> ℄; !� (u�) = 12 [r� x u� � (r� x u�)> ℄ (2.6)and v� is a `smoothed' version of u�. The preise form of the smoothing operator whih maps u�into v� will be given in Setion 3.3.On introduing the (normalised) MaxwellianM(q�) = e�U( 12 jq�j2)ZD e�U dq� ;we have M r� qM�1 = �M�1r� qM = U 0 q�: (2.7)6



In addition, the following identities hold:r� q U = U 0 q�; r� q U 0 = U 00 q� and �q U = U 00 jq�j2 + U 0 d: (2.8)Thus, the Fokker-Plank equation (2.4a) an be rewritten as� �t + (u� � r� x ) +r� q � (��(u�) q� ) = 12� r� q � �M r� q �  M�� in 
�D � (0; T ℄: (2.9)2.2 Two examples1. FENE-type models. A widely used model is the FENE (Finitely Extensible NonlinearElasti) model, whereD = B(0�; b 12 ) and U(s) = � b2 ln�1� 2 sb � ; and hene e�U( 12 jq�j2) = 0�1� jq�j2b 1A b2 : (2.10)Here B(0�; s) is the bounded open ball of radius s > 0 in Rd entred at the origin, and b > 0 isan input parameter. Hene the elongation jq�j annot exeed b 12 .2. Hookean dumbbells. Letting b ! 1 in (2.10) leads to the so-alled Hookean dumbbellmodel whereD = Rd and U(s) = s; and therefore e�U( 12 jq�j2) = e� 12 jq�j2 : (2.11)This partiular kineti model, with ��(u�) = r� x u�, orresponds formally to an Oldroyd-B model,or with ��(u�) = !� (u�) to a orotational Oldroyd-B model. Indeed, on multiplying (2.4a) by q� q�>,integrating over D, performing integration by parts (assuming that  and jrq j deay to zerosuÆiently fast with jq�j ! 1), and noting for any r� 2 Rd that(r�:r� q ) q� q�> = r� q�> + q� r�> and �q (q� q�>) = 2 I� (2.12)yields � ÆC�Æt + C� = � I� in 
� (0; T ℄; (2.13)where ÆC�Æt = �C��t + (u� � r� x )C� � [��(u�)C� + C� [��(u�)℄> ℄ (2.14)is the upper-onveted time derivative. Combining (2.13) and (2.2) and observing that thedensity �(x�; t) satis�es ���t + (u� � r� x )� = 0 in 
� (0; T ℄ (2.15)implies that the extra-stress ��(x�; t) satis�es� Æ��Æt + �� = k �� � [��(u�) + [��(u�)℄> ℄ in 
� (0; T ℄; (2.16)whih is the Oldroyd-B onstitutive equation if ��(u�) = r� x u� or the orotational Oldroyd-Bonstitutive equation if ��(u�) = !� (u�); in the latter ase, the right-hand side of (2.16) is identiallyequal to 0. 7



2.3 General strutural assumptions on the potentialSuppose thatD is a bounded open ball in Rd orD = Rd . We assume that q� 7! U(12 jq�j2) 2 C1(D)with q� 7! U(12 jq�j2) nonnegative and q� 7! U 0(12 jq�j2) positive on D, and that there exist onstantsi > 0, i = 1; 2, suh that(U 0)2 � U 00 � 1 8q� 2 D and (U 0)2 � U 00 � 22 U 0 8q� : jq�j2 � d2 ; (2.17)where B(0�;� d2� 12 ) �� D.The above assumptions hold for the Hookean ase, (2.11), with 1 = 22 = 1; and the FENEase, (2.10), on assuming that b > 2, with 1 = b�2b and 2 = b+2d�22b .We shall also suppose that there exist positive onstants i, i = 3; : : : ; 7, and � > 0, suhthat the Maxwellian M and the assoiated elasti potential U satisfy3 [dist(q�; �D)℄� �M(q�) � 4 [dist(q�; �D)℄� 8q� 2 D; (2.18a)5 � [dist(q�; �D)℄U 0(12 jq�j2) � 6; [dist(q�; �D)℄2 jU 00(12 jq�j2)j � 7 8q� 2 D; (2.18b)when D = Rd , then [dist(q�; �D)℄� in (2.18a) is replaed by exp(�jq�j2), and [dist(q�; �D)℄ and[dist(q�; �D)℄2 in (2.18b) are omitted.It is an easy matter to show that the MaxwellianM and the elasti potential U of the FENEmodel and of the Hookean dumbbell model satisfy onditions (2.18a,b), | with D = B(0�; b 12 )and � = b=2 in the ase of the FENE model; and D = Rd for the Hookean dumbbell model.We shall also require thatZD h1 + (1 + jq�j2) ((U)2 + jq�j2 (U 0)2)iM dq� <1: (2.19)For the Hookean model (2.11) and the FENE model (2.10), with b > 2, (2.19) is easily shownto hold. For example, we have thatM := ZDM (U 0)2 jq�j4 dq� <1 (2.20)for both models. In the Hookean ase, (2.20) follows sineZ 10 e�s s d+22 ds <1; (2.21)while in the FENE ase, (2.20) follows sineZ b0 �1� sb� b�42 s d+22 ds <1 if b > 2: (2.22)More generally, it follows from (2.18a,b), on noting that U(12 jq�j2) = � logeM(q�) + Const:,that (2.19) holds provided that either: (i) � > 1 when D is a bounded open ball in Rd ; or (ii)when D = Rd . 8



3 Weak solutionsTo de�ne an appropriate notion of weak solution, we �rst introdue some funtion spaes, thenderive formal energy identities and estimates satis�ed by the weak solution. These estimateswill, later on, form the basis of our proof of existene. In our notion of weak solution we willalso rely on smoothing operators to ompensate for the lak of regularization in the hyperbolipart of the Fokker{Plank equation.3.1 Funtion spaes and embedding resultsWe employ the usual funtion spaes for visous, inompressible ow (e.g. [9℄):H� := fw� 2 L� 2(
) : r� x � w� = 0g; (3.1a)V� := fw� 2 H� 10(
) : r� x � w� = 0g; (3.1b)and L20(
) := fr 2 L2(
) : Z
 r dx� = 0g; (3.1)where the divergene operator r� x � is to be understood in the sense of vetor-valued distributionson 
. In addition, we introdue the following funtion spaes for  :K := �' 2 L1lo(
�D) : Z
�D � j'j2M +M ���r� q � 'M ����2 � dq�dx� <1� ; (3.2a)Kq := f' 2 K : Z
�D jq�j2 j'j2M dq�dx� <1g; (3.2b)K+ := f' 2 K : '(x�; q�) � 0 for a:e: (x�; q�) 2 
�D g; (3.2)and K+q := Kq \K+: (3.2d)Clearly, if D is bounded then Kq = K and K+q = K+. We remark, in partiular, that due to thestrutural hypotheses on U (spei�ally, (2.19)), both M and M U belong to K+q . It is helpfulto note for future purposes that, more generally, a distribution ' belongs to K if, and only if,� = 'M has �nite normk�kH0;1(
�D;M) := �Z
�DM � j�j2 + jr� q �j2 �dq�dx�� 12 :As the orresponding weighted Sobolev spaeH0;1(
�D;M) := �� 2 L1lo(
�D) : k�kH0;1(
�D;M) <1	is a Hilbert spae, it follows that K = M �H0;1(
 �D;M), too, is a Hilbert spae with innerprodut ('1; '2)K := Z
�D h'1 '2M +M �r� q '1M � � �r� q '2M �idq�dx�; '1; '2 2 K;and indued norm k'kK = (';') 12K ; learly,k'kK =  'M H0;1(
�D;M) ; ' 2 K: (3.3)9



Analogously, Kq is a Hilbert spae with norm k � kKq de�ned byk'k2Kq = Z
�D(1 + jq�j2) j'j2M +M ���r� q � 'M ����2 dq�dx�and assoiated inner produt.It is well-known (e.g. [9℄, Coro. I.2.5) that the spaeW� := fw� 2 C� 10 (
) : r� x � w� = 0g is dense in both V� and H� : (3.4)We require an analogous density result for the spaeK. Hypotheses (2.18a,b) for the MaxwellianM and the assoiated elasti potential U play a ruial role in the argument.Lemma 3.1.(a) Suppose that D is a bounded open ball in Rd and � > 0; then, the set M � C1(
�D)is dense in K. Here C1(
�D) denotes the set of all funtions de�ned on 
�D that arein�nitely di�erentiable in 
�D and whih, together with their partial derivatives of any order,an be ontinuously extended to 
�D = 
�D.(b) Let D = Rd ; then C10 (
�D) is dense in Kq.Proof. (a) For q� 2 D let d(q�) := dist(q�; �D). Aording to (2.18a), there exist positiveonstants 3, 4, suh that 3 �M(q�)=d�(q�) � 4 for all q� 2 D. Hene the Maxwellian M(q�) isa weight funtion of type 3 in D in the sense of Triebel [22℄, p.247, De�nition 3.2.1.3. By [22℄,Theorem 3.2.2a, the weighted Sobolev spaeH1(D;M) := ff 2 L2(D) : kfk2H1(D;M) := ZDM � jf(q)j2 + jr� q f(q)j2 �dq� <1gis a Hilbert spae and, by [22℄, Theorem 3.2.2, C1(D) is dense inH1(D;M); see also Chapter I,Setion 7, in Kufner's monograph [14℄. Therefore, L2(
;C1(D)) is dense in L2(
;H1(D;M)) =H0;1(
 �D;M). Given � 2 H0;1(
 �D;M), let fb�"g" � L2(
;C1(D)) be a sequene whihonverges to � in H0;1(
�D;M). Let us extend both � and b�" with respet to the variable x�by 0 outside 
 and, for " 2 (0; 1), de�ne�"(x�; q�) := ( b�"(x�; q�) �2"(x�) ) �x j"(x�);where �x denotes onvolution with respet to x�, �2"(x�) is the harateristi funtion of the set
2" := fx� 2 
 : dist(x�; �
) � 2"g, j"(x�) = "�d j("�1x�);and j is a nonnegative C1 funtion with ompat support, supp(j) = B(0�; 1), whose integralover Rd is equal to 1. Now, �" 2 C10 (
;C1(D)) and the sequene f�"g" onverges to � inL2(
;H1(D;M)) = H0;1(
�D;M) as "! 0.For a general ' 2 K, we approximate � = '=M 2 H0;1(
 �D;M) by a sequene f�"g" �C10 (
;C1(D)) � C1(
�D) in the H0;1(
�D;M)-norm. Then the sequene fM �"g" on-verges to M � = ' in the k � kK norm as "! 0.10



(b) Suppose that ' 2 Kq. On letting � = '=pM , we dedue thatk'k2Kq = Z
�D h(1 + jq�j2) j�j2 + jr� q �+ 12 U 0 q��j2i dq�dx�:By virtue of (2.18b) in the ase of D = Rd , it then follows that there exist positive onstantsC1 and C2 suh thatC1 k'k2Kq � Z
�D h(1 + jq�j2) j�j2 + jr� q �j2i dq�dx� � C2 k'k2Kq : (3.5)Let us extend the funtions ' and � with respet to the variable x� by zero outside 
, so that theextended funtions, whih we still denote by ' and �, respetively, are now de�ned on Rd �Rd .Let " 2 (0; 1) and onsider the funtion '" = pM�", where�"(x�; q�) := b�"(x�; q�) � (j"(x�) j"(q�)) and b�"(x�; q�) := �(x�; q�) �2"(x�) �1="(q�);here �2"(�), j(�) are as in part (a) above, � is onvolution with respet to both x� and q�, and�1="(q�) = min�1;�1 + 1" � jq�j�+� :We note that the funtion �1=" has its range in the interval [0; 1℄, it is equal to 1 within thebounded open ball B(0�; 1=") � Rd , equal to 0 in the omplement of the bounded open ballB(0�; 1 + (1=")) � Rd and jr� q �1="(q�)j � 1 for a.e. q� in Rd . The properties of the onvolutionimply that �" 2 C10 (Rd � Rd ); more preisely, �" 2 C10 (
 � Rd). Sine pM is a onstantmultiple of exp(�12U), and s 2 R 7! U(s) is, by hypothesis, a C1 funtion, it follows thatpM 2 C1(Rd ). Hene, '" 2 C10 (
� Rd ).Our aim is to show that lim"!0 k'" � 'kKq = 0. We see from (3.5) that to do so it isneessary and suÆient to prove thatlim"!0ZRd�Rd h (1 + jq�j2)j�" � �j2 + jr� q �" �r� q �j2i dq�dx� = 0: (3.6)On realling that �" = b�" � (j"(x�) j"(q�)), (3.6) will in turn follow by use of a triangle inequalityone we have established the following:lim"!0ZRd�Rd �(1 + jq�j2) j(b�" � �) � (j"(x�) j"(q�))j2 + j(r� q b�" �r� q �) � (j"(x�) j"(q�))j2� dq�dx� = 0;(3.7a)lim"!0ZRd�Rd �(1 + jq�j2) j� � (j"(x�) j"(q�))� �j2 + j(r� q �) � (j"(x�) j"(q�))�r� q �j2� dq�dx� = 0:(3.7b)Let us start by showing (3.7a). By Young's onvolution-inequality and using that the L1norm of the funtion (x�; q�) 7! j"(x�) j"(q�) over Rd � Rd is equal to 1, we have thatZRd�Rd j(r� q b�" �r� q �) � (j"(x�) j"(q�))j2 dq�dx� � ZRd�Rd jr� q b�" �r� q �j2 dq�dx�:11



Realling the de�nition of b�"(q�), that j�1="(q�)j � 1 for all q� in Rd and that jr� q �1="(q�)j � 1 fora.e. q� in Rd , we dedue that the right-hand side in the last inequality is bounded by2 ZRd Zjq�j�1=" jr� q �j2 dq�dx� + 2 ZRd Zjq�j�1=" j�j2 dq�dx� + Z
n
2" ZRd jr� q �j2 dq�dx� ; (3.8)whih onverges to 0 as "! 0 by Lebesgue's dominated onvergene theorem.Analogously, by Young's inequality again, but this time applied with respet to the variablex� only, using the Cauhy{Shwarz inequality, Fubini's theorem, the hange of variables s� = q��r�,and the inequality 1 + js�+ r�j2 � 2 (1 + js�j2) + 2jr�j2, we have thatZRd�Rd(1 + jq�j2) j(b�" � �) � (j"(x�) j"(q�))j2 dq�dx� � ZRd�Rd(1 + jq�j2) j(b�" � �) �q j"(q�)j2 dq�dx�� ZRd�Rd(1 + jq�j2)Zjr�j�" jb�"(x�; q�� r�)� �(x�; q�� r�)j2 j"(r�) dr� dq�dx�= ZRd Zjr�j�" j"(r�)ZRd(1 + js�+ r�j2) jb�"(x�; s�)� �(x�; s�)j2 ds�dr�dx�� 4ZRd Zjs�j�1="(1 + js�j2) jb�" � �j2 ds�dx� + 4 Z
n
2" Zjs�j�1="(1 + js�j2) j�j2 ds�dx�� 4ZRd Zjq�j�1="(1 + jq�j2) jb�" � �j2 dq�dx� + 4 Z
n
2" ZRd(1 + jq�j2) j�j2 dq�dx�:Both integrals appearing on the right-hand side of the last inequality onverge to 0 as "! 0 byLebesgue's dominated onvergene theorem. Together with (3.8), this implies (3.7a).In order to prove (3.7b), we proeed by writing(r� q �) � (j"(x�) j"(q�))�r� q � = ((r� q �) �x j"(x�)�r� q �) �q j"(q�) + �(r� q �) �q j"(q�)�r� q �� :On applying Young's inequality with respet to �q, we have thatZRd�Rd j(r� q �) � (j"(x�) j"(q�))�r� q �j2 dq�dx� � 2 ZRd�Rd j(r� q �) �x j"(x�)�r� q �j2 dq�dx�+ 2 ZRd�Rd j(r� q �) �q j"(q�)�r� q �j2 dq�dx�:A standard argument for Friedrihs molli�ers yields that both terms on the right-hand side ofthe last inequality onverge to 0 as "! 0; hene,lim"!0ZRd�Rd j(r� q �) � (j"(x�) j"(q�))�r� q �j2 dq�dx� = 0: (3.9)Finally, noting thatj� � (j"(x�) j"(q�))� �j2 � 2 j(� �q j"(q�)� �) �x j"(x�)j2 + 2 j� �x j"(x�)� �j212



and applying Young's inequality with respet to �x, we have thatZRd�Rd(1 + jq�j2) j� � (j"(x�) j"(q�))� �j2 dq�dx� � 2 ZRd�Rd(1 + jq�j2) j� �q j"(q�)� �j2 dq�dx�+ 2 ZRd ZRd j(1 + jq�j2) 12 � �x j"(x�)� (1 + jq�j2) 12�j2 dx� dq�=: A" +B":Sine (1 + jq�j2) 12 � 2 L2(Rd � Rd), a standard argument for Friedrihs molli�ers implies thatlim"!0B" = 0: (3.10)Further, on realling the de�nition of the onvolution �q, the Cauhy{Shwarz inequality, andthat the integral of j"(r�) over its support, fr� : jr�j � "g, is equal to 1, we have that A" �2 (T1;" +T2;"), where, with R > 1 arbitrary,T1;" := ess.supjr�j�" ZRd Zjq�j>R(1 + jq�j2) j�(x�; q�)� �(x�; q�� r�)j2 dq�dx�and T2;" := ess.supjr�j�" ZRd Zjq�j�R(1 + jq�j2) j�(x�; q�)� �(x�; q�� r�)j2 dq�dx�:Now, on using the bound j�(x�; q�) � �(x�; q� � r�)j � 2 (j�(x�; q�)j2 + j�(x�; q� � r�)j2), the hange ofvariables s� = q�� r� and the inequality 1 + js�+ r�j2 � 2 (1 + js�j2) + 2 jr�j2, we �nd thatT1;" � 10ZRd Zjq�j>R�1(1 + jq�j2) j�(x�; q�)j2 dq�dx�:Hene, given any Æ > 0, there exists R > 1, suÆiently large, suh that T1;" � Æ=4. Sine, forsuh R > 1 �xed and � 2 C(
�B(0�; R+ 1)) we havelim"!0(ess.supjr�j�" Z
 Zjq�j�R(1 + jq�j2) j�(x�; q�)� �(x�; q�� r�)j2 dq�dx�) = 0;by density of C(
�B(0�; R + 1)) in L2(
 �B(0�; R + 1)), it then follows that the same is truefor any � 2 L2(
�B(0�; R+1)). Hene, there exists "0 suh that, for all " 2 (0; "0), T2;" � Æ=4.Thus, we have shown that, for any Æ > 0, there exists "0 > 0 suh that A" � 2 (T1;" +T2;") � Æfor all " 2 (0; "0). Hene, lim"!0A" = 0, whih, together with (3.10), then implies (3.7b).Having shown (3.7a) and (3.7b), now (3.6) follows as indiated above; hene the sequenef'"g � C10 (
� Rd) onverges to ' 2 Kq in the norm of Kq, whih means that C10 (
� Rd ) isdense in Kq. utOur next lemma is a trae theorem for K: loosely speaking, it states that if ' 2 K, thenU 0(12 jq�j2)' vanishes on 
 � �D when D is a bounded open ball, and deays to zero at asuperalgebrai rate as jq�j ! 1 when D = Rd . 13



Lemma 3.2.(a) Suppose that D is a bounded open ball in Rd and that the elasti potential U and the assoiatedMaxwellian M satisfy (2.18a) with � � 5 and (2.18b). Then, for ' 2 K =M �H0;1(
�D;M),the trae of U 0(12 jq�j2)' on 
� �D is equal to 0.(b) Suppose that D = Rd ; then, for ' 2 K,limR!1R� Z
��B(0�;R) U 0(12 jq�j2) j'jdS(q�) dx� = 0 for all � � 0: (3.11)Proof. (a) Let d(q�) := dist(q�; �D) and, for � 2 R, denote by H10 (D; d�(q�)) the losure ofC10 (D) in the d�(q�)-weighted Sobolev spae H1(D; d�(q�)); hene, H10 (D; d�(q�)) is a Hilbertspae with respet to the norm k � kH1(D;d�(q�)). Aording to a result of Besov and Kufner [2℄(f. also Triebel [22℄, Setion 3.6.1 and Kufner [14℄, pp.98{99), the spae C10 (D) is dense inH1(D; d�(q�)) for � � �1 and f 2 H1(D; d�(q�)) = H10 (D; d�(q�)) implies that f = 0 on �D.Hene, to prove the Lemma, it suÆes to show that if g 2 M � H1(D;M) then U 0(12 jq�j2) g 2H1(D; d�1(q�)).Let g 2M �H1(D;M); then,ZD � jgj2M +M ���r� q � gM ����2�dq� <1: (3.12)On writing U 0g = (U 0M) � gM and noting (2.7) and the seond identity in (2.8), di�erentiationof U 0(12 jq�j2) g(q�) based on the produt rule yieldsd�1(q�) h jU 0gj2 + jr� q (U 0g)j2 i � �d�1(q�) jU 0j2M� jgj2M+�2 d�1(q�) jq�j2 jU 00 � (U 0)2j2M� jgj2M+�2 d�1(q�) jU 0j2M�M ���r� q � gM ����2 ; (3.13)where U 0, U 00 and M signify U 0(12 jq�j2), U 00(12 jq�j2) and M(q�), respetively. Sine D is a boundedset, on realling (2.18a) with � � 5 and (2.18b), we dedue that eah of the three terms in theround brakets on the right-hand side of (3.13) is bounded on D; thus, by (3.12), we have thatZD d�1(q�) � jU 0gj2 + jr� q (U 0g)j2 �dq� <1:Hene, U 0(12 jq�j2) g 2 H1(D; d�1(q�)), and therefore U 0g has zero trae on �D.(b) Suppose that D = Rd and ' 2 K. For r > 0 let Br = B(0�; r) be a bounded open ball ofradius r entred at the origin. It then follows, using the properties of M and U from (2.7) and(2.18a,b) that ' 2 H0;1(
 � Br) := H0;1(
 � Br; 1) and hene the trae '(x�; �)j�Br exists andbelongs to L1(�Br) for a.e. x� 2 
 and all r > 0.Let r > 0. Any q� 2 �Br an be expressed as q� = r �� where r = jq�j and j��j = 1. Given � � 0,onsider the funtion f de�ned byf(x�; r ��) := U 0(12r2) rd+� '(x�; r ��):14



For every �� 2 �B1 and a.e. x� 2 
, held �xed, the funtion r 7! f(x�; r ��) belongs to H1(0; R) forall R > 0; furthermore, f(x�; �)j�Br 2 L1(�Br) for a.e. x� 2 
 and all r > 0.Now, for a.e. x� 2 
 and all r 2 (0; R℄, R > 0,f(x�; R ��) = f(x�; r ��) + Z Rr ddsf(x�; s ��) ds: (3.14)Let N(r) := exp(�U(12r2)); then, N(r) =M(r ��) for all �� 2 �B1. On re-writingf(x�; r ��) = '(x�; r ��)M(r ��) M(r ��)U 0(12r2) rd+� = �'(x�; r ��)M(r ��) � � �N(r)U 0(12r2) rd+�� ;di�erentiating the produt with respet to r using the produt rule, and de�ningA(r) :=pN(r)U 0(12r2) r 12 (d+1)+� and B(r) := 1pN(r) r 12 (1�d) : ddr �N(r)U 0(12r2) rd+�� ;we have from (3.14) that'(x�; R ��)U 0(12R2)Rd+� = '(x�; r ��)qM(r ��) r 12 (d�1)A(r) + Z Rr qM(s ��) dds '(x�; s ��)M(s ��) ! s 12 (d�1)A(s) ds+ Z Rr '(x�; s ��)qM(s ��) s 12 (d�1) B(s) ds:Now we take the absolute value of both sides of this identity, use the triangle inequality on theright, and integrate both sides of the resulting inequality with respet to �� 2 �B1, x� 2 
 andr 2 (0; R℄, note the identityZ r0 �Z
��B1 f(x�; s ��) sd�1 d��dx��ds = Z
�Br f(x�; q�) dq�dx�and the bound���� dds �'(x�; s ��)M(s ��) ����� = ����rq � 'M � (x�; s ��)� � �� ��� � ���rq � 'M � (x�; s ��)��� ;and use the Cauhy{Shwarz inequality, in eah of the three resulting integrals on the right, weobtain the trae inequalityR�+2 U 0(12R2)Z
��BR j'(x�; q�)jdS(q�) dx� � Cd (CA + CAB R) k'kK (3.15)for all � � 0, where Cd := [measd(
) �measd�1(�B1)℄1=2, andCA := �Z R0 A2(r) dr�12 ; CAB := �Z R0 [A2(r) +B2(r)℄ dr�12 :Finally, after dividing (3.15) by R2, noting that U 0(12 jRj2) = U 0(12 jq�j2) for q� 2 �BR = �B(0�; R),and that, under the hypotheses (2.18a,b), we have 0 < CA < CAB <1, on passing to the limitR!1, we obtain (3.11). ut15



Heneforth, we shall suppose that� � 5 when D is a bounded open ball in Rd . (3.16)In the derivation of maximum norm bounds on  we shall also require the following lemma.Lemma 3.3. If ' 2 Kq then for any onstant L � 0 it follows thatr� q � ['� LM ℄+M � = ( r� q �'�LMM � � r� q � 'M � if ' > LM0 if ' � LM ; (3.17a)r� q � ['+ LM ℄�M � = ( r� q �'+LMM � � r� q � 'M � if ' < LM0 if ' � LM ; (3.17b)and hene ['� LM ℄+, ['+ LM ℄� 2 Kq.Proof. First, we note that as L � 0 we have thatj ['� LM ℄+ j; j ['+ LM ℄� j � j'j : (3.18)Next, for any " > 0, we introdue the following regularization of [ � ℄+:p+;"(s) := ( (s2 + "2) 12 � " if s � 0;0 if s � 0 ) p+;"(s) � [s℄+ 8s 2 R : (3.19)Then, for any �xed �� 2 C� 10 (
�D), it follows from (3.19), (2.18a,b), the ompat support of ��,(2.7), ' 2 K and the Lebesgue dominated onvergene theorem thatZ
�Dr� q � ['� LM ℄+M � � �� dq�dx� = lim"!0Z
�Dr� q �p+;"('� LM)M � � �� dq�dx�= lim"!0Z
�D p0+;"('� LM) r� q ('� LM)M + p+;"('� LM)r� q (M�1)! � �� dq�dx�= Z'>LM  r� q ('� LM)M + (' � LM)r� q (M�1)! � ��dq�dx�= Z'>LM r� q �('� LM)M � � �� dq�dx� : (3.20)Hene we obtain the desired result (3.17a). A similar regularization of [ � ℄� yields the desiredresult (3.17b). Finally (3.18), (3.17a,b) and ' 2 Kq imply immediately that [' � LM ℄+,['+ LM ℄� 2 Kq. utFor later purposes, we reall the following well-known Gagliardo{Nirenberg inequality. Letr 2 [2;1) if d = 2, and r 2 [2; 6℄ if d = 3 and � = d �12 � 1r�. Then there is a onstant C,depending only on 
, r and d, suh that for all � 2 H10 (
) the inequality�Z
 j�jr dx�� 1r � C �Z
 j�j2 dx�� 1��2 �Z
 jr�j2 dx���2 (3.21)16



holds.We reall also the following ompatness result, see, e.g., [21℄ and [19℄. Let X0, X and X1be Banah spaes, Xi, i = 0; 1, reexive, with a ompat embedding X0 ,! X and a ontinuousembedding X ,! X1. Then, for �i > 1, i = 0; 1, the embeddingf � 2 L�0(0; T ;X0) : ���t 2 L�1(0; T ;X1) g ,! L�0(0; T ;X) (3.22)is ompat.3.2 Energy identities and estimatesThe starting-point for our analysis is the following formal weak formulation of the problem: �ndt 7! u�(�; t) 2 V� and t 7!  (�; t) 2 K+q for t 2 (0; T ℄, suh thatZ
 �u��t � w� dx� + Z
(u� � r� x )u� � w� dx� + � Z
r� x u� : r� xw� dx�= �Z
 ��( ) : r� xw� dx� 8w� 2 V; (3.23a)u�(x�; 0) = u�0(x�); (3.23b)andZ
�D � �t 'M dq�dx� � Z
�D  M u� � r� x 'dq�dx� + 12� Z
�DM r� q �  M� � r� q � 'M � dq�dx�= Z
�D ��(u�) q� � r� q � 'M � dq�dx� 8' 2 Kq; (3.24a) (x�; q�; 0) =  0(x�; q�): (3.24b)Here we have noted that, aording to Lemma 3.2, ' 2 Kq implies that ' vanishes on �D. In(3.23a), and below we use the following notation: for any A� ; B� 2 Rd�d , we de�neA� : B� := dXi=1 dXj=1A� ij B� ij and jA� j := (A� : A� ) 12 = [Trae(A� >A� )℄ 12 :We begin by deriving some formal energy inequalities; the purpose of these is to justify thehoie of norms and spaes and indiate the kinds of bounds whih will be rigorously establishedlater on. The arguments in this setion are `formal' in the sense that some of the steps requireadditional smoothness of u� and  ; spei�ally, we shall suppose throughout Setion 3.2 thatu�(�; t) 2 W� 1;1(
) \ V� and that  (�; �; t) 2 M � H1(
 � D;M) \ K+q for t 2 (0; T ℄; we shallalso suppose for the moment that u� and  are suÆiently smooth in t. The �rst of theserequirements will be met in Setion 4 through molli�ation of u� as has been indiated earlier,while the requirement on  will be relaxed to  (�; �; t) 2 K+q for all t 2 (0; T ℄ by onsidering� �t +u�:rx as the spae-time diretional derivative (total derivative) of  along subharateristiurves and rewriting this in weak form through integration by parts over x�, q� and t.17



First we note thatZ
 h(v� � r� x )w� 1i � w� 2 dx� = �Z
 h(v� � r� x )w� 2i � w� 1 dx� 8v� 2 V; 8w1; w2 2 H� 10(
): (3.25)Taking w� = u� 2 V� in (3.23a) and noting (3.25) and (2.2), we obtain that12 ddt �Z
 ju�j2 dx��+ � Z
 jr� x u�j2 dx� = �Z
 ��( ) : r� x u� dx� = �k � Z
C� ( ) : r� x u� dx�� �2 Z
 jr� x u�j2 dx� + (k �)22 � Z
 jC� ( )j2 dx�: (3.26)It follows from (2.3) and (2.20) that, for  2 K,Z
 jC� ( )j2 dx� = Z
 dXi=1 dXj=1�ZD  U 0 qi qj dq��2 dx�� d �ZDM (U 0)2 jq�j4 dq���Z
�D j j2M dq�dx�� = dM �Z
�D j j2M dq�dx�� :(3.27)Taking ' =  2 M �H1(
 �D;M) \Kq � Kq in (3.24a) and noting that (2.1b,) implies, onintegration by parts, thatZ
�D  M u� � r� x  dq�dx� = 12 Z
�D u� � r� x j j2M dq�dx� = 12 Z�
�D(u� � n��
) j j2M dq� ds� = 0;where n��
 is the outward unit normal to �
, we obtain that12 ddt �Z
�D j j2M dq�dx��+ 12� Z
�DM ����r� q �  M�����2 dq�dx�= Z
�D  (��(u�) q�) � r� q �  M� dq� dx� : (3.28)Similarly to (3.27) as RDM dq� = 1, it follows thatZ
 j�(')j2 dx� � �ZDM dq���Z
�D j'j2M dq�dx�� = �Z
�D j'j2M dq�dx�� : (3.29)Hene we have from (3.2a), (3.27), (3.29) and (2.2) that' 2 K implies C� ('); �(') I�; ��(') 2 L� 2(
): (3.30)The problemati term is the one appearing on the right-hand side of the energy identity (3.28).Below, we show that in the ase of orotational models this term vanishes. In the nonorotationalase, we introdue a di�erent testing proedure for the Fokker{Plank equation (3.24a) so thatthe problemati drag term anels with the extra-stress term in (3.26). Hene, from here on, weonsider orotational and nonorotational models separately.18



3.2.1 Corotational modelsWe begin by analysing the right-hand side of (3.28) in the ase when the drag term in (2.4a) isorotational; that is,��(u�) = �[��(u�)℄> and hene q�> ��(u�) q� = 0 8q� 2 Rd ; (3.31)orresponding to the hoie ��(u�) = !� (u�) in (2.6).First, suppose that D is a bounded open ball in Rd . Given ' 2 K = Kq, let f'ngn be asequene in the spae M � C1(
�D) � K = M �H0;1(
�D;M) whih onverges to ' in K(f. Lemma 3.1(a)). Then, using (3.31) with ��(u�) = !� (u�), (2.7) and (2.19), we dedue thatZ
�D 'npM (!� (u�) q�) � pM r� q �'nM � dq�dx� = 12 Z
�DM (!� (u�) q�) � r� q �'nM �2 dq�dx�= 12 �Z
��D(!� (u�) q�) � n��D '2nM ds�dx� + Z
�D(q�>!� (u�) q�)U 0 '2nM dq�dx�� = 0: (3.32)Here in the �rst integral in the square braket, we made use of the fat that n��D = q�=jq�j j�D andthen applied (3.31). As f'n=pMgn and fpM r� q ('n=M)gn onverge (strongly) in L2(
�D)and L� 2(
 � D) to the funtions '=pM and pM r� q ('=M), respetively, as n ! 1, and!� (u�) 2 L�1(
) by hypothesis, it follows on passing to the limit in (3.32) thatZ
�D ' (!� (u�) q�) � r� q � 'M � dq�dx� = Z
�D 'pM (!� (u�) q�) � pM r� q � 'M � dq�dx� = 0 8' 2 Kq:(3.33)If, on the other hand, D = Rd , then an idential argument applies by onsidering a sequenef'ng in C10 (
 �D) whih onverges to ' 2 Kq (f. Lemma 3.1(b)). In addition, as M 2 Kq,the same analysis as above yields for both D a bounded open ball in Rd and D = Rd thatZ
�DM (!� (u�) q�) � r� q � 'M � dq�dx� = 0 8' 2 Kq: (3.34)Thus we have shown that in the orotational ase, ��(u�) = !� (u�), identities (3.33) and (3.34)hold both when D is a bounded open ball in Rd and when D = Rd . This observation leads toa onsiderable simpli�ation of the analysis. Indeed, upon ombining (3.26), (3.27), (3.28) and(3.33) and applying a Gronwall inequality, we have thatsupt2(0;T ) �Z
�D j j2M dq�dx��+ 1� Z T0 "Z
�DM ����r� q �  M�����2 dq�dx�# dt � 2 Z
�D j 0j2M dq�dx�;(3.35a)supt2(0;T ) �Z
 ju�j2 dx��+ � Z T0 �Z
 jr� x u�j2 dx�� dt � Z
 ju�0j2 dx� + C T Z
�D j 0j2M dq�dx�: (3.35b)We note in passing that orotational models have a further interesting property: it followsimmediately from (2.9), (3.31) and (2.7) thatif  0(x�; q�) = f0(x�)M(q�) then  (x�; q�; t) = f(x�; t)M(q�) ;where �f�t + (u� � r� x )f = 0 in 
�D � (0; T ℄; f(x�; 0) = f0(x�) 8x� 2 
: (3.36)19



3.2.2 Nonorotational modelsWe now return to the physially more realisti ase, ��(u�) = r� x u�. Taking ' = M 2 K+q in(3.24a) we obtain thatddt �Z
�D  dq�dx�� = 0 and hene Z
�D  (x�; q�; t) dq� dx�=Z
�D  0 dq�dx� 8t 2 (0; T ℄:(3.37)Moreover, as  2 K+q , it follows that (x�; q�; t) � 0 for a:e: (x�; q�; t) 2 
�D � (0; T ℄: (3.38)This is, of ourse, a neessary ondition for ensuring that  is a probability distribution.Taking ' = M U 2 K+q in (3.24a), integrating by parts in the integral whih is multipliedby 12� using (2.8), Lemma 3.2, (2.7) and (2.3), we obtainddt �Z
�D U  dq�dx��+ 12� Z
�D jq�j2 ( (U 0)2 � U 00 ) ) dq�dx�= Z
C� ( ) : ��(u�) dx� + d2� Z
�D U 0  dq�dx�: (3.39)On noting (2.17), U 2 C1(D) � C2(D), (3.38) and (3.37) it follows from (3.39) thatddt �Z
�D U  dq�dx��+ 12� Z
�f jq�j2< d2 g jq�j2 ( (U 0)2 � U 00 ) ) dq�dx�+ 22� Z
�f jq�j2� d2 g jq�j2 U 0  dq�dx� � Z
C� ( ) : ��(u�) dx� + d2� Z
�f jq�j2< d2 g U 0  dq�dx�� Z
C� ( ) : ��(u�) dx� + C Z
�D  0 dq�dx� : (3.40)Here, C = d2� supjq�j2<d=2 U 0(12 jq�j2) < 1 sine, by hypothesis, B(0�; (d=2)1=2) �� D. In thease ��(u�) = r� x u�, on ombining the �rst line of (3.26) and (3.40) multiplied by k� yields thatddt �12 Z
 ju�j2 dx� + k � Z
�D U  dq�dx��+ � Z
 jr� x u�j2 dx�+ k � 22� Z
�f jq�j2� d2 g jq�j2 U 0  dq�dx� � C k � Z
�D  0 dq�dx� (3.41)and hene that12 supt2(0;T ) �Z
 ju�j2 dx��+ k � supt2(0;T ) �Z
�D U  dq�dx��+ � Z T0 �Z
 jr� x u�j2 dx�� dt+ k � 22� Z T0 24Z
�f jq�j2� d2 g jq�j2 U 0  dq�dx�35 dt � 32 Z
 ju�0j2 dx�+ 3 k � Z
�D U  0 dq�dx� + 3C T k� Z
�D  0 dq�dx�: (3.42)20



The validity of these bounds presupposes the existene of appropriately de�ned weak solu-tions u�(�; t) 2 V� and  (�; t) 2 K+q , t 2 (0; T ℄. To make the formal bounds (3.35a,b) and (3.42)rigorous in our proof of the existene of (global-in-time) weak solutions whih is based on asequential-ompatness-argument, we need to introdue some smoothing into the system; else,passage to the limit, in a suÆiently strong sense, is not warranted by the ompatness argu-ment. Therefore, ultimately, we will not prove existene of global weak solutions to the originalsystem (P) with ��(u�) given by (i) or (ii) in (2.5); but to a modi�ed system where the veloity�eld u� in (3.24a) is appropriately molli�ed, and in the nonorotational ase the extra-stresstensor in (3.23a). Next we desribe the details of the smoothing proedure.3.3 Smoothing operator S� �As we have already indiated at the end of the previous setion, it is neessary to introdue a`smoothing' proedure on the veloity �eld u� in (2.4a) and in the nonorotational ase also onthe right-hand side of (2.1a). Let � > 0 be a regularization parameter. Given v� 2 V� 0, the dualof V� , let v�� 2 V� be the unique solution to the Helmholtz-Stokes problemZ
 v�� � w� dx� + � Z
r� x v�� : r� x w� dx� = hv�; w� i 8w� 2 V� ; (3.43)where h�; �i denotes the duality pairing between V� 0 and V� . We introdue the operator S�� : V� 0 !V� , suh that S�� v� = v�� for all v� 2 V� 0. We note thatDv�; S��v�E = Z
 h� jr� x [S��v�℄j2 + jS��v�j2i dx� 8v� 2 V� 0 � (H10 (
))0; (3.44)and kS� � � kH1(
) is a norm on V 0. In addition, we have from (3.43) and a Poinar�e inequalitythat kS��v�k2L2(
) + 2� kr� x [S��v�℄k2L2(
) � kv�k2L2(
) 8v� 2 L� 2(
); (3.45a)kS��v�k2H1(
) � C kv�k2L2(
) � C kr� x v�k2L2(
) 8v� 2 V� : (3.45b)Furthermore, for 
 onvex polygonal in R2 or onvex polyhedral in R3 (see, respetively, [12℄and [13℄), or �
 2 C1;1 in Rd , d = 2; 3, it follows from ellipti regularity theory thatS�� : L� 2(
) � V� 0 ! V� \H� 2(
) is a bounded linear operator: (3.46)Moreover, for �
 2 C2 and r > d (.f. [9, p.88℄) we have thatS�� : L� r(
) � V� 0 ! V� \W� 2;r(
) � V� \ C� 1(
) is a bounded linear operator; (3.47a)and hene, we note from Sobolev embedding, ellipti regularity and a Poinar�e inequality that,for r 2 (d; 6℄,kS��v�kW 1;1(
) � C kS��v�kW 2;r(
) � C kv�kLr(
) � C kr� x v�kL2(
) 8v� 2 V� : (3.47b)For the sake of simpliity of presentation, we shall suppose heneforth that �
 2 C2.Of ourse, other regularisation proedures ould have also been used to lift the veloity �eldfrom V� to V� \ C� 1(
). Our de�nition of S�� has been motivated by the fat that, like u� itself,S��u� is de�ned and divergene-free on 
, and it obeys the same boundary ondition on �
 as u�.21



3.4 Weak formulationsThe aim of the paper is to prove existene of a (global-in-time) solutions to eah of the followingweak formulations of these \smoothed" orotational and nonorotational models for any �xedregularization parameter � > 0 under the following assumptions on the data�
 2 C2; u�0 2 H� and M� 12  0 2 L2(
�D): (3.48)Let K := ( M � C1(
�D) if D is a bounded open ball in RdC10 (
�D) if D � Rd ; (3.49)and hene, on realling Lemma 3.1, K is dense in Kq. We introdue our spae of test funtionsX for the  -equation as the ompletion of C10 ((�T; T );K) in the norm k � kX de�ned byk'kX = k'kL2(0;T ;Kq) + M� 12 �'�t L1(0;T ;L2(
�D)) + kM� 12r� x'kL1(0;T ;L2(
�D)): (3.50)This, in partiular, implies that eah ' 2 X satis�es '(�; �; T ) = 0.Corotational modelsGiven T > 0, and 
, u�0 and  0 as in (3.48), �nd u� 2 L1(0; T ;L� 2(
))\L2(0; T ;V� )\W 1; 4d (0; T ;V� 0)and  2 L2(0; T ;K), with u�� := S��u� 2 L2(0; T ;W� 1;1(
)), M� 12  2 L1(0; T ;L2(
�D)) and��( ) 2 L1(0; T ;L� 2(
)), suh that u�(�; 0) = u�0(�), andZ T0 *�u��t ; w�+ dt+ Z T0 Z
 hh(u� � r� x )u�i � w� + �r� x u� : r� xw� i dx� dt= �k � Z T0 Z
 ��( ) : r� xw� dx� dt 8w� 2 L 44�d (0; T ;V� ); (3.51a)� Z T0 Z
�D  M � �'�t + (u�� � r� x )'� dq�dx� dt� Z
�D  0(�; �)M '(�; �; 0) dq� dx�+ Z T0 Z
�D �M2� r� q �  M�� [!� (u��) q�℄ � � r� q � 'M � dq�dx� dt = 0 8' 2 X : (3.51b)The only di�erene between (3.51a,b) and the orresponding weak formulation of the originalorotational model, (P) with ��(u�) = !� (u�), is that u� has been replaed by u�� in (3.51b).Nonorotational modelsGiven T > 0, and 
, u�0 and  0 as in (3.48), �nd u� 2 L1(0; T ;L� 2(
))\L2(0; T ;V� )\W 1; 4d (0; T ;V� 0)and  2 L2(0; T ;K), with u�� := S��u� 2 L2(0; T ;W� 1;1(
)), M� 12  2 L1(0; T ;L2(
�D)) and
22



��( ) 2 L1(0; T ;L� 2(
)), suh that u�(�; 0) = u�0(�), andZ T0 *�u��t ; w�+ dt+ Z T0 Z
 hh(u� � r� x )u�i � w� + �r� x u� : r� xw� i dx� dt= �k � Z T0 Z
 ��( ) : r� x (S�� w� ) dx� dt 8w� 2 L 44�d (0; T ;V� ); (3.52a)� Z T0 Z
�D  M � �'�t + (u�� � r� x )'� dq�dx� dt� Z
�D  0(�; �)M '(�; �; 0) dq� dx�+ Z T0 Z
�D �M2� r� q �  M�� [r� x (u��) q�℄ � � r� q � 'M � dq�dx� dt = 0 8' 2 X : (3.52b)The only di�erene between (3.52a,b) and (3.51a,b) is that the orotational tensor !� (u��)in (3.51b) is replaed by the more physial nonorotational tensor r� x (u��) in (3.52b) and weapplied smoothing on the right-hand side of (3.52a). Hene, (3.52a,b) and the orrespondingweak formulation of the original nonorotational model, (P) with ��(u�) = r� x (u�), di�er only tothe extent that u� has been replaed by u�� in (3.51b) and we applied smoothing on the right-handside of (3.52a).Our energy estimate in the nonorotational ase will be based on anelling the extra-stressterm on the right-hand side of (3.52a) with the drag term in (3.52b), hene mimiking theformal proedure in Setion 3.2.2. To pass to the limit in (3.52b), we need to smooth u� andtherefore to maintain the anellation we need to smooth the right-hand side of (3.52a). Ofourse, smoothing the extra-stress tensor in (3.52a) essentially amounts to smoothing u� itself.Remark 3.1. Sine the test funtions in V� are divergene-free, the pressure has been eliminatedin (3.51a) and (3.52a); it an be reovered in a very weak sense following the same proedure asfor the inompressible Navier{Stokes equations disussed on p.208 in [21℄; i.e., one obtains thatR t0 p(�; s) ds 2 C([0; T ℄;L2(
)).Remark 3.2. If d = 2, then u� 2 C([0; T ℄;H� ) (f. Lemma 1.2 on p.176 of [21℄), whereas if d = 3,then u� is only weakly ontinuous as a mapping from [0; T ℄ into H� (similarly as in Theorem 3.1on p.191 in [21℄). It is in the latter, weaker sense that the imposition of the initial ondition tothe u�-equation will be understood for d = 2; 3: that is limt!0(u�(t); v�) = (u�0; v�) for all v� 2 H� .4 ExisteneThroughout we will assume that (2.18a,b), (2.19), (3.16) and (3.48) hold. In order to prove exis-tene of these weak solutions to a modi�ed version of (P), we onsider a time semidisretization.To this end, for any T > 0, let N �t = T and tn = n�t, n = 0! N .In order to prove existene of weak solutions under minimal smoothness requirements on theinitial data, we introdue projetions u�0,  0 of the original initial data u�0,  0, as follows:u�0 = S��tu�0; (4.1a)Z
�DM�1�(1 + �tjq�j2) 0 �  0�'dq� dx� = 0 8' 2 L2(
�D;M�1(1 + jq�j2)): (4.1b)23



It follows from (4.1a,b) that u�0 onverges to u�0 weakly in H� and  0 onverges to  0 weakly inL2(
�D;M�1) as �t! 0.We begin by onsidering the, simpler, orotational ase.4.1 Corotational modelsWe introdue a disrete-time proedure to mimi the formal energy estimate (3.26){(3.35a,b).For n = 1! N , given fu�n�1;  n�1g 2 V� �K+q ; �nd u�n 2 V� suh thatZ
 "u�n � u�n�1�t + (u�n�1 � r� x )u�n# � w� dx� + � Z
r� x u�n : r� xw� dx�= �Z
 ��( n�1) : r� xw� dx� 8w� 2 V� : (4.2)It is onvenient to rewrite (4.2) asbn(u�n; w� ) = Z
 hu�n�1 � w� ��t ��( n�1) : r� xw� i dx� 8w� 2 V� ; (4.3)where for all w� i 2 H� 10(
), i = 1; 2,bn(w� 1; w� 2) :=Z
 hw� 1 +�t (u�n�1 � r� x )w� 1i � w� 2 dx� +�t � Z
r� xw� 1 : r� xw� 2 dx�: (4.4)As u�n�1 2 V� , it follows from (3.25) that bn(�; �) is a ontinuous and oerive bilinear funtionalon V� �V� . Sine, by virtue of (3.30), ��( n�1) 2 L� 2(
), it follows from the Lax{Milgram theoremthat there exists a unique solution to (4.3).On hoosing w� � u�n in (4.2), and noting the simple identity2 (s1 � s2) s1 = s21 + (s1 � s2)2 � s22 8s1; s2 2 R; (4.5)the identities (3.25) and (2.2), and the fat that u�n�1; u�n 2 V� yields, similarly to (3.26), that12�t Z
 h ju�nj2 + ju�n � u�n�1j2 � ju�n�1j2 i dx� + � Z
 jr� x u�nj2 dx�= �k � Z
C� ( n�1) : r� x u�n dx� � �2 Z
 jr� x u�nj2 dx� + (k �)22 � Z
 jC� ( n�1)j2 dx�: (4.6)On hoosing w� � S�� �u�n�u�n�1�t � 2 V� in (4.2) yields, on noting (3.44), (2.2) and (3.25), thatZ
 24� �����r� x "S�� u�n � u�n�1�t !#�����2 + �����S�� u�n � u�n�1�t !�����235 dx�= �Z
 h�r� x u�n + C� ( n�1)i : r� x "S�� u�n � u�n�1�t !# dx�+ Z
 u�n � "(u�n�1 � r� x )"S�� u�n � u�n�1�t !## dx�� C Z
 h jC� ( n�1)j2 + jr� x u�nj2 + ju�n�1j2 ju�nj2 i dx�: (4.7)24



Applying the Cauhy{Shwarz inequality, the algebrai-geometri mean inequality and theGagliardo{Nirenberg inequality (3.21) yields thatZ
 ju�n�1j2 ju�nj2 dx� � �Z
 ju�n�1j4 dx��12 �Z
 ju�nj4 dx��12 � 12 nXm=n�1Z
 ju�mj4 dx�� C nXm=n�1"�Z
 ju�mj2 dx��2� d2 �Z
 jr� x u�mj2 dx�� d2# : (4.8)Given v� 2 V� \ C� 0;1(
), let y�n(v�; t; �; �) 2 C1([tn�1; tn℄;C� 0;1(
)) be the unique solution, forall x 2 
 and with either t = tn�1 or tn, ofddsy�n(v�; t;x�; s) = v�(y�n(v�; t;x�; s)) 8s 2 [tn�1; tn℄ n t; y�n(v�; t;x�; t) = x�: (4.9)As v� = 0� on �
, the map x� ! y�n(v�; t;x�; s) is, for eah s 2 [tn�1; tn℄ and t = tn�1 or tn, aLipshitz-ontinuous homeomorphism from 
 into itself, independent of the hoie of �t. Byvirtue of the Rademaher{Stepanov theorem it is di�erentiable almost everywhere in 
. More-over, sine v� is divergene-free, the map has the volume-preserving property, i.e. its Jaobian,det r� x y�n, satis�es det r� x y�n(v�; t; �; �) = 1 a:e: in 
� [tn�1; tn℄: (4.10)We note also from (4.9) that, for all x� 2 
,jy�n(v�; tn�1;x�; t)� x�j � (t� tn�1) supy�2
 jv�(y�)j 8t 2 [tn�1; tn℄; (4.11a)jy�n(v�; tn�1;x�; tn)� [x� +�t v�(x�)℄ j = �����Z tntn�1[v�(y�n(v�; tn�1;x�; t)) � v�(x�)℄ dt����� � C(kv�kC0; 12 (
)) (�t) 32� C(kv�kH2(
)) (�t) 32 if v� 2 H2(
): (4.11b)In addition, it is easily established that, for all t 2 [tn�1; tn℄, all x� 2 
 and all v�a, v�b in C0;1(
),jy�n(v�a; tn�1;x�; t)� y�n(v�b; tn�1;x�; t)j � C(kv�akC0;1(
); kv�bkC0;1(
)) (t� tn�1) kv�a � v�bkC(
):(4.12)On observing that, by (3.47a), u�n� := S��u�n 2 C� 1(
), we let  n 2 Kq be suh thatan ( n; ') = `n (') 8' 2 Kq ; (4.13)where, for all '1; '2; ' 2 Kq,an ('1; '2) := Z
�D �W '1 '2 +�t �M2� r� q �'1M �� [!� (u�n�) q�℄'1� � r� q �'2M �� dq�dx�;(4.14a)`n (') := Z
�DW  n�1(y�n(u�n�; tn;x�; tn�1); q�)'dq�dx�; (4.14b)W := 1 +�t jq�j2M : (4.14)25



Similarly to (3.33) and (3.34), as u�n� 2W� 1;1(
), we have in the orotational ase thatZ
�D ' (!� (u�n�) q�) � r� q � 'M � dq�dx� = 0; Z
�DM (!� (u�n�) q�) � r� q � 'M � dq�dx� = 0 8' 2 Kq:(4.15)Hene an (�; �) is a non-symmetri, ontinuous and oerive bilinear funtional onKq�Kq and, onnoting (4.10), `n (�) is a ontinuous linear funtional onKq. Therefore, the Lax{Milgram theoremyields the existene of a unique solution to (4.13). As  n 2 Kq implies that [ n℄� 2 Kq, reallLemma 3.3, and as  n�1 2 K+q , it follows from (3.17b), (4.14a,b) and (4.13) thatan ([ n℄�; [ n℄�) = an ( n; [ n℄�) = `n ([ n℄�) � 0: (4.16)Therefore the oerivity of an (�; �) over Kq � Kq yields that [ n℄� = 0; that is,  n 2 K+q ,n = 0! N .Choosing ' =  n in (4.13), noting (4.5), (4.15) and (4.10) yield thatZ
�DW �j n(x�; q�)j2 + j n(x�; q�)�  n�1(y�n(u�n�; tn;x�; tn�1); q�)j2� dq�dx�+ �t� Z
�DM ����r� q � nM �����2 dq�dx� = Z
�DW j n�1(y�n(u�n�; tn;x�; tn�1); q�)j2 dq�dx�= Z
�DW j n�1(x�; q�)j2 dq�dx�: (4.17)Summing (4.17) and (4.6) multiplied by 2�t from n = 1 ! m, with 1 � m � N , and noting(3.27) yields the analogues of the formal energy bounds (3.35a,b):maxn=1!N �Z
�DW j nj2 dq�dx��+ 1� NXn=1�t Z
�DM ����r� q � nM �����2 dq�dx�+ NXn=1Z
�DW j n(x�; q�)�  n�1(y�n(u�n�; tn;x�; tn�1); q�)j2 dq�dx�+ maxn=0!N �Z
 jC� ( n)j2 dx�� � C Z
�DW j 0j2 dq�dx� ; (4.18a)maxn=1!N �Z
 ju�nj2 dx��+ NXn=1Z
 ju�n � u�n�1j2 dx� + � NXn=1�t Z
 jr� x u�nj2 dx�� Z
 ju�0j2 dx� + C T Z
�DW j 0j2 dq�dx�: (4.18b)In addition, taking the 2d power of both sides of (4.7), summing from n = 1 ! N and noting
26



(4.8) and (4.18a,b) yields thatNXn=1�t0�Z
 24� �����r� x "S�� u�n � u�n�1�t !#�����2 + �����S�� u�n � u�n�1�t !�����235 dx�1A 2d
� C " NXn=1�t�Z
 jC� ( n�1)j2 dx�� 2d#+ C(T ) " NXn=1�tZ
 jr� x u�nj2 dx�# 2d+C(T ) " maxn=0!N �Z
 ju�nj2 dx�� 4d�1# " NXn=0�tZ
 jr� x u�nj2 dx�# � C(T ) ; (4.19)provided that there exists a positive onstant C, independent of �t, suh that the projetedinitial data satis�esZ
[ ju�0j2 +�t jr� x u�0j2 ℄ dx� + Z
�D(1 + �t jq�j2 ) j 0j2M dq�dx� � C : (4.20)This is guaranteed by (3.45a), (3.48) and (4.1a,b). Furthermore, it follows from (4.18b), (3.46)and (4.20) thatmaxn=0!N ku�n�k2H2(
) � C �Z
 ju�0j2 dx� + T Z
�DW j 0j2 dq�dx�� � C(T ): (4.21)Let u��t(�; t) := t� tn�1�t u�n(�) + tn � t�t u�n�1(�); t 2 [tn�1; tn℄; n � 1; (4.22a)and u��t;+(�; t) := u�n(�); u��t;�(�; t) := u�n�1(�); t 2 (tn�1; tn℄; n � 1: (4.22b)We note for future referene thatu��t � u��t;� = (t� t�n ) �u��t�t ; t 2 (tn�1; tn); n � 1; (4.23)where t+n := tn and t�n := tn�1. Using the above notation, and introduing analogous notationfor fu�n�gNn=0 and f ngNn=0, (4.2) summed for n = 1! N an be restated as:Z T0 *�u��t�t ; w�+ dt+ Z T0 Z
 hh(u��t;� � r� x )u��t;+i � w� + �r� x u��t;+ : r� xw� i dx� dt= �k � Z T0 Z
 ��( �t;�) : r� xw� dx� dt 8w� 2 L 44�d (0; T ;V� ): (4.24)Similarly, (4.13) summed for n = 1! N an be restated as:Z T0 Z
�DW  �t;+(x�; q�; t)�  �t;�(y��t(x�; t); q�; t)�t '(x�; q�; t) dq�dx� dt+ Z T0 Z
�D �M2� r� q � �t;+M �� [!� (u��t;+� ) q�℄ �t;+� � r� q � 'M � dq�dx� dt = 08' 2 L2(0; T ;Kq); (4.25)27



wherey��t(x�; t) := y�n(u�n�; tn;x�; tn�1) and z��t(x�; t) := y�n(u�n�; tn�1;x�; tn); t 2 (tn�1; tn); n � 1:(4.26)Noting (4.20), (2.2) and (3.29), we have from (4.18a) thatsupt2(0;T )24Z
�D j �t(;�)(x�; q�; t)j2M dq�dx�35+ 1� Z T0 Z
�DM �����r� q   �t(;�)M !�����2 dq�dx� dt+ (�t)�1 Z T0 �Z
�DW j �t;+(x�; q�; t)�  �t;�(y��t(x�; t); q�; t)j2 dq�dx�� dt+ supt2(0;T ) �Z
 j[��( �t(;�))℄(x�; t)j2 dx�� � C : (4.27)In the above, the notation  �t(;�) means  �t with or without the supersripts �. Similarly, onnoting (4.20), we have from (4.18b), (4.19) and (4.21) thatsupt2(0;T ) �Z
 ju��t(;�)j2 dx��+ (�t)�1 Z T0 Z
 ju��t;+ � u��t;�j2 dx� dt+ � Z T0 Z
 jr� x u��t;(�)j2 dx�+ Z T0 S�� �u��t�t  4dH1(
) dt+ supt2(0;T ) ku��t(;�)� k2H2(
) � C: (4.28)We are now in a position to prove the following onvergene result.Lemma 4.1. There exists a subsequene of fu��t;  �tg�t, and funtions u� 2 L1(0; T ;L� 2(
)) \L2(0; T ;V� ) \W 1; 4d (0; T ;V� 0) and  2 L2(0; T ;K) with M� 12  2 L1(0; T ;L2(
�D)) suh thatas �t! 0, �t(;�)M 12 !  M 12 weak * in L1(0; T ;L2(
�D)); (4.29a)M 12 r� q � �t;+M �!M 12 r� q �  M� weakly in L2(0; T ;L� 2(
�D)); (4.29b)��( �t(;�))! ��( ) weak * in L1(0; T ;L� 2(
)); (4.29)and u��t(;�) ! u� weak * in L1(0; T ;L� 2(
)); (4.30a)u��t(;�) ! u� weakly in L2(0; T ;V� ); (4.30b)S���u��t�t ! S�� �u��t weakly in L 4d (0; T ;V� ); (4.30)u��t(;�) ! u� strongly in L2(0; T ;L� r(
)); (4.30d)u��t(;�)� ! u�� := S��u� strongly in L2(0; T ;W� 2;r(
)); (4.30e)where r 2 [1;1) if d = 2 and r 2 [1; 6) if d = 3.28



Proof. The result (4.29a) for  �t;+(x�; q�; t) and  �t;�(y��t(x�; q�); q�; t) follow immediately fromthe bounds on the �rst and the third term on the left-hand side of (4.27) on noting (4.14).Next we note from (4.26), (4.10), the bound on the �rst term on the left-hand side of (4.27) and(4.11a,b) that, for a.a. t 2 (0; T ),������ Z
�D [ �t;�(x�; q�; t)�  �t;�(y��t(x�; q�); q�; t) ℄M 12 '(x�; q�) dq�dx� ������= ������ Z
�D  �t;�(x�; q�; t)M 12 ['(x�; q�)� '(z��t(x�; q�); q�) ℄ dq� dx� ������� C�t ku��t;+� (�; t)kH2(
) k'kC0;1(
�D) 8' 2 C10 (
�D) : (4.31)Hene, the desired result in (4.29a) for  �t;� follows from (4.31), the bound on the �fth term onthe left-hand side of (4.28) and the denseness of C10 (
�D) in L2(
�D). The desired resultin (4.29a) for  �t then follows from that for  �t;� and the notation (4.22a,b).It follows immediately from the bound on the seond term on the left-hand side of (4.27)that (4.29b) holds for some limit g� 2 L2(0; T ;L� 2(
�D)), whih we need to identify. Howeverfor any �� 2 L2(0; T ;C� 10 (
�D)), it follows from (2.7), (2.18a,b) and the ompat support of ��on D that [r� q � (M 12 ��) ℄=M 12 2 L2(0; T ;L2(
�D)) and hene the above onvergene implies,on noting (4.29a), thatZ T0 Z
�D g� � �� dq�dx� dt �Z T0 Z
�D  �t;+M 12 r� q � (M 12 ��)M 12 dq�dx� dt! �Z T0 Z
�D  M 12 r� q � (M 12 ��)M 12 dq�dx� dt as �t! 0: (4.32)Hene the desired result (4.29b) follows from (4.32) on noting the denseness of C10 (
 �D) inL2(
�D). The desired result (4.29) follows immediately from (4.29a), (2.2), (2.3) and (2.20).The results (4.30a{) follow immediately from the bounds on the �rst four terms on theleft-hand side of (4.28). The strong onvergene result (4.30d) for u��t follows immediately from(4.30a,), (3.22) and (3.44), on noting that V� � H� 10(
) is ompatly embedded in L� r(
) forthe stated values of r. We now prove (4.30d) for u��t;�. First we obtain from the bound on theseond term on the left-hand side of (4.28) and (4.23) thatku��t � u��t;�k2L2(0;T;L2(
)) � C�t : (4.33)Seond, we note from Sobolev embedding that, for all � 2 L2(0; T ;H1(
)),k�kL2(0;T ;Lr(
)) � k�k�L2(0;T ;L2(
)) k�k1��L2(0;T ;Ls(
)) � C k�k�L2(0;T ;L2(
)) k�k1��L2(0;T ;H1(
)) (4.34)for all r 2 [2; s), with any s 2 (2;1) if d = 2 or any s 2 (2; 6℄ if d = 3, and� = [2 (s� r)℄=[r (s� 2)℄ 2 (0; 1℄:Hene, ombining (4.33), (4.34) and (4.30d) for u��t yields (4.30d) for u��t;�. Finally the desiredresult (4.30e) follows immediately from (4.30d) and (3.47a). ut29



It follows from (4.30a{d), (4.29) and (3.43) that we may pass to the limit, �t! 0, in (4.24)to obtain that u� 2 L1(0; T ;L� 2(
)) \ L2(0; T ;V� ) \W 1; 4d (0; T ;V� 0) and ��( ) 2 L1(0; T ;L� 2(
))satisfy (3.51a). It also follows from (4.1a) that u�(�; 0) = u�0(�) in the required sense.As we have no ontrol of the time derivative or the x� derivatives of  �t, in order to pass tothe �t! 0 limit in (4.25) these derivatives have to be transferred to the test funtions.On noting (4.10) and (4.26), we have for any �xed ' 2 C10 ((�T; T );K) and for �t suÆientlysmall thatZ T0 Z
�DW  �t;+(x�; q�; t)�  �t;�(y��t(x�; t); q�; t)�t '(x�; q�; t) dq�dx� dt= �Z T0 Z
�DW  �t;�(x�; q�; t)'(z��t(x�; t); q�; t)� '(x�; q�; t��t)�t dq�dx� dt� Z
�DW  0(x�; q�) � 1�t Z t10 '(x�; q�; t��t) dt� dq�dx� : (4.35)It follows from (4.26), (4.11b) and (4.28), for all ' 2 C10 ((�T; T );K) and for all (x�; q�; t) 2
�D � (0; T ) that'(z��t(x�; q�); q�; t)� '(x�; q�; t��t)�t = �'�t (x�; q�; t) + (u��t;+� (x�) � r� x )'(x�; q�; t) +R�t(')(x�; q�; t) ;wherejR�t(')(x�; q�; t)j�C (�t) 12 max(x�;t)2
�[�T;T ℄� j�'�t (x�; q�; t)j+jr� x '(x�; q�; t)j+ maxi;j=1;:::;d j �2'�xi�xj (x�; q�; t)j �:(4.36)Hene, on ombining (4.25), (4.35) and (4.36), we have for any �xed ' 2 C10 ((�T; T );K) andfor �t suÆiently small that� Z T0 Z
�DW  �t;� � �'�t + (u��t;+� � r� x )'+R�t(') � dq�dx� dt� Z
�DW  0(x�; q�) � 1�t Z t10 '(x�; q�; t��t) dt� dq�dx�+ Z T0 Z
�D �M2� r� q � �t;+M �� [!� (u��t;+� ) q�℄ �t;+� � r� q � 'M � dq�dx� dt = 0 : (4.37)It follows from (4.29a,b), (4.30e), (3.47a), (4.36), (4.14) and (4.1b) that we may pass to thelimit �t! 0 in (4.37) to obtain that  2 L2(0; T ;K) with M� 12  2 L1(0; T ;L2(
�D)) andu�� := S��u� 2 L2(0; T ;W� 1;1(
)) satisfy� Z T0 Z
�D  M � �'�t + (u�� � r� x )'� dq�dx� dt� Z
�D  0(�; �)M '(�; �; 0) dq� dx�+ Z T0 Z
�D �M2� r� q �  M�� [!� (u��) q�℄ � � r� q � 'M � dq�dx� dt = 08' 2 C10 ((�T; T );K) : (4.38)30



Noting that, by Lemma 3.1, C10 ((�T; T );K) is a dense subset of X (reall (3.50)), it followsthat (4.38) remains true for all ' 2 X . Hene we have proved existene of a global weak solutionto the weak formulation (3.51a,b) of the smoothed orotational model.Finally, we note that in the present orotational ase one an derive an upper bound on n. To do so, we proeed indutively. Assuming that for some Ln�1 2 R+ ,  n�1 � Ln�1Ma.e. in 
 � D, we then determine Ln 2 R+ in terms of Ln�1 suh that  n � LnM a.e. in
 � D. Now, from Lemma 3.3, (4.13), (4.14a,b) and (4.15), we have, for any Ln 2 R+ , that[ n � LnM ℄+ 2 Kq andan ([ n � LnM ℄+; [ n � LnM ℄+) = an ( n; [ n � LnM ℄+)� Ln an (M; [ n � LnM ℄+)= `n ([ n � LnM ℄+)� Ln an (M; [ n � LnM ℄+)= Z
�DW ( n�1(y�n(u�n�; tn;x�; tn�1); q�)� LnM ) [ n � LnM ℄+ dq�dx�� Z
�D �W (Ln�1 � Ln )M� [ n � LnM ℄+ dq�dx�: (4.39)On hoosing Ln = Ln�1 yields that the right-hand side of (4.39) is zero and hene from theoerivity of an (�; �) that [ n � LnM ℄+ � 0. Thus, by indution, we have for n = 1! N that0 �  n � LnM = L0M a.e. in 
�D; where L0 := sup(x�;q�)2
�D  0(x�; q�)M(q�) : (4.40)If L0 is �nite, then on realling the notation (4.22a,b), (4.40) gives rise to a uniform L1(0; T ;L1(
�D)) bound onM�1  �(;�). Moreover, it is then easily established that the limitM�1  2L1(0; T ;L1(
 � D)) with  � 0 a.e. on 
 � D � (0; T ), and hene the norm k � kX an berelaxed to the weaker norm k'kL2(0;T ;Kq) + k�'�t kL1(0;T ;L1(
�D)) + kr� x'kL1(0;T ;L1(
�D)).4.2 Nonorotational modelsIn order to mimi the formal energy estimate (3.41), we introdue a disrete-time proedure.Unlike the orotational ase above, it does not appear possible to deouple the Navier{Stokessystem from the probability density equation at eah time level and still mimi (3.41). As statedpreviously, we need smoothing on the right-hand side of (3.52a) in order to anel the smootheddrag term in (3.52b).Let A0(v�) := supx�2
 jr� x v�(x�)j2 8v� 2 V� \W� 1;1(
): (4.41)Then, for n = 1 ! N , given fu�n�1; An�1;  n�1g 2 V� � R+ �K+q , where An�1 = An�1(u�n�1� );
31



�nd fu�n; An(u�n�);  ng 2 V� � R+ �Kq suh thatZ
 "u�n � u�n�1�t + (u�n�1 � r� x )u�n# � w� dx� + � Z
r� x u�n : r� xw� dx�= �Z
 ��( n) : r� x (S� �w� ) dx� 8w� 2 V� ; (4.42a)Z
�D  n(x�; q�)�  n�1(y�n(u�n�; tn;x�; tn�1); q�)�t 'M dq�dx�+ Z
�D jq�j2 � (1 + �An(u�n�) ) n � (1 + �An�1) n�1(y�n(u�n�; tn;x�; tn�1); q�) ) � 'M dq�dx�+ 12� Z
�D M r� q � nM � � r� q � 'M � dq�dx�= Z
�D  n [ (r� x u�n�) q� ℄ � r� q � 'M � dq�dx� 8' 2 Kq; (4.42b)where u�n� := S��u�n and, for all v� 2 V� \W� 1;1(
),An(v�) := supx�2
 jr� x v�(x�)j2: (4.43)Similarly to (4.3), it is onvenient to rewrite (4.42a) asbn(u�n; w� ) = Z
 hu�n�1 � w� ��t ��( n) : r� x (S��w� )i dx� 8w� 2 V� ; (4.44)where bn(�; �) is de�ned as in (4.4). It is also onvenient to rewrite (4.42b) asang (u�n�)( n; ') = `ng (u�n�)(') 8' 2 Kq; (4.45)where, for all '1; '2; ' 2 Kq and v� 2 V� \W� 1;1(
),ang (v�)('1; '2) := Z
�D �W ng (v�)'1 '2 +�t �M2� r� q �'1M �� [(r� x v�) q�℄'1� � r� q �'2M �� dq�dx�;(4.46a)`ng (v�)(') := Z
�DW n�1g  n�1(y�n(v�; tn;x�; tn�1); q�)' dq�dx�; (4.46b)W ng (v�) := 1 +�t jq�j2 (1 + �An(v�) )M and W n�1g = 1 +�t jq�j2 (1 + �An�1 )M : (4.46)On noting that v� 2 V� \ W� 1;1(
) and (4.10), it follows that ang (v�)(�; �) is a ontinuous non-symmetri bilinear funtional on Kq �Kq and `ng (v�)(�) is a linear funtional on Kq. Moreover,on applying a Young's inequality, we see thatang (v�)(';') � Z
�D �W j'j2 + �tM4� ���r� q � 'M ����2� dq�dx� 8' 2 Kq; (4.47)that is, ang (v�)(�; �) is oerive on Kq �Kq. 32



In order to prove existene of a solution to (4.42a,b), we onsider a �xed point argument.Given bu� 2 L� r(
), r > d, let f ?; u�?g 2 Kq � V� be suh thatang (bu��)( ?; ') = `ng (bu��)(') 8' 2 Kq; (4.48a)bn(u�?; w� ) = Z
 hu�n�1 � w� ��t ��( ?) : r� x (S��w� )i dx� 8w� 2 V� ; (4.48b)where, on realling (3.47a), bu�� := S��bu� 2 V� \W� 1;1(
). On noting (4.47), the Lax{Milgramtheorem yields the existene of a unique solution to (4.48a). Similarly to (4.3), on noting (3.45b),there exists a unique solution to (4.48b). Therefore the overall proedure (4.48a,b) is well-posed.Lemma 4.2. Let G� : L� r(
) ! V� � L� r(
), r 2 (d; 6), denote the nonlinear map that takes bu� tou�? = G� (bu�) via the proedure (4.48a,b). Then G� has a �xed point. Hene there exists a solutionfu�n; An(u�n�);  ng 2 V� � R+ �Kq to (4.42a,b).Proof. Clearly, a �xed point of G� yields a solution of (4.42a,b). In order to show that G�has a �xed point, we apply Shauder's �xed point theorem; that is, we need to show that (i)G� : L� r(
)! L� r(
), r 2 (d; 6), is ontinuous, (ii) ompat, and (iii) there exists a C? 2 R+ suhthat kbu�kLr(
) � C? (4.49)for every bu� 2 L� r(
) and � 2 (0; 1℄ satisfying bu� = � G� (bu�).Let fbu�(i)gi�0 be suh thatbu�(i) ! bu� strongly in L� r(
) as i!1: (4.50)We need to show thatbv�(i) := G� (bu�(i))! G� (bu�) strongly in L� r(
) as i!1; (4.51)in order to prove (i) above. We have from the de�nition of G� , see (4.48a,b), that, for all i � 0 ,bn(bv�(i); w� ) = Z
 hu�n�1 � w� ��t ��( b (i)) : r� x (S��w� )i dx� 8w� 2 V� ; (4.52a)where b (i) 2 Kq satis�es ang (bu�(i)� )( b (i); ') = `ng (bu�(i)� )(') 8' 2 Kq; (4.52b)and from (3.47a) we have thatbu�(i)� := S�� bu�(i) ! bu�� := S�� bu� strongly in W� 2;r(
) �W� 1;1(
) as i!1: (4.52)Choosing w� � v�(i) in (4.52a), and noting (3.25), (4.5), (2.2), (3.45b) and (3.27), yields, similarlyto (4.6), that, for all i � 0, bv�(i) 2 V� satis�esZ
 hjbv�(i)j2 + jbv�(i) � u�n�1j2 � ju�n�1j2i dx� +�t � Z
 jr� x bv�(i)j2 dx�� C�t Z
�D j b (i)j2M dq�dx� ; (4.53)33



Choosing ' � b (i) in (4.52b), and noting (4.47), (4.46b,), (4.14) and (4.10) yields, for all i � 0,thatZ
�D 24W j b (i)j2 + �tM2� �����r� q  b (i)M !�����235 dq�dx�� (1 + �An�1)2 Z
�DW j n�1j2 dq�dx� � C: (4.54)On ombining (4.53) and (4.54), and noting an embedding result, see (3.21), and a Poinar�einequality, we have for all i � 0 thatkbv�(i)kLr(
) � C kr� x bv�(i)kL2(
) � C : (4.55)Similarly to the proof of Lemma 4.1, it follows from (4.54) and (4.55), on noting the ompatnessof the embedding H� 1(
) ,! L� r(
), r 2 (d; 6), that there exists a subsequene f b (ik);bv�(ik)gik�0and funtions b 2 Kq and bv� 2 V� suh thatW 12 b (ik) !W 12 b weakly in L2(
�D) as ik !1; (4.56a)M 12 r� q  b (ik)M !!M 12 r� q  b M! weakly in L� 2(
�D) as ik !1; (4.56b)��( b (ik))! ��( b ) weakly in L� 2(
�D) as ik !1; (4.56)bv�(ik) ! bv� weakly in H� 1(
) as ik !1; (4.56d)bv�(ik) ! bv� strongly in L� r(
) as ik !1: (4.56e)It follows from (4.52a), (4.4) and (4.56,d), that bv� 2 V� and b 2 Kq satisfybn(bv�; w� ) = Z
 hu�n�1 � w� ��t ��( b ) : r� x (S��w� )i dx� 8w� 2 V� : (4.57)For a �xed ' 2 Kq, and any Æ > 0, there exists, on realling the density of K in Kq (f. the linebelow (3.49)), a 'Æ 2 K suh that for all v� 2 V� \ C� 0;1(
)j `ng (v�)('� 'Æ) j � C k'� 'ÆkKq � Æ : (4.58)We have from (4.46b), (4.9), (4.10) and (4.12) that, for all v�a; v�b 2 C� 0;1(
),j `ng (v�a)('Æ)� `ng (v�b)('Æ) j= ���� Z
�DW n�1g  n�1(x�; q�) �'Æ(y�n(v�a; tn�1;x�; tn); q�)� 'Æ(y�n(v�b; tn�1;x�; tn); q�)� dq� dx� ����� C kr� x 'ÆkL1(
�D) ky�n(v�a; tn�1;x�; tn)� y�n(v�b; tn�1;x�; tn)kL1(
)� C(kv�akC0;1(
); kv�bkC0;1(
)) kr� x 'ÆkL1(
�D) kv�a � v�bkL1(
): (4.59)Combining (4.58) and (4.59) yields, on noting (4.52), that`ng (bu�(i)� )(')! `ng (bu��)(') as i!1; 8' 2 Kq: (4.60)34



Hene it follows from (4.52b), (4.46a,), (4.43), (4.56a,b), (4.52) and (4.60) that bu�� := S��bu� 2V� \W� 2;r(
) and b 2 Kq satisfyang (bu��)( b ;') = `ng (bu��)(') 8' 2 Kq: (4.61)Combining (4.61) and (4.57), we have that bv� = G� (bu�) 2 V� . Therefore the whole sequenebv�(i) � G� (bu�(i))! G� (bu�) strongly in L� r(
) as i!1, and so (i) holds.As the embedding V� ,! L� r(
), r 2 (d; 6), is ompat; it follows that (ii) holds.As regards (iii), bu� = � G� (bu�) implies that f b ; bu�g 2 Kq � V� satis�esang (bu��)( b ;') = `ng (bu��)(') 8' 2 Kq; (4.62a)bn(bu�; w� ) = � Z
 hu�n�1 � w� ��t ��( b ) : r� x (S��w� )i dx� 8w� 2 V� ; (4.62b)where bu�� := S��bu�. As  n�1 2 K+q and b 2 Kq =) [ b ℄� 2 Kq, reall Lemma 3.3, it follows from(4.62a) and (4.46a,b) thatang (bu��)([ b ℄�; [ b ℄�) = ang (bu��)( b ; [ b ℄�) = `ng (bu��)([ b ℄�) � 0: (4.63)Therefore (4.47) yields that [ b ℄� = 0; that is, b 2 K+q . On hoosing w� � bu� in (4.62b), andnoting (2.2) and that bu�� 2 V� yields, similarly to (4.6), that12 Z
 h jbu�j2 + jbu� � � u�n�1j2 � �2 ju�n�1j2 i dx� +�t � Z
 jr� x bu�j2 dx�= ��t � k � Z
C� ( b ) : r� x bu�� dx�: (4.64)Choosing ' =M in (4.62a) and noting (4.10) yields thatZ
�D[ 1 +�t jq�j2 (1 + �An(bu��) ) ℄ b dq�dx� = Z
�D[ 1 + �t jq�j2 (1 + �An�1) ℄ n�1 dq�dx�:(4.65)Choosing ' = U M in (4.62a), and noting (2.8), (2.3), (4.10), Lemma 3.2, (2.7) and (2.17) yields,
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similarly to (3.40), thatZ
�D( b �  n�1)U dq�dx� ��t Z
C� ( b ) : r� x bu�� dx�+�t Z
�D jq�j2 h (1 + �An(bu��) ) b � ( 1 + �An�1) n�1 i U dq�dx�= ��t2� Z
�DM r� q  b M! � U 0 q�dq�dx�= �t2� Z
�D ��U 00 � (U 0)2� jq�j2 + dU 0� b dq�dx�� ��t 22� Z
�fjq�j2� d2 g jq�j2 U 0 b dq�dx� + �t d2� Z
�fjq�j2� d2 g U 0 b dq�dx�� ��t 22� Z
�fjq�j2� d2 g jq�j2 U 0 b dq�dx�+ C�t Z
�D �1 +�t jq�j2 (1 + �An(bu��) ) � b dq�dx�: (4.66)Combining (4.64) and (4.66) multiplied by � k �, and noting (4.65) yields that12 Z
 h jbu�j2 + jbu� � � u�n�1j2 i dx� +�t � Z
 jr� x bu�j2 dx�+ � k � Z
�D � 1 +�t jq�j2 (1 + �An(bu��) ) � U b dq�dx�+ �t � k � 22� Z
�fjq�j2� d2 g jq�j2 U 0 b dq�dx�� 12 �2 Z
 ju�n�1j2 dx� + � k � Z
�D � 1 +�t jq�j2 (1 + �An�1 ) � U  n�1 dq�dx�+ C � k ��t Z
�D � 1 +�t jq�j2 (1 + �An�1 ) �  n�1 dq�dx�: (4.67)As b 2 K+q , then (4.67) gives rise to the desired bound (4.49) with C dependent on �t, onnoting the embedding V� ,! L� r(
). Hene (iii) holds and so G� has a �xed point. Thus we haveproved existene of a solution to (4.42a,b). utRepeating the arguments (4.63){(4.67) for the solution fu�n;  ng of (4.42a,b) yields that n 2 K+q and (4.67) holds with � = 1 and fbu�; b g replaed by fu�n;  ng. Summing this fromn = 1! m, m = 1! N , and noting by indution on (4.65) thatZ
�D �1 +�t jq�j2 (1 + �An�1) �  n�1 dq�dx� = Z
�D �1 +�t jq�j2 (1 + �A0) �  0 dq�dx�; (4.68)
36



and (4.20) yields the analogue of (3.42)12 " maxn=1!N �Z
 ju�nj2 dx��+ NXn=1Z
 ju�n � u�n�1j2 dx�#+ � NXn=1�t Z
 jr� x u�nj2 dx�+ k � maxn=1!N �Z
�D U  n dq�dx��+ k � 22� NXn=1�t Z
�fjq�j2� d2 g jq�j2 U 0  n dq�dx�+�t maxn=1!N �Z
�D jq�j2 (1 + �An(u�n�) )U  n dq�dx��� 12 Z
 ju�0j2 dx� + C(T ) Z
�D �1 +�t jq�j2 (1 + �A0)� (1 + U) 0 dq�dx�� C: (4.69)The bounds on  n in (4.69) do not suÆe in order to pass to the limit �t! 0 in the summationover n of (4.42b). One needs to establish additional bounds on  n. We on�ne ourselves to thephysially more realisti ase of FENE-type models.It follows from (4.43), (3.47b), (3.21), (4.69) and (4.20) that, for any � 2 [1; 1 ℄,NXn=1�t (An�1)� = NXn=1�t kr� x u�n�1� k2�L1(
) � C(�) NXn=1�t ku�n�1k2�Lr(
)� C(�) NXn=1�t ku�n�1k2 � (1�)L2(
) kr� x u�n�1k2� L2(
)� C(�) NXn=1�t kr� x u�n�1k2L2(
)!� � C1(�); (4.70)where r 2 (d; 6℄ and  2 [d (r � 2)=(2 r); 1℄. Choosing ' =  n in (4.45) and noting (4.46),(4.14) and (4.47) yields thatZ
�DW  n ( n �  n�1(y�n(u�n�; tn;x�; tn�1); q�) ) dq� dx� + �t4� Z
�DM ����r� q � nM �����2 dq�dx�� �t �An�1 Z
�D jq�j2M  n  n�1(y�n(u�n�; tn;x�; tn�1); q�) dq�dx�: (4.71)Applying the identity (4.5) and a Young's inequality to (4.71), and noting (4.10), that D isbounded and (4.70) with C1 � C1(1), yields(1� 12 C�11 �tAn�1) Z
�DW j nj2 dq�dx� + Z
�DW j n �  n�1(y�n(u�n�; tn;x�; tn�1); q�)j2 dq�dx�+ �t2� Z
�DM ����r� q � nM �����2 dq�dx� � (1 + C2�tAn�1) Z
�DW j n�1j2 dq�dx�: (4.72)It follows from (4.72) thatZ
�DW j nj2 dq�dx� � 1 + C2�tAn�11� 12 C�11 �tAn�1 Z
�DW j n�1j2 dq�dx�� eC�t An�1 Z
�DW j n�1j2 dq�dx�: (4.73)37



Hene ombining (4.73) and (4.70) with � = 1, summing (4.72) from n = 1 ! N and noting(3.27) yields the bounds (4.18a) for the general nonorotational FENE model; in partiular:maxn=1!N �Z
�DW j nj2 dq�dx��+ 1� NXn=1�t Z
�DM ����r� q � nM �����2 dq�dx�+ NXn=1Z
�DW j n(x�; q�)�  n�1(y�n(u�n�; tn; x�; tn�1)); q�)j2 dq�dx�+ maxn=0!N �Z
 jC� ( n)j2 dx�� � C: (4.74)Finally on hoosing w� � S�� �u�n�u�n�1�t � 2 V� in (4.42a) yields, on noting (3.45b), a diretanalogue of (4.7) and (4.19):NXn=1�t0�Z
 24� �����r� x "S�� u�n � u�n�1�t !#�����2 + �����S�� u�n � u�n�1�t !�����235 dx�1A 2d � C: (4.75)We have now established all of the analogues of the bounds (4.18a,b) and (4.19) in the orota-tional ase for the general nonorotational FENE-type potentials, see (4.69), (4.74) and (4.75)above. The remainder of the onvergene proof follows exatly the same arguments as in theorotational ase. The only di�erenes are: (i) the presene of S�� on the right-hand side of(4.42a); and (ii) the term involving An(u�n�) in ang (u�n�)(�; �) and the term involving An�1 in `ng (�).Obviously (i) auses no diÆulties whatsoever. Hene we omment only on (ii).Therefore to prove existene of a solution to (3.52a,b), we need only to show, on noting thenotation (4.22a,b), that, for all ' 2 C10 ((�T; T );K),Z T0 Z
�D jq�j2M � (1 + �A�t;+) �t;+(x�; q�; t)� (1 + �A�t;�) �t;�(y��t(x�; q�); q�; t) � 'dx� dq�dt! 0 as �t! 0; (4.76)where A�t;+ and A�t;� are de�ned analogously to  �t;+, u��t;+ and  �t;�, u��t;�, respetively.Now, similarly to (4.35), we have from (4.10), (4.26), (4.36), (4.74) and (4.70) for any' 2 C10 ((�T; T );K) that, for �t suÆiently small,������ Z T0 Z
�D jq�j2M � (1 + �A�t;+) �t;+(x�; q�; t)� (1 + �A�t;�) �t;�(y��t(x�; q�); q�; t) � 'dx� dq�dt ������= ������t Z T0 Z
�D jq�j2M (1 + �A�t;�) �t;� � �'�t + (u��t;+� � r� x )'+R�t(') � dq�dx� dt��t Z
�D jq�j2M (1 + �A0) 0(x�; q�) � 1�t Z t10 '(x�; q�; t��t) dt� dq�dx� ����� C(')�t Z T0 (1 + �A�t;�) dt � C(')�t : (4.77)38



Hene the desired result (4.76) holds. Therefore we have proved global existene of a solu-tion to the weak formulation (3.52a,b) of the smoothed nonorotational model for FENE-typepotentials.Remark 4.1. The argument presented above for nonorotational FENE-type models breaks downfor nonorotational Hookean models, sine in the transition from bound (4.71) to (4.72) we ex-ploit the fat that D is bounded. The diÆulty ould be overome if one ould obtain a maximumpriniple on  n along the lines of (4.39). Unfortunately, in the ase of D = Rd this does notappear to be readily ahievable. Having said this, our main fous of interest in the present ar-tile have been FENE-type mirosopi-marosopi models for diluted polymers where D is abounded open ball in Rd : for, the fat that in Hookean-type models the domain D is equal to thewhole of Rd stems from the physially unrealisti modelling assumption that the length jq�j of theelongation-vetor q� 2 D of a polymer hain may be arbitrarily large.Remark 4.2. It is plausible that the existene of global weak solutions to the original modelproblem (P) ould be established, without smoothing of the model, by ombining the ideas devel-oped here with the DiPerna-Lions theory of renormalised solutions to linear �rst-order hyperboliproblems with oeÆients in Sobolev spaes [5℄; see also the more reent work of Ambrosio [1℄on the subjet of �rst-order linear hyperboli PDEs with non-smooth oeÆients. This line ofinvestigation will, however, require a notion of weak solution di�erent from the one onsideredhere, and will be the subjet of future researh.Aknowledgement: Part of this work was arried out while the authors partiipated in theResearh Programme Computational Challenges in Partial Di�erential Equations at the IsaaNewton Institute, Cambridge, UK, between January and July 2003.Referenes[1℄ Ambrosio, L., Transport equation and Cauhy problem for BV vetor �elds. InventionesMathematiae (Aepted for publiation), 2004.[2℄ Besov, O.V. & Kufner, A., On the density of smooth funtions in weighted spaes. (InRussian). Czehoslovak Math. J. 18(93), (1968) 178{188.[3℄ Bird, R., Curtiss, C., Armstrong, R., & Hassager, O., Dynamis of PolymeriLiquids, Vol 2., Kineti Theory. John Wiley & Sons, New York, 1987.[4℄ Degond, D., Lemou, M., & Piasso, M., Visoelasti uid models derived from kinetiequations for polymers. SIAM J. Appl. Math. 62, (2002) 1501{1519.[5℄ DiPerna R.J. & Lions, P.-L., Ordinary di�erential equations, transport theory andSobolev spaes. Inventiones Mathematiae 98, (1989) 511{547.[6℄ Doi, M. & Edwards, S.F., The Theory of Polymer Dynamis. Oxford University Press,Oxford, 1988.[7℄ El-Kareh, A.W. & Leal, L.G., Existene of solutions for all Deborah numbers for anon-Newtonian model modi�ed to inlude di�usion. J. Non-Newtonian Fluid Meh. 33,(1989) 257{287. 39
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