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t. We study the existen
e of global-in-time weak solutions to a 
oupled mi
ros
opi
-ma
ros
opi
 bead-spring model whi
h arises from the kineti
 theory of diluted solutions of polymeri
 liquids with nonintera
tingpolymer 
hains. The model 
onsists of the unsteady in
ompressible Navier{Stokes equations in a bounded domain
 � Rd , d = 2; 3, for the velo
ity and the pressure of the 
uid, with an extra-stress tensor as right-hand side inthe momentum equation. The extra-stress tensor stems from the random movement of the polymer 
hains andis de�ned through the asso
iated probability density fun
tion whi
h satis�es a Fokker{Plan
k type degenerateparaboli
 equation. Upon appropriate smoothing of the 
onve
tive velo
ity �eld in the Fokker{Plan
k equation,and in some 
ir
umstan
es, of the extra-stress tensor, we establish the existen
e of global-in-time weak solutions tothis regularised bead-spring model for a general 
lass of spring-for
e-potentials in
luding in parti
ular the widelyused FENE (Finitely Extensible Nonlinear Elasti
) model.1 Introdu
tionThe purpose of this paper is to explore the question of global existen
e of weak solutions to aset of partial di�erential equations whi
h arises from the kineti
 theory of the 
ow of a dilutedsolution of polymeri
 liquid in a domain 
 � Rd , d = 2; 3. The simplest model of this kind toa

ount for nonintera
ting polymer 
hains is the so-
alled dumbbell model (
f. [3℄); a dumbbell
onsists of two beads 
onne
ted by an elasti
 spring. Following [4℄, at time t the dumbbellis 
hara
terised by the position of its 
entre of mass X� (t) and its elongation ve
tor Q� (t) (seeFigure 1). When a dumbbell is pla
ed into a given velo
ity �eld u�(x�; t), three for
es a
t on ea
hbead: the �rst for
e is the drag for
e proportional to the di�eren
e between the bead velo
ityand the velo
ity of the surrounding 
uid parti
les; the se
ond for
e is the elasti
 for
e F� dueto the spring sti�ness; the third for
e is due to thermal agitation and is modelled by Brownianmotion.On res
aling the elongation ve
tor, Newton's equations of motion for the beads give rise to
1
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Figure 1: Nonintera
ting polymer 
hains, immersed into an in
ompressible 
ow with velo
ity u�,are modelled by using dumbbells, ea
h dumbbell representing a polymer 
hain. A dumbbell is apair of beads 
onne
ted with an elasti
 spring. At time t � 0, the dumbbell is 
hara
terised bythe position X� (t) of its 
entre of mass and its elongation ve
tor Q� (t).the following set of sto
hasti
 di�erential equations:dX� = u�(X� (t); t) dt; (1.1a)dQ� = �r� X u�(X� (t); t)Q� (t)� 12� F� (Q� (t))� dt� 1p� dW� (t); (1.1b)where W� is a ve
tor of independent s
alar Wiener pro
esses, F� (Q� ) denotes the elasti
 for
ea
ting on the 
hain due to elongation, the positive parameter � = �=(4H) 
hara
terises theelasti
 property of the 
uid, with � denoting the drag 
oeÆ
ient and H the spring sti�ness. Fordetails, we refer, for example, to [3, 6, 10, 17℄.The present paper is 
on
erned with the well-posedness of the deterministi
 restatementof this problem. For this purpose, let  (x�; q�; t) denote the probability density fun
tion 
or-responding to the ve
tor-valued sto
hasti
 pro
ess (X� (t); Q� (t)); thus,  (x�; q�; t) represents theprobability, at time t, of �nding the 
entre of mass of a dumbbell at a position `between' x� andx� + dx� and having elongation `between' q� and q�+ dq�.Now, let us suppose that the elasti
 for
e F� : D � Rd ! Rd , d = 2; 3, of the spring isde�ned through a (suÆ
iently smooth) potential U : R�0 ! R viaF� (q�) = U 0(12 jq�j2) q�: (1.2)Then, the evolution of the probability density fun
tion  (x�; q�; t) of the sto
hasti
 pro
ess(X� (t); Q� (t)) de�ned by (1.1a,b) satis�es the Fokker{Plan
k equation (2.4a) below for (x�; q�; t) 2
 � D � R>0 , subje
t to appropriate initial and boundary 
onditions; 
f. (2.4b,
). Due tothe fa
t that, unlike (1.1b), the di�erential equation (1.1a) does not involve random e�e
ts, theFokker{Plan
k equation for the asso
iated probability density fun
tion is a degenerate paraboli
equation for  (x�; q�; t), with no di�usion in the x�-dire
tion. The velo
ity �eld u� appearing in2



(2.4a) is, in turn, found by solving the in
ompressible Navier{Stokes equations (2.1a,b) below,subje
t to the initial and boundary 
onditions (2.1
,d). The right-hand side of the momentumequation (2.1a) models the non-Newtonian e�e
ts through the presen
e of the extra-stress ten-sor �� whi
h depends on the probability density fun
tion  (see, (2.2), (2.3)). Our aim hereis to explore the existen
e of global-in-time solutions of this 
oupled `mi
ros
opi
-ma
ros
opi
'model.An early e�ort to show the existen
e and uniqueness of lo
al-in-time solutions to a familyof bead-spring type polymeri
 
ow models is due to Renardy [18℄. While the 
lass of potentialsF� (q�) 
onsidered in [18℄ (
f. hypotheses (F) and (F') on pp.314{315) does in
lude the 
aseof Hookean dumbbells, with F� (q�) = q�, it ex
ludes the pra
ti
ally relevant 
ase of the FENE(Finitely Extensible Nonlinear Elasti
) model whereF� (q�) =  1� jq�j2b !�1 q�; jq�j < b; b > 0:In a re
ent paper Jourdain, Leli�evre and le Bris [11℄ studied the existen
e of solutions to theFENE model in the 
ase of a simple Couette 
ow; by using tools from the theory of sto
hasti
di�erential equations, they established the existen
e of a unique lo
al-in-time solution to theFENE model in two spa
e dimensions (d = 2) when the velo
ity �eld u� is unidire
tional and ofthe parti
ular form u�(x1; x2) = (u1(x2); 0)>. The notion of solution for whi
h existen
e is provedin [11℄ is mixed deterministi
-sto
hasti
 in the sense that it is deterministi
 in the `ma
ros
opi
'variable x, but sto
hasti
 in the `mi
ros
opi
' variable q�. In 
ontrast, our notion of solution (
f.Se
tion 3 below) is deterministi
 both ma
ros
opi
ally and mi
ros
opi
ally, sin
e the mi
ros
alesare modelled here by the probability density fun
tion  (x�; q�; t). The 
hoi
e between these dif-ferent notions of solution has far-rea
hing reper
ussions 
on
erning 
omputational simulation:mixed deterministi
-sto
hasti
 notions of solution ne
essitate the use of Monte Carlo-type al-gorithms for the numeri
al approximation of polymer 
on�gurations, as proposed, e.g., in [17℄and referen
es therein as well as in [10℄; whereas weak solutions in the sense 
onsidered in thepresent paper 
an be approximated by entirely deterministi
 (e.g. Galerkin-type) s
hemes, ashas been done, for example, in [16℄.In the 
ase of Hookean dumbbells, the 
oupled mi
ros
opi
-ma
ros
opi
 model des
ribedabove yields, formally, on taking the se
ond moment of q� 7!  (q�; x�; t), the fully ma
ros
opi
,Oldroyd-B model of vis
o-elasti
 
ow (
f. Se
tion 2.2). In [15℄, Lions and Masmoudi show theexisten
e of global-in-time weak solutions to the Oldroyd-B model in a simpli�ed 
ase whi
h,in our 
oupled mi
ros
opi
-ma
ros
opi
 setup, dire
tly 
orresponds to assuming that the dragterm in (2.4a) is 
orotational: that is, the tensor ��(u�) is skew-symmetri
 in the sense that��(u�) = �[��(u�)℄>. The argument in [15℄ is based on exploiting the propagation in time of the
ompa
tness of the solution. It is not known if an identi
al global existen
e result for theOldroyd-B model also holds in the absen
e of the 
ru
ial assumption that the drag term is
orotational.The present paper is 
on
erned with the proof of existen
e of global-in-time weak solutions tothe 
oupled mi
ros
opi
-ma
ros
opi
 model (2.1a{d), (2.4a{
). Our hypotheses on the potentialU admit a fairly large 
lass of models, in
luding the Hookean dumbbell model as well as generalFENE-type models. Unlike [15℄, we do not need to assume that the 
ow is 
orotational inthe FENE 
ase. However, the level of generality pursued here 
omes at a pri
e: in order to
omplete our existen
e proofs, the velo
ity �eld appearing in the drift-term of the Fokker{Plan
k3



equation (2.4a) had to be suitably molli�ed in the 
ase of 
orotational mi
ros
opi
-ma
ros
opi
models, and in the 
ase of general, non
orotational models, the extra-stress tensor �� on theright-hand side of (2.1a) had to be molli�ed also. A possible physi
al justi�
ation for theproposed modi�
ation of the original mathemati
al model, through smoothing the velo
ity �eldin parti
ular terms in the model, is that many 
ows of diluted solutions of polymers tend to beslow, with a smoothly varying velo
ity �eld.The molli�
ation of the velo
ity �eld 
onsidered here is stimulated by the Leray-� model ofthe in
ompressible Navier{Stokes equations (the vis
ous Camassa{Holm equations), proposedby Foias, Holm and Titi [8℄, in a bounded open set 
 � Rd with boundary �
:Find u� : (x�; t) 2 Rd+1 7! u�(x�; t) 2 Rd , d = 2; 3, and p : (x�; t) 2 Rd+1 7! p(x�; t) 2 R su
h that�u��t + (v� � r� x )u� � ��x u� +r� x p = f� in 
� (0; T ℄; (1.3a)r� x � u� = 0 in 
� (0; T ℄; (1.3b)u� = 0� on �
� (0; T ℄; (1.3
)u�(x�; 0) = u�0(x�) 8x� 2 
; (1.3d)where u� is the velo
ity �eld, p is the pressure of the 
uid, � 2 R>0 is the vis
osity, f� is a givenbody for
e, and v�(�; t) is a smoothing of u�(�; t) de�ned as the solution of the Helmholtz problemv�� ��x v� = u� in 
; (1.4a)v� = 0� on �
; (1.4b)where � > 0 is a regularisation parameter.With v� thus de�ned one 
annot dedu
e from (1.4a,b) that r� x �v� = 0 on 
. As we would likev� to resemble u� both in terms of its in
ompressibility and the boundary 
onditions it satis�es,instead of (1.4a,b) we shall seek the smoothing v� of u� from the following Helmholtz-Stokesproblem v�� ��x v�+r� x � = u� in 
; (1.5a)r� x � v� = 0 in 
; (1.5b)v� = 0� on �
; (1.5
)where � is a pressure-like auxiliary variable. Sin
e, stri
tly speaking, � does not have a physi
almeaning, it is best thought of as a Lagrange multiplier whose role is to enfor
e in
ompressibility.We remark that smoothing, albeit of a somewhat di�erent kind, is also 
on
eivable on phys-i
al grounds, sin
e equations (1.1a,b) 
ould be modi�ed todX� = u�(X� (t); t) dt+ "dW� (t); (1.6a)dQ� = �r� X u�(X� (t); t)Q� (t)� 12� F� (Q� (t))� dt� 1p� dW� (t); (1.6b)where " > 0 is a small parameter and W� (t) is an independent ve
tor of Wiener pro
essesmodelling, for example, thermal vibrations of the (
enter of gravity) of the dumbbell. A 
loselyrelated smoothing on the ma
ros
opi
 level is 
onsidered in the work of El-Kareh and Leal [7℄.4



The paper is stru
tured as follows. In Se
tion 2, we formulate the 
lass of models 
onsidered.As an illustration, we show how the Hookean dumbbell model and the FENE model �t into thegeneral setting. In Se
tion 3 we introdu
e a family of weighted Sobolev spa
es whi
h representthe natural setting for the problem; we also establish 
ru
ial density and tra
e results. In orderto motivate the energy estimates whi
h, ultimately, via weak 
ompa
tness, lead to the existen
eof global weak solutions, we establish formal energy estimates and introdu
e our smoothingoperator. We then use these to rigorously de�ne our weak formulation of the problem. In Se
tion4 we embark on the proof of existen
e of global weak solutions, starting with the analysis ofthe simpler, 
orotational 
ase for both Hookean and FENE-type models. We 
on
lude with theproof of existen
e of global weak solutions for the physi
ally more realisti
 FENE-type modelsin the general 
ase, without assuming that the drag term is 
orotational.2 Polymer modelsWe term polymer models under 
onsideration here mi
ros
opi
-ma
ros
opi
 type models, sin
ethe 
ontinuum me
hani
al ma
ros
opi
 equations of in
ompressible 
uid 
ow are 
oupled to ami
ros
opi
 model: the Fokker{Plan
k equation des
ribing the statisti
al properties of parti
lesin the 
ontinuum. We �rst present these equations and 
olle
t assumptions on the parametersin the model.2.1 Mi
ros
opi
-ma
ros
opi
 polymer modelsLet 
 � Rd be a bounded open set with a Lips
hitz-
ontinuous boundary �
, and suppose thatthe set D � Rd , d = 2 or 3, of admissible elongation ve
tors q� in (1.1b) is an open set whi
hmay be bounded or unbounded. For the sake of simpli
ity of presentation, we shall supposethat D is either a bounded open ball in Rd , or D = Rd ; these two 
ases 
over all pra
ti
allyrelevant s
enarios involving the mi
ros
opi
-ma
ros
opi
 models dis
ussed here. Our argumentsin the 
ase when the 
on�guration domain D is a bounded open ball 
an be extended, withonly minimal 
hanges, to situations when D is any bounded open domain in Rd with smoothboundary (e.g. an ellipse, to a

ount for anisotropy in the mole
ule's 
on�guration).We 
onsider the following initial-boundary-value problem.(P) Find u� : (x�; t) 2 Rd+1 7! u�(x�; t) 2 Rd and p : (x�; t) 2 Rd+1 7! p(x�; t) 2 R su
h that�u��t + (u� � r� x )u� � ��x u� +r� x p = r� x � ��( ) in 
� (0; T ℄; (2.1a)r� x � u� = 0 in 
� (0; T ℄; (2.1b)u� = 0� on �
� (0; T ℄; (2.1
)u�(x�; 0) = u�0(x�) 8x� 2 
; (2.1d)where � 2 R>0 is the vis
osity and ��( ) : (x�; t) 2 Rd+1 7! ��( )(x�; t) 2 Rd�d is the symmet-ri
 extra-stress tensor, dependent on a probability density fun
tion  : (x�; q�; t) 2 R2d+1 7!5



 (x�; q�; t) 2 R, de�ned as ��( ) = k � (C� ( )� �( ) I�): (2.2)Here k; � 2 R>0 are, respe
tively, the Boltzmann 
onstant and the absolute temperature, I� isthe unit d� d tensor, andC� ( )(x�; t) = ZD  (x�; q�; t)U 0(12 jq�j2) q� q�> dq� and �( )(x�; t) = ZD  (x�; q�; t) dq�: (2.3)In addition, the real-valued, 
ontinuous, nonnegative and stri
tly monotoni
 in
reasing fun
tionU , de�ned on a relatively open subset of [0;1), is an elasti
 potential whi
h gives the elasti
for
e F� : D ! Rd on the springs via (1.2).The probability density  (x�; q�; t) represents the probability at time t of �nding a dumbbelllo
ated `between' x� and x� + dx� having elongation `between' q� and q�+ dq�. Hen
e �(x�; t) is thedensity of the polymer 
hains lo
ated at x� at time t. It follows from (1.1a,b) that  satis�es theFokker{Plan
k equation, together with suitable boundary and initial 
onditions:� �t + (u� � r� x ) +r� q � (��(u�) q� ) = 12� r� q � (r� q  + U 0 q� ) in 
�D � (0; T ℄; (2.4a) = 0 on 
� �D � (0; T ℄; (2.4b) (x�; q�; 0) =  0(x�; q�) � 0 8(x�; q�) 2 
�D: (2.4
)When D = Rd , the boundary 
ondition (2.4b) on �D, the boundary of D, is repla
ed by a de
ay
ondition at in�nity whi
h demands that j j 
onverges to 0 suÆ
iently fast as jq�j tends to 1;we shall be more spe
i�
 about this in Lemma 3.2(b).In (2.4a) the parameter � 2 R>0 
hara
terises the elasti
 properties of the 
uid, and ��(x�; t) 2Rd�d is related to r� x u�, where (r� x u�)(x�; t) 2 Rd�d and fr� x u�gij = �ui�xj . For example, possible
hoi
es are (i) ��(u�) = r� x u�; (ii) ��(u�) = !� (u�) and (iii) ��(u�) = r� x v� ; (2.5)wherer� x u� = D� (u�) + !� (u�); D� (u�) = 12 [r� x u� + (r� x u�)> ℄; !� (u�) = 12 [r� x u� � (r� x u�)> ℄ (2.6)and v� is a `smoothed' version of u�. The pre
ise form of the smoothing operator whi
h maps u�into v� will be given in Se
tion 3.3.On introdu
ing the (normalised) MaxwellianM(q�) = e�U( 12 jq�j2)ZD e�U dq� ;we have M r� qM�1 = �M�1r� qM = U 0 q�: (2.7)6



In addition, the following identities hold:r� q U = U 0 q�; r� q U 0 = U 00 q� and �q U = U 00 jq�j2 + U 0 d: (2.8)Thus, the Fokker-Plan
k equation (2.4a) 
an be rewritten as� �t + (u� � r� x ) +r� q � (��(u�) q� ) = 12� r� q � �M r� q �  M�� in 
�D � (0; T ℄: (2.9)2.2 Two examples1. FENE-type models. A widely used model is the FENE (Finitely Extensible NonlinearElasti
) model, whereD = B(0�; b 12 ) and U(s) = � b2 ln�1� 2 sb � ; and hen
e e�U( 12 jq�j2) = 0�1� jq�j2b 1A b2 : (2.10)Here B(0�; s) is the bounded open ball of radius s > 0 in Rd 
entred at the origin, and b > 0 isan input parameter. Hen
e the elongation jq�j 
annot ex
eed b 12 .2. Hookean dumbbells. Letting b ! 1 in (2.10) leads to the so-
alled Hookean dumbbellmodel whereD = Rd and U(s) = s; and therefore e�U( 12 jq�j2) = e� 12 jq�j2 : (2.11)This parti
ular kineti
 model, with ��(u�) = r� x u�, 
orresponds formally to an Oldroyd-B model,or with ��(u�) = !� (u�) to a 
orotational Oldroyd-B model. Indeed, on multiplying (2.4a) by q� q�>,integrating over D, performing integration by parts (assuming that  and jrq j de
ay to zerosuÆ
iently fast with jq�j ! 1), and noting for any r� 2 Rd that(r�:r� q ) q� q�> = r� q�> + q� r�> and �q (q� q�>) = 2 I� (2.12)yields � ÆC�Æt + C� = � I� in 
� (0; T ℄; (2.13)where ÆC�Æt = �C��t + (u� � r� x )C� � [��(u�)C� + C� [��(u�)℄> ℄ (2.14)is the upper-
onve
ted time derivative. Combining (2.13) and (2.2) and observing that thedensity �(x�; t) satis�es ���t + (u� � r� x )� = 0 in 
� (0; T ℄ (2.15)implies that the extra-stress ��(x�; t) satis�es� Æ��Æt + �� = k �� � [��(u�) + [��(u�)℄> ℄ in 
� (0; T ℄; (2.16)whi
h is the Oldroyd-B 
onstitutive equation if ��(u�) = r� x u� or the 
orotational Oldroyd-B
onstitutive equation if ��(u�) = !� (u�); in the latter 
ase, the right-hand side of (2.16) is identi
allyequal to 0. 7



2.3 General stru
tural assumptions on the potentialSuppose thatD is a bounded open ball in Rd orD = Rd . We assume that q� 7! U(12 jq�j2) 2 C1(D)with q� 7! U(12 jq�j2) nonnegative and q� 7! U 0(12 jq�j2) positive on D, and that there exist 
onstants
i > 0, i = 1; 2, su
h that(U 0)2 � U 00 � 
1 8q� 2 D and (U 0)2 � U 00 � 2
2 U 0 8q� : jq�j2 � d
2 ; (2.17)where B(0�;� d
2� 12 ) �� D.The above assumptions hold for the Hookean 
ase, (2.11), with 
1 = 2
2 = 1; and the FENE
ase, (2.10), on assuming that b > 2, with 
1 = b�2b and 
2 = b+2d�22b .We shall also suppose that there exist positive 
onstants 
i, i = 3; : : : ; 7, and � > 0, su
hthat the Maxwellian M and the asso
iated elasti
 potential U satisfy
3 [dist(q�; �D)℄� �M(q�) � 
4 [dist(q�; �D)℄� 8q� 2 D; (2.18a)
5 � [dist(q�; �D)℄U 0(12 jq�j2) � 
6; [dist(q�; �D)℄2 jU 00(12 jq�j2)j � 
7 8q� 2 D; (2.18b)when D = Rd , then [dist(q�; �D)℄� in (2.18a) is repla
ed by exp(�jq�j2), and [dist(q�; �D)℄ and[dist(q�; �D)℄2 in (2.18b) are omitted.It is an easy matter to show that the MaxwellianM and the elasti
 potential U of the FENEmodel and of the Hookean dumbbell model satisfy 
onditions (2.18a,b), | with D = B(0�; b 12 )and � = b=2 in the 
ase of the FENE model; and D = Rd for the Hookean dumbbell model.We shall also require thatZD h1 + (1 + jq�j2) ((U)2 + jq�j2 (U 0)2)iM dq� <1: (2.19)For the Hookean model (2.11) and the FENE model (2.10), with b > 2, (2.19) is easily shownto hold. For example, we have thatM := ZDM (U 0)2 jq�j4 dq� <1 (2.20)for both models. In the Hookean 
ase, (2.20) follows sin
eZ 10 e�s s d+22 ds <1; (2.21)while in the FENE 
ase, (2.20) follows sin
eZ b0 �1� sb� b�42 s d+22 ds <1 if b > 2: (2.22)More generally, it follows from (2.18a,b), on noting that U(12 jq�j2) = � logeM(q�) + Const:,that (2.19) holds provided that either: (i) � > 1 when D is a bounded open ball in Rd ; or (ii)when D = Rd . 8



3 Weak solutionsTo de�ne an appropriate notion of weak solution, we �rst introdu
e some fun
tion spa
es, thenderive formal energy identities and estimates satis�ed by the weak solution. These estimateswill, later on, form the basis of our proof of existen
e. In our notion of weak solution we willalso rely on smoothing operators to 
ompensate for the la
k of regularization in the hyperboli
part of the Fokker{Plan
k equation.3.1 Fun
tion spa
es and embedding resultsWe employ the usual fun
tion spa
es for vis
ous, in
ompressible 
ow (e.g. [9℄):H� := fw� 2 L� 2(
) : r� x � w� = 0g; (3.1a)V� := fw� 2 H� 10(
) : r� x � w� = 0g; (3.1b)and L20(
) := fr 2 L2(
) : Z
 r dx� = 0g; (3.1
)where the divergen
e operator r� x � is to be understood in the sense of ve
tor-valued distributionson 
. In addition, we introdu
e the following fun
tion spa
es for  :K := �' 2 L1lo
(
�D) : Z
�D � j'j2M +M ���r� q � 'M ����2 � dq�dx� <1� ; (3.2a)Kq := f' 2 K : Z
�D jq�j2 j'j2M dq�dx� <1g; (3.2b)K+ := f' 2 K : '(x�; q�) � 0 for a:e: (x�; q�) 2 
�D g; (3.2
)and K+q := Kq \K+: (3.2d)Clearly, if D is bounded then Kq = K and K+q = K+. We remark, in parti
ular, that due to thestru
tural hypotheses on U (spe
i�
ally, (2.19)), both M and M U belong to K+q . It is helpfulto note for future purposes that, more generally, a distribution ' belongs to K if, and only if,� = 'M has �nite normk�kH0;1(
�D;M) := �Z
�DM � j�j2 + jr� q �j2 �dq�dx�� 12 :As the 
orresponding weighted Sobolev spa
eH0;1(
�D;M) := �� 2 L1lo
(
�D) : k�kH0;1(
�D;M) <1	is a Hilbert spa
e, it follows that K = M �H0;1(
 �D;M), too, is a Hilbert spa
e with innerprodu
t ('1; '2)K := Z
�D h'1 '2M +M �r� q '1M � � �r� q '2M �idq�dx�; '1; '2 2 K;and indu
ed norm k'kK = (';') 12K ; 
learly,k'kK = 


 'M 


H0;1(
�D;M) ; ' 2 K: (3.3)9



Analogously, Kq is a Hilbert spa
e with norm k � kKq de�ned byk'k2Kq = Z
�D(1 + jq�j2) j'j2M +M ���r� q � 'M ����2 dq�dx�and asso
iated inner produ
t.It is well-known (e.g. [9℄, Coro. I.2.5) that the spa
eW� := fw� 2 C� 10 (
) : r� x � w� = 0g is dense in both V� and H� : (3.4)We require an analogous density result for the spa
eK. Hypotheses (2.18a,b) for the MaxwellianM and the asso
iated elasti
 potential U play a 
ru
ial role in the argument.Lemma 3.1.(a) Suppose that D is a bounded open ball in Rd and � > 0; then, the set M � C1(
�D)is dense in K. Here C1(
�D) denotes the set of all fun
tions de�ned on 
�D that arein�nitely di�erentiable in 
�D and whi
h, together with their partial derivatives of any order,
an be 
ontinuously extended to 
�D = 
�D.(b) Let D = Rd ; then C10 (
�D) is dense in Kq.Proof. (a) For q� 2 D let d(q�) := dist(q�; �D). A

ording to (2.18a), there exist positive
onstants 
3, 
4, su
h that 
3 �M(q�)=d�(q�) � 
4 for all q� 2 D. Hen
e the Maxwellian M(q�) isa weight fun
tion of type 3 in D in the sense of Triebel [22℄, p.247, De�nition 3.2.1.3
. By [22℄,Theorem 3.2.2a, the weighted Sobolev spa
eH1(D;M) := ff 2 L2(D) : kfk2H1(D;M) := ZDM � jf(q)j2 + jr� q f(q)j2 �dq� <1gis a Hilbert spa
e and, by [22℄, Theorem 3.2.2
, C1(D) is dense inH1(D;M); see also Chapter I,Se
tion 7, in Kufner's monograph [14℄. Therefore, L2(
;C1(D)) is dense in L2(
;H1(D;M)) =H0;1(
 �D;M). Given � 2 H0;1(
 �D;M), let fb�"g" � L2(
;C1(D)) be a sequen
e whi
h
onverges to � in H0;1(
�D;M). Let us extend both � and b�" with respe
t to the variable x�by 0 outside 
 and, for " 2 (0; 1), de�ne�"(x�; q�) := ( b�"(x�; q�) �2"(x�) ) �x j"(x�);where �x denotes 
onvolution with respe
t to x�, �2"(x�) is the 
hara
teristi
 fun
tion of the set
2" := fx� 2 
 : dist(x�; �
) � 2"g, j"(x�) = "�d j("�1x�);and j is a nonnegative C1 fun
tion with 
ompa
t support, supp(j) = B(0�; 1), whose integralover Rd is equal to 1. Now, �" 2 C10 (
;C1(D)) and the sequen
e f�"g" 
onverges to � inL2(
;H1(D;M)) = H0;1(
�D;M) as "! 0.For a general ' 2 K, we approximate � = '=M 2 H0;1(
 �D;M) by a sequen
e f�"g" �C10 (
;C1(D)) � C1(
�D) in the H0;1(
�D;M)-norm. Then the sequen
e fM �"g" 
on-verges to M � = ' in the k � kK norm as "! 0.10



(b) Suppose that ' 2 Kq. On letting � = '=pM , we dedu
e thatk'k2Kq = Z
�D h(1 + jq�j2) j�j2 + jr� q �+ 12 U 0 q��j2i dq�dx�:By virtue of (2.18b) in the 
ase of D = Rd , it then follows that there exist positive 
onstantsC1 and C2 su
h thatC1 k'k2Kq � Z
�D h(1 + jq�j2) j�j2 + jr� q �j2i dq�dx� � C2 k'k2Kq : (3.5)Let us extend the fun
tions ' and � with respe
t to the variable x� by zero outside 
, so that theextended fun
tions, whi
h we still denote by ' and �, respe
tively, are now de�ned on Rd �Rd .Let " 2 (0; 1) and 
onsider the fun
tion '" = pM�", where�"(x�; q�) := b�"(x�; q�) � (j"(x�) j"(q�)) and b�"(x�; q�) := �(x�; q�) �2"(x�) �1="(q�);here �2"(�), j(�) are as in part (a) above, � is 
onvolution with respe
t to both x� and q�, and�1="(q�) = min�1;�1 + 1" � jq�j�+� :We note that the fun
tion �1=" has its range in the interval [0; 1℄, it is equal to 1 within thebounded open ball B(0�; 1=") � Rd , equal to 0 in the 
omplement of the bounded open ballB(0�; 1 + (1=")) � Rd and jr� q �1="(q�)j � 1 for a.e. q� in Rd . The properties of the 
onvolutionimply that �" 2 C10 (Rd � Rd ); more pre
isely, �" 2 C10 (
 � Rd). Sin
e pM is a 
onstantmultiple of exp(�12U), and s 2 R 7! U(s) is, by hypothesis, a C1 fun
tion, it follows thatpM 2 C1(Rd ). Hen
e, '" 2 C10 (
� Rd ).Our aim is to show that lim"!0 k'" � 'kKq = 0. We see from (3.5) that to do so it isne
essary and suÆ
ient to prove thatlim"!0ZRd�Rd h (1 + jq�j2)j�" � �j2 + jr� q �" �r� q �j2i dq�dx� = 0: (3.6)On re
alling that �" = b�" � (j"(x�) j"(q�)), (3.6) will in turn follow by use of a triangle inequalityon
e we have established the following:lim"!0ZRd�Rd �(1 + jq�j2) j(b�" � �) � (j"(x�) j"(q�))j2 + j(r� q b�" �r� q �) � (j"(x�) j"(q�))j2� dq�dx� = 0;(3.7a)lim"!0ZRd�Rd �(1 + jq�j2) j� � (j"(x�) j"(q�))� �j2 + j(r� q �) � (j"(x�) j"(q�))�r� q �j2� dq�dx� = 0:(3.7b)Let us start by showing (3.7a). By Young's 
onvolution-inequality and using that the L1norm of the fun
tion (x�; q�) 7! j"(x�) j"(q�) over Rd � Rd is equal to 1, we have thatZRd�Rd j(r� q b�" �r� q �) � (j"(x�) j"(q�))j2 dq�dx� � ZRd�Rd jr� q b�" �r� q �j2 dq�dx�:11



Re
alling the de�nition of b�"(q�), that j�1="(q�)j � 1 for all q� in Rd and that jr� q �1="(q�)j � 1 fora.e. q� in Rd , we dedu
e that the right-hand side in the last inequality is bounded by2 ZRd Zjq�j�1=" jr� q �j2 dq�dx� + 2 ZRd Zjq�j�1=" j�j2 dq�dx� + Z
n
2" ZRd jr� q �j2 dq�dx� ; (3.8)whi
h 
onverges to 0 as "! 0 by Lebesgue's dominated 
onvergen
e theorem.Analogously, by Young's inequality again, but this time applied with respe
t to the variablex� only, using the Cau
hy{S
hwarz inequality, Fubini's theorem, the 
hange of variables s� = q��r�,and the inequality 1 + js�+ r�j2 � 2 (1 + js�j2) + 2jr�j2, we have thatZRd�Rd(1 + jq�j2) j(b�" � �) � (j"(x�) j"(q�))j2 dq�dx� � ZRd�Rd(1 + jq�j2) j(b�" � �) �q j"(q�)j2 dq�dx�� ZRd�Rd(1 + jq�j2)Zjr�j�" jb�"(x�; q�� r�)� �(x�; q�� r�)j2 j"(r�) dr� dq�dx�= ZRd Zjr�j�" j"(r�)ZRd(1 + js�+ r�j2) jb�"(x�; s�)� �(x�; s�)j2 ds�dr�dx�� 4ZRd Zjs�j�1="(1 + js�j2) jb�" � �j2 ds�dx� + 4 Z
n
2" Zjs�j�1="(1 + js�j2) j�j2 ds�dx�� 4ZRd Zjq�j�1="(1 + jq�j2) jb�" � �j2 dq�dx� + 4 Z
n
2" ZRd(1 + jq�j2) j�j2 dq�dx�:Both integrals appearing on the right-hand side of the last inequality 
onverge to 0 as "! 0 byLebesgue's dominated 
onvergen
e theorem. Together with (3.8), this implies (3.7a).In order to prove (3.7b), we pro
eed by writing(r� q �) � (j"(x�) j"(q�))�r� q � = ((r� q �) �x j"(x�)�r� q �) �q j"(q�) + �(r� q �) �q j"(q�)�r� q �� :On applying Young's inequality with respe
t to �q, we have thatZRd�Rd j(r� q �) � (j"(x�) j"(q�))�r� q �j2 dq�dx� � 2 ZRd�Rd j(r� q �) �x j"(x�)�r� q �j2 dq�dx�+ 2 ZRd�Rd j(r� q �) �q j"(q�)�r� q �j2 dq�dx�:A standard argument for Friedri
hs molli�ers yields that both terms on the right-hand side ofthe last inequality 
onverge to 0 as "! 0; hen
e,lim"!0ZRd�Rd j(r� q �) � (j"(x�) j"(q�))�r� q �j2 dq�dx� = 0: (3.9)Finally, noting thatj� � (j"(x�) j"(q�))� �j2 � 2 j(� �q j"(q�)� �) �x j"(x�)j2 + 2 j� �x j"(x�)� �j212



and applying Young's inequality with respe
t to �x, we have thatZRd�Rd(1 + jq�j2) j� � (j"(x�) j"(q�))� �j2 dq�dx� � 2 ZRd�Rd(1 + jq�j2) j� �q j"(q�)� �j2 dq�dx�+ 2 ZRd ZRd j(1 + jq�j2) 12 � �x j"(x�)� (1 + jq�j2) 12�j2 dx� dq�=: A" +B":Sin
e (1 + jq�j2) 12 � 2 L2(Rd � Rd), a standard argument for Friedri
hs molli�ers implies thatlim"!0B" = 0: (3.10)Further, on re
alling the de�nition of the 
onvolution �q, the Cau
hy{S
hwarz inequality, andthat the integral of j"(r�) over its support, fr� : jr�j � "g, is equal to 1, we have that A" �2 (T1;" +T2;"), where, with R > 1 arbitrary,T1;" := ess.supjr�j�" ZRd Zjq�j>R(1 + jq�j2) j�(x�; q�)� �(x�; q�� r�)j2 dq�dx�and T2;" := ess.supjr�j�" ZRd Zjq�j�R(1 + jq�j2) j�(x�; q�)� �(x�; q�� r�)j2 dq�dx�:Now, on using the bound j�(x�; q�) � �(x�; q� � r�)j � 2 (j�(x�; q�)j2 + j�(x�; q� � r�)j2), the 
hange ofvariables s� = q�� r� and the inequality 1 + js�+ r�j2 � 2 (1 + js�j2) + 2 jr�j2, we �nd thatT1;" � 10ZRd Zjq�j>R�1(1 + jq�j2) j�(x�; q�)j2 dq�dx�:Hen
e, given any Æ > 0, there exists R > 1, suÆ
iently large, su
h that T1;" � Æ=4. Sin
e, forsu
h R > 1 �xed and � 2 C(
�B(0�; R+ 1)) we havelim"!0(ess.supjr�j�" Z
 Zjq�j�R(1 + jq�j2) j�(x�; q�)� �(x�; q�� r�)j2 dq�dx�) = 0;by density of C(
�B(0�; R + 1)) in L2(
 �B(0�; R + 1)), it then follows that the same is truefor any � 2 L2(
�B(0�; R+1)). Hen
e, there exists "0 su
h that, for all " 2 (0; "0), T2;" � Æ=4.Thus, we have shown that, for any Æ > 0, there exists "0 > 0 su
h that A" � 2 (T1;" +T2;") � Æfor all " 2 (0; "0). Hen
e, lim"!0A" = 0, whi
h, together with (3.10), then implies (3.7b).Having shown (3.7a) and (3.7b), now (3.6) follows as indi
ated above; hen
e the sequen
ef'"g � C10 (
� Rd) 
onverges to ' 2 Kq in the norm of Kq, whi
h means that C10 (
� Rd ) isdense in Kq. utOur next lemma is a tra
e theorem for K: loosely speaking, it states that if ' 2 K, thenU 0(12 jq�j2)' vanishes on 
 � �D when D is a bounded open ball, and de
ays to zero at asuperalgebrai
 rate as jq�j ! 1 when D = Rd . 13



Lemma 3.2.(a) Suppose that D is a bounded open ball in Rd and that the elasti
 potential U and the asso
iatedMaxwellian M satisfy (2.18a) with � � 5 and (2.18b). Then, for ' 2 K =M �H0;1(
�D;M),the tra
e of U 0(12 jq�j2)' on 
� �D is equal to 0.(b) Suppose that D = Rd ; then, for ' 2 K,limR!1R� Z
��B(0�;R) U 0(12 jq�j2) j'jdS(q�) dx� = 0 for all � � 0: (3.11)Proof. (a) Let d(q�) := dist(q�; �D) and, for � 2 R, denote by H10 (D; d�(q�)) the 
losure ofC10 (D) in the d�(q�)-weighted Sobolev spa
e H1(D; d�(q�)); hen
e, H10 (D; d�(q�)) is a Hilbertspa
e with respe
t to the norm k � kH1(D;d�(q�)). A

ording to a result of Besov and Kufner [2℄(
f. also Triebel [22℄, Se
tion 3.6.1 and Kufner [14℄, pp.98{99), the spa
e C10 (D) is dense inH1(D; d�(q�)) for � � �1 and f 2 H1(D; d�(q�)) = H10 (D; d�(q�)) implies that f = 0 on �D.Hen
e, to prove the Lemma, it suÆ
es to show that if g 2 M � H1(D;M) then U 0(12 jq�j2) g 2H1(D; d�1(q�)).Let g 2M �H1(D;M); then,ZD � jgj2M +M ���r� q � gM ����2�dq� <1: (3.12)On writing U 0g = (U 0M) � gM and noting (2.7) and the se
ond identity in (2.8), di�erentiationof U 0(12 jq�j2) g(q�) based on the produ
t rule yieldsd�1(q�) h jU 0gj2 + jr� q (U 0g)j2 i � �d�1(q�) jU 0j2M� jgj2M+�2 d�1(q�) jq�j2 jU 00 � (U 0)2j2M� jgj2M+�2 d�1(q�) jU 0j2M�M ���r� q � gM ����2 ; (3.13)where U 0, U 00 and M signify U 0(12 jq�j2), U 00(12 jq�j2) and M(q�), respe
tively. Sin
e D is a boundedset, on re
alling (2.18a) with � � 5 and (2.18b), we dedu
e that ea
h of the three terms in theround bra
kets on the right-hand side of (3.13) is bounded on D; thus, by (3.12), we have thatZD d�1(q�) � jU 0gj2 + jr� q (U 0g)j2 �dq� <1:Hen
e, U 0(12 jq�j2) g 2 H1(D; d�1(q�)), and therefore U 0g has zero tra
e on �D.(b) Suppose that D = Rd and ' 2 K. For r > 0 let Br = B(0�; r) be a bounded open ball ofradius r 
entred at the origin. It then follows, using the properties of M and U from (2.7) and(2.18a,b) that ' 2 H0;1(
 � Br) := H0;1(
 � Br; 1) and hen
e the tra
e '(x�; �)j�Br exists andbelongs to L1(�Br) for a.e. x� 2 
 and all r > 0.Let r > 0. Any q� 2 �Br 
an be expressed as q� = r �� where r = jq�j and j��j = 1. Given � � 0,
onsider the fun
tion f de�ned byf(x�; r ��) := U 0(12r2) rd+� '(x�; r ��):14



For every �� 2 �B1 and a.e. x� 2 
, held �xed, the fun
tion r 7! f(x�; r ��) belongs to H1(0; R) forall R > 0; furthermore, f(x�; �)j�Br 2 L1(�Br) for a.e. x� 2 
 and all r > 0.Now, for a.e. x� 2 
 and all r 2 (0; R℄, R > 0,f(x�; R ��) = f(x�; r ��) + Z Rr ddsf(x�; s ��) ds: (3.14)Let N(r) := exp(�U(12r2)); then, N(r) =M(r ��) for all �� 2 �B1. On re-writingf(x�; r ��) = '(x�; r ��)M(r ��) M(r ��)U 0(12r2) rd+� = �'(x�; r ��)M(r ��) � � �N(r)U 0(12r2) rd+�� ;di�erentiating the produ
t with respe
t to r using the produ
t rule, and de�ningA(r) :=pN(r)U 0(12r2) r 12 (d+1)+� and B(r) := 1pN(r) r 12 (1�d) : ddr �N(r)U 0(12r2) rd+�� ;we have from (3.14) that'(x�; R ��)U 0(12R2)Rd+� = '(x�; r ��)qM(r ��) r 12 (d�1)A(r) + Z Rr qM(s ��) dds '(x�; s ��)M(s ��) ! s 12 (d�1)A(s) ds+ Z Rr '(x�; s ��)qM(s ��) s 12 (d�1) B(s) ds:Now we take the absolute value of both sides of this identity, use the triangle inequality on theright, and integrate both sides of the resulting inequality with respe
t to �� 2 �B1, x� 2 
 andr 2 (0; R℄, note the identityZ r0 �Z
��B1 f(x�; s ��) sd�1 d��dx��ds = Z
�Br f(x�; q�) dq�dx�and the bound���� dds �'(x�; s ��)M(s ��) ����� = ����rq � 'M � (x�; s ��)� � �� ��� � ���rq � 'M � (x�; s ��)��� ;and use the Cau
hy{S
hwarz inequality, in ea
h of the three resulting integrals on the right, weobtain the tra
e inequalityR�+2 U 0(12R2)Z
��BR j'(x�; q�)jdS(q�) dx� � Cd (CA + CAB R) k'kK (3.15)for all � � 0, where Cd := [measd(
) �measd�1(�B1)℄1=2, andCA := �Z R0 A2(r) dr�12 ; CAB := �Z R0 [A2(r) +B2(r)℄ dr�12 :Finally, after dividing (3.15) by R2, noting that U 0(12 jRj2) = U 0(12 jq�j2) for q� 2 �BR = �B(0�; R),and that, under the hypotheses (2.18a,b), we have 0 < CA < CAB <1, on passing to the limitR!1, we obtain (3.11). ut15



Hen
eforth, we shall suppose that� � 5 when D is a bounded open ball in Rd . (3.16)In the derivation of maximum norm bounds on  we shall also require the following lemma.Lemma 3.3. If ' 2 Kq then for any 
onstant L � 0 it follows thatr� q � ['� LM ℄+M � = ( r� q �'�LMM � � r� q � 'M � if ' > LM0 if ' � LM ; (3.17a)r� q � ['+ LM ℄�M � = ( r� q �'+LMM � � r� q � 'M � if ' < LM0 if ' � LM ; (3.17b)and hen
e ['� LM ℄+, ['+ LM ℄� 2 Kq.Proof. First, we note that as L � 0 we have thatj ['� LM ℄+ j; j ['+ LM ℄� j � j'j : (3.18)Next, for any " > 0, we introdu
e the following regularization of [ � ℄+:p+;"(s) := ( (s2 + "2) 12 � " if s � 0;0 if s � 0 ) p+;"(s) � [s℄+ 8s 2 R : (3.19)Then, for any �xed �� 2 C� 10 (
�D), it follows from (3.19), (2.18a,b), the 
ompa
t support of ��,(2.7), ' 2 K and the Lebesgue dominated 
onvergen
e theorem thatZ
�Dr� q � ['� LM ℄+M � � �� dq�dx� = lim"!0Z
�Dr� q �p+;"('� LM)M � � �� dq�dx�= lim"!0Z
�D p0+;"('� LM) r� q ('� LM)M + p+;"('� LM)r� q (M�1)! � �� dq�dx�= Z'>LM  r� q ('� LM)M + (' � LM)r� q (M�1)! � ��dq�dx�= Z'>LM r� q �('� LM)M � � �� dq�dx� : (3.20)Hen
e we obtain the desired result (3.17a). A similar regularization of [ � ℄� yields the desiredresult (3.17b). Finally (3.18), (3.17a,b) and ' 2 Kq imply immediately that [' � LM ℄+,['+ LM ℄� 2 Kq. utFor later purposes, we re
all the following well-known Gagliardo{Nirenberg inequality. Letr 2 [2;1) if d = 2, and r 2 [2; 6℄ if d = 3 and � = d �12 � 1r�. Then there is a 
onstant C,depending only on 
, r and d, su
h that for all � 2 H10 (
) the inequality�Z
 j�jr dx�� 1r � C �Z
 j�j2 dx�� 1��2 �Z
 jr�j2 dx���2 (3.21)16



holds.We re
all also the following 
ompa
tness result, see, e.g., [21℄ and [19℄. Let X0, X and X1be Bana
h spa
es, Xi, i = 0; 1, re
exive, with a 
ompa
t embedding X0 ,! X and a 
ontinuousembedding X ,! X1. Then, for �i > 1, i = 0; 1, the embeddingf � 2 L�0(0; T ;X0) : ���t 2 L�1(0; T ;X1) g ,! L�0(0; T ;X) (3.22)is 
ompa
t.3.2 Energy identities and estimatesThe starting-point for our analysis is the following formal weak formulation of the problem: �ndt 7! u�(�; t) 2 V� and t 7!  (�; t) 2 K+q for t 2 (0; T ℄, su
h thatZ
 �u��t � w� dx� + Z
(u� � r� x )u� � w� dx� + � Z
r� x u� : r� xw� dx�= �Z
 ��( ) : r� xw� dx� 8w� 2 V; (3.23a)u�(x�; 0) = u�0(x�); (3.23b)andZ
�D � �t 'M dq�dx� � Z
�D  M u� � r� x 'dq�dx� + 12� Z
�DM r� q �  M� � r� q � 'M � dq�dx�= Z
�D ��(u�) q� � r� q � 'M � dq�dx� 8' 2 Kq; (3.24a) (x�; q�; 0) =  0(x�; q�): (3.24b)Here we have noted that, a

ording to Lemma 3.2, ' 2 Kq implies that ' vanishes on �D. In(3.23a), and below we use the following notation: for any A� ; B� 2 Rd�d , we de�neA� : B� := dXi=1 dXj=1A� ij B� ij and jA� j := (A� : A� ) 12 = [Tra
e(A� >A� )℄ 12 :We begin by deriving some formal energy inequalities; the purpose of these is to justify the
hoi
e of norms and spa
es and indi
ate the kinds of bounds whi
h will be rigorously establishedlater on. The arguments in this se
tion are `formal' in the sense that some of the steps requireadditional smoothness of u� and  ; spe
i�
ally, we shall suppose throughout Se
tion 3.2 thatu�(�; t) 2 W� 1;1(
) \ V� and that  (�; �; t) 2 M � H1(
 � D;M) \ K+q for t 2 (0; T ℄; we shallalso suppose for the moment that u� and  are suÆ
iently smooth in t. The �rst of theserequirements will be met in Se
tion 4 through molli�
ation of u� as has been indi
ated earlier,while the requirement on  will be relaxed to  (�; �; t) 2 K+q for all t 2 (0; T ℄ by 
onsidering� �t +u�:rx as the spa
e-time dire
tional derivative (total derivative) of  along sub
hara
teristi

urves and rewriting this in weak form through integration by parts over x�, q� and t.17



First we note thatZ
 h(v� � r� x )w� 1i � w� 2 dx� = �Z
 h(v� � r� x )w� 2i � w� 1 dx� 8v� 2 V; 8w1; w2 2 H� 10(
): (3.25)Taking w� = u� 2 V� in (3.23a) and noting (3.25) and (2.2), we obtain that12 ddt �Z
 ju�j2 dx��+ � Z
 jr� x u�j2 dx� = �Z
 ��( ) : r� x u� dx� = �k � Z
C� ( ) : r� x u� dx�� �2 Z
 jr� x u�j2 dx� + (k �)22 � Z
 jC� ( )j2 dx�: (3.26)It follows from (2.3) and (2.20) that, for  2 K,Z
 jC� ( )j2 dx� = Z
 dXi=1 dXj=1�ZD  U 0 qi qj dq��2 dx�� d �ZDM (U 0)2 jq�j4 dq���Z
�D j j2M dq�dx�� = dM �Z
�D j j2M dq�dx�� :(3.27)Taking ' =  2 M �H1(
 �D;M) \Kq � Kq in (3.24a) and noting that (2.1b,
) implies, onintegration by parts, thatZ
�D  M u� � r� x  dq�dx� = 12 Z
�D u� � r� x j j2M dq�dx� = 12 Z�
�D(u� � n��
) j j2M dq� ds� = 0;where n��
 is the outward unit normal to �
, we obtain that12 ddt �Z
�D j j2M dq�dx��+ 12� Z
�DM ����r� q �  M�����2 dq�dx�= Z
�D  (��(u�) q�) � r� q �  M� dq� dx� : (3.28)Similarly to (3.27) as RDM dq� = 1, it follows thatZ
 j�(')j2 dx� � �ZDM dq���Z
�D j'j2M dq�dx�� = �Z
�D j'j2M dq�dx�� : (3.29)Hen
e we have from (3.2a), (3.27), (3.29) and (2.2) that' 2 K implies C� ('); �(') I�; ��(') 2 L� 2(
): (3.30)The problemati
 term is the one appearing on the right-hand side of the energy identity (3.28).Below, we show that in the 
ase of 
orotational models this term vanishes. In the non
orotational
ase, we introdu
e a di�erent testing pro
edure for the Fokker{Plan
k equation (3.24a) so thatthe problemati
 drag term 
an
els with the extra-stress term in (3.26). Hen
e, from here on, we
onsider 
orotational and non
orotational models separately.18



3.2.1 Corotational modelsWe begin by analysing the right-hand side of (3.28) in the 
ase when the drag term in (2.4a) is
orotational; that is,��(u�) = �[��(u�)℄> and hen
e q�> ��(u�) q� = 0 8q� 2 Rd ; (3.31)
orresponding to the 
hoi
e ��(u�) = !� (u�) in (2.6).First, suppose that D is a bounded open ball in Rd . Given ' 2 K = Kq, let f'ngn be asequen
e in the spa
e M � C1(
�D) � K = M �H0;1(
�D;M) whi
h 
onverges to ' in K(
f. Lemma 3.1(a)). Then, using (3.31) with ��(u�) = !� (u�), (2.7) and (2.19), we dedu
e thatZ
�D 'npM (!� (u�) q�) � pM r� q �'nM � dq�dx� = 12 Z
�DM (!� (u�) q�) � r� q �'nM �2 dq�dx�= 12 �Z
��D(!� (u�) q�) � n��D '2nM ds�dx� + Z
�D(q�>!� (u�) q�)U 0 '2nM dq�dx�� = 0: (3.32)Here in the �rst integral in the square bra
ket, we made use of the fa
t that n��D = q�=jq�j j�D andthen applied (3.31). As f'n=pMgn and fpM r� q ('n=M)gn 
onverge (strongly) in L2(
�D)and L� 2(
 � D) to the fun
tions '=pM and pM r� q ('=M), respe
tively, as n ! 1, and!� (u�) 2 L�1(
) by hypothesis, it follows on passing to the limit in (3.32) thatZ
�D ' (!� (u�) q�) � r� q � 'M � dq�dx� = Z
�D 'pM (!� (u�) q�) � pM r� q � 'M � dq�dx� = 0 8' 2 Kq:(3.33)If, on the other hand, D = Rd , then an identi
al argument applies by 
onsidering a sequen
ef'ng in C10 (
 �D) whi
h 
onverges to ' 2 Kq (
f. Lemma 3.1(b)). In addition, as M 2 Kq,the same analysis as above yields for both D a bounded open ball in Rd and D = Rd thatZ
�DM (!� (u�) q�) � r� q � 'M � dq�dx� = 0 8' 2 Kq: (3.34)Thus we have shown that in the 
orotational 
ase, ��(u�) = !� (u�), identities (3.33) and (3.34)hold both when D is a bounded open ball in Rd and when D = Rd . This observation leads toa 
onsiderable simpli�
ation of the analysis. Indeed, upon 
ombining (3.26), (3.27), (3.28) and(3.33) and applying a Gronwall inequality, we have thatsupt2(0;T ) �Z
�D j j2M dq�dx��+ 1� Z T0 "Z
�DM ����r� q �  M�����2 dq�dx�# dt � 2 Z
�D j 0j2M dq�dx�;(3.35a)supt2(0;T ) �Z
 ju�j2 dx��+ � Z T0 �Z
 jr� x u�j2 dx�� dt � Z
 ju�0j2 dx� + C T Z
�D j 0j2M dq�dx�: (3.35b)We note in passing that 
orotational models have a further interesting property: it followsimmediately from (2.9), (3.31) and (2.7) thatif  0(x�; q�) = f0(x�)M(q�) then  (x�; q�; t) = f(x�; t)M(q�) ;where �f�t + (u� � r� x )f = 0 in 
�D � (0; T ℄; f(x�; 0) = f0(x�) 8x� 2 
: (3.36)19



3.2.2 Non
orotational modelsWe now return to the physi
ally more realisti
 
ase, ��(u�) = r� x u�. Taking ' = M 2 K+q in(3.24a) we obtain thatddt �Z
�D  dq�dx�� = 0 and hen
e Z
�D  (x�; q�; t) dq� dx�=Z
�D  0 dq�dx� 8t 2 (0; T ℄:(3.37)Moreover, as  2 K+q , it follows that (x�; q�; t) � 0 for a:e: (x�; q�; t) 2 
�D � (0; T ℄: (3.38)This is, of 
ourse, a ne
essary 
ondition for ensuring that  is a probability distribution.Taking ' = M U 2 K+q in (3.24a), integrating by parts in the integral whi
h is multipliedby 12� using (2.8), Lemma 3.2, (2.7) and (2.3), we obtainddt �Z
�D U  dq�dx��+ 12� Z
�D jq�j2 ( (U 0)2 � U 00 ) ) dq�dx�= Z
C� ( ) : ��(u�) dx� + d2� Z
�D U 0  dq�dx�: (3.39)On noting (2.17), U 2 C1(D) � C2(D), (3.38) and (3.37) it follows from (3.39) thatddt �Z
�D U  dq�dx��+ 12� Z
�f jq�j2< d
2 g jq�j2 ( (U 0)2 � U 00 ) ) dq�dx�+ 
22� Z
�f jq�j2� d
2 g jq�j2 U 0  dq�dx� � Z
C� ( ) : ��(u�) dx� + d2� Z
�f jq�j2< d
2 g U 0  dq�dx�� Z
C� ( ) : ��(u�) dx� + C Z
�D  0 dq�dx� : (3.40)Here, C = d2� supjq�j2<d=
2 U 0(12 jq�j2) < 1 sin
e, by hypothesis, B(0�; (d=
2)1=2) �� D. In the
ase ��(u�) = r� x u�, on 
ombining the �rst line of (3.26) and (3.40) multiplied by k� yields thatddt �12 Z
 ju�j2 dx� + k � Z
�D U  dq�dx��+ � Z
 jr� x u�j2 dx�+ k � 
22� Z
�f jq�j2� d
2 g jq�j2 U 0  dq�dx� � C k � Z
�D  0 dq�dx� (3.41)and hen
e that12 supt2(0;T ) �Z
 ju�j2 dx��+ k � supt2(0;T ) �Z
�D U  dq�dx��+ � Z T0 �Z
 jr� x u�j2 dx�� dt+ k � 
22� Z T0 24Z
�f jq�j2� d
2 g jq�j2 U 0  dq�dx�35 dt � 32 Z
 ju�0j2 dx�+ 3 k � Z
�D U  0 dq�dx� + 3C T k� Z
�D  0 dq�dx�: (3.42)20



The validity of these bounds presupposes the existen
e of appropriately de�ned weak solu-tions u�(�; t) 2 V� and  (�; t) 2 K+q , t 2 (0; T ℄. To make the formal bounds (3.35a,b) and (3.42)rigorous in our proof of the existen
e of (global-in-time) weak solutions whi
h is based on asequential-
ompa
tness-argument, we need to introdu
e some smoothing into the system; else,passage to the limit, in a suÆ
iently strong sense, is not warranted by the 
ompa
tness argu-ment. Therefore, ultimately, we will not prove existen
e of global weak solutions to the originalsystem (P) with ��(u�) given by (i) or (ii) in (2.5); but to a modi�ed system where the velo
ity�eld u� in (3.24a) is appropriately molli�ed, and in the non
orotational 
ase the extra-stresstensor in (3.23a). Next we des
ribe the details of the smoothing pro
edure.3.3 Smoothing operator S� �As we have already indi
ated at the end of the previous se
tion, it is ne
essary to introdu
e a`smoothing' pro
edure on the velo
ity �eld u� in (2.4a) and in the non
orotational 
ase also onthe right-hand side of (2.1a). Let � > 0 be a regularization parameter. Given v� 2 V� 0, the dualof V� , let v�� 2 V� be the unique solution to the Helmholtz-Stokes problemZ
 v�� � w� dx� + � Z
r� x v�� : r� x w� dx� = hv�; w� i 8w� 2 V� ; (3.43)where h�; �i denotes the duality pairing between V� 0 and V� . We introdu
e the operator S�� : V� 0 !V� , su
h that S�� v� = v�� for all v� 2 V� 0. We note thatDv�; S��v�E = Z
 h� jr� x [S��v�℄j2 + jS��v�j2i dx� 8v� 2 V� 0 � (H10 (
))0; (3.44)and kS� � � kH1(
) is a norm on V 0. In addition, we have from (3.43) and a Poin
ar�e inequalitythat kS��v�k2L2(
) + 2� kr� x [S��v�℄k2L2(
) � kv�k2L2(
) 8v� 2 L� 2(
); (3.45a)kS��v�k2H1(
) � C kv�k2L2(
) � C kr� x v�k2L2(
) 8v� 2 V� : (3.45b)Furthermore, for 
 
onvex polygonal in R2 or 
onvex polyhedral in R3 (see, respe
tively, [12℄and [13℄), or �
 2 C1;1 in Rd , d = 2; 3, it follows from ellipti
 regularity theory thatS�� : L� 2(
) � V� 0 ! V� \H� 2(
) is a bounded linear operator: (3.46)Moreover, for �
 2 C2 and r > d (
.f. [9, p.88℄) we have thatS�� : L� r(
) � V� 0 ! V� \W� 2;r(
) � V� \ C� 1(
) is a bounded linear operator; (3.47a)and hen
e, we note from Sobolev embedding, ellipti
 regularity and a Poin
ar�e inequality that,for r 2 (d; 6℄,kS��v�kW 1;1(
) � C kS��v�kW 2;r(
) � C kv�kLr(
) � C kr� x v�kL2(
) 8v� 2 V� : (3.47b)For the sake of simpli
ity of presentation, we shall suppose hen
eforth that �
 2 C2.Of 
ourse, other regularisation pro
edures 
ould have also been used to lift the velo
ity �eldfrom V� to V� \ C� 1(
). Our de�nition of S�� has been motivated by the fa
t that, like u� itself,S��u� is de�ned and divergen
e-free on 
, and it obeys the same boundary 
ondition on �
 as u�.21



3.4 Weak formulationsThe aim of the paper is to prove existen
e of a (global-in-time) solutions to ea
h of the followingweak formulations of these \smoothed" 
orotational and non
orotational models for any �xedregularization parameter � > 0 under the following assumptions on the data�
 2 C2; u�0 2 H� and M� 12  0 2 L2(
�D): (3.48)Let K := ( M � C1(
�D) if D is a bounded open ball in RdC10 (
�D) if D � Rd ; (3.49)and hen
e, on re
alling Lemma 3.1, K is dense in Kq. We introdu
e our spa
e of test fun
tionsX for the  -equation as the 
ompletion of C10 ((�T; T );K) in the norm k � kX de�ned byk'kX = k'kL2(0;T ;Kq) + 



M� 12 �'�t 



L1(0;T ;L2(
�D)) + kM� 12r� x'kL1(0;T ;L2(
�D)): (3.50)This, in parti
ular, implies that ea
h ' 2 X satis�es '(�; �; T ) = 0.Corotational modelsGiven T > 0, and 
, u�0 and  0 as in (3.48), �nd u� 2 L1(0; T ;L� 2(
))\L2(0; T ;V� )\W 1; 4d (0; T ;V� 0)and  2 L2(0; T ;K), with u�� := S��u� 2 L2(0; T ;W� 1;1(
)), M� 12  2 L1(0; T ;L2(
�D)) and��( ) 2 L1(0; T ;L� 2(
)), su
h that u�(�; 0) = u�0(�), andZ T0 *�u��t ; w�+ dt+ Z T0 Z
 hh(u� � r� x )u�i � w� + �r� x u� : r� xw� i dx� dt= �k � Z T0 Z
 ��( ) : r� xw� dx� dt 8w� 2 L 44�d (0; T ;V� ); (3.51a)� Z T0 Z
�D  M � �'�t + (u�� � r� x )'� dq�dx� dt� Z
�D  0(�; �)M '(�; �; 0) dq� dx�+ Z T0 Z
�D �M2� r� q �  M�� [!� (u��) q�℄ � � r� q � 'M � dq�dx� dt = 0 8' 2 X : (3.51b)The only di�eren
e between (3.51a,b) and the 
orresponding weak formulation of the original
orotational model, (P) with ��(u�) = !� (u�), is that u� has been repla
ed by u�� in (3.51b).Non
orotational modelsGiven T > 0, and 
, u�0 and  0 as in (3.48), �nd u� 2 L1(0; T ;L� 2(
))\L2(0; T ;V� )\W 1; 4d (0; T ;V� 0)and  2 L2(0; T ;K), with u�� := S��u� 2 L2(0; T ;W� 1;1(
)), M� 12  2 L1(0; T ;L2(
�D)) and
22



��( ) 2 L1(0; T ;L� 2(
)), su
h that u�(�; 0) = u�0(�), andZ T0 *�u��t ; w�+ dt+ Z T0 Z
 hh(u� � r� x )u�i � w� + �r� x u� : r� xw� i dx� dt= �k � Z T0 Z
 ��( ) : r� x (S�� w� ) dx� dt 8w� 2 L 44�d (0; T ;V� ); (3.52a)� Z T0 Z
�D  M � �'�t + (u�� � r� x )'� dq�dx� dt� Z
�D  0(�; �)M '(�; �; 0) dq� dx�+ Z T0 Z
�D �M2� r� q �  M�� [r� x (u��) q�℄ � � r� q � 'M � dq�dx� dt = 0 8' 2 X : (3.52b)The only di�eren
e between (3.52a,b) and (3.51a,b) is that the 
orotational tensor !� (u��)in (3.51b) is repla
ed by the more physi
al non
orotational tensor r� x (u��) in (3.52b) and weapplied smoothing on the right-hand side of (3.52a). Hen
e, (3.52a,b) and the 
orrespondingweak formulation of the original non
orotational model, (P) with ��(u�) = r� x (u�), di�er only tothe extent that u� has been repla
ed by u�� in (3.51b) and we applied smoothing on the right-handside of (3.52a).Our energy estimate in the non
orotational 
ase will be based on 
an
elling the extra-stressterm on the right-hand side of (3.52a) with the drag term in (3.52b), hen
e mimi
king theformal pro
edure in Se
tion 3.2.2. To pass to the limit in (3.52b), we need to smooth u� andtherefore to maintain the 
an
ellation we need to smooth the right-hand side of (3.52a). Of
ourse, smoothing the extra-stress tensor in (3.52a) essentially amounts to smoothing u� itself.Remark 3.1. Sin
e the test fun
tions in V� are divergen
e-free, the pressure has been eliminatedin (3.51a) and (3.52a); it 
an be re
overed in a very weak sense following the same pro
edure asfor the in
ompressible Navier{Stokes equations dis
ussed on p.208 in [21℄; i.e., one obtains thatR t0 p(�; s) ds 2 C([0; T ℄;L2(
)).Remark 3.2. If d = 2, then u� 2 C([0; T ℄;H� ) (
f. Lemma 1.2 on p.176 of [21℄), whereas if d = 3,then u� is only weakly 
ontinuous as a mapping from [0; T ℄ into H� (similarly as in Theorem 3.1on p.191 in [21℄). It is in the latter, weaker sense that the imposition of the initial 
ondition tothe u�-equation will be understood for d = 2; 3: that is limt!0(u�(t); v�) = (u�0; v�) for all v� 2 H� .4 Existen
eThroughout we will assume that (2.18a,b), (2.19), (3.16) and (3.48) hold. In order to prove exis-ten
e of these weak solutions to a modi�ed version of (P), we 
onsider a time semidis
retization.To this end, for any T > 0, let N �t = T and tn = n�t, n = 0! N .In order to prove existen
e of weak solutions under minimal smoothness requirements on theinitial data, we introdu
e proje
tions u�0,  0 of the original initial data u�0,  0, as follows:u�0 = S��tu�0; (4.1a)Z
�DM�1�(1 + �tjq�j2) 0 �  0�'dq� dx� = 0 8' 2 L2(
�D;M�1(1 + jq�j2)): (4.1b)23



It follows from (4.1a,b) that u�0 
onverges to u�0 weakly in H� and  0 
onverges to  0 weakly inL2(
�D;M�1) as �t! 0.We begin by 
onsidering the, simpler, 
orotational 
ase.4.1 Corotational modelsWe introdu
e a dis
rete-time pro
edure to mimi
 the formal energy estimate (3.26){(3.35a,b).For n = 1! N , given fu�n�1;  n�1g 2 V� �K+q ; �nd u�n 2 V� su
h thatZ
 "u�n � u�n�1�t + (u�n�1 � r� x )u�n# � w� dx� + � Z
r� x u�n : r� xw� dx�= �Z
 ��( n�1) : r� xw� dx� 8w� 2 V� : (4.2)It is 
onvenient to rewrite (4.2) asbn(u�n; w� ) = Z
 hu�n�1 � w� ��t ��( n�1) : r� xw� i dx� 8w� 2 V� ; (4.3)where for all w� i 2 H� 10(
), i = 1; 2,bn(w� 1; w� 2) :=Z
 hw� 1 +�t (u�n�1 � r� x )w� 1i � w� 2 dx� +�t � Z
r� xw� 1 : r� xw� 2 dx�: (4.4)As u�n�1 2 V� , it follows from (3.25) that bn(�; �) is a 
ontinuous and 
oer
ive bilinear fun
tionalon V� �V� . Sin
e, by virtue of (3.30), ��( n�1) 2 L� 2(
), it follows from the Lax{Milgram theoremthat there exists a unique solution to (4.3).On 
hoosing w� � u�n in (4.2), and noting the simple identity2 (s1 � s2) s1 = s21 + (s1 � s2)2 � s22 8s1; s2 2 R; (4.5)the identities (3.25) and (2.2), and the fa
t that u�n�1; u�n 2 V� yields, similarly to (3.26), that12�t Z
 h ju�nj2 + ju�n � u�n�1j2 � ju�n�1j2 i dx� + � Z
 jr� x u�nj2 dx�= �k � Z
C� ( n�1) : r� x u�n dx� � �2 Z
 jr� x u�nj2 dx� + (k �)22 � Z
 jC� ( n�1)j2 dx�: (4.6)On 
hoosing w� � S�� �u�n�u�n�1�t � 2 V� in (4.2) yields, on noting (3.44), (2.2) and (3.25), thatZ
 24� �����r� x "S�� u�n � u�n�1�t !#�����2 + �����S�� u�n � u�n�1�t !�����235 dx�= �Z
 h�r� x u�n + C� ( n�1)i : r� x "S�� u�n � u�n�1�t !# dx�+ Z
 u�n � "(u�n�1 � r� x )"S�� u�n � u�n�1�t !## dx�� C Z
 h jC� ( n�1)j2 + jr� x u�nj2 + ju�n�1j2 ju�nj2 i dx�: (4.7)24



Applying the Cau
hy{S
hwarz inequality, the algebrai
-geometri
 mean inequality and theGagliardo{Nirenberg inequality (3.21) yields thatZ
 ju�n�1j2 ju�nj2 dx� � �Z
 ju�n�1j4 dx��12 �Z
 ju�nj4 dx��12 � 12 nXm=n�1Z
 ju�mj4 dx�� C nXm=n�1"�Z
 ju�mj2 dx��2� d2 �Z
 jr� x u�mj2 dx�� d2# : (4.8)Given v� 2 V� \ C� 0;1(
), let y�n(v�; t; �; �) 2 C1([tn�1; tn℄;C� 0;1(
)) be the unique solution, forall x 2 
 and with either t = tn�1 or tn, ofddsy�n(v�; t;x�; s) = v�(y�n(v�; t;x�; s)) 8s 2 [tn�1; tn℄ n t; y�n(v�; t;x�; t) = x�: (4.9)As v� = 0� on �
, the map x� ! y�n(v�; t;x�; s) is, for ea
h s 2 [tn�1; tn℄ and t = tn�1 or tn, aLips
hitz-
ontinuous homeomorphism from 
 into itself, independent of the 
hoi
e of �t. Byvirtue of the Radema
her{Stepanov theorem it is di�erentiable almost everywhere in 
. More-over, sin
e v� is divergen
e-free, the map has the volume-preserving property, i.e. its Ja
obian,det r� x y�n, satis�es det r� x y�n(v�; t; �; �) = 1 a:e: in 
� [tn�1; tn℄: (4.10)We note also from (4.9) that, for all x� 2 
,jy�n(v�; tn�1;x�; t)� x�j � (t� tn�1) supy�2
 jv�(y�)j 8t 2 [tn�1; tn℄; (4.11a)jy�n(v�; tn�1;x�; tn)� [x� +�t v�(x�)℄ j = �����Z tntn�1[v�(y�n(v�; tn�1;x�; t)) � v�(x�)℄ dt����� � C(kv�kC0; 12 (
)) (�t) 32� C(kv�kH2(
)) (�t) 32 if v� 2 H2(
): (4.11b)In addition, it is easily established that, for all t 2 [tn�1; tn℄, all x� 2 
 and all v�a, v�b in C0;1(
),jy�n(v�a; tn�1;x�; t)� y�n(v�b; tn�1;x�; t)j � C(kv�akC0;1(
); kv�bkC0;1(
)) (t� tn�1) kv�a � v�bkC(
):(4.12)On observing that, by (3.47a), u�n� := S��u�n 2 C� 1(
), we let  n 2 Kq be su
h thatan
 ( n; ') = `n
 (') 8' 2 Kq ; (4.13)where, for all '1; '2; ' 2 Kq,an
 ('1; '2) := Z
�D �W
 '1 '2 +�t �M2� r� q �'1M �� [!� (u�n�) q�℄'1� � r� q �'2M �� dq�dx�;(4.14a)`n
 (') := Z
�DW
  n�1(y�n(u�n�; tn;x�; tn�1); q�)'dq�dx�; (4.14b)W
 := 1 +�t jq�j2M : (4.14
)25



Similarly to (3.33) and (3.34), as u�n� 2W� 1;1(
), we have in the 
orotational 
ase thatZ
�D ' (!� (u�n�) q�) � r� q � 'M � dq�dx� = 0; Z
�DM (!� (u�n�) q�) � r� q � 'M � dq�dx� = 0 8' 2 Kq:(4.15)Hen
e an
 (�; �) is a non-symmetri
, 
ontinuous and 
oer
ive bilinear fun
tional onKq�Kq and, onnoting (4.10), `n
 (�) is a 
ontinuous linear fun
tional onKq. Therefore, the Lax{Milgram theoremyields the existen
e of a unique solution to (4.13). As  n 2 Kq implies that [ n℄� 2 Kq, re
allLemma 3.3, and as  n�1 2 K+q , it follows from (3.17b), (4.14a,b) and (4.13) thatan
 ([ n℄�; [ n℄�) = an
 ( n; [ n℄�) = `n
 ([ n℄�) � 0: (4.16)Therefore the 
oer
ivity of an
 (�; �) over Kq � Kq yields that [ n℄� = 0; that is,  n 2 K+q ,n = 0! N .Choosing ' =  n in (4.13), noting (4.5), (4.15) and (4.10) yield thatZ
�DW
 �j n(x�; q�)j2 + j n(x�; q�)�  n�1(y�n(u�n�; tn;x�; tn�1); q�)j2� dq�dx�+ �t� Z
�DM ����r� q � nM �����2 dq�dx� = Z
�DW
 j n�1(y�n(u�n�; tn;x�; tn�1); q�)j2 dq�dx�= Z
�DW
 j n�1(x�; q�)j2 dq�dx�: (4.17)Summing (4.17) and (4.6) multiplied by 2�t from n = 1 ! m, with 1 � m � N , and noting(3.27) yields the analogues of the formal energy bounds (3.35a,b):maxn=1!N �Z
�DW
 j nj2 dq�dx��+ 1� NXn=1�t Z
�DM ����r� q � nM �����2 dq�dx�+ NXn=1Z
�DW
 j n(x�; q�)�  n�1(y�n(u�n�; tn;x�; tn�1); q�)j2 dq�dx�+ maxn=0!N �Z
 jC� ( n)j2 dx�� � C Z
�DW
 j 0j2 dq�dx� ; (4.18a)maxn=1!N �Z
 ju�nj2 dx��+ NXn=1Z
 ju�n � u�n�1j2 dx� + � NXn=1�t Z
 jr� x u�nj2 dx�� Z
 ju�0j2 dx� + C T Z
�DW
 j 0j2 dq�dx�: (4.18b)In addition, taking the 2d power of both sides of (4.7), summing from n = 1 ! N and noting
26



(4.8) and (4.18a,b) yields thatNXn=1�t0�Z
 24� �����r� x "S�� u�n � u�n�1�t !#�����2 + �����S�� u�n � u�n�1�t !�����235 dx�1A 2d
� C " NXn=1�t�Z
 jC� ( n�1)j2 dx�� 2d#+ C(T ) " NXn=1�tZ
 jr� x u�nj2 dx�# 2d+C(T ) " maxn=0!N �Z
 ju�nj2 dx�� 4d�1# " NXn=0�tZ
 jr� x u�nj2 dx�# � C(T ) ; (4.19)provided that there exists a positive 
onstant C, independent of �t, su
h that the proje
tedinitial data satis�esZ
[ ju�0j2 +�t jr� x u�0j2 ℄ dx� + Z
�D(1 + �t jq�j2 ) j 0j2M dq�dx� � C : (4.20)This is guaranteed by (3.45a), (3.48) and (4.1a,b). Furthermore, it follows from (4.18b), (3.46)and (4.20) thatmaxn=0!N ku�n�k2H2(
) � C �Z
 ju�0j2 dx� + T Z
�DW
 j 0j2 dq�dx�� � C(T ): (4.21)Let u��t(�; t) := t� tn�1�t u�n(�) + tn � t�t u�n�1(�); t 2 [tn�1; tn℄; n � 1; (4.22a)and u��t;+(�; t) := u�n(�); u��t;�(�; t) := u�n�1(�); t 2 (tn�1; tn℄; n � 1: (4.22b)We note for future referen
e thatu��t � u��t;� = (t� t�n ) �u��t�t ; t 2 (tn�1; tn); n � 1; (4.23)where t+n := tn and t�n := tn�1. Using the above notation, and introdu
ing analogous notationfor fu�n�gNn=0 and f ngNn=0, (4.2) summed for n = 1! N 
an be restated as:Z T0 *�u��t�t ; w�+ dt+ Z T0 Z
 hh(u��t;� � r� x )u��t;+i � w� + �r� x u��t;+ : r� xw� i dx� dt= �k � Z T0 Z
 ��( �t;�) : r� xw� dx� dt 8w� 2 L 44�d (0; T ;V� ): (4.24)Similarly, (4.13) summed for n = 1! N 
an be restated as:Z T0 Z
�DW
  �t;+(x�; q�; t)�  �t;�(y��t(x�; t); q�; t)�t '(x�; q�; t) dq�dx� dt+ Z T0 Z
�D �M2� r� q � �t;+M �� [!� (u��t;+� ) q�℄ �t;+� � r� q � 'M � dq�dx� dt = 08' 2 L2(0; T ;Kq); (4.25)27



wherey��t(x�; t) := y�n(u�n�; tn;x�; tn�1) and z��t(x�; t) := y�n(u�n�; tn�1;x�; tn); t 2 (tn�1; tn); n � 1:(4.26)Noting (4.20), (2.2) and (3.29), we have from (4.18a) thatsupt2(0;T )24Z
�D j �t(;�)(x�; q�; t)j2M dq�dx�35+ 1� Z T0 Z
�DM �����r� q   �t(;�)M !�����2 dq�dx� dt+ (�t)�1 Z T0 �Z
�DW
 j �t;+(x�; q�; t)�  �t;�(y��t(x�; t); q�; t)j2 dq�dx�� dt+ supt2(0;T ) �Z
 j[��( �t(;�))℄(x�; t)j2 dx�� � C : (4.27)In the above, the notation  �t(;�) means  �t with or without the supers
ripts �. Similarly, onnoting (4.20), we have from (4.18b), (4.19) and (4.21) thatsupt2(0;T ) �Z
 ju��t(;�)j2 dx��+ (�t)�1 Z T0 Z
 ju��t;+ � u��t;�j2 dx� dt+ � Z T0 Z
 jr� x u��t;(�)j2 dx�+ Z T0 




S�� �u��t�t 




 4dH1(
) dt+ supt2(0;T ) ku��t(;�)� k2H2(
) � C: (4.28)We are now in a position to prove the following 
onvergen
e result.Lemma 4.1. There exists a subsequen
e of fu��t;  �tg�t, and fun
tions u� 2 L1(0; T ;L� 2(
)) \L2(0; T ;V� ) \W 1; 4d (0; T ;V� 0) and  2 L2(0; T ;K) with M� 12  2 L1(0; T ;L2(
�D)) su
h thatas �t! 0, �t(;�)M 12 !  M 12 weak * in L1(0; T ;L2(
�D)); (4.29a)M 12 r� q � �t;+M �!M 12 r� q �  M� weakly in L2(0; T ;L� 2(
�D)); (4.29b)��( �t(;�))! ��( ) weak * in L1(0; T ;L� 2(
)); (4.29
)and u��t(;�) ! u� weak * in L1(0; T ;L� 2(
)); (4.30a)u��t(;�) ! u� weakly in L2(0; T ;V� ); (4.30b)S���u��t�t ! S�� �u��t weakly in L 4d (0; T ;V� ); (4.30
)u��t(;�) ! u� strongly in L2(0; T ;L� r(
)); (4.30d)u��t(;�)� ! u�� := S��u� strongly in L2(0; T ;W� 2;r(
)); (4.30e)where r 2 [1;1) if d = 2 and r 2 [1; 6) if d = 3.28



Proof. The result (4.29a) for  �t;+(x�; q�; t) and  �t;�(y��t(x�; q�); q�; t) follow immediately fromthe bounds on the �rst and the third term on the left-hand side of (4.27) on noting (4.14
).Next we note from (4.26), (4.10), the bound on the �rst term on the left-hand side of (4.27) and(4.11a,b) that, for a.a. t 2 (0; T ),������ Z
�D [ �t;�(x�; q�; t)�  �t;�(y��t(x�; q�); q�; t) ℄M 12 '(x�; q�) dq�dx� ������= ������ Z
�D  �t;�(x�; q�; t)M 12 ['(x�; q�)� '(z��t(x�; q�); q�) ℄ dq� dx� ������� C�t ku��t;+� (�; t)kH2(
) k'kC0;1(
�D) 8' 2 C10 (
�D) : (4.31)Hen
e, the desired result in (4.29a) for  �t;� follows from (4.31), the bound on the �fth term onthe left-hand side of (4.28) and the denseness of C10 (
�D) in L2(
�D). The desired resultin (4.29a) for  �t then follows from that for  �t;� and the notation (4.22a,b).It follows immediately from the bound on the se
ond term on the left-hand side of (4.27)that (4.29b) holds for some limit g� 2 L2(0; T ;L� 2(
�D)), whi
h we need to identify. Howeverfor any �� 2 L2(0; T ;C� 10 (
�D)), it follows from (2.7), (2.18a,b) and the 
ompa
t support of ��on D that [r� q � (M 12 ��) ℄=M 12 2 L2(0; T ;L2(
�D)) and hen
e the above 
onvergen
e implies,on noting (4.29a), thatZ T0 Z
�D g� � �� dq�dx� dt �Z T0 Z
�D  �t;+M 12 r� q � (M 12 ��)M 12 dq�dx� dt! �Z T0 Z
�D  M 12 r� q � (M 12 ��)M 12 dq�dx� dt as �t! 0: (4.32)Hen
e the desired result (4.29b) follows from (4.32) on noting the denseness of C10 (
 �D) inL2(
�D). The desired result (4.29
) follows immediately from (4.29a), (2.2), (2.3) and (2.20).The results (4.30a{
) follow immediately from the bounds on the �rst four terms on theleft-hand side of (4.28). The strong 
onvergen
e result (4.30d) for u��t follows immediately from(4.30a,
), (3.22) and (3.44), on noting that V� � H� 10(
) is 
ompa
tly embedded in L� r(
) forthe stated values of r. We now prove (4.30d) for u��t;�. First we obtain from the bound on these
ond term on the left-hand side of (4.28) and (4.23) thatku��t � u��t;�k2L2(0;T;L2(
)) � C�t : (4.33)Se
ond, we note from Sobolev embedding that, for all � 2 L2(0; T ;H1(
)),k�kL2(0;T ;Lr(
)) � k�k�L2(0;T ;L2(
)) k�k1��L2(0;T ;Ls(
)) � C k�k�L2(0;T ;L2(
)) k�k1��L2(0;T ;H1(
)) (4.34)for all r 2 [2; s), with any s 2 (2;1) if d = 2 or any s 2 (2; 6℄ if d = 3, and� = [2 (s� r)℄=[r (s� 2)℄ 2 (0; 1℄:Hen
e, 
ombining (4.33), (4.34) and (4.30d) for u��t yields (4.30d) for u��t;�. Finally the desiredresult (4.30e) follows immediately from (4.30d) and (3.47a). ut29



It follows from (4.30a{d), (4.29
) and (3.43) that we may pass to the limit, �t! 0, in (4.24)to obtain that u� 2 L1(0; T ;L� 2(
)) \ L2(0; T ;V� ) \W 1; 4d (0; T ;V� 0) and ��( ) 2 L1(0; T ;L� 2(
))satisfy (3.51a). It also follows from (4.1a) that u�(�; 0) = u�0(�) in the required sense.As we have no 
ontrol of the time derivative or the x� derivatives of  �t, in order to pass tothe �t! 0 limit in (4.25) these derivatives have to be transferred to the test fun
tions.On noting (4.10) and (4.26), we have for any �xed ' 2 C10 ((�T; T );K) and for �t suÆ
ientlysmall thatZ T0 Z
�DW
  �t;+(x�; q�; t)�  �t;�(y��t(x�; t); q�; t)�t '(x�; q�; t) dq�dx� dt= �Z T0 Z
�DW
  �t;�(x�; q�; t)'(z��t(x�; t); q�; t)� '(x�; q�; t��t)�t dq�dx� dt� Z
�DW
  0(x�; q�) � 1�t Z t10 '(x�; q�; t��t) dt� dq�dx� : (4.35)It follows from (4.26), (4.11b) and (4.28), for all ' 2 C10 ((�T; T );K) and for all (x�; q�; t) 2
�D � (0; T ) that'(z��t(x�; q�); q�; t)� '(x�; q�; t��t)�t = �'�t (x�; q�; t) + (u��t;+� (x�) � r� x )'(x�; q�; t) +R�t(')(x�; q�; t) ;wherejR�t(')(x�; q�; t)j�C (�t) 12 max(x�;t)2
�[�T;T ℄� j�'�t (x�; q�; t)j+jr� x '(x�; q�; t)j+ maxi;j=1;:::;d j �2'�xi�xj (x�; q�; t)j �:(4.36)Hen
e, on 
ombining (4.25), (4.35) and (4.36), we have for any �xed ' 2 C10 ((�T; T );K) andfor �t suÆ
iently small that� Z T0 Z
�DW
  �t;� � �'�t + (u��t;+� � r� x )'+R�t(') � dq�dx� dt� Z
�DW
  0(x�; q�) � 1�t Z t10 '(x�; q�; t��t) dt� dq�dx�+ Z T0 Z
�D �M2� r� q � �t;+M �� [!� (u��t;+� ) q�℄ �t;+� � r� q � 'M � dq�dx� dt = 0 : (4.37)It follows from (4.29a,b), (4.30e), (3.47a), (4.36), (4.14
) and (4.1b) that we may pass to thelimit �t! 0 in (4.37) to obtain that  2 L2(0; T ;K) with M� 12  2 L1(0; T ;L2(
�D)) andu�� := S��u� 2 L2(0; T ;W� 1;1(
)) satisfy� Z T0 Z
�D  M � �'�t + (u�� � r� x )'� dq�dx� dt� Z
�D  0(�; �)M '(�; �; 0) dq� dx�+ Z T0 Z
�D �M2� r� q �  M�� [!� (u��) q�℄ � � r� q � 'M � dq�dx� dt = 08' 2 C10 ((�T; T );K) : (4.38)30



Noting that, by Lemma 3.1, C10 ((�T; T );K) is a dense subset of X (re
all (3.50)), it followsthat (4.38) remains true for all ' 2 X . Hen
e we have proved existen
e of a global weak solutionto the weak formulation (3.51a,b) of the smoothed 
orotational model.Finally, we note that in the present 
orotational 
ase one 
an derive an upper bound on n. To do so, we pro
eed indu
tively. Assuming that for some Ln�1 2 R+ ,  n�1 � Ln�1Ma.e. in 
 � D, we then determine Ln 2 R+ in terms of Ln�1 su
h that  n � LnM a.e. in
 � D. Now, from Lemma 3.3, (4.13), (4.14a,b) and (4.15), we have, for any Ln 2 R+ , that[ n � LnM ℄+ 2 Kq andan
 ([ n � LnM ℄+; [ n � LnM ℄+) = an
 ( n; [ n � LnM ℄+)� Ln an
 (M; [ n � LnM ℄+)= `n
 ([ n � LnM ℄+)� Ln an
 (M; [ n � LnM ℄+)= Z
�DW
 ( n�1(y�n(u�n�; tn;x�; tn�1); q�)� LnM ) [ n � LnM ℄+ dq�dx�� Z
�D �W
 (Ln�1 � Ln )M� [ n � LnM ℄+ dq�dx�: (4.39)On 
hoosing Ln = Ln�1 yields that the right-hand side of (4.39) is zero and hen
e from the
oer
ivity of an
 (�; �) that [ n � LnM ℄+ � 0. Thus, by indu
tion, we have for n = 1! N that0 �  n � LnM = L0M a.e. in 
�D; where L0 := sup(x�;q�)2
�D  0(x�; q�)M(q�) : (4.40)If L0 is �nite, then on re
alling the notation (4.22a,b), (4.40) gives rise to a uniform L1(0; T ;L1(
�D)) bound onM�1  �(;�). Moreover, it is then easily established that the limitM�1  2L1(0; T ;L1(
 � D)) with  � 0 a.e. on 
 � D � (0; T ), and hen
e the norm k � kX 
an berelaxed to the weaker norm k'kL2(0;T ;Kq) + k�'�t kL1(0;T ;L1(
�D)) + kr� x'kL1(0;T ;L1(
�D)).4.2 Non
orotational modelsIn order to mimi
 the formal energy estimate (3.41), we introdu
e a dis
rete-time pro
edure.Unlike the 
orotational 
ase above, it does not appear possible to de
ouple the Navier{Stokessystem from the probability density equation at ea
h time level and still mimi
 (3.41). As statedpreviously, we need smoothing on the right-hand side of (3.52a) in order to 
an
el the smootheddrag term in (3.52b).Let A0(v�) := supx�2
 jr� x v�(x�)j2 8v� 2 V� \W� 1;1(
): (4.41)Then, for n = 1 ! N , given fu�n�1; An�1;  n�1g 2 V� � R+ �K+q , where An�1 = An�1(u�n�1� );
31



�nd fu�n; An(u�n�);  ng 2 V� � R+ �Kq su
h thatZ
 "u�n � u�n�1�t + (u�n�1 � r� x )u�n# � w� dx� + � Z
r� x u�n : r� xw� dx�= �Z
 ��( n) : r� x (S� �w� ) dx� 8w� 2 V� ; (4.42a)Z
�D  n(x�; q�)�  n�1(y�n(u�n�; tn;x�; tn�1); q�)�t 'M dq�dx�+ Z
�D jq�j2 � (1 + �An(u�n�) ) n � (1 + �An�1) n�1(y�n(u�n�; tn;x�; tn�1); q�) ) � 'M dq�dx�+ 12� Z
�D M r� q � nM � � r� q � 'M � dq�dx�= Z
�D  n [ (r� x u�n�) q� ℄ � r� q � 'M � dq�dx� 8' 2 Kq; (4.42b)where u�n� := S��u�n and, for all v� 2 V� \W� 1;1(
),An(v�) := supx�2
 jr� x v�(x�)j2: (4.43)Similarly to (4.3), it is 
onvenient to rewrite (4.42a) asbn(u�n; w� ) = Z
 hu�n�1 � w� ��t ��( n) : r� x (S��w� )i dx� 8w� 2 V� ; (4.44)where bn(�; �) is de�ned as in (4.4). It is also 
onvenient to rewrite (4.42b) asang (u�n�)( n; ') = `ng (u�n�)(') 8' 2 Kq; (4.45)where, for all '1; '2; ' 2 Kq and v� 2 V� \W� 1;1(
),ang (v�)('1; '2) := Z
�D �W ng (v�)'1 '2 +�t �M2� r� q �'1M �� [(r� x v�) q�℄'1� � r� q �'2M �� dq�dx�;(4.46a)`ng (v�)(') := Z
�DW n�1g  n�1(y�n(v�; tn;x�; tn�1); q�)' dq�dx�; (4.46b)W ng (v�) := 1 +�t jq�j2 (1 + �An(v�) )M and W n�1g = 1 +�t jq�j2 (1 + �An�1 )M : (4.46
)On noting that v� 2 V� \ W� 1;1(
) and (4.10), it follows that ang (v�)(�; �) is a 
ontinuous non-symmetri
 bilinear fun
tional on Kq �Kq and `ng (v�)(�) is a linear fun
tional on Kq. Moreover,on applying a Young's inequality, we see thatang (v�)(';') � Z
�D �W
 j'j2 + �tM4� ���r� q � 'M ����2� dq�dx� 8' 2 Kq; (4.47)that is, ang (v�)(�; �) is 
oer
ive on Kq �Kq. 32



In order to prove existen
e of a solution to (4.42a,b), we 
onsider a �xed point argument.Given bu� 2 L� r(
), r > d, let f ?; u�?g 2 Kq � V� be su
h thatang (bu��)( ?; ') = `ng (bu��)(') 8' 2 Kq; (4.48a)bn(u�?; w� ) = Z
 hu�n�1 � w� ��t ��( ?) : r� x (S��w� )i dx� 8w� 2 V� ; (4.48b)where, on re
alling (3.47a), bu�� := S��bu� 2 V� \W� 1;1(
). On noting (4.47), the Lax{Milgramtheorem yields the existen
e of a unique solution to (4.48a). Similarly to (4.3), on noting (3.45b),there exists a unique solution to (4.48b). Therefore the overall pro
edure (4.48a,b) is well-posed.Lemma 4.2. Let G� : L� r(
) ! V� � L� r(
), r 2 (d; 6), denote the nonlinear map that takes bu� tou�? = G� (bu�) via the pro
edure (4.48a,b). Then G� has a �xed point. Hen
e there exists a solutionfu�n; An(u�n�);  ng 2 V� � R+ �Kq to (4.42a,b).Proof. Clearly, a �xed point of G� yields a solution of (4.42a,b). In order to show that G�has a �xed point, we apply S
hauder's �xed point theorem; that is, we need to show that (i)G� : L� r(
)! L� r(
), r 2 (d; 6), is 
ontinuous, (ii) 
ompa
t, and (iii) there exists a C? 2 R+ su
hthat kbu�kLr(
) � C? (4.49)for every bu� 2 L� r(
) and � 2 (0; 1℄ satisfying bu� = � G� (bu�).Let fbu�(i)gi�0 be su
h thatbu�(i) ! bu� strongly in L� r(
) as i!1: (4.50)We need to show thatbv�(i) := G� (bu�(i))! G� (bu�) strongly in L� r(
) as i!1; (4.51)in order to prove (i) above. We have from the de�nition of G� , see (4.48a,b), that, for all i � 0 ,bn(bv�(i); w� ) = Z
 hu�n�1 � w� ��t ��( b (i)) : r� x (S��w� )i dx� 8w� 2 V� ; (4.52a)where b (i) 2 Kq satis�es ang (bu�(i)� )( b (i); ') = `ng (bu�(i)� )(') 8' 2 Kq; (4.52b)and from (3.47a) we have thatbu�(i)� := S�� bu�(i) ! bu�� := S�� bu� strongly in W� 2;r(
) �W� 1;1(
) as i!1: (4.52
)Choosing w� � v�(i) in (4.52a), and noting (3.25), (4.5), (2.2), (3.45b) and (3.27), yields, similarlyto (4.6), that, for all i � 0, bv�(i) 2 V� satis�esZ
 hjbv�(i)j2 + jbv�(i) � u�n�1j2 � ju�n�1j2i dx� +�t � Z
 jr� x bv�(i)j2 dx�� C�t Z
�D j b (i)j2M dq�dx� ; (4.53)33



Choosing ' � b (i) in (4.52b), and noting (4.47), (4.46b,
), (4.14
) and (4.10) yields, for all i � 0,thatZ
�D 24W
 j b (i)j2 + �tM2� �����r� q  b (i)M !�����235 dq�dx�� (1 + �An�1)2 Z
�DW
 j n�1j2 dq�dx� � C: (4.54)On 
ombining (4.53) and (4.54), and noting an embedding result, see (3.21), and a Poin
ar�einequality, we have for all i � 0 thatkbv�(i)kLr(
) � C kr� x bv�(i)kL2(
) � C : (4.55)Similarly to the proof of Lemma 4.1, it follows from (4.54) and (4.55), on noting the 
ompa
tnessof the embedding H� 1(
) ,! L� r(
), r 2 (d; 6), that there exists a subsequen
e f b (ik);bv�(ik)gik�0and fun
tions b 2 Kq and bv� 2 V� su
h thatW 12
 b (ik) !W 12
 b weakly in L2(
�D) as ik !1; (4.56a)M 12 r� q  b (ik)M !!M 12 r� q  b M! weakly in L� 2(
�D) as ik !1; (4.56b)��( b (ik))! ��( b ) weakly in L� 2(
�D) as ik !1; (4.56
)bv�(ik) ! bv� weakly in H� 1(
) as ik !1; (4.56d)bv�(ik) ! bv� strongly in L� r(
) as ik !1: (4.56e)It follows from (4.52a), (4.4) and (4.56
,d), that bv� 2 V� and b 2 Kq satisfybn(bv�; w� ) = Z
 hu�n�1 � w� ��t ��( b ) : r� x (S��w� )i dx� 8w� 2 V� : (4.57)For a �xed ' 2 Kq, and any Æ > 0, there exists, on re
alling the density of K in Kq (
f. the linebelow (3.49)), a 'Æ 2 K su
h that for all v� 2 V� \ C� 0;1(
)j `ng (v�)('� 'Æ) j � C k'� 'ÆkKq � Æ : (4.58)We have from (4.46b), (4.9), (4.10) and (4.12) that, for all v�a; v�b 2 C� 0;1(
),j `ng (v�a)('Æ)� `ng (v�b)('Æ) j= ���� Z
�DW n�1g  n�1(x�; q�) �'Æ(y�n(v�a; tn�1;x�; tn); q�)� 'Æ(y�n(v�b; tn�1;x�; tn); q�)� dq� dx� ����� C kr� x 'ÆkL1(
�D) ky�n(v�a; tn�1;x�; tn)� y�n(v�b; tn�1;x�; tn)kL1(
)� C(kv�akC0;1(
); kv�bkC0;1(
)) kr� x 'ÆkL1(
�D) kv�a � v�bkL1(
): (4.59)Combining (4.58) and (4.59) yields, on noting (4.52
), that`ng (bu�(i)� )(')! `ng (bu��)(') as i!1; 8' 2 Kq: (4.60)34



Hen
e it follows from (4.52b), (4.46a,
), (4.43), (4.56a,b), (4.52
) and (4.60) that bu�� := S��bu� 2V� \W� 2;r(
) and b 2 Kq satisfyang (bu��)( b ;') = `ng (bu��)(') 8' 2 Kq: (4.61)Combining (4.61) and (4.57), we have that bv� = G� (bu�) 2 V� . Therefore the whole sequen
ebv�(i) � G� (bu�(i))! G� (bu�) strongly in L� r(
) as i!1, and so (i) holds.As the embedding V� ,! L� r(
), r 2 (d; 6), is 
ompa
t; it follows that (ii) holds.As regards (iii), bu� = � G� (bu�) implies that f b ; bu�g 2 Kq � V� satis�esang (bu��)( b ;') = `ng (bu��)(') 8' 2 Kq; (4.62a)bn(bu�; w� ) = � Z
 hu�n�1 � w� ��t ��( b ) : r� x (S��w� )i dx� 8w� 2 V� ; (4.62b)where bu�� := S��bu�. As  n�1 2 K+q and b 2 Kq =) [ b ℄� 2 Kq, re
all Lemma 3.3, it follows from(4.62a) and (4.46a,b) thatang (bu��)([ b ℄�; [ b ℄�) = ang (bu��)( b ; [ b ℄�) = `ng (bu��)([ b ℄�) � 0: (4.63)Therefore (4.47) yields that [ b ℄� = 0; that is, b 2 K+q . On 
hoosing w� � bu� in (4.62b), andnoting (2.2) and that bu�� 2 V� yields, similarly to (4.6), that12 Z
 h jbu�j2 + jbu� � � u�n�1j2 � �2 ju�n�1j2 i dx� +�t � Z
 jr� x bu�j2 dx�= ��t � k � Z
C� ( b ) : r� x bu�� dx�: (4.64)Choosing ' =M in (4.62a) and noting (4.10) yields thatZ
�D[ 1 +�t jq�j2 (1 + �An(bu��) ) ℄ b dq�dx� = Z
�D[ 1 + �t jq�j2 (1 + �An�1) ℄ n�1 dq�dx�:(4.65)Choosing ' = U M in (4.62a), and noting (2.8), (2.3), (4.10), Lemma 3.2, (2.7) and (2.17) yields,
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similarly to (3.40), thatZ
�D( b �  n�1)U dq�dx� ��t Z
C� ( b ) : r� x bu�� dx�+�t Z
�D jq�j2 h (1 + �An(bu��) ) b � ( 1 + �An�1) n�1 i U dq�dx�= ��t2� Z
�DM r� q  b M! � U 0 q�dq�dx�= �t2� Z
�D ��U 00 � (U 0)2� jq�j2 + dU 0� b dq�dx�� ��t 
22� Z
�fjq�j2� d
2 g jq�j2 U 0 b dq�dx� + �t d2� Z
�fjq�j2� d
2 g U 0 b dq�dx�� ��t 
22� Z
�fjq�j2� d
2 g jq�j2 U 0 b dq�dx�+ C�t Z
�D �1 +�t jq�j2 (1 + �An(bu��) ) � b dq�dx�: (4.66)Combining (4.64) and (4.66) multiplied by � k �, and noting (4.65) yields that12 Z
 h jbu�j2 + jbu� � � u�n�1j2 i dx� +�t � Z
 jr� x bu�j2 dx�+ � k � Z
�D � 1 +�t jq�j2 (1 + �An(bu��) ) � U b dq�dx�+ �t � k � 
22� Z
�fjq�j2� d
2 g jq�j2 U 0 b dq�dx�� 12 �2 Z
 ju�n�1j2 dx� + � k � Z
�D � 1 +�t jq�j2 (1 + �An�1 ) � U  n�1 dq�dx�+ C � k ��t Z
�D � 1 +�t jq�j2 (1 + �An�1 ) �  n�1 dq�dx�: (4.67)As b 2 K+q , then (4.67) gives rise to the desired bound (4.49) with C dependent on �t, onnoting the embedding V� ,! L� r(
). Hen
e (iii) holds and so G� has a �xed point. Thus we haveproved existen
e of a solution to (4.42a,b). utRepeating the arguments (4.63){(4.67) for the solution fu�n;  ng of (4.42a,b) yields that n 2 K+q and (4.67) holds with � = 1 and fbu�; b g repla
ed by fu�n;  ng. Summing this fromn = 1! m, m = 1! N , and noting by indu
tion on (4.65) thatZ
�D �1 +�t jq�j2 (1 + �An�1) �  n�1 dq�dx� = Z
�D �1 +�t jq�j2 (1 + �A0) �  0 dq�dx�; (4.68)
36



and (4.20) yields the analogue of (3.42)12 " maxn=1!N �Z
 ju�nj2 dx��+ NXn=1Z
 ju�n � u�n�1j2 dx�#+ � NXn=1�t Z
 jr� x u�nj2 dx�+ k � maxn=1!N �Z
�D U  n dq�dx��+ k � 
22� NXn=1�t Z
�fjq�j2� d
2 g jq�j2 U 0  n dq�dx�+�t maxn=1!N �Z
�D jq�j2 (1 + �An(u�n�) )U  n dq�dx��� 12 Z
 ju�0j2 dx� + C(T ) Z
�D �1 +�t jq�j2 (1 + �A0)� (1 + U) 0 dq�dx�� C: (4.69)The bounds on  n in (4.69) do not suÆ
e in order to pass to the limit �t! 0 in the summationover n of (4.42b). One needs to establish additional bounds on  n. We 
on�ne ourselves to thephysi
ally more realisti
 
ase of FENE-type models.It follows from (4.43), (3.47b), (3.21), (4.69) and (4.20) that, for any � 2 [1; 1
 ℄,NXn=1�t (An�1)� = NXn=1�t kr� x u�n�1� k2�L1(
) � C(�) NXn=1�t ku�n�1k2�Lr(
)� C(�) NXn=1�t ku�n�1k2 � (1�
)L2(
) kr� x u�n�1k2� 
L2(
)� C(�) NXn=1�t kr� x u�n�1k2L2(
)!�
 � C1(�); (4.70)where r 2 (d; 6℄ and 
 2 [d (r � 2)=(2 r); 1℄. Choosing ' =  n in (4.45) and noting (4.46
),(4.14
) and (4.47) yields thatZ
�DW
  n ( n �  n�1(y�n(u�n�; tn;x�; tn�1); q�) ) dq� dx� + �t4� Z
�DM ����r� q � nM �����2 dq�dx�� �t �An�1 Z
�D jq�j2M  n  n�1(y�n(u�n�; tn;x�; tn�1); q�) dq�dx�: (4.71)Applying the identity (4.5) and a Young's inequality to (4.71), and noting (4.10), that D isbounded and (4.70) with C1 � C1(1), yields(1� 12 C�11 �tAn�1) Z
�DW
 j nj2 dq�dx� + Z
�DW
 j n �  n�1(y�n(u�n�; tn;x�; tn�1); q�)j2 dq�dx�+ �t2� Z
�DM ����r� q � nM �����2 dq�dx� � (1 + C2�tAn�1) Z
�DW
 j n�1j2 dq�dx�: (4.72)It follows from (4.72) thatZ
�DW
 j nj2 dq�dx� � 1 + C2�tAn�11� 12 C�11 �tAn�1 Z
�DW
 j n�1j2 dq�dx�� eC�t An�1 Z
�DW
 j n�1j2 dq�dx�: (4.73)37



Hen
e 
ombining (4.73) and (4.70) with � = 1, summing (4.72) from n = 1 ! N and noting(3.27) yields the bounds (4.18a) for the general non
orotational FENE model; in parti
ular:maxn=1!N �Z
�DW
 j nj2 dq�dx��+ 1� NXn=1�t Z
�DM ����r� q � nM �����2 dq�dx�+ NXn=1Z
�DW
 j n(x�; q�)�  n�1(y�n(u�n�; tn; x�; tn�1)); q�)j2 dq�dx�+ maxn=0!N �Z
 jC� ( n)j2 dx�� � C: (4.74)Finally on 
hoosing w� � S�� �u�n�u�n�1�t � 2 V� in (4.42a) yields, on noting (3.45b), a dire
tanalogue of (4.7) and (4.19):NXn=1�t0�Z
 24� �����r� x "S�� u�n � u�n�1�t !#�����2 + �����S�� u�n � u�n�1�t !�����235 dx�1A 2d � C: (4.75)We have now established all of the analogues of the bounds (4.18a,b) and (4.19) in the 
orota-tional 
ase for the general non
orotational FENE-type potentials, see (4.69), (4.74) and (4.75)above. The remainder of the 
onvergen
e proof follows exa
tly the same arguments as in the
orotational 
ase. The only di�eren
es are: (i) the presen
e of S�� on the right-hand side of(4.42a); and (ii) the term involving An(u�n�) in ang (u�n�)(�; �) and the term involving An�1 in `ng (�).Obviously (i) 
auses no diÆ
ulties whatsoever. Hen
e we 
omment only on (ii).Therefore to prove existen
e of a solution to (3.52a,b), we need only to show, on noting thenotation (4.22a,b), that, for all ' 2 C10 ((�T; T );K),Z T0 Z
�D jq�j2M � (1 + �A�t;+) �t;+(x�; q�; t)� (1 + �A�t;�) �t;�(y��t(x�; q�); q�; t) � 'dx� dq�dt! 0 as �t! 0; (4.76)where A�t;+ and A�t;� are de�ned analogously to  �t;+, u��t;+ and  �t;�, u��t;�, respe
tively.Now, similarly to (4.35), we have from (4.10), (4.26), (4.36), (4.74) and (4.70) for any' 2 C10 ((�T; T );K) that, for �t suÆ
iently small,������ Z T0 Z
�D jq�j2M � (1 + �A�t;+) �t;+(x�; q�; t)� (1 + �A�t;�) �t;�(y��t(x�; q�); q�; t) � 'dx� dq�dt ������= ������t Z T0 Z
�D jq�j2M (1 + �A�t;�) �t;� � �'�t + (u��t;+� � r� x )'+R�t(') � dq�dx� dt��t Z
�D jq�j2M (1 + �A0) 0(x�; q�) � 1�t Z t10 '(x�; q�; t��t) dt� dq�dx� ����� C(')�t Z T0 (1 + �A�t;�) dt � C(')�t : (4.77)38



Hen
e the desired result (4.76) holds. Therefore we have proved global existen
e of a solu-tion to the weak formulation (3.52a,b) of the smoothed non
orotational model for FENE-typepotentials.Remark 4.1. The argument presented above for non
orotational FENE-type models breaks downfor non
orotational Hookean models, sin
e in the transition from bound (4.71) to (4.72) we ex-ploit the fa
t that D is bounded. The diÆ
ulty 
ould be over
ome if one 
ould obtain a maximumprin
iple on  n along the lines of (4.39). Unfortunately, in the 
ase of D = Rd this does notappear to be readily a
hievable. Having said this, our main fo
us of interest in the present ar-ti
le have been FENE-type mi
ros
opi
-ma
ros
opi
 models for diluted polymers where D is abounded open ball in Rd : for, the fa
t that in Hookean-type models the domain D is equal to thewhole of Rd stems from the physi
ally unrealisti
 modelling assumption that the length jq�j of theelongation-ve
tor q� 2 D of a polymer 
hain may be arbitrarily large.Remark 4.2. It is plausible that the existen
e of global weak solutions to the original modelproblem (P) 
ould be established, without smoothing of the model, by 
ombining the ideas devel-oped here with the DiPerna-Lions theory of renormalised solutions to linear �rst-order hyperboli
problems with 
oeÆ
ients in Sobolev spa
es [5℄; see also the more re
ent work of Ambrosio [1℄on the subje
t of �rst-order linear hyperboli
 PDEs with non-smooth 
oeÆ
ients. This line ofinvestigation will, however, require a notion of weak solution di�erent from the one 
onsideredhere, and will be the subje
t of future resear
h.A
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