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Abstract. We study the existence of global-in-time weak solutions to a coupled microscopic-macroscopic bead-
spring model which arises from the kinetic theory of diluted solutions of polymeric liquids with noninteracting
polymer chains. The model consists of the unsteady incompressible Navier—Stokes equations in a bounded domain
Q C R, d=2,3, for the velocity and the pressure of the fluid, with an extra-stress tensor as right-hand side in
the momentum equation. The extra-stress tensor stems from the random movement of the polymer chains and
is defined through the associated probability density function which satisfies a Fokker Planck type degenerate
parabolic equation. Upon appropriate smoothing of the convective velocity field in the Fokker—Planck equation,
and in some circumstances, of the extra-stress tensor, we establish the existence of global-in-time weak solutions to
this regularised bead-spring model for a general class of spring-force-potentials including in particular the widely
used FENE (Finitely Extensible Nonlinear Elastic) model.

1 Introduction

The purpose of this paper is to explore the question of global existence of weak solutions to a
set of partial differential equations which arises from the kinetic theory of the flow of a diluted
solution of polymeric liquid in a domain  C R?, d = 2,3. The simplest model of this kind to
account for noninteracting polymer chains is the so-called dumbbell model (cf. [3]); a dumbbell
consists of two beads connected by an elastic spring. Following [4], at time ¢ the dumbbell
is characterised by the position of its centre of mass X(¢) and its elongation vector Q(t) (see
Figure 1). When a dumbbell is placed into a given velocity field u(z,t), three forces act on each
bead: the first force is the drag force proportional to the difference between the bead velocity
and the velocity of the surrounding fluid particles; the second force is the elastic force F' due
to the spring stiffness; the third force is due to thermal agitation and is modelled by Brownian
motion.

On rescaling the elongation vector, Newton’s equations of motion for the beads give rise to
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Figure 1: Noninteracting polymer chains, immersed into an incompressible flow with velocity wu,
are modelled by using dumbbells, each dumbbell representing a polymer chain. A dumbbell is a
pair of beads connected with an elastic spring. At time t > 0, the dumbbell is characterised by
the position X (t) of its centre of mass and its elongation vector Q(f)

the following set of stochastic differential equations:

dX = u(X (t),t)dt, (1.1a)

1Q = ([P ulX(0.0.Q(0) - 55 FQ() ) at — = aw (o) (1.1)

where W is a vector of independent scalar Wiener processes, F'(()) denotes the elastic force
acting on the chain due to elongation, the positive parameter A = ¢/(4H) characterises the
elastic property of the fluid, with £ denoting the drag coefficient and H the spring stiffness. For

details, we refer, for example, to [3, 6, 10, 17].

The present paper is concerned with the well-posedness of the deterministic restatement
of this problem. For this purpose, let 1(z,q,t) denote the probability density function cor-
responding to the vector-valued stochastic pgocess (X (t),Q(t)); thus, 1(z,q,t) represents the
probability, at time ¢, of finding the centre of mass of a dumbbell at a positign ‘between’ g and
& + dgz and having elongation ‘between’ ¢ and ¢ + dg.

Now, let us suppose that the elastic force F : D C R? — R?, d = 2,3, of the spring is
defined through a (sufficiently smooth) potential U : R>¢g — R via
Fq) =U'(5l4P) q. (1.2)

Then, the evolution of the probability density function % (z,q,t) of the stochastic process
(X (t),Q(t)) defined by (1.1a,b) satisfies the Fokker—Planck equa?uion (2.4a) below for (z,q,t) €
Q x D x R.o, subject to appropriate initial and boundary conditions; cf. (2.4b,c). Due to
the fact that, unlike (1.1b), the differential equation (1.1a) does not involve random effects, the
Fokker—Planck equation for the associated probability density function is a degenerate parabolic
equation for w(g,g,t), with no diffusion in the z-direction. The velocity field y appearing in
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(2.4a) is, in turn, found by solving the incompressible Navier—Stokes equations (2.1a,b) below,
subject to the initial and boundary conditions (2.1c,d). The right-hand side of the momentum
equation (2.1a) models the non-Newtonian effects through the presence of the extra-stress ten-
sor 7 which depends on the probability density function ¢ (see, (2.2), (2.3)). Our aim here
is toNexplore the existence of global-in-time solutions of this coupled ‘microscopic-macroscopic’
model.

An early effort to show the existence and uniqueness of local-in-time solutions to a family
of bead-spring type polymeric flow models is due to Renardy [18]. While the class of potentials
F(q) considered in [18] (cf. hypotheses (F) and (F’) on pp.314 315) does include the case
of Hookean dumbbells, with F(q) = ¢, it excludes the practically relevant case of the FENE
(Finitely Extensible Nonlinear ENlastic)N model where

1
E(g)—<1—”7> q, gl <b, b>0.

In a recent paper Jourdain, Lelievre and le Bris [11] studied the existence of solutions to the
FENE model in the case of a simple Couette flow; by using tools from the theory of stochastic
differential equations, they established the existence of a unique local-in-time solution to the
FENE model in two space dimensions (d = 2) when the velocity field u is unidirectional and of
the particular form u (71, z2) = (u1(22),0) . The notion of solution for which existence is proved
in [11] is mixed deterministic-stochastic in the sense that it is deterministic in the ‘macroscopic’
variable z, but stochastic in the ‘microscopic’ variable ¢. In contrast, our notion of solution (cf.
Section 3 below) is deterministic both macroscopically and microscopically, since the microscales
are modelled here by the probability density function 1 (z,q,t). The choice between these dif-
ferent notions of solution has far-reaching repercussions coﬁcerning computational simulation:
mixed deterministic-stochastic notions of solution necessitate the use of Monte Carlo-type al-
gorithms for the numerical approximation of polymer configurations, as proposed, e.g., in [17]
and references therein as well as in [10]; whereas weak solutions in the sense considered in the
present paper can be approximated by entirely deterministic (e.g. Galerkin-type) schemes, as
has been done, for example, in [16].

In the case of Hookean dumbbells, the coupled microscopic-macroscopic model described
above yields, formally, on taking the second moment of q— w(g,g,t), the fully macroscopic,
Oldroyd-B model of visco-elastic flow (cf. Section 2.2). In [15], Lions and Masmoudi show the
existence of global-in-time weak solutions to the Oldroyd-B model in a simplified case which,
in our coupled microscopic-macroscopic setup, directly corresponds to assuming that the drag
term in (2.4a) is corotational: that is, the tensor g(u) is skew-symmetric in the sense that
g(u) = —[g(u)]". The argument in [15] is based on exploiting the propagation in time of the
gompactnegs of the solution. It is not known if an identical global existence result for the
Oldroyd-B model also holds in the absence of the crucial assumption that the drag term is
corotational.

The present paper is concerned with the proof of existence of global-in-time weak solutions to
the coupled microscopic-macroscopic model (2.1a d), (2.4a ¢). Our hypotheses on the potential
U admit a fairly large class of models, including the Hookean dumbbell model as well as general
FENE-type models. Unlike [15], we do not need to assume that the flow is corotational in
the FENE case. However, the level of generality pursued here comes at a price: in order to
complete our existence proofs, the velocity field appearing in the drift-term of the Fokker Planck



equation (2.4a) had to be suitably mollified in the case of corotational microscopic-macroscopic
models, and in the case of general, noncorotational models, the extra-stress tensor 7 on the
right-hand side of (2.1a) had to be mollified also. A possible physical justification for the
proposed modification of the original mathematical model, through smoothing the velocity field
in particular terms in the model, is that many flows of diluted solutions of polymers tend to be
slow, with a smoothly varying velocity field.

The mollification of the velocity field considered here is stimulated by the Leray-a model of
the incompressible Navier—Stokes equations (the viscous Camassa—Holm equations), proposed
by Foias, Holm and Titi [8], in a bounded open set @ C R? with boundary 9Q:

Find u : (z,t) € R s y(z,t) € R, d =2,3, and p : (z,1) € R s p(z,t) € R such that

Z—?%—(g-ym)g—l/Awg—i—ywp—{ in Q x (0,7, (1.3a)
Vi -u=0 in Q x (0,71, (1.3b)

u=0 on 9Q x (0,T], (1.3c)

EL(%’O) = gg(ac) Vi € (1.3d)

where u is the velocity field, p is the pressure of the fluid, v € Ry is the viscosity, f is a given
body force, and (-, %) is a smoothing of u(-,¢) defined as the solution of the Helmholtz problem

v—alAzv=u in Q, (1.4a)

0 on 0€; (1.4b)
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where a > 0 is a regularisation parameter.

With v thus defined one cannot deduce from (1.4a,b) that V, -v = 0 on Q. As we would like
v to resemble ¢ both in terms of its incompressibility and the boundary conditions it satisfies,
instead of (1.4a,b) we shall seek the smoothing v of u from the following Helmholtz-Stokes
problem

v—alAyv+Vym=u in Q, (1.5a)
Ve v=0 inQ, (1.5b)
v=0 on 0 (1.5¢)

where 7 is a pressure-like auxiliary variable. Since, strictly speaking, m does not have a physical
meaning, it is best thought of as a Lagrange multiplier whose role is to enforce incompressibility.

We remark that smoothing, albeit of a somewhat different kind, is also conceivable on phys-
ical grounds, since equations (1.1a,b) could be modified to

dX = u(X(t),t)dt +¢ dNW(t), (1.6a)
1
VA

where ¢ > 0 is a small parameter and W (¢) is an independent vector of Wiener processes
modelling, for example, thermal vibrations of the (center of gravity) of the dumbbell. A closely
related smoothing on the macroscopic level is considered in the work of El-Kareh and Leal [7].

dw (t); (1.6b)

1Q = (Vx uX(0.0 Qo) - 51 F(@Q() ) dt -



The paper is structured as follows. In Section 2, we formulate the class of models considered.
As an illustration, we show how the Hookean dumbbell model and the FENE model fit into the
general setting. In Section 3 we introduce a family of weighted Sobolev spaces which represent
the natural setting for the problem; we also establish crucial density and trace results. In order
to motivate the energy estimates which, ultimately, via weak compactness, lead to the existence
of global weak solutions, we establish formal energy estimates and introduce our smoothing
operator. We then use these to rigorously define our weak formulation of the problem. In Section
4 we embark on the proof of existence of global weak solutions, starting with the analysis of
the simpler, corotational case for both Hookean and FENE-type models. We conclude with the
proof of existence of global weak solutions for the physically more realistic FENE-type models
in the general case, without assuming that the drag term is corotational.

2 Polymer models

We term polymer models under consideration here microscopic-macroscopic type models, since
the continuum mechanical macroscopic equations of incompressible fluid flow are coupled to a
microscopic model: the Fokker Planck equation describing the statistical properties of particles
in the continuum. We first present these equations and collect assumptions on the parameters
in the model.

2.1 Microscopic-macroscopic polymer models

Let  C R? be a bounded open set with a Lipschitz-continuous boundary 02, and suppose that
the set D C R?, d = 2 or 3, of admissible elongation vectors ¢ in (1.1b) is an open set which
may be bounded or unbounded. For the sake of simplicity of presentation, we shall suppose
that D is either a bounded open ball in R?, or D = R?; these two cases cover all practically
relevant scenarios involving the microscopic-macroscopic models discussed here. Our arguments
in the case when the configuration domain D is a bounded open ball can be extended, with
only minimal changes, to situations when D is any bounded open domain in R? with smooth
boundary (e.g. an ellipse, to account for anisotropy in the molecule’s configuration).

We consider the following initial-boundary-value problem.

(P) Find u : (z,t) € R s y(z,t) € RT and p : (z,t) € R — p(z,t) € R such that

% Fe Vo u-rAut Vap =V, () inQx (0,7] (2.1a)
Vo u=0 in Q x (0,77, (2.1b)

u=0 on 90 x (0,T], (2.1c)

11,(.'5,0) = 1~10('r) Vi € € (2.1d)

where v € Ry is the viscosity and (¢) : (z,t) € RIHL s () (z,t) € R4 is the symmet-
ric extra-stress tensor, dependent on a probability density function ¢ : (z,q,t) € R+



P(z,q,t) € R, defined as

() = ku(C(4) = p(¥) I). (2.2)

Here k, 1 € Ry are, respectively, the Boltzmann constant and the absolute temperature, [ is
the unit d x d tensor, and

/w (SlaPaq"dg and ply /w NCEY

In addition, the real-valued, continuous, nonnegative and strictly monotonic increasing function
U, defined on a relatively open subset of [0, 00), is an elastic potential which gives the elastic
force F: D — R? on the springs wvia (1.2).

The probability density (g, g t) represents the probability at time ¢ of finding a dumbbell
located ‘between’ g and g + dg havmg elongation ‘between’ ¢ and ¢ + dg. Hence p(z,t) is the
density of the polymer chains located at g at time ¢. It follows from (1 la b) that ¢ satisfies the
Fokker Planck equation, together with suitable boundary and initial conditions:

S Vet Yy (o) g

5 Vy - (o Vo (Vg +U'q9) inQx D x(0,T], (2.4a)

) =
2\

=0 on Q x dD x (0,71, (2.4b)

) >0 V(z,q) € 2 x D. (2.4¢)

~ ~ ~o~

w(ma q, 0) = T;bO(Z'

~

When D = R?, the boundary condition (2.4b) on 9D, the boundary of D, is replaced by a decay
condition at infinity which demands that |1| converges to 0 sufficiently fast as |¢| tends to oo;
we shall be more specific about this in Lemma 3.2(b).

In (2.4a) the parameter A € R characterises the elastic properties of the fluid, and g(z, 1) €
s
R*d g related to V, u, where (Vi u)(z,t) € R4 and {V,u}i; = 8_Uz For example, possible
~ ® ® x
choices are
(i) o(u) =Vyu, (ii) o(u) =w(u) and (iii) o(u) =Vyv; (2.5)
where

1 1
Veu=D(u) + w(u), D(u) = 2 [Vou+ (Vyu)'], w(u) = 2 (Vou— (Vyu)'] (2.6)

~ o~ ~ o~ ~ o~ ~ o~ ~ o~ ~ o~

and v is a ‘smoothed’ version of u. The precise form of the smoothing operator which maps u
into v will be given in Section 3.3.

On introducing the (normalised) Maxwellian

o UG 1)
M(q) = :
/eU dq
b 4
we have
MV, M ~M 'V, M=U'q (2.7)



In addition, the following identities hold:
v,u=Uq, V,U =U"q and A U=U"|q]>+U"d. (2.8)

~

Thus, the Fokker-Planck equation (2.4a) can be rewritten as

%—qf—i-(u V., )¢+~Vq .(g(g)gw) :%qu . (MNV‘I (%)) inQxDx(0,T]. (2.9)

2.2 Two examples

1. FENE-type models. A widely used model is the FENE (Finitely Extensible Nonlinear
Elastic) model, where

2

2
b 2 ~U(kigP) la
= B(O,b%) and U(s) = —iln (1 - {) , andhence e~ = [1- ”T . (2.10)

Here B(0, s) is the bounded open ball of radius s > 0 in R? centred at the origin, and b > 0 is
an input parameter. Hence the elongation |¢| cannot exceed bs.

2. Hookean dumbbells. Letting b — oo in (2.10) leads to the so-called Hookean dumbbell
model where
~U(31q1) —3lqP

D =R! and U(s) = s, and therefore e T~ =e '~ (2.11)
This particular kinetic model, with (I(U) V2 u, corresponds formally to an Oldroyd-B model
or with g(u) = w(u) to a corotational Oldroyd B model. Indeed, on multiplying (2.4a) by ¢ q ,
integrating over D, performing integration by parts (assuming that ¢ and |V 41| decay to zero
sufficiently fast with |q| — 0o), and noting for any 7 € R? that

(rVe)gq' =rq"+qr’  and Aq(qu):2£ (2.12)
yields
5C
A=+ C=pl in Q x (0,77, (2.13)
where
+ (u-Vy)C —[o(u

=t (Vs )C+Clo(u)]'] (2.14)
is the upper-convected time derivative. Combining (2.13) and (2.2) and observing that the
density p(z,t) satisfies

0
8—’:+(u-vm)p:0 in Q x (0,7] (2.15)
implies that the extra-stress 7(z,t) satisfies
0T
AZ+T=kuAplo(u )—i—[o(u)]T] in Q x (0,7, (2.16)

which is the Oldroyd-B constitutive equation if (I(U) Vi u or the corotational Oldroyd-B
constitutive equation if g(u) = w(u); in the latter case, the rlght hand side of (2.16) is identically
equal to 0.



2.3 General structural assumptions on the potential

Suppose that D is a bounded open ball in R? or D = R?. We assume that ¢ — U(3|q|?) € C*(D)

with ¢ — U(%]g|?) nonnegative and ¢ — U’(3|q|?) positive on D, and that there exist constants
c; > 0,1=1,2, such that

d
(U)=U">c YgeD and  (U)=U">2:U" Yg: [ >—, (2.17)
> ~ 2

1

where B(0 (i) ’ycc D.

2\ e

The above assumptions hold for the Hookean case, (2.11), with ¢; = 2¢o = 1; and the FENE

case, (2.10), on assuming that b > 2, with ¢; = bfTQ and ¢y = %
We shall also suppose that there exist positive constants ¢;, ¢ = 3,...,7, and k > 0, such

that the Maxwellian M and the associated elastic potential U satisfy
3 [dist(q, 0D)]" < M(q) < eq[dist(g, OD)]" Vg € D, (2.18a)
s < [dist(q, OD)]U'(3a) < s, [distlq, OD) [0 (}a’)| < er Vg€ D:  (2.18)
when D = R?, then [dist(g, OD)]" in (2.18a) is replaced by exp(—\g|2), and [dist(q, 9D)] and
[dist(¢, dD)]* in (2.18b) are omitted.

It is an easy matter to show that the Maxwellian M and the elastic potential U of the FEN]E
model and of the Hookean dumbbell model satisfy conditions (2.18a,b),  with D = B(0,b2)
and k = b/2 in the case of the FENE model; and D = R? for the Hookean dumbbell model.

We shall also require that

/D [14 (14 1gP) (@) + g @"))] M dg < . (2.19)

For the Hookean model (2.11) and the FENE model (2.10), with b > 2, (2.19) is easily shown
to hold. For example, we have that

M= / M (U")2|g]' dg < oo (2.20)
Jp ~ o~
for both models. In the Hookean case, (2.20) follows since
o
/ et ds < 00, (2.21)
Jo

while in the FENE case, (2.20) follows since
b S u d+2
/ (1—5) 7 P ds<oo ifb>2. (2.22)
Jo

More generally, it follows from (2.18a,b), on noting that U(3|g|?) = —log, M (q) + Const.,

that (2.19) holds provided that either: (i) x > 1 when D is a bounded open ball in R%; or (ii)
when D = R%.



3 Weak solutions

To define an appropriate notion of weak solution, we first introduce some function spaces, then
derive formal energy identities and estimates satisfied by the weak solution. These estimates
will, later on, form the basis of our proof of existence. In our notion of weak solution we will
also rely on smoothing operators to compensate for the lack of regularization in the hyperbolic
part of the Fokker—Planck equation.

3.1 Function spaces and embedding results

We employ the usual function spaces for viscous, incompressible flow (e.g. [9]):

H:={we PQ(Q) : Vy -w =0}, (3.1a)

V= {we Hy(Q): V; -w =0}, (3.1b)

and  LY(Q):={r e L*(Q): / r dz = 0}, (3.1c)
0 =

where the divergence operator V- is to be understood in the sense of vector-valued distributions
on (). In addition, we introduce the following function spaces for ):

K:=Jpel, (QXD):/ @—FM \% <£>‘2 dgdzr < o0 (3.2a)
o axp | M ~T\M ~ ’
- . 2 ol
Ky ={peK: q dgdz < oo}, (3.2b)
QxD ~ M Lo~
Kt .= {p € K:p(zx,q) >0 for ae. (z,q) € 2x D}, (3.2¢)
and K[ :=K,NK". (3.2d)

Clearly, if D is bounded then K, = K and Kq+ = K. We remark, in particular, that due to the
structural hypotheses on U (specifically, (2.19)), both M and M U belong to K. Tt is helpful
to note for future purposes that, more generally, a distribution ¢ belongs to K if, and only if,
X = 77 has finite norm

Il o1 @ iy = {/ M [[x* + Yy x[°] dgdg}
Qx D

As the corresponding weighted Sobolev space
HO’I(Q X D/M) = {X € LIIO(‘(Q X D) : ||X||H0a1(Q><D;M) < OO}

is a Hilbert space, it follows that K = M - H>'(Q x D; M), too, is a Hilbert space with inner
product

F e (95 (@) e e

(o= [ [2F

JQxD
1
and induced norm ||¢||x = (¢, ¢) 5 clearly,

-5l
e | c K 3.3
el x H M 1 H0.1 (9% D; M) 7 "
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Analogously, K, is a Hilbert space with norm || - ||, defined by

ol = [ a+lg s arly, (£ agas
and associated inner product.
It is well-known (e.g. [9], Coro. 1.2.5) that the space
W ={weCr(Q):V, w=0} isdensein both V and H. (3.4)

We require an analogous density result for the space K. Hypotheses (2.18a,b) for the Maxwellian
M and the associated elastic potential U play a crucial role in the argument.

LEMMA 3.1.

(a) Suppose that D is a bounded open ball in R and k > 0; then, the set M - C®°(Q x D)
is dense in K. Here C*(Q2 x D) denotes the set of all functions defined on € x D that are
infinitely differentiable in Q x D and which, together with their partial derivatives of any order,
can be continuously extended to Q x D = Q x D.

(b) Let D = R; then C$°(Q x D) is dense in K,,.

PRrROOF. (a) For ¢ € D let d(q) := dist(q,0D). According to (2.18a), there exist positive
constants cs, cq, such that c SNM(q)/d’””(qj < ¢4 for all ¢ € D. Hence the Maxwellian M(q) is
a weight function of type 8 in D in the sense of Triebel [2~2], p-247, Definition 3.2.1.3c. By T22],
Theorem 3.2.2a, the weighted Sobolev space

H'(D:M) = {1 € (D) + |V = [ MV @P + 19 7@ ] dg < )

is a Hilbert space and, by [22], Theorem 3.2.2c, C*(D) is dense in H'(D; M); see also Chapter I,
Section 7, in Kufner’s monograph [14]. Therefore, L2(2; C*°(D)) is dense in L2(Q; HY(D; M)) =
HY'(Q x D; M). Given x € H"'(Q x D; M), let {X.}. C L?(Q2; C>®°(D)) be a sequence which
converges to x in H%!'(Q x D; M). Let us extend both x and ¥. with respect to the variable
by 0 outside Q and, for € € (0,1), define

X=(2:q) = (Xe(2,q) C=(2) ) *a Je (2),
where #*, denotes convolution with respect to z, (2.(z) is the characteristic function of the set
Qg :={z € Q : dist(g, 002) > 2¢},

—d -

jelz) =e (e '),

and j is a nonnegative C'*° function with compact support, supp(j) = B(0,1), whose integral
over R? is equal to 1. Now, x. € C§°(2;C®(D)) and the sequence {x.}. converges to y in
L2(y; HY(D; M)) = H%'(Q x D; M) as € — 0.

For a general ¢ € K, we approximate y = /M € H%' (2 x D; M) by a sequence {x.}. C

C§°(Q;C*(D)) € C*(Q x D) in the H*'(Q x D; M)-norm. Then the sequence {M x.}. con-
verges to M x = ¢ in the || - ||k norm as ¢ — 0.

10



(b) Suppose that ¢ € K,;. On letting x = ¢/v M, we deduce that
ol = [ [0+ xR + 9+ 0 gx] dga.
xD

By virtue of (2.18b) in the case of D = R%, it then follows that there exist positive constants
C; and C5 such that

Crllelie, < [ [0 +1g) P +1¥0x7] dgdz < Ca el (3.5)
X

Let us extend the functions ¢ and x with respect to the variable g by zero outside €2, so that the
extended functions, which we still denote by ¢ and y, respectively, are now defined on R? x R?.
Let € € (0,1) and consider the function ¢. = vV M x., where

Xe(2,9) = X=(z,q) * (Je(2) Je(q)) and  Xe(z.q) == x(z,q) C2=(2) &1/e(q);

here (. (-), 7(-) are as in part (a) above, * is convolution with respect to both z and ¢, and

el —minfr (142 - 1g)) 1

We note that the function ;. has its range in the interval [0,1], it is equal to 1 within the
bounded open ball B(0,1/¢) C R?, equal to 0 in the complement of the bounded open ball
B(0,1+ (1/e)) c R? and |V, €1/:(q)] < 1 for a.e. ¢ in R?. The properties of the convolution
imply that x. € C{°(R? x R?); more precisely, y. € C°(Q x R?). Since V/M is a constant
multiple of exp(—%U), and s € R — U(s) is, by hypothesis, a C* function, it follows that
VM € C=(R?). Hence, ¢, € C3°(Q x R?).

Our aim is to show that lim. o [[¢. — @[k, = 0. We see from (3.5) that to do so it is
necessary and sufficient to prove that

lim “1+MWWPfM”HYMx*YMF dg dg = 0. (3.6)
e—0 JRd «Rd ~ -
On recalling that x. = X * (J:(z) j=(¢)), (3.6) will in turn follow by use of a triangle inequality
once we have established the followmg
iy [0 PR = 0 G2 (0) P+ (T = Vo) Gele) ()| gz =,
€20 JRd wRd ~ ~ ™
(3.7a)
lim [(1 +1al?) [x * (e (= 1) J= () — X2 +1(Vox) * (e (o /) J=(a)) — VqXQ] dgdz = 0.
£20 JRd xRd ~ ~ ~ o
(3.7b)

Let us start by showing (3.7a). By Young’s convolution-inequality and using that the L'
norm of the function (z,q) — j:(z) j-(¢) over R? x R? is equal to 1, we have that

/ (Vg Xe — Vox) * (e (z) 5= (q))] dg dg < / Vy X — Vo x|* dg dg.
Re x R4 JRd xR
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Recalling the definition of X.(¢), that |£,.(q)| <1 for all ¢ in R? and that [V, &1/.(¢)] < 1 for
a.e. ¢ in R?, we deduce that the right-hand side in the last inequality is bounded by

2 [ [Pz [ pPdgdes [ [ wadagas. @)
Jre Jigi>1/ - Jra Jigi>1/ 2\, S -

which converges to 0 as € — 0 by Lebesgue’s dominated convergence theorem.

Analogously, by Young’s inequality again, but this time applied with respect to the variable
z only, using the Cauchy Schwarz inequality, Fubini’s theorem, the change of variables s = g—r,

and the inequality 1+ |s + 7> < 2(1 + |s]?) + 2|r|?, we have that

[0l ® =0« @) @) dgde < [ (14 1aP) (R = ) #0dila) da da
JRA X RA ~ ~ ~ JRd ~

R4 xR

<[ 0+l [ Reloa =) - xte.g - )Pl dr dgda
JRIxRd Jlr|<e ~~ ~ o ~~ L

/ / / (1+ s +7%)|Xe(z,5) — (sc 5)|2dsdrdx

Rd m<g ~ JRrd ~ ~ ~ o~

<4/ / (1+5%) % X|2dsdx+4 / (1+ 5% |x|* ds dz
Re J|5[>1/ ~ O\, J|8|<1 /e ~ ~

<4// (1+q|2)>?g—xl2dqdw+4/ /(1+Iql2)lxl2dqu-
Rd J|g|>1/e ~ ~ Y Q\ Q. JRY ~ ~

Both integrals appearing on the right-hand side of the last inequality converge to 0 as ¢ — 0 by
Lebesgue’s dominated convergence theorem. Together with (3.8), this implies (3.7a).

In order to prove (3.7b), we proceed by writing

(Vg X) * () 1= () = Ty x = (Vg x) 0 e (2) = Ty X) 4 1o(q) + (T4 X) % je(g) = Vax)

On applying Young’s inequality with respect to x,, we have that

/ (Vo) * (G-(2) =(q)) — Vo x[Pdgdy < 2/ (Vo X) %2 4e(z) — Vo x[*dgdz
R x R4 JRA xR

+ 2 / |(~Vq X) *q js(g) - yq X|2dg d.’,NC.
R2 x R4

A standard argument for Friedrichs mollifiers yields that both terms on the right-hand side of
the last inequality converge to 0 as € — 0; hence,

lim (Vg X) * (e (z) 4= (q)) — Yy xI* dg dz = 0. (3.9)

€20 JRd yRd

Finally, noting that

X (G=(2) 4 (9) = XIP < 21(x % Ge(q) = X) *2 4= (2)” + 21X *2 e (z) — xI°

12



and applying Young’s inequality with respect to %, we have that

[Py b Gee)in(@) ~ P dgdz <2 [ (1 aP) x saila) I dgds
JREXIR ~ ~ ~ ~ ~ ™

~ ~ JRAXRE
1 . 1
w2 [ ]I o ) — (1 o)l dadg
JRd JRd ~ ~ ~ N~
=: A, + B..
Since (1 + \q\Q)% x € L?(R? x R?), a standard argument for Friedrichs mollifiers implies that
lim B, = 0. (3.10)
e—0

Further, on recalling the definition of the convolution *,, the Cauchy-Schwarz inequality, and
that the integral of j.(r) over its support, {r : |r| < €}, is equal to 1, we have that A, <
2(Ty .+ Ty.), where, with R > 1 arbitrary,

Tioimesswpe [ [ 140D ) - Xl - 0P dgds
Y Jra g >R

and
Ty = eSS-SUPr<g/ / (1+1g*) Ix(2, q) = x(z. g — r)[* dg dz.
A W R q q q

Now, on using the bound |x(z,q) - x(z,q — )| < 2(|x(z,9)|* + Ix(z,q — 1)|*), the change of
variables s = ¢ —r and the inequality 1+ |s + r|? <2(1+ |s]?) +2]|r|?, we find that

Ty, <10 / / (1 + [g[?) Ix(z, ¢)|? dg dg.
R4 J|q|>R-1 ~ ~ ~

Hence, given any § > 0, there exists R > 1, sufficiently large, such that T; . < 6/4. Since, for
such R > 1 fixed and x € C(Q x B(0, R + 1)) we have

ti Sesssupyic. [ [ (14 1) xtea) - xlaog - )P dgde =
=0 Y= Jaldigi<r ~ ~ ~ ~

by density of C(Q2 x B(Q, R+ 1)) in L%(Q x B(0, R + 1)), it then follows that the same is true
for any x € L?(2 x B(Q, R+ 1)). Hence, there exists €y such that, for all € € (0,&0), To. < §/4.
Thus, we have shown that, for any d > 0, there exists g > 0 such that A, <2(T;.+ Ty.) <0
for all e € (0,e¢). Hence, lim._,g A, = 0, which, together with (3.10), then implies (3.7b).

Having shown (3.7a) and (3.7b), now (3.6) follows as indicated above; hence the sequence
{0} C C°(Q x R?) converges to ¢ € K, in the norm of K,, which means that C§°(Q x R?) is
dense in K. 0

Our next lemma is a trace theorem for K: loosely speaking, it states that if ¢ € K, then
U'(3|q/?) ¢ vanishes on © x D when D is a bounded open ball, and decays to zero at a

superalgebraic rate as |¢| — oc when D = R?,

13



LEMMA 3.2.

(a) Suppose that D is a bounded open ball in R and that the elastic potential U and the associated
Mazwellian M satisfy (2.18a) with k > 5 and (2.18b). Then, for ¢ € K = M - HO'(Q x D; M),
the trace of U'(%|g\2) @ on Q x 0D is equal to 0.

b) Suppose that D = R%; then, for ¢ € K,
2

lim Rﬁ/ U'(3lq*) lp|dS(q)dz =0 for all B > 0. (3.11)
R—o0 Qx8B(0,R)

PrROOF. (a) Let d(q) := dist(g,0D) and, for a € R, denote by H{(D;d*(q)) the closure of
C5°(D) in the d*(q ) weighted Sobolev space H'(D:; d*(q)); hence, H] (D'd‘;( )) is a Hilbert
space with respect to the norm I 1a (s 12 (q))- Accordlng to a result of Besov and Kufner 2]
(cf. also Triebel [22], Section 3.6.1 and Kufner [14], pp.98-99), the space C°(D) is dense in
H'(D;d*(q)) for « < —1 and f € H'(D;d*(q)) = H}(D;d“(q)) implies that f = 0 on dD.
Hence, to ;)rove the Lemma, it suffices to show that if g € M-H' (D; M) then U'(3|q/?) g €
H'(Did ' (q)). ”

Let g € M - H'(D; M); then,

2
L5 e

On writing U'g = (U'M) - 4 and noting (2.7) and the second identity in (2.8), differentiation
of U'(3]q|%) g(q) based on the product rule yields

dg < oo. (3.12)

a(a) (U9 +19, U9 ] < (d (4 )U’?M) ot

2
+ (20 @0 - @) B
2L M
2
2a  q) 0" M) M|V, ()
+ (20 0 wr ) mlw, (4
where U', U" and M signify U’(%|(~1\2), U”(%|(~1\2) and M (q), respectively. Since D is a bounded

set, on recalling (2.18a) with x > 5 and (2.18b), we deduce that each of the three terms in the
round brackets on the right-hand side of (3.13) is bounded on D; thus, by (3.12), we have that

, (3.13)

[ @@ [0 + 19, W) dg < .
Jp
Hence, U’(%\ 2)g € HY(D;d~ ( )), and therefore U'g has zero trace on dD.

(b) Suppose that D = R? and ¢ € K. For r > 0 let B, = B(Q,r) be a bounded open ball of
radius r centred at the origin. It then follows, using the properties of M and U from (2.7) and
(2.18a,b) that ¢ € H%'(Q x B,) := H%' (2 x B,;1) and hence the trace o(z,-)|sp, exists and
belongs to L' (9B,) for a.e. 7 € Q and all r > 0.

Let r > 0. Any g € 0B, can be expressed as ¢ = where r = |q\ and |@| = 1. Given 8 > 0,
consider the function f defined by

fla,r8) = U'(5r%) "7 (z,r0).
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For every § € OB; and a.e. € (2, held fixed, the function r — f(z,r6) belongs to H'(0, R) for
all R > 0; furthermore, f(z,)|on, € Li1(0B,) for a.e. € Q and all r > 0.

Now, for a.e. € Q and all r € (0, R], R > 0,

R
fle.R0) = flo.r0) + [ L f@s0)ds (3.14)

Jr

Let N(r) := exp(—U(37r?)); then, N(r) = M(r@) for all § € 9B;. On re-writing

z, 70 L1 7,70 1
Hz,r8) = %M(TQ)U (3r%) rdt? = <9‘}\(4(7TQ9))> (N (r) U (4r2) rd+6) |

differentiating the product with respect to r using the product rule, and defining

A(r) := /N U'(4r2) r2@D4F and  B(r) := ;v()réU*d).%(N(T)U'(;ﬂ)rdw),

we have from (3.14) that

ol 6) " olr.56)
o(z,RO) U'(%RQ)R‘Hﬂ = o~ () A(r) + / M(s9) (27 s%(dq)A(s) ds
AR M0 0) J, < as\ M(s0)

Now we take the absolute value of both sides of this identity, use the triangle inequality on the
right, and integrate both sides of the resulting inequality with respect to § € 0B;, z € €2 and
r € (0, R], note the identity

/T (/ f(z.58) st dedg) ds = / f(z.q) dg dz
JO JQAxOB; J QX By ~ ~

and the bound

£ (S0~ (5 () ) -

and use the Cauchy Schwarz inequality, in each of the three resulting integrals on the right, we
obtain the trace inequality

RUGR) [ p(q)|dS@dr < Ca(Ca+ Can Bl (319
X R ~ ~

< Vo (+) @s0)

3

for all 8 > 0, where Cy := [measy(Q) - measy_1(9B;)]"/?, and

Cai= (/ORAQ(T) drf, Cap = </0R[A2(7«) + B2(r)] dr)é.

Finally, after dividing (3.15) by R?, noting that U’(3|R|?) = U'(3|q|?) for ¢ € Bg = B(0, R),
and that, under the hypotheses (2.18a,b), we have 0 < C4 < C4p < oo, on passing to the limit
R — o0, we obtain (3.11). 0
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Henceforth, we shall suppose that
x > 5 when D is a bounded open ball in R?. (3.16)

In the derivation of maximum norm bounds on 1 we shall also require the following lemma.

LEMMA 3.3. If ¢ € K, then for any constant L > 0 it follows that

Y, <7[‘P_LM]+> { Vo (w TM) =V (i) ie>1M , (3.17a)
~ M 0 if o <LM
v, <7[¢+LM]> { Vo (257) = Vo (F) #e<IM ; (3.17b)
~ M 0 ifo>LM

and hence [p — LMy, [¢+ LM]_ € K,,.

Proor. First, we note that as L > 0 we have that
[l = LMy |, [lp+ LM] | <[p]. (3.18)
Next, for any ¢ > 0, we introduce the following regularization of [-],:

1
(2 +e2)2 —¢ ifs>0,
= = < Vs € R. 3.19
Pt (s) { 0 ifs <0 P+els) <[sl4 Vs ( )
Then, for any fixed 7 € Ce (2 x D), it follows from (3.19), (2.18a,b), the compact support of n,
(2.7), ¢ € K and the Lebesgue dominated convergence theorem that

— L M|, - LM
Vy <u> ndqd’r—hm Vy <M> - ndgdx
QxD ™ QxD ™ M ~ o~ T

' Vgl —LM) )
:glg[l] Pl (o — LM)T‘FPJr,s@P—LM)NVq(M ) -?dgdz:
(o — L M) .
—/ T8 P L o 00 - ndgds
p>L M ~ o~
— LM
:/ Vq <u> - ndgdx. (3.20)
p>LM "™ M ~ o~
Hence we obtain the desired result (3.17a). A similar regularization of [-]_ yields the desired
result (3.17b). Finally (3.18), (3.17a,b) and ¢ € K, imply immediately that [¢p — L M|,
o+ LM €K, 0

For later purposes, we recall the following well-known Gagliardo Nirenberg inequality. Let
€ [2,00) ifd =2,and r € [2,6] ifd = 3 and u = d (3 — 1). Then there is a constant C,
depending only on €, r and d, such that for all n € HJ () the inequality

(/erd%)% <C (/QIHQdSNc)# (/Q|V772d:~£)% (3.21)
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holds.

We recall also the following compactness result, see, e.g., [21] and [19]. Let X, X and X,
be Banach spaces, X;, 1 = 0, 1, reflexive, with a compact embedding Xy — X and a continuous
embedding X — X;. Then, for a; > 1,7 = 0,1, the embedding

0
{n e L0, T; Xy) : 8_7157 € L0, T; X1) } — L*(0,T; X) (3.22)

is compact.

3.2 Energy identities and estimates

The starting-point for our analysis is the following formal weak formulation of the problem: find
tu(-,t) € Vand t — (-, t) € K for t € (0,71, such that

ou
—”-wdm—l—/(u-Vm)u-wdm—l—l/ Veu:Vywds
a0t ~ ~ Jg~ ~"~ ~ & Qe T~ R~ o~
= —/ () : Vy wdz Yw eV, (3.23a)
Q% ~ ~ ~ ~
u(z,0) = ug(z); (3.23b)
and
o / {0 1 (w) 0
— —dg d —u-Vﬂpdqdﬂ:—i—— MV, |—]-V,|-—] dgdz
/QxDatM Jaxp M ~ ~ 2X Joxp  ~"\M ~q<M> ~
4
= o(u )qw V - dg dz Vo € K, (3.24a)
./Q><DN ~ (M> ~ 1
¥(z,q,0) = tho(z, q). (3.24b)

Here we have noted that, according to Lemma 3.2, ¢ € K, implies that ¢ vanishes on dD. In

(3.23a), and below we use the following notation: for any A, B € R4 we define
d d . )
AiBi=3 3 AyBy  and A= (A1 A)r = [Trace(AT A)]:.

i=1 j=1

We begin by deriving some formal energy inequalities; the purpose of these is to justify the
choice of norms and spaces and indicate the kinds of bounds which will be rigorously established
later on. The arguments in this section are ‘formal’ in the sense that some of the steps require
additional smoothness of u and ; specifically, we shall suppose throughout Section 3.2 that
u(-,t) € WH(Q)NY and that ¢(-,-,t) € M - H'(Q x D; M) N K, for t € (0,T); we shall
also suppose for the moment that y and ¢ are sufficiently smooth in #. The first of these
requirements will be met in Section 4 through mollification of y as has been indicated earlier,
while the requirement on ¢ will be relaxed to #(-,-,#) € K for all ¢ € (0,T] by considering

w +u.V 9 as the space-time directional derivative (total derlvatlve) of 9 along subcharacteristic
(‘urveq and rewriting this in weak form through integration by parts over z, ¢ and t.
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First we note that
/[(v-vw)un -wgdx——/ [(U'Vm)wg} - wy dz Yo €V, Vuwy,wy € H)(R). (3.25)
Jabt~ ~ "7~ ~ Jaobt~ ~ "~ N ~ ~

Taking w = u € V in (3.23a) and noting (3.25) and (2.2), we obtain that

1d
_— /u|2dr1; +v Vmu,Qdm:/’r(w):Vm vde = ~kp [ C4): Vs
2 dt [0 e ~ O = ~ ~ = = ~ ~
k 2
<Y / \un\de—i—ﬂ
2 Jo = ~ ~ 1%
It follows from (2.3) and (2.20) that, for ¢ € K,

/|C |2dfr—/zz</¢Uq,q]dq> do

i=1 j=I1

2 2
o () (], 5 o) - ([ 5 )

(3.27)

Taking ¢ =1 € M - H'(Q x D; M) N K, C K, in (3.24a) and noting that (2.1b,c) implies, on
integration by parts, that

/ iy-ymwdng—lf y-ymwdng——/ (u-n00) "7 g ds = 0,
axp M ~ 2 Jaxp M~ 2 Jaaxp M

where npq is the outward unit normal to 0€2, we obtain that

1 d 9 1 ¥
- @ dgdz| + — M X4
2 dt [/QD a9 m/m Yo\ u

- ¥ (o(u) q) -V, (%) dg dz.  (3.28)

2
dg dx

Similarly to (3.27) as [, M dg = 1, it follows that

o< ([um) (], o) ([, ) oo

Hence we have from (3.2a), (3.27), (3.29) and (2.2) that

p €K implies C(p), plp) 1, 7(p) € L*(9). (3.30)

The problematic term is the one appearing on the right-hand side of the energy identity (3.28).
Below, we show that in the case of corotational models this term vanishes. In the noncorotational
case, we introduce a different testing procedure for the Fokker—Planck equation (3.24a) so that
the problematic drag term cancels with the extra-stress term in (3.26). Hence, from here on, we
consider corotational and noncorotational models separately.
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3.2.1 Corotational models

We begin by analysing the right-hand side of (3.28) in the case when the drag term in (2.4a) is
corotational; that is,

o(u) = —[o(u)]" and hence ¢' o(u)g =0 Vg € RY, (3.31)

~ o~ ~ o~ ~ o~

corresponding to the choice g(u) = w(u) in (2.6).

First, suppose that D is a bounded open ball in R?. Given ¢ € K = K,, let {¢n}n be a
sequence in the space M - C®(Q x D) ¢ K = M - H%'(Q x D; M) which converges to ¢ in K
(cf. Lemma 3.1(a)). Then, using (3.31) with g(u) = w(u), (2.7) and (2.19), we deduce that

1 2
|t VY, (L) dgdr=; [ M), (2) aa
0 z ~ v <1 e

x D ~ QOxD ~ ~ M

L O ' P 3
=3 [/Qan( (u )g) ﬂanﬁde dfrjl—/Q (¢"w(u) q)U Mdgd.zc] =0. (3.32)

~ ~o xD ~ ~ ™~
Here in the first integral in the square bracket, we made use of the fact that ngp = q/|q| |gp and

then applied (3.31). As {¢,/VM}, and {VM V, (¢n/M)}, converge (strongly) in L*(Q x D)
and L%(Q x D) to the functions ¢/vM and VMV, (p/M), respectively, as n — oo, and
w(u) € L>(Q2) by hypothesis, it follows on passing to the limit in (3.32) that

/QxDsO(g(g)g)-NVq (%) dqdf:/m — (@ q)- VMV, ( )dqdfr_O Vo € K,
(3.33)

If, on the other hand, D = R¢, then an identical argument applies by considering a sequence
{gn} in C§°(Q2 x D) which converges to ¢ € K, (cf. Lemma 3.1(b)). In addition, as M € K,
the same analysis as above yields for both D a bounded open ball in R and D = R? that

M (w(u) q) - V, (ﬁ) dgdz =0 Vo € K, (3.34)
J QXD RN~ ~ M ~

Thus we have shown that in the corotational case, g(u) = w(u), identities (3.33) and (3.34)
hold both when D is a bounded open ball in RY and when D = R?. This observation leads to
a considerable simplification of the analysis. Indeed, upon combining (3.26), (3.27), (3.28) and
(3.33) and applying a Gronwall inequality, we have that

sup / ngd] ! /T qu<i> dg dz dt<2/
te(o.1) LJaxp M Mo oo |FT\M ~ Jaxp
(3.35a)

i T 2
sup / | dm] +1// [/ Vi qum] dt < / uUQdm—I-CT/ Yol dgdz. (3.35b)
teor) LJa ~  ~ 0o La=~"~ ~ Q~ 0~ axp M~ ~

We note in passing that corotational models have a further interesting property: it follows
immediately from (2.9), (3.31) and (2.7) that

it 4po(z,9) = fo(z) M(q) then 4(z,q,t) = f(z,t) M(q);

where % +(W-Vy)f =0 inQxDx(0,T], f(z0)=fo(z) Vze (3.36)

2

|9bo|?

dg dz,
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3.2.2 Noncorotational models

We now return to the physically more realistic case, g(u) = Vyu. Taking ¢ = M € Kq+ in
(3.24a) we obtain that

d
—[ wdqdm} =0 and hence P(x,q,t)dgdz= Podgdz VYVt e (0,T].
dt | Joxnp ~ ~ axp  ~~  ~ ~ Joxp ~ o

(3.37)

Moreover, as ¢ € K+, it follows that

P(z,q,t) >0 for a.e. (z,q,t) € Q@ x D x (0,T]. (3.38)

This is, of course, a necessary condition for ensuring that 1) is a probability distribution.

Taking ¢ = MU € Kl;" in (3.24a), integrating by parts in the integral which is multiplied
by 55 using (2.8), Lemma 3.2, (2.7) and (2.3), we obtain

d 1 ! n
d [/MU“W] HEDY /Mng((UVU )) ¥ dgda

d
_/g(w) o) de+ g5 [ U'pdgda. (339)

On noting (2.17), U € C*(D) c C?(D), (3.38) and (3.37) it follows from (3.39) that

d 1
—[/ deqdfr] +—/ > ((U")? —U")) 4y dgdx
dt [Joxp 2X Jax{igr<dy ~ ~

— |Q\2Ul¢dqd’f< Cy) : ( )d7=+i U+ dg da
20 Jotigrz gy~ Jox ' 23 Joxqlgraty T~ "
C¥):o(u)dz+C o dg . (3.40)
Q= = QxD ~

Here, C = %S“P\q\?«i/@ U'(%|g\2) < oo since, by hypothesis, B(0, (d/c2)"/?) cC D. In the
case g(u) = Va 4, on combining the first line of (3.26) and (3.40) multiplied by ku yields that

d[1
—[—/qu.’IH—ku/ U@bdqdm]+1//|vmu|2dm
dt [2 Jo ~ ~ axD IV Q~ ~ o~

2
=y o U'pdgde < Chp [ dodgds  (3.41)
2 Ox{lgP= 4} ~ Jaxp o~ ~

and hence that

T
— sup [/ |u| dx} +ku sup [/ U'L/qudx]—i—y/ [/|V$u|2dx} dt
2f€UT te(0,1) LJaxp ~ o Jo LJa=~"~ ~

k T
+ “62/ / g U pdgdr | at< 3 /u0|2dx
2x Jo oxtlgPza) ~ 2Jo~" o~
+3k,u/ Uodgdz +3CTkpu 1y dg dz. (3.42)
JQAxD ~ JQxD ~
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The validity of these bounds presupposes the existence of appropriately defined weak solu-
tions u(-,t) € ¥V and 9(-,t) € K, t € (0,T]. To make the formal bounds (3.35a,b) and (3.42)
rigorous in our proof of the existence of (global-in-time) weak solutions which is based on a
sequential-compactness-argument, we need to introduce some smoothing into the system; else,
passage to the limit, in a sufficiently strong sense, is not warranted by the compactness argu-
ment. Therefore, ultimately, we will not prove existence of global weak solutions to the original
system (P) with g(u) given by (i) or (ii) in (2.5); but to a modified system where the velocity
field y in (3.24a) is appropriately mollified, and in the noncorotational case the extra-stress
tensor in (3.23a). Next we describe the details of the smoothing procedure.

3.3 Smoothing operator §,

As we have already indicated at the end of the previous section, it is necessary to introduce a
‘smoothing’ procedure on the velocity field ¢ in (2.4a) and in the noncorotational case also on
the right-hand side of (2.1a). Let a > 0 be a regularization parameter. Given v € V', the dual
of V, let v, € V be the unique solution to the Helmholtz-Stokes problem

/ Vo rwdzx+a | Viv,: Veywdr = (v,w) Yw eV, (3.43)
Ja ~

~ ~ ~ Q~ ~ ~ ~ ~ ~ o~

where (-, -) denotes the duality pairing between V' and V. We introduce the operator S, : V' —
V, such that S, v =y, for all vy € V'. We note that

(v.8ar) = [ o19alSarllP +1Sw0P] d  woe V'S (@Y, (3.49)

and [|Sa - || (o) is @ norm on V. In addition, we have from (3.43) and a Poincaré inequality
that

1Savll3 20y + 2017 [Satl3 200 < 0l32 0, Vo e L’(Q);  (3.45a)
1Sav 310y < Cllol2q) < ClIVa v|| Vo e V. (3.45b)

Furthermore, for € convex polygonal in R? or convex polyhedral in R? (see, respectively, [12]
and [13]), or 99 € C11 in R?, d = 2,3, it follows from elliptic regularity theory that

So:L2(Q) Cc V' = VN H?*Q) isa bounded linear operator. (3.46)
Moreover, for 9Q € C? and r > d (c.f. [9, p.88]) we have that
So:L"(Q)CV = VNW>(Q) cVNC'(Q) isa bounded linear operator; (3.47a)

and hence, we note from Sobolev embedding, elliptic regularity and a Poincaré inequality that,
for r € (d, 6],

[Savllwiee @) < CllSavllw2rq) < Cllollpr ) < C HV V20 Yo eV. (3.47b)
For the sake of simplicity of presentation, we shall suppose henceforth that 9Q € C?.

Of course, other regularisation procedures could have also been used to lift the velocity field
from V to V N CY(Q). Our definition of S, has been motivated by the fact that, like u itself,
Sau is defined and divergence-free on Q, and it obeys the same boundary condition on 9% as u.
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3.4 Weak formulations

The aim of the paper is to prove existence of a (global-in-time) solutions to each of the following
weak formulations of these “smoothed” corotational and noncorotational models for any fixed
regularization parameter o > 0 under the following assumptions on the data

00eC?  wyeH and M Tyye L3(Qx D). (3.48)
Let

o { M - C*(Q2x D) if D is a bounded open ball in R? (3.49)

022 (92 x D) if D= R 5

and hence, on recalling Lemma 3.1, K is dense in K,. We introduce our space of test functions
X for the 1-equation as the completion of C§°((—=T,T); K) in the norm || - |+ defined by

_10p
lellx = llellr20,mk,) + H ot

1
+ M ™2Vl 110,712 (x ) - (3.50)
L1072 (% D))

This, in particular, implies that each ¢ € X satisfies ¢(-,-,T) = 0.

Corotational models

Given T > 0, and Q, ug and 9y as in (3.48), find u € L>®(0,T; L?(2))NL2(0, T Y)HW]%(U,T; V'
and ¢ € L2(0,T; K), with ua := Sau € L2(0,T; W'(Q)), M~ 5 ¢ € L%(0,T; L*(Q x D)) and
7(¢) € L*(0,T; QQ(Q)), such that u(-,0) = ug(-), and

T
/ < >dt+/ / (u-Vy -w—i—uVmu:wa} dz dt
0 8f ~ ~~ ~ ~ o~ N~ ~
——k,u/ / T7(¢) : Vywdzdt Vw € L1 4(0 T:V); (3.51a)
Jo . ~ N~ o~ ~
T
i L5 o wooe] g [
- — | — 4+ (ug - Vg dqd’rdf ,-,0)dq dx
J e L5t 506 it
V

“f ol () et ]

The only difference between (3.51
corotational model, (P) with g(u) =

( )dqudt—o Vo e X. (3.51b)

a,b) and the corresponding weak formulation of the original
w(u), is that u has been replaced by u, in (3.51b).

Noncorotational models \
Given T > 0, and €, ug and 9 as in (3.48), find u € L°°(0, T; L2(Q2))NL2(0, T; V)NW 4 (0, T; V")
and ¢ € L2(0,T; K), with e := Sau € L2(0, T W'(Q)), M~ 5 ¢ € L%(0,T; L*(Q x D)) and
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(v) € L=(0,T; L*(€)), such that u(-,0) = u(-), and

ou
/ <— w> df—l—/ / u -w~+vViu: Vmw} dz dt
0 ~ ~~ ~ I~ ~ ~

=—ku / / T7(9) : Vg (Sqw)dzxdt  Vw € Lﬁ(O,T; V); (3.52a)
0 Q= ~ - ~ ~ ~

Q3

T
- L el

QxD
+/0T/pr [% v, (%) ~ [Va (ta) q] 14 Y, (%) dgddt =0 VpeX. (352)

The only difference between (3.52a,b) and (3.51a,b) is that the corotational tensor w(ua)
n (3.51b) is replaced by the more physical noncorotational tensor V. (uq) in (3.52b) and we
applied smoothing on the right-hand side of (3.52a). Hence, (3.52a,b) and the corresponding
weak formulation of the original noncorotational model, (P) with g(u) = V (), differ only to
the extent that u has been replaced by u, in (3.51b) and we applied smoothing on the right-hand
side of (3.52a).

Our energy estimate in the noncorotational case will be based on cancelling the extra-stress
term on the right-hand side of (3.52a) with the drag term in (3.52b), hence mimicking the
formal procedure in Section 3.2.2. To pass to the limit in (3.52b), we need to smooth u and
therefore to maintain the cancellation we need to smooth the right-hand side of (3.52a). Of
course, smoothing the extra-stress tensor in (3.52a) essentially amounts to smoothing y itself.

REMARK 3.1. Since the test functions in V are divergence-free, the pressure has been eliminated
in (8.51a) and (3.52a); it can be recovered in a very weak sense following the same procedure as
for the incompressible Navier—Stokes equations discussed on p.208 in [21]; i.e., one obtains that
fo s)ds € C([0,T]; L*(Q)).

REMARK 3.2. Ifd =2, thenu € C([0,T); H) (¢f. Lemma 1.2 on p.176 of [21]), whereas if d = 3,
then u is only weakly continuous as a mapping from [0,T] into H (similarly as in Theorem 3.1
on p.191 in [21]). It is in the latter, weaker sense that the imposition of the initial condition to
the u-equation will be understood for d = 2,3: that is limy_,o(u(t),v) = (ug,v) for all v € H.

4 Existence

Throughout we will assume that (2.18a,b), (2.19), (3.16) and (3.48) hold. In order to prove exis-
tence of these weak solutions to a modified version of (P), we consider a time semidiscretization.
To this end, for any "> 0, let NAt =T and t, =nAt,n=0— N.

In order to prove existence of weak solutions under minimal smoothness requirements on the
initial data, we introduce projections u”, 9° of the original initial data ug, 1, as follows:

u’ = Saguo, (4.1a)

M <(1 + Atlg*) 9° — ¢0> edgdz =0  Voe L*(Qx D;M '(1+|q/*). (4.1b)
JOAxD ~ ~ ~
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It follows from (4.1a,b) that u” converges to ug weakly in H and 9" converges to 1y weakly in
L?(Qx D; M~ ') as At — 0.

We begin by considering the, simpler, corotational case.

4.1 Corotational models

We introduce a discrete-time procedure to mimic the formal energy estimate (3.26)—(3.35a,b).
For n =1 — N, given {u" ', 9" '} € V x K. find 4" € V such that

s

u — "

~ ~ n—1 n
AL + (1~L V. )u

cwdz+v | Vyu": Vywdsr
o~ JorE~ TRES TS

= / (") Vywdz  VYweV. (4.2)
It is convenient to rewrite (4.2) as

b" (u",w) = / [u"f] cw— AtT(p") 1V, w} dz Yw eV, (4.3)
Ja = o~ ~

~ ~ ~ ~ ~ ~

where for all w; € H}(Q), i = 1,2,

Vgzwy : Vywyde. (4.4)
Jaor ~ oo~ ~

~ ~

b" (w1, ws) :—/ [w] + At (u”” -V )wi| - wodz + Atv
S Ja I~ < ST

As y" ! € V, it follows from (3.25) that b"(-,-) is a continuous and coercive bilinear functional
on V x V. Since, by virtue of (3.30), (4" ') € L*(Q), it follows from the Lax Milgram theorem
that there exists a unique solution to (4.3).

On choosing w = ¢" in (4.2), and noting the simple identity

2(s1 —s89) 81 = 5% + (81 — 52)2 — 5% Vsy,s9 € R, (4.5)
the identities (3.25) and (2.2), and the fact that 4" ', 4™ € V yields, similarly to (3.26), that
1
m /Q |:|1~1n‘2 + |1~1n - yn71‘2 B ‘gn71‘2:| df —+ v /Q LVT gn‘Q dz‘

_ n—1y ., n z n|2 (k:u’)2 n—1y|2
=—ku [ CW" ") :Vyu"dz < \Vu"|"dz + C(yp" )" dz.  (4.6)
. o~ ~ 2 Jo = ~ ~ 2v Jo = ~

€ V in (4.2) yields, on noting (3.44), (2.2) and (3.25), that

u — !
Sa At
u — unfl
(u"f] V) [Sa <7N A; )” dx

gc/ [|C(¢”*1)|2+\vmun|2+\un*1|2|un|2} de. (4.7
Q o ~ ~ ~

On choosing w = S, (%

|' gn _ illnfl
b ()

2 2

+
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Applying the Cauchy-Schwarz inequality, the algebraic-geometric mean inequality and the
Gagliardo Nirenberg inequality (3.21) yields that

./gzy“Fg"I?d% (/gzy"”df) (/ u” 4dx)‘1 P ]/u " da
<C Z [(/ “de.’f)QE (/Qlyrg 2(1.’5) ] (4.8)

m=n—1

Given vy € ¥V N CY(Q), let y™(v,t;+,") € C'([tn—1,1a]; C®'(2)) be the unique solution, for
all z € Q and with either t = t,,_; or t,, of

d
LY etz s) = vy (v,tz,5) Vs € [tar, ]\t Y (0, 2,8) = 2 (4.9)

As v = 0 on 09, the map ¢ — y"(v,t;z,s) is, for each s € [t,_1,t,] and t = ¢, or &,, a
Lipschitz-continuous homeomorphism from € into itself, independent of the choice of At. By
virtue of the Rademacher Stepanov theorem it is differentiable almost everywhere in 2. More-

over, since y is divergence-free, the map has the volume-preserving property, i.e. its Jacobian,
det V4", satisfies

det Vo y"(v,t;-,-) =1 a.e. in Q X [tn_1,t,]. (4.10)

We note also from (4.9) that, for all 7 € Q,

|yn(1),tn71;m’f) T| < (fffn 1) sup ‘U( )| Vit € [ 'm— laf ]; (4.11&)
~ ~ YyeQ ~ ~
tn s
y" (0, 132, tn) — [2 + Atw(2)]| = / (" (v, tn-132,1)) —v(z)]dE] < Cllv]l 0 o) (AD)?
~ ~ tho1™ ~
< C([[ollaqy) (A)Z  ifv e HA(Q). (4.11b)

In addition, it is easily established that, for all ¢ € [t,, 1,%,], all € Q and all v,, v, in C%'(Q),

‘yn(ga,tn,l;.z;,t) Yy (Ubafn 13 T f)| < C(H“a”go 1 ||7)b”00 1( )) (t - tnfl) Hi)a - gbnc(ﬁ)
(4.12)

On observing that, by (3.47a), u” := S,u™ € C'(Q), we let )" € K, be such that

ac(Y",0) = Li(p) Vo€ Ky; (4.13)

where, for all 1, @2, ¢ € K,

n M P1 n P2
ac (1, :=/ (Wcsoso + At [—V wuo;qsoyv —)dqdm,
(ere2):= [ L 2 (M) wlua)dler| - Va (M)

(4.14a)
£ (p) = Wedp™ (Y™ (uf, tn3 @, tn 1), ) @ dg da, (4.14b)
QxD ~ ~ ~
1+ Atlg|?
W .= TN (4.14c¢)
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Similarly to (3.33) and (3.34), as u” € W1°(Q), we have in the corotational case that
/ ¢ (w(uy) q) - Vq (%) dgdz =0, M (w(uy) q) -V, (%) dgdx =0 V¢ € K,.
QxD ~ ~ JQxD rT o~ ~
(4.15)

Hence a7 (-, -) is a non-symmetric, continuous and coercive bilinear functional on K, x K, and, on
noting (4.10), £7(-) is a continuous linear functional on K,. Therefore, the Lax Milgram theorem
yields the existence of a unique solution to (4.13). As ¢” € K, implies that [¢"]_ € K, recall
Lemma 3.3, and as "' € Kf, it follows from (3.17b), (4.14a,b) and (4.13) that

a

e ([ [9)2) = ac (97, [9"]-) = €2 ([9"] ) < 0. (4.16)

Therefore the coercivity of ap(:,-) over K, x K, yields that ["] = 0; that is, ¥" € K],
n=0—N.

Choosing ¢ = 9" in (4.13), noting (4.5), (4.15) and (4.10) yield that

c [W(ff,q)l2 + [P (2, q) - 1/f"](y”(gﬁatn;f,tnﬂ,q)IQ] dg dz

At n\ |2
2 ()
A QxD ~

Summing (4.17) and (4.6) multiplied by 2A¢ from n = 1 — m, with 1 < m < N, and noting
(3.27) yields the analogues of the formal energy bounds (3.35a,b):

JQOx D

dgdz = We g™ (" (4, tni 2t 1), 9)|* dg dz
~ QxD ~ ~

S

= | Wl (@9)?dgda. (4.17)
QxD

N 2
1 P
max W, 4™ dg dx] + - At M |V (—) dg dx
”1%N[.an 4 ~ A nz Jaxp ~T\M ~
+Z Wel9" (z,0) = 9" (4" (Ul tns 3 tn 1), 0)* dg dz
JQxD ~ ~ ~ ~
+ max [/ |C(¢”)2dx] <C Wc|1/10\2dqu; (4.18a)
n=0—-N ~ ~ JaxbD ~
2 N 1 2 2
n@1§<N[/|udT]+Z/u dfr+1/ZAf/|V u'|” dz
g/u“dm+CT/ W, |° % dq dz. (4.18b)
Q" ~ QxD ~

In addition, taking the 2 power of both sides of (4.7), summing from n = 1 — N and noting
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(4.8) and (4.18a,b) yields that

u — unfl
Sa At

2

N
IS

Vi

N
A
;t'/ga

N a
ZA:‘/ \V 11”2(‘1’1']

N 2
d
<c Zm(/ |0(¢”1)2dm> + o)
n=1 AL ~ n=1
4_4 N
C(T) | max /|u"| dz ’ ZAt/V u"?dz| < C(T); (4.19)
+ n=0—>N ~ Jo'= E~ ~ - AT

provided that there exists a positive constant C', independent of At, such that the projected

initial data satisfies

|q/;0\2
dq dr < C. (4.20)

~

/[U,U|2+At|vmu02]dm+/ (14 Atlg?) 20
J o~ ko JOAXD ~

This is guaranteed by (3.45a), (3.48) and (4.1a,b). Furthermore, it follows from (4.18b), (3.46)
and (4.20) that

_max ||ua||2Hz(Q) <C [/ |u’?dz + T / W, |[9°? dgdz| < C(T). (4.21)
=0—-N Ja ~ ~ JaxbD ~ o
Let
t—tn_ tp, — 1
W0 = ) BT ), re ) n2 1, (1.220)
and
%At’+('at) = L’n()a Q‘At’i('at) = Nl‘nil(')a le (tnflatn]v n > 1. (4'22b)
We note for future reference that
At Att L) 0u®
u= -yttt = (- t,) 51‘ , te€ (tho1,tn), n>1, (4.23)
where f+ = t, and f’ := typ—1. Using the above notation, and introducing analogous notation

for {u” and " , (4.2) summed for n =1 — N can be restated as:
Qo 0 n 0

8UA1‘
/ < ; W >dt+/ / Vo )ulh | w4 v Veulht Vi w| dedt
Jo ~ ~ o~ o~ ~

=—ku / / (7Y Vyw dao di Yw € Lﬁ(O,T; V). (4.24)
JO . ~ ~ ~

Similarly, (4.13) summed for n = 1 — N can be restated as:

A vz, g,

At,+
Vo € L*(0,T; K,);  (4.25)

T A (,q.1) — AT (YA (2,1),0,1)
/ W, ~ t)dg dzdt
QxD ~ 7

Y, (%) dgdadt =0
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> (@, 1) =y (@t 1) and 2% (2, 1) =y (ug by 15w tn), EE (aity), > 1.
(4.26)

Noting (4.20), (2.2) and (3.29), we have from (4.18a) that

‘TpAt(Vi)(*/anat”Q 1 T
sup / ~ dgdz | + < / M
te(0,1) | JaxD M ~ A QxD

WEVES 2
V, U dg dz dt

T
rant [ DWIwA’+( 000) = 00,07 d | a

+ sup [/| AU (o t)Qdm] <c. (4.27)

te(0,17)

In the above, the notation %) means 92! with or without the superscripts +. Similarly, on
noting (4.20), we have from (4.18b), (4.19) and (4.21) that

T T
sup [/ \um |2 dx} (At)]/ /|uAt’+—uAt’|2dxdt+V/ /unAt’(i)de
t€(0,7) Jo Ja~ ~ ~ Jo Ja =~ ~ ~
4

T QuAt]|d )
+/ Sa ét dt + sup ||u )HHz(Q) <C. (4.28)
0 H1(Q) t€(0,T)

We are now in a position to prove the following convergence result.

LEMMA 4.1. There ezists a subsequence of {u™', >} ay, and functions v € L®°(0,T; L%(Q)) N
L20,T;V)NWYa(0,T; V') and ¢ € L2(0, T; K) with M2 ¢ € L®(0, T; L*(Q x D)) such that
as At — 0,

'LﬁAt(’i) ,(p ‘. - .
— = — weak * in L°°(0,T; L*(Q2 x D)), (4.29a)
M2 M=
1 SE 1 P .19 2
Mz V, )~ Mz V, i weakly in L°(0,T; L (Q x D)), (4.29b)
() 5 7 () weak * in L>(0,T; L*(Q)); (4.29c¢)
and
uBtE) 5y weak * in L>(0,T; L*(Q)), (4.30a)
uBE) 5y weakly in L*(0,T;V), (4.30b)
811At 811 .
§a pr — S 8t weakly in Ld(0,T; Y), (4.30c¢)
A 5y strongly in L*(0,T; L"(9)), (4.30d)
uSE) 5wy = Sau strongly in L*(0,T; W?"(Q)), (4.30e)

where r € [1,00) if d =2 and r € [1,6) if d = 3.
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PROOF. The result (4.29a) for ¢2"* (g, ¢,t) and %> (y*'(z, ), ¢, t) follow immediately from
the bounds on the first and the third term on the left-hand side of (4.27) on noting (4.14c).
Next we note from (4.26), (4.10), the bound on the first term on the left-hand side of (4.27) and
(4.11a,b) that, for a.a. t € (0,7T),

[ (2,0, 1) =920 (¥ (2,0),4,1)]
/Q><D

M3

AL (2,q,t)
- /QDTINM(-@(J)so(g“(.g:,q),q)]dqdz;
X 2 - N 1 7

< CAug" () 2oy lelloon@xpy Ve € G52 x D). (4.31)

Hence, the desired result in (4.29a) for ¢»2b~ follows from (4.31), the bound on the fifth term on
the left-hand side of (4.28) and the denseness of C§°(Q x D) in L?(Q2 x D). The desired result
in (4.29a) for ¢! then follows from that for 1»*»* and the notation (4.22a,b).

It follows immediately from the bound on the second term on the left-hand side of (4.27)
that (4.29b) holds for some limit g € L?(0,T; L?(2 x D)), which we need to identify. However

for any n € L(0,T; C3°(Q x D)), it follows from (2.7), (2.18a,b) and the compact support of 7

on D that [V, - (M% n) ]/M% € L*(0,T; L*(Q x D)) and hence the above convergence implies,
on noting (4.29a), that

T ¢At+v (M7 1)
// g-ndgdsdt  — // 7 gy dedt
Q><D~ ~ o~ 0 JOxD M2 2 ~ ™
.- (M37)
—>—/ / 1” —=dgdzdt  as At —0. (4.32)
QxD M?z2 Mz ~ o~

Hence the desired result (4.29b) follows from (4.32) on noting the denseness of C§°(2 x D) in
L?(€2 x D). The desired result (4.29¢) follows immediately from (4.29a), (2.2), (2.3) and (2.20).

The results (4.30a—) follow immediately from the bounds on the first four terms on the
left-hand side of (4.28). The strong convergence result (4.30d) for 4> follows immediately from
(4.30a,c), (3.22) and (3.44), on noting that V C H}(2) is compactly embedded in L"(2) for
the stated values of r. We now prove (4.30d) for u~»*. First we obtain from the bound on the
second term on the left-hand side of (4.28) and (4.23) that

HQN - TNI‘At’iH%%o,T,L?(Q)) < CAt. (4.33)
Second, we note from Sobolev embedding that, for all n € L?(0,T; H'()),
||7]||L2(0,T;LT < ||Tl||;z 0,7;1.2(Q ||Tl||;z (0,T;1.5(Q)) < CHWH?Q(O,T;[Z ||77||]2 (0,T;HL(Q)) (4'34)
for all r € [2,s), with any s € (2,00) if d =2 or any s € (2,6] if d = 3, and

B =12(s=r)l/lr (s =2)] € (0,1].

Hence, combining (4.33), (4.34) and (4.30d) for 42! yields (4.30d) for y»»*. Finally the desired
result (4.30e) follows immediately from (4.30d) and (3.47a). O
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It follows from (4.30a—d), (4.29¢) and (3.43) that we may pass to the limit, At — 0, in (4.24)
to obtain that u € L®(0, T; L2()) N L2(0,T; V) N Wha(0,T; V') and 7(¢) € L¥(0,T; L2(%))
satisfy (3.51a). It also follows from (4.1a) that u(-,0) = uo(-) in the required sense.

As we have no control of the time derivative or the 2 derivatives of ™, in order to pass to
the At — 0 limit in (4.25) these derivatives have to be transferred to the test functions.

On noting (4.10) and (4.26), we have for any fixed ¢ € C§°((—T,T); K) and for At sufficiently
small that

T A (2, q,1) — A (YA (2, 1),0.1)
/ W, ~
QxD

A7 ~ ~ @(Z;,g,t) dgd.’rdf
T <p(zAt(xat)aq7t) - <p($aqat_ At)
- —/ W™t (3, g, 1) ——— = - - dg de dt
0 Jaxp ~ At ~ o

I
- W, y° ( ) ( / o(x,q,t — At) dt) dgdz. (4.35)
QxD At T~ ~

It follows from (4.26), (4.11b) and (4.28), for all ¢ € C§°((=T,T);K) and for all (z,q,t) €
Qx D x (0,T) that

p(z(2,9),9,1) — p(w,9,t — Ab) o

A = 57 (@4 8) + (3" (2) - Vo ) (2, 0,1) + Rau(p) (2, 0.1),

where

2

8<p 8 ")
max +V’I‘ + max z,q,1
(m,t)eﬂx[TT}[|3t (224 Y plz. 2. 0) ij=1,. ,d|8x28x7 (9, 9)]

(4.36)

(NI

[Rai(p)(2,q,1)| <C (At)

Hence, on combining (4.25), (4.35) and (4.36), we have for any fixed ¢ € C§°((—T,T);K) and
for At sufficiently small that

T A
t,—
/ W
0 Qx D

- W, p°( ( / — At) dt) dg dz
JQxD ~

) NAt,+) q] wAt,Jr

~

dyp
ot

+ (ug"t -V, )‘P“‘RAt(SD)] dg dz dt

Y, (%) dg drdt = 0. (4.37)

It follows from (4.29a,b), (4.30e), (3.47a), (4.36), (4.14c) and (4.1b) that we may pass to the
limit At — 0 in (4.37) to obtain that ¢ € L%(0,7T; K) with M2 ¢ € L*(0,T; L*( x D)) and
Ua 1= Sall € LQ(U,T; WI’OO(Q)) satisty

T
- — | = 4+ (ug - Vy ) @| dgdzdt — ——(-,-,0)dg dz
/U .QXDM ot (N ~ ) ~ JQxD M ( ) ~

[ Ll ()] 5 (s

Vo € OX((~T,T);K). (4.38)
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Noting that, by Lemma 3.1, C§°((=T,T);K) is a dense subset of X' (recall (3.50)), it follows
that (4.38) remains true for all ¢ € X. Hence we have proved existence of a global weak solution
to the weak formulation (3.51a,b) of the smoothed corotational model.

Finally, we note that in the present corotational case one can derive an upper bound on
y™. To do so, we proceed inductively. Assuming that for some L"! € Rt ¢! < L"" ' M
a.e. in Q x D, we then determine L” € Rt in terms of L" ! such that 9" < L™ M a.e. in
Q x D. Now, from Lemma 3.3, (4.13), (4.14a,b) and (4.15), we have, for any L" € RT, that
[ — L" ]+ € K, and

ac([$" = L" M1y, [" = L* My ) = ac (4", [9" = L" M]y) = L" ac (M, [¢$" — L" M)
=L (9" = L" M) = L ag (M, [¢$" — L™ M]y)

= We (4" (y™ (utys tns 2, tn1),q) — L" M) [p" — L" M)} dg da
axD ~ ~ ~ ~

< / (W (L™ — L") M] [¢" — L™ M) dg d=. (4.39)
QxD ~

On choosing L™ = L™ ! yields that the right-hand side of (4.39) is zero and hence from the
coercivity of a”(-,-) that [" — L™ M|, = 0. Thus, by induction, we have for n =1 — N that

0<yP" < IL"M =L"M ae. inQxD, where L':=  sup (4.40)

If LV is finite, then on recalling the notation (4.22a,b), (4.40) gives rise to a uniform L°°(0 T;
L*®(Qx D)) bound on M~ ¢2(+F) Moreover, it is then easily established that the limit M~ ¢ €
L>®(0,T; L (2 x D)) with ¢ > 0 a.e. on 2 x D x (0,7), and hence the norm | - ||x can be
relaxed to the weaker norm |l¢|r2(07;x,) + Haa—f||hl(o;T;Ll(Qx py) + 1Vaelri0,7m;01 (x D))

4.2 Noncorotational models

In order to mimic the formal energy estimate (3.41), we introduce a discrete-time procedure.
Unlike the corotational case above, it does not appear possible to decouple the Navier Stokes
system from the probability density equation at each time level and still mimic (3.41). As stated
previously, we need smoothing on the right-hand side of (3.52a) in order to cancel the smoothed
drag term in (3.52b).

Let

A%v) == sup |V v(z)|? Yo € VN WH®(Q). (4.41)

~ reQ & ~o~

Then, for n = 1 — N, given {u™ 1, A" L ¢ 11 € V x RT x K+, where A"~ = AP 1(yn—1);
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find {u", A"(u2), 9"} € V x Rt x K, such that

u® — un!
/ x> (WY, )u” -wdx—i—u/vmu”:v
JQ At ~ ~ ~ ~o Jaor ~ ~

__ / (") : Vo (Sqw)de  Vw €V, (4.42a)
Ja= SR

8]

tg
o

(&S

D" (. q) =" (Y (U e T, b)), Q)
./Q><D At M < ~

+/ lg” [(1+AA”(UZ))¢”—(1+/\A"])1/J"](y”(UZ,tn;x,tnﬂ,q)) Z dgda
Jaxp ~ ~ ~ ~ ~ M .~

1 P Y
— M Ll +
+2A,/QxD Va (M) Va (M) dg dz

= YP" [(Vzug)q] - Vy (%) dg dz Vo € K;;  (4.42b)
QxD MY~ ~ ~

where u” := S,u" and, for all y € V N WH*°(Q),

A™(v) := sup |V, v(2)|?. (4.43)

~ reQ & ~o~

Similarly to (4.3), it is convenient to rewrite (4.42a) as

b (u", w) = / [11,"7] cw — AtT(P") : Vi (Sqw)| dz Yw eV, (4.44)
Ja ~ ~ v v

~ ~ ~ ~

where b" (-, -) is defined as in (4.4). It is also convenient to rewrite (4.42b) as
ag (ug) (Y™, @) = £y (ug)(p) Vo € Ky; (4.45)

where, for all @i, @2, p € K;jand v € V' N NWLOO(Q)’

e = [ (W o[ 2e, (8) - (@ewda] v (£2)) agas

QxD ~ ~
(4.46a)
GO = [ W " (g™ (0, ;3,80 1), ) ¢ dg da, (4.46b)
y Z S
1+ Atlg]? (1 4+ XA"(v)) 1+ At|g? (1 + 1A 1)
Wi(v) = ~ = and Wg”*1 = ~ . (4.46¢)

M M

On noting that v € V N WH°(Q) and (4.10), it follows that ag(v)(+,-) is a continuous non-
symmetric bilinear functional on K, x K, and /7 (v)(-) is a linear functional on K,. Moreover,
on applying a Young’s inequality, we see that

At M

.0 > [ L

QxD

2
[Wcso2 + ‘Yq (%)‘ } dgdz Vo € Ky; (4.47)

that is, ag(v)(-,-) is coercive on K, x K.
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In order to prove existence of a solution to (4.42a,b), we consider a fixed point argument.
Given u € L"(Q), r > d, let {¢*,u*} € K, x V be such that

ag(@ )%, ¢) = £5(@ )(p) Vo € K, (4.48a)

b (u*, w) = / [u”” cw — AtT(¢*) : Vg (Sqw)| dz Yw € V; (4.48b)
Ja v~ ~

~ ~ ~ ~ ~

~ ~

where, on recalling (3.47a), U, := SaU € V N W*(Q). On noting (4.47), the Lax-Milgram
theorem yields the existence of a unique solution to (4.48a). Similarly to (4.3), on noting (3.45b),
there exists a unique solution to (4.48b). Therefore the overall procedure (4.48a,b) is well-posed.

LEMMA 4.2. Let G: L"(2) - V C L"(Q), r € (d,6), denote the nonlinear map that takes u to
u* = G(u) via the procedure (4.48a,b). Then G has a fized point. Hence there exists a solution
{u™, A" (ul), 9"} € V x RT x K, to (4.42a,b).

PrROOF. Clearly, a fixed point of G yields a solution of (4.42a,b). In order to show that G
has a fixed point, we apply Schauder’s fixed point theorem; that is, we need to show that (i)
G:L"(Q) = L"(Q), r € (d,6), is continuous, (ii) compact, and (iii) there exists a Cy, € RT such
that

[l e (@) < Cu (4.49)
for every u € L"(Q?) and S € (0, 1] satisfying u = 8 G(u).

Let {@(i)}izo be such that

2" =4 strongly in L'(Q) as i — . (4.50)
We need to show that
79 .= q@") — G(@) strongly in L' (Q) as i — oo, (4.51)

in order to prove (i) above. We have from the definition of G, see (4.48a,b), that, for all i > 0 ,

~ ~ ~

b (5, w) = / [11,"7] cw — AtT(’lZ(i)) : Vi (Sqw)| dz Yw € V; (4.52a)
~ 0 ~ ~ M ~

where 1;(“ € K, satisfies

@)@, ¢) = £ ) VeeK, (4.52b)
and from (3.47a) we have that
% = §,0" 5% :=S,0 strongly in W2"(Q) c WH®(Q) as i — oo. (4.52¢)
~Q ~ ~ ~Q ~ ~ ~ ~

Choosing w = v(7) in (4.52a), and noting (3.25), (4.5), (2.2), (3.45b) and (3.27), yields, similarly
to (4.6), that, for all i > 0, 31V € V satisfies

/ [ﬁ?(i)\Q—l—ﬁ?(i)—11,”71\27\11,”71\2] dm—l—Aty/ 1V, 52 dg
bt~ ~ ~ ~ ~ Q=~ -~ ~

(i) |12
<0At/ %]
JQOx D

dgdz; (4.53)
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Choosing ¢ = ¢ in (4.52b), and noting (4.47), (4.46b,c), (4.14c) and (4.10) yields, for all i > 0,

that

~ At M
/ |-Wr: P2 =
QxD
<(14r4m1h)? We " 2 dgdes < C.  (4.54)

[ 2\
QxD

On combining (4.53) and (4.54), and noting an embedding result, see (3.21), and a Poincaré
inequality, we have for all 4 > 0 that

||v ||]r ) < C’||V v ||L2(Q) <C. (4.55)

Similarly to the proof of Lemma 4.1, it follows from (4.54) and (4.55), on noting the compactness
of the embedding H'(Q) — L"(2), r € (d,6), that there exists a subsequence {w(ik),ij(““)},;kzg
and functions ¢ € K, and ¥ € V such that

W2 lis) %J weakly in L2(Q x D) as ij, — oo, (4.56a)
M3 M=V, M3 Vq <%) weakly in EQ(Q x D) as i, — 00, (4.56b)
T($)) = 7(h) weakly in L*(Q x D) as iy — 00, (4.56¢)
7 -9 weakly in H'(9) as iy — 00, (4.56d)
?U’C) —)52 strongly in %T(Q) as i — 00. (4.56e)

It follows from (4.52a), (4.4) and (4.56¢,d), that T € V and ¢ € K, satisfy

~ o~ ~ ~ ~

~ ~

b" (v, w) = / [u"‘*l cw — AtT(’l/ﬁ\) 1V (Sqw)| dz Yw e V. (4.57)
Q ~ ~or ~ ~

For a fixed ¢ € K, and any 0 > 0, there exists, on recalling the density of K in K, (cf. the line
below (3.49)), a @5 € K such that for all y € V N %1 (Q)

ME(E)(‘P*S%)‘ <Clle —sllx, < 0. (4.58)
We have from (4.46b), (4.9), (4.10) and (4.12) that, for all v,, v, € C%'(Q),
144 (va)(p5) — £5(vs) () |

- /Q Wy wa) [only (st vt ). 0) — a0 (021, )] g d
x D ~ ~ ~

< ClVa @sllreo@xn) 1" (Vas ta1; 2, t0) = 4" (0, tn15 2, tn) [ 2 ()
< Clllvallcos @y l1vpllcory) Ve @5l L @xp) [va = vl oo (@ (4.59)
Combining (4.58) and (4.59) yields, on noting (4.52c¢), that

@) - 0@ )p)  asi—oo, V€ K, (4.60)

~Q ~Q
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Hence it follows from (4.52b), (4.46a,c), (4.43), (4.56a,b), (4.52c) and (4.60) that u  := S.u €
VAW2(Q) and ¢ € K, satisfy
@ )De) = 0F Np) Ve K, (461)
~Q ~Q

Combining (4.61) and (4.57), we have that v = G(u) € V. Therefore the whole sequence
7% = G(@") - G(@) strongly in L"() as i — oo, and so (i) holds.

As the embedding V — L"(Q), r € (d,6), is compact; it follows that (ii) holds.
As regards (iii), u = £ G(u) implies that {(p\, u} € K, x V satisfies
ag(@ ), 0) = b5 (@ )() vy € Ky, (4.62a)

’ib 1~u ﬂ/ (J) y (Sqw)| dz Vw e V; (4.62b)

where @ := 40. As "' € K} and ) e K, = ()] € K, recall Lemma 3.3, it follows from
(4.62a) and (4.46a,b) that

ag (@ )([]-.[9]-) = ag(@ ), []-) = £;@ )([9]-) <0. (4.63)

Therefore (4.47) yields that [{b\], = 0; that is, 9 € K. On choosing w = % in (4.62b), and
noting (2.2) and that 4 € V yields, similarly to (4.6), that

1
! / [P + 1@ g |2 5 ) dm+Atu/Vm§Z|2dm
2 Jo L% N Iy N ? Jolm el
= AtBku [ C@p):Vpu dz.  (4.64)
O~ N~ o~

Choosing ¢ = M in (4.62a) and noting (4.10) yields that

/ [14+Atlg* (1+XA"(u ))]qudm:/ [14+ Atlg2 (1 4+ XA 1]y dgda.
QxD ~ ~o ~ QxD ~ ~ o
(4.65)

Choosing ¢ = U M in (4.62a), and noting (2.8), (2.3), (4.10), Lemma 3.2, (2.7) and (2.17) yields,
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similarly to (3.40), that

/ (@—wnl)qudx—At/C(i):vma
QxD ~ ~o

+At/ lq|? [(1+,\A"(a ))aZ—(1+,\A"*1)¢"*1} Udgdx
QxD ~ ~o ~

At " ,
== M | - U'qdqd
2N Jop MY M) 1Tt
At ~
= — [(U” (U)?) q|2+dU’] ¢ dg dz
2X Jaxp ~ ~ T
~Ate ~ Atd ~
< "2/ ¢2U" ¢ dgdz + =—— U' 4 dg dz
22 Jaxqgr=2y ~ ~ 0 2A Jaxqar<gy o~

~

—At .
< 02/ a[*U'§dq da
2X Joxqgp> 4y ~
+0At/ [1+Atq|2(1+>\A”(ﬂ ))} Pdgdz.  (4.66)
JaxbD ~ ~a ~
Combining (4.64) and (4.66) multiplied by gk u, and noting (4.65) yields that
1
_/ [P +a - pur ] dm+Aty/VmiZ2dm
2 Jol~ ~ ~ ~ Q~ ~
+ﬁku/ [1—|—At|q2(1+>\A"‘(a ))] U dgdz
QxD ~ ~a ~

AtBk ~
+ ﬁ M C2 / |q‘2 Ul'l,bdqu
22X Jaxqgp>2y ~ ~

1
55[# /|u,””dm+ﬂku/ [1+Atq|2(1+)\A”1)] U™ ' dgdx
J o~ ~ . ~ ~

QxD

+CﬁkuAt/

[1 + Atlg]* (1 4+ 147! )} Y Ndgdz. (4.67)
JQxD ~ ~

As ¢ € K., then (4.67) gives rise to the desired bound (4.49) with C' dependent on At, on
noting the embedding V' — L"(€Q). Hence (iii) holds and so G has a fixed point. Thus we have
proved existence of a solution to (4.42a,b). 0

Repeating the arguments (4.63)—(4.67) for the solution {u",9"} of (4.42a,b) yields that

Y" € K and (4.67) holds with 8 = 1 and {@,{b\} replaced by {u",4"}. Summing this from
n=1-—m, m=1— N, and noting by induction on (4.65) that

/ [1+Atq|2(1+)\A”1)] ¢"1dqdm:/ [1+At|q2(1+>\A0) ¢ dgdz, (4.68)
QxD ~ ~ QxD ~ ~
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and (4.20) yields the analogue of (3.42)
N
n|2 nfl 2 n|2
— d dz At Vzu"|*dz
[nrr%::x]v[/u T]+Z/11 | z +V,; /QzT1~1| T

N
ke !
+kp max [/ Uip”dqu]—i- At/ q Ui/}"dqu
n=1-N | JaxD ~ 22 Z QX{\q\2> }|N‘

+ At max [/ |q2(1+)\A"(ug))U1,b"dqdm}
0 ~ e

n=1—-N . xD ~
1 02 2 0 0
< lu'|“dx 4+ C(T) 1+ Atlg)"(1+XA")| 14+U)y " dgdx
Q.QN ~ JQOxD ~ ~ ~

<c. (4.69)

The bounds on %" in (4.69) do not suffice in order to pass to the limit At — 0 in the summation
over n of (4.42b). One needs to establish additional bounds on ¢". We confine ourselves to the
physically more realistic case of FENE-type models.

It follows from (4.43), (3.47b), (3.21), (4.69) and (4.20) that, for any 5 € [1, %],

N N N

Yo At(arhP = ZAt IVaup M7y < CB) D Atllum I g,

n=1 n=1
ZAfH“n 1||2ﬂ (1-7) ||VT ln 1||2ﬁ’7

By
C(B) <Z At[|V, :I‘HIH%Q(Q)) < C1(B), (4.70)
n=1

where r € (d,6] and v € [d(r — 2)/(27),1]. Choosing ¢ = 9" in (4.45) and noting (4.46¢c),
(4.14¢) and (4.47) yields that

At |2
Wt (07 =00 it dgda [ gy () dgds
QxD 4)\ QxD ~ M ~ ™~
laf*
< At A P Pp" T 1( (u bn3 T, 1),q)dg dz. (4.71)
QxD M ~ o~ ™

Applying the identity (4.5) and a Young’s inequality to (4.71), and noting (4.10), that D is
bounded and (4.70) with C, = C1(1), yields

—toratary [ W Pdgde+ [ Welm — " (5" Wl tas @t 1). )| dg da
JQxD ~ ~ JAaxD ~ ~ ~ ~
At wn ? n—1 n—1,2
— M |V, | — dgdz < (14+Cy At A" ) We [¢" |7 dg dz. (4.72)
2X Jaxp ~ M ~ QxD ~

It follows from (4.72) that

14+ Cy At A"
W, "2 dg da < —— 25 W, [ 2 dg da
QxD ~ *501 At A" Joup ~
< eCArAT! W, [¢"'|? dg dz. (4.73)
JQx D ~
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Hence combining (4.73) and (4.70) with 8 = 1, summing (4.72) from n = 1 — N and noting
(3.27) yields the bounds (4.18a) for the general noncorotational FENE model; in particular:

n 2
v (i)

+Z Welo" (2,0) ="~ (4" (ufy, tn, 23t 1)), 0)|* dg da

JQOXD

N
1
W. |¢"?dg d — At M dgd
5 '@”2%%2 o

n=1—-N . JQxD

+ max [/ C’(i/}"‘)|2dz:] < C. (4.74)

n=0—N JO =

Finally on choosing w

_ (un un—]
analogue of (4.7) and (4.19

y ) € V in (4.42a) yields, on noting (3.45b), a direct

u — ! u — !
So | ¥—>— Sy | ¥—>—
~ At ~ At

We have now established all of the analogues of the bounds (4.18a,b) and (4.19) in the corota-
tional case for the general noncorotational FENE-type potentials, see (4.69), (4.74) and (4.75)
above. The remainder of the convergence proof follows exactly the same arguments as in the
corotational case. The only differences are: (i) the presence of S, on the right-hand side of
(4.42a); and (ii) the term involving A" (u7) in a!(u2)(-,+) and the term involving A" in £7(-).
Obviously (i) causes no difficulties whatsoever. Hence we comment only on (ii).

Sa
9):

2
+

T

> /Q{ay

2'| d
Jd.zt <C.  (4.75)

Therefore to prove existence of a solution to (3.52a,b), we need only to show, on noting the
notation (4.22a,b), that, for all ¢ € C§°((—T,T); K),

4]
/ /Q o [(1+AAAt’+)1/JAt’+(w,q,t)—(1+>\Am’)TPN’(ym(fc,q),q,t) ¢ dz dg dt
x D o oo

=0 as At — 0, (4.76)
where A2h* and A2H~ are defined analogously to 2bF, w24+ and 24—, uAb~ | respectively.

Now, similarly to (4.35), we have from (4.10), (4.26), (4.36), (4.74) and (4.70) for any
¢ € C°((—T.,T); ) that, for At sufficiently small,

~ ~

al*
/ /QD 7 [ +,\Am’+)1/}“’+(§,q,t)—(1+AAA'*)zp“’(ym(ff,q),q,t)} pdadg dt
>< ~ ~ ~

2
4 ‘g| At~y 1 At~ 880 At,+

=|—At = (14 XAZ)y=h + (U™ - Vo) o+ Rai(yp) | dgdzdi

o Jaxp M ot ~

‘q|2 0v 10 1 t1
At/ = (1+ XAy (z,q (—/ oz, q,t — At dt) dg dx
.QXDM( ) (NN) At.o (~N ) oo~
T
SC(@)At/ (1+ XA ) dt < C(p) At (4.77)
0
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Hence the desired result (4.76) holds. Therefore we have proved global existence of a solu-
tion to the weak formulation (3.52a,b) of the smoothed noncorotational model for FENE-type
potentials.

REMARK 4.1. The argument presented above for noncorotational FENE-type models breaks down
for noncorotational Hookean models, since in the transition from bound (4.71) to (4.72) we ex-
ploit the fact that D is bounded. The difficulty could be overcome if one could obtain a mazximum
principle on " along the lines of (4.39). Unfortunately, in the case of D = RY this does not
appear to be readily achievable. Having said this, our main focus of interest in the present ar-
ticle have been FENE-type microscopic-macroscopic models for diluted polymers where D is a
bounded open ball in R%: for, the fact that in Hookean-type models the domain D is equal to the
whole of R? stems from the physically unrealistic modelling assumption that the length |q| of the
elongation-vector q € D of a polymer chain may be arbitrarily large. -

REMARK 4.2. It is plausible that the existence of global weak solutions to the original model
problem (P) could be established, without smoothing of the model, by combining the ideas devel-
oped here with the DiPerna-Lions theory of renormalised solutions to linear first-order hyperbolic
problems with coefficients in Sobolev spaces [5]; see also the more recent work of Ambrosio [1]
on the subject of first-order linear hyperbolic PDEs with non-smooth coefficients. This line of
investigation will, however, require a notion of weak solution different from the one considered
here, and will be the subject of future research.
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