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Abstract

Vorticity filament motions with respect to the Dirac bracket of Rasetti and
Regge [1975] are known to be related to the nonlinear Schrödinger equation
by the Hasimoto transformation (HT), when the Hamiltonian is the Local In-
duction Approximation (LIA) of the kinetic energy. We show that when the
Hamiltonian is the LIA of Euler-fluid helicity

∫
u · curlu, the vorticity filament

equation of motion under the Rasetti-Regge Dirac bracket is mapped by HT
to the integrable complex modified Korteweg-de Vries (cmKdV) equation, the
second equation in the nonlinear Schrödinger hierarchy.
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1 Introduction

Hasimoto [1972] discovered the fascinating map from vortex filament solutions of
Euler’s equations for ideal incompressible fluids in the Local Induction Approxi-
mation (LIA) to soliton solutions of the NonLinear Schrödinger (NLS) equation.
Langer & Perline [1991] showed the Hasimoto transformation (HT) is a momentum
map, which takes the Marsden and Weinstein [1983] Lie-Poisson bracket for vor-
tex filaments as space curves, to the (fourth) Poisson bracket for NLS. (Marsden
and Weinstein [1983] had also conjectured that such a momentum map might ex-
ist.) Langer & Perline [1991] also found a recursion relation which generates the
hierarchy of space curve equations which maps by HT to the NLS hierarchy. An
outstanding problem is to determine the corresponding fluid Hamiltonians whose
LIA vortex dynamics produce the entire hierarchy of NLS equations. We began our
inquiry into this question by considering the helicity of an ideal fluid.

Vortex filaments for Euler fluids can be knotted, and their helicity, defined by

Λ =
∫

u · curlud 3x =
∫

ω · curl−1 ω d 3x , (1.1)

measures the linkage number of ω = curlu in three dimensions, according to a
formula due to Gauss. See, e.g., Moffatt [1969] for an early discussion of why fluid
dynamicists are interested in helicity. For recent reviews of vortex filament dynamics
from the viewpoint of helicity, see Ricca [1996]; Ricca & Berger [1996].

This paper starts in the framework of the Dirac bracket of Rasetti and Regge
[1975] for Hamiltonian dynamics for vorticity filaments. Within this framework, we
find that using the LIA helicity Λ(LIA) as the Hamiltonian (instead of using the LIA
kinetic energy) produces dynamics for vortex filaments defined on space curves, in
terms of the Marsden-Weinstein bracket {· , ·}MW as

Xt(t, s) = {X,Λ(LIA)}MW , (1.2)

where subscript t is partial time derivative at fixed arclength s along X ∈ R 3 and
Λ(LIA) is helicity Λ of the filament (1.1) evaluated using the LIA. We apply the
Hasimoto transformation to the space curve equation (1.2), whose explicit form
is given in equation (4.9). This Hasimoto transformation recovers the complex
modified Kortweg-de Vries equation (cmKdV), which is the second equation in the
NLS hierarchy, for ψ ∈ C ,

ψt = ψsss +
3
2
|ψ|2ψs . (1.3)

Thus, soliton solutions of (1.3) yield LIA vorticity-filament solutions of (1.2) and
vice versa. This connection between cmKdV and fluid helicity is the main result of
the paper.

Recovery of the remaining equations in the NLS hierarchy from fluid Hamiltoni-
ans is possible, in principle, by adapting the recursion relation for space curves due
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to Langer & Perline [1991] to the case of fluids. Unfortunately, the corresponding
fluid Hamiltonians for these higher order space curve equations do not seem to be
physically significant. The obstacle is that the reparameterization of the arclength
variable which appears in the recursion relation for space curves due to Langer &
Perline [1991] does not seem to yield Hamiltonians which have a fluid dynamical
significance, except for two cases: the classical case of kinetic energy and the case
of helicity treated here.

1.1 Outline of the paper

The main contents of the present paper are as follows:

1. In §2 we review Hamilton’s principle for vortex filaments.

2. In §3 we study the Hamiltonian dynamics of singular vorticity filaments sup-
ported on space curves in 3D. We show the Hamiltonian dynamics of these
vortex solutions defined on filaments are governed by the Dirac-constrained
Poisson bracket of Rasetti and Regge [1975]. We also relate the Rasetti-Regge
Dirac bracket (RRDB) to the Lie-Poisson bracket developed in Marsden and
Weinstein [1983] for vortex solutions defined on space curves in 3D, parameter-
ized by arclength. These two Poisson brackets for vorticity filament dynamics
are found to be equivalent up to a time-dependent reparameterization of co-
ordinates along the filament.

3. As shown by Langer & Perline [1991], the Hasimoto transformation (HT) from
the Frenet-Serret equations for 3D space curves to the nonlinear Schrödinger
(NLS) equation defines an equivariant momentum map. An interesting ques-
tion is to determine the fluid Hamiltonians which produce the entire hierarchy
of NLS equations. In §4 we study filaments of ω = curlu and their space curve
dynamics with respect to the Rasetti-Regge Dirac (RRD) bracket. When the
Hamiltonian is Λ(LIA), the LIA version of helicity

∫
u · curlu, we show that

the Hasimoto transformation of the ω−filament equation (4.13) arising in this
approximation produces the integrable cmKdV equation in the NLS hierarchy.
This is the main result of the paper.

4. In §5 we briefly explain the role of Langer-Perline reparameterization in gen-
erating other singular vortex solutions supported on filaments, whose LIA
dynamics on space curves would be mapped by the Hasimoto transformation
to members of the NLS hierarchy.

5. Finally, in §6, we discuss some of the remaining challenges and speculate on
some of the possible future directions for this work.

Disclaimer of rigor Analytical issues (e.g., existence and uniqueness of weak
solutions, etc.) will be neglected in this paper. Instead, we are primarily interested
in exploring the formal properties of the singular vortex filament solutions. In some
of these situations the Hamiltonian is given by a functional which is not even a
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norm, thereby introducing many analytical issues beyond the scope of the present
work. We shall also assume homogeneous boundary conditions everywhere, so we
may freely perform integrations by parts.

2 Hamilton’s principle for vortex filaments

Definition of vortex filament A vortex filament is a distribution of vorticity
ω = curlu supported on a curve R(σ, t) ∈ R 3, as

ω(x, t) =
∫

Rσ δ
(
x − R(σ, t)

)
dσ , (2.1)

where Rσ = ∂R/∂σ is the vector tangent to the curve and equal to the vorticity at
that point, δ

(
x − R(σ, t)

)
dσ is the Dirac measure along the curve, and σ is a fixed

parametrization of the curve, say σ ∈ [0, 1]. The dynamics of this curve will depend
on the choice of Hamiltonian, so in general ω will not be frozen into the fluid motion.
In fact, these filaments do not satisfy Ṙ(σ, t) = u(R(σ, t), t), unless the Hamiltonian
is taken to be the kinetic energy of the fluid. However, the velocity of the fluid which
is induced by the filament vorticity is always given by the Biot–Savart law, which
expresses u = curl−1 ω as,

u(x, t) =
1
4π

∫
Rσ × x − R(σ, t)

|x − R(σ, t)|3 dσ .

Gauge freedom associated with time-dependent reparameterization When
the curve is parametrized by arclength s, we denote it by X(s(σ, t), t) = R(σ, t), and
we will often distinguish between the time derivative Ṙ(σ, t) at constant σ, and the
time derivative at constant arclength, Xt(s, t). This time-dependent reparameteri-
zation of its fixed σ coordinate corresponds to fluid motion along the vortex filament.
Such a flow leaves the filament configuration invariant, so it may be regarded as the
gauge freedom in vortex filament dynamics.

Hamilton’s principle for vortex filaments The Lagrangian in Hamilton’s prin-
ciple for the self-induced motion of vortex filaments given in Rasetti and Regge [1975]
involves the difference between a purely geometric term and a dynamical term ex-
pressing the vortex filament energy,

S =
∫

L[R, Ṙ] dt =
∫ { 1

3

∫
Ṙ · R × Rσ dσ −H[R]

}
dt . (2.2)

The equations of motion for the filament follow from Hamilton’s principle, as

0 = δS = −
∫

δR ·
{

Ṙ × Rσ +
δH

δR

}
dσ dt . (2.3)

Consistency requires Rσ · δH/δR = 0. Hamiltonians H for which Rσ · δH/δR = 0
are called gauge invariant in Rasetti and Regge [1975]. In particular, Holm [2003]
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shows that vorticity Hamiltonians are gauge invariant. We write δH/δω(R) as the
variation of H(ω) with respect to the Eulerian vorticity, evaluated on the filament.
This yields the following relations among functional derivatives Holm [2003],

δH(ω)
δR

= Rσ × curlR
δH

δω
= t × t × ∂

∂σ

δH

δω
(R(σ, t), t) ≡ − P̂

∂

∂σ

δH

δω
(R(σ, t), t) .

Here we have introduced the operator P̂ ≡ − t × t× where t = Rσ/Rσ is the unit
tangent vector and Rσ = |Rσ|. The operator P̂ projects any vector at a point on
the vortex filament onto the transverse plane normal to the filament at that point.
Taking the dot product recovers the result in Holm [2003] that Rσ · δH(ω)/δR = 0
for vorticity Hamiltonians.

Hence, the result of Hamilton’s principle in equation (2.3) may be written as

0 = δS = −
∫

Rσ × δR ·
{

Ṙ +
1
R2

σ

Rσ × δH

δR

}
dσ dt . (2.4)

This yields the motion equation,

P̂ Ṙ = − 1
R2

σ

Rσ × δH

δR
where P̂ Ṙ = −t × t × Ṙ , (2.5)

which is the same equation as found in Rasetti and Regge [1975] when using their
Poisson bracket for gauge invariant Hamiltonians.

The vortex filament Lagrangian is singular Being linear in Ṙ, the Lagrangian
in (2.2) is singular. That is, the canonical momentum for the filament obtained
from Hamilton’s principle, may be expressed as a function of R,

P =
δS

δṘ
=

1
3

R × Rσ . (2.6)

This, of course, imposes a relation between the canonical variables P and R. This
functional dependence between momentum P and position R was addressed in
Rasetti and Regge [1975] by using the Dirac constraint procedure in their derivation
of the Poisson bracket for the Hamiltonian formulation of vortex filament dynamics.
The vortex filament Hamiltonian is found from the Legendre transformation,

H[R,P] =
∫

P · Ṙ dσ − L[R, Ṙ] = H[R] . (2.7)

So the filament Hamiltonian depends only on R, and this dependence is deter-
mined entirely by the second term H[R] in the singular Lagrangian in (2.2). This
means Hamilton’s principle for vorticity filaments (2.3) applies generally, even for
Lagrangians in which the second term H[R] is not the kinetic energy, as in the
Euler case.
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Vortex impulse Geometrically, the vortex impulse I =
∮
c(R) P dσ for a closed

vortex filament loop c(R) is two-thirds its projected area. Namely,

I =
∮

c(R)
P dσ =

1
3

∮

c(R)
R × dR =

2
3

∫
dS . (2.8)

Thus, the vortex impulse is a geometrical quantity associated with the shape of
the filament loop. Its preservation for Euler vortex filament loops is a well known
property, as discussed in Newton [2001]; Saffman [1992]. Remarkably, vortex impulse
preservation holds for all Hamiltonian functionals H[Rσ] (See equation (3.3).) That
is, vortex impulse is preserved for all Hamiltonian functionals that depend on R(σ, t)
only through its derivatives with respect to the coordinate σ.

Action integral The geometric term in Hamilton’s principle turns out to be the
action integral for the filament,

∮

c(R)
P · Ṙ dσ dt =

1
3

∫∫
R · Rσ × Ṙ dσ dt ≡ 1

3
Tr

∫∫
R · dR ∧ dR . (2.9)

This strongly geometrical object resembles a differential form in Chern-Simons string
theory, defined over a space-time surface S(σ, t) whose spatial boundary ∂S is the
vortex filament, regarded as the circuit c(R(σ, t)) at time t. For more discussion
and references about this viewpoint, see Speliotopoulos [2002]. For an interesting
discussion of topological invariants of space curves, see Thurston [1999].

3 Equivalence of Rasetti & Regge and Marsden & We-
instein Poisson brackets

Rasetti & Regge Dirac contrained bracket

By using the Dirac constraint procedure, Rasetti and Regge [1975] derived the Pois-
son bracket which gives the dynamics for a vorticity filament, parameterized by an
arbitrary coordinate, σ. This bracket takes the form

Ṙ(σ, t) = {R, H}RR = − 1
R2

σ

Rσ × δH

δR
, (3.1)

where, as before, the subscript σ denotes differentiation and Rσ =
√

Rσ · Rσ is the
magnitude of the tangent vector. The form of the bracket given in equation (3.1)
is valid only for gauge invariant Hamiltonians. These include Hamiltonians which
can be written as functionals of the vorticity, H[Rσ], as shown in Holm [2003], and
this will cover all the Hamiltonians we will consider. For Hamiltonians which are
not gauge invariant, additional terms would appear in the RRDB (3.1). However,
we shall not need them in what follows.
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Impulse conservation For gauge invariant Hamiltonians H[Rσ], the vortex im-
pulse I in equation (2.8) is conserved under the vortex filament evolution. Using
incompressibility, one computes the time derivative dI/dt as

dI
dt

=
d

dt

∮

c(R)
R × Rσ dσ = 2

∮

c(R)
Ṙ × Rσ dσ +

∮

c(R)
∂σ(R × Ṙ) dσ

︸ ︷︷ ︸
vanishes

= {I, H}RR = 2
∮

c(R)

1
R2

σ

Rσ ×
(
Rσ × δH

δR

)
dσ (3.2)

= −2
∮

c(R)

δH

δR
dσ = 2

∮

c(R)
∂σ

( δH

δRσ

)
dσ = 0 .

This conservation law holds for every Hamiltonian H[Rσ]. Thus, the vortex impulse
I =

∮
c(R) P dσ for a closed vortex filament loop c(R) is a Casimir of the Rasetti-

Regge Dirac bracket for vortex filament dynamics. That is, vortex filament dynamics
under the Rasetti-Regge Dirac bracket preserves the projected area of a closed vortex
loop for any vorticity Hamiltonian, H[Rσ].

Marsden & Weinstein symmetry reduction bracket

Marsden and Weinstein [1983] applied their method of reduction by symmetry to the
study of Clebsch variables and vortices for the incompressible motion of ideal fluids.
The Eulerian fluid velocity for such motions is in the Lie algebra of divergence-
free vector fields X on an n-dimensional manifold M (such as Rn). Reduction by
invariance of the kinetic energy of the fluid under Lagrangian relabeling symmetry
induces a Lie-Poisson Hamiltonian structure on the dual Lie algebra X ∗, as found
in Kuznetsov & Mikhailov [1980]. Marsden and Weinstein [1983] identified X ∗ with
the space of Eulerian vorticities and interpreted their Helmholtz dynamics,1

∂

∂t
F [ω] = {F,H}[ω] =

〈
ω ,

[δF
δω

,
δH

δω

]〉
=

∫
ω · curl

δF
δω

× curl
δH
δω

d 3x , (3.3)

as preservation of coadjoint orbits. (An equivalent dual interpretation of vorticity
dynamics as preservation of adjoint orbits was also available to them, but was not
discussed.) Clebsch variables were considered as momentum maps. In their discus-
sions of vortex filaments, they parametrized the vortex filament as a space curve
with the arclength s, and their equation for the reduced Poisson bracket with the
vortex filament position was

Ṙ(σ, t) = {R, H}MW = −t × δH

δR
, (3.4)

1The helicity Λ(ω) =
∫
ω · curl−1ω d 3x is a Casimir for this Lie-Poisson vorticity bracket.

Thus, as is well known, vorticity dynamics for ω = curlu in three dimensions under the Lie-
Poisson vorticity bracket preserves the linkage number of the vorticity distribution for any vorticity
Hamiltonian, H(ω). In particular, the flow induced by the helicity Λ(ω) under the Lie-Poisson
vorticity bracket (3.3) Poisson-commutes with the Euler flow, induced by the kinetic energy. As
shown in Holm, Marsden and Ratiu [1987] the Lagrangian relabeling symmetry induced by the
helicity Λ(ω) under the Lie-Poisson vorticity bracket shifts Lagrangian fluid parcels along the
streamlines of steady Beltrami flows.
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where t = Rσ/Rσ is the unit tangent vector of the vortex filament.

Equivalence of Rasetti & Regge and Marsden & Weinstein brackets

At first sight, the two brackets in equations (3.1) and (3.4) seem to differ, but
the difference is only in the interpretation of the variational derivative, δH/δR.
Rasetti and Regge [1975] used a fixed parametrization σ of the space curve, so their
variational derivative would be defined by

δH =
∫

δH

δR

(σ)

· δR dσ. (3.5)

On the other hand, Marsden and Weinstein [1983] worked with the arclength parametriza-
tion, so their variational derivative would be defined by

δH =
∫

δH

δR

(s)

· δR ds. (3.6)

The time-dependent change of independent variables between σ and s(σ, t) leads to
ds = Rσ dσ. Consequently, equations (3.5) and (3.6) show that the two variational
derivatives are related by

δH

δR

(σ)

=
δH

δR

(s)

Rσ. (3.7)

Taking this into account, it is clear that the two brackets in equations (3.1) and
(3.4) are the same. We also note here some other equivalences (in a slight abuse of
notation)

− 1
Rσ

δH

δR

(σ)

= ∂s
δH

δRσ

(σ)

= ∂s
δH

δt

(s)

, (3.8)

which can be shown in a similar fashion with an integration by parts.

Consequently, we have made the following observation.

Lemma 3.1 (Gauge equivalence of the two vortex Poisson brackets). The
two Poisson brackets for ω−vortex filament dynamics due separately to Rasetti
and Regge [1975] and Marsden and Weinstein [1983] are equivalent under a time-
dependent reparameterization of coordinates along the filament. That is, the Poisson
bracket {X, H}MW in equation (3.4) is a reparameterization of {R, H}RR in equa-
tion (3.1). In this sense, the two Poisson brackets are gauge equivalent.

4 Helicity filament dynamics and complex mKdV

In the rest of the paper, we will examine the dynamics of filaments of ω = curlu with
respect to the RRD bracket. In particular, in this section we study the case of such
ω-filaments when the Euler-fluid helicity

∫
u · curlu is used as the Hamiltonian for

the RRD bracket. We will show that under the Local Induction Approximation, the
corresponding equation of motion is mapped to the complex modified KdV equation
by the Hasimoto transformation.
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4.1 The Helicity-Driven Filament Equation

For our vortex filament in (2.1), the vorticity ω = curlu takes the value Rσ(σ, t) for
points on the filament and it vanishes for points not on the filament. The helicity
can then be written in terms of the filament locus R(σ, t) as

Λ =
∫

ω · curl−1ω d 3x

=
1
4π

∫
Rσ(σ, t) ·

(∫
Rσ′(σ ′) × (R(σ) − R(σ ′))

|R(σ) − R(σ ′)|3 dσ ′
)

dσ (4.1)

≡ 1
4π

Tr
∫∫

(R − R′) · dR ∧ dR′

|R − R′|3 .

The last expression emphasizes the similarity between the numerator of the helicity
integrand and the space-time geometrical quantity of the action in (2.9)

In order to compute the RRD bracket {R,Λ}RR, we rewrite its definition from
equation (3.1) using equation (3.8):

{R,Λ}RR = − 1
R2

σ

Rσ × δΛ
δR

= t × ∂s
δΛ
δt

. (4.2)

Since the helicity in equation (4.1) is symmetric in R and R′, we may easily use
the form of the RRDB in equation (4.2) to obtain the exact helicity-driven filament
dynamics

Ṙ(σ, t) = {R,Λ}RR =
1
2π

t × ∂s

(∫
Rσ′ × R(σ) − R(σ ′)

|R(σ) − R(σ ′)|3 dσ ′
)

. (4.3)

The Local Induction Approximation implies (for details, see Arms and Hama
[1965]), ∫

Rσ′ × R(σ) − R(σ ′)
|R(σ) − R(σ ′)|3 dσ ′ ≈ log(ε−1)κb, (4.4)

where ε is the radius of the thin vortex tube which our filament approximates.
Consequently, we obtain helicity-driven filament dynamics in the LIA,

Ṙ(σ, t) ≈ log ε−1

2π
t × ∂s(κb). (4.5)

Using the Serret-Frenet relations,

ts = κn, ns = τb − κt, bs = −τn, (4.6)

where n and b are the unit normal and unit binormal vectors, we write equation
(4.5) as

Ṙ(σ, t) = κsn + κτb, (4.7)

where we have rescaled time to absorb − log ε−1/2π and assumed log ε−1 is approx-
imately constant.
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4.2 Hasimoto Transformation

In order to apply the Hasimoto transformation, we need to write equation (4.5) in
terms of a time derivative with arclength s held constant, Xt(s, t). Using the chain
rule, we see that

Ṙ(σ, t) =
dX
dt

(s(σ, t), t) = Xt(s, t) +
∂s

∂t
t.

For a vector field
Ṙ(σ, t) = W = gn + hb,

we thus have

∂s

∂t
=

∫ σ ∂Rσ ′

∂t
(σ ′, t) dσ ′ =

∫ σ

t · (∂s′Ṙ)Rσ ′ dσ ′ = −
∫ s

gκ ds′. (4.8)

Hence, equation (4.7) reparameterizes to

Xt(s, t) =
1
2
κ2t + κsn + κτb , (4.9)

in the arclength representation. This equation was shown in Langer & Perline [1991]
to map into the complex mKdV equation (4.11) under the Hasimoto transformation.

For the Hasimoto transformation (see Hasimoto [1972] for details), one encodes
the geometric information of the curve in a new complex variable

ψ(s, t) = κ(s, t) exp
(

i

∫ s

τ(s′) ds′
)

. (4.10)

In terms of this variable, the helicity-driven filament equation (4.9) becomes the
complex mKdV equation

ψt = ψsss +
3
2
|ψ|2ψs. (4.11)

Hence, we have proven our main result.

Theorem 4.1 (Complex modified KdV soliton vortex arises from helicity).
The vortex filament dynamics (4.7) of ω = curlu driven by helicity (4.1) in LIA
may be reparameterized as the space curve equation (4.9) which maps via the Hasi-
moto transformation into the complex modified Kortweg-de Vries equation
for ψ(s, t) ∈ C ,

ψt = ψsss +
3
2
|ψ|2ψs , (4.12)

where s is arclength. Thus, soliton solutions of (4.12) yield LIA ω-filament solutions
driven by helicity, and vice versa.
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Remarks

• Because of the equivalence between Poisson brackets shown in Lemma 3.1, we
may write the space curve equation (4.9) in terms of the Marsden-Weinstein
bracket as

Xt(t, s) = {X,Λ(LIA)}MW =
1
2
κ2t + κsn + κτb . (4.13)

By using the Serret-Frenet relations (4.6) and the definition of the tangent
vector t = Xs/Xs, one finds Xs · Xst = 0; so, as expected, equation (4.13)
preserves the magnitude of the vortex strength Xs = |Xs|. Hence, if it is
initially constant along the filament, the vortex strength will remain constant
under the helicity LIA dynamics of (4.13).

• Perhaps surprisingly, the complex modified KdV equation was also found from
the Hasimoto transformation for a different vortex Hamiltonian in Kuznetsov
& Ruban [2000]. Namely, Kuznetsov & Ruban [2000] state that the com-
plex modified KdV equation (4.12) is found (they say, up to a gauge trans-
formation) via the Hasimoto transformation of the space curve equation re-
sulting from the vortex Hamiltonian expressed in a mixed representation as
H =

∫
|curlu|χd 3x, where χ is the torsion of the vortex line. The present

result is obtained by using the helicity (4.1) as the vortex Hamiltonian, instead.

• Being a Casimir, the vorticity dynamics induced by the helicity under the
Lie-Poisson bracket for vorticity (3.3) is compatible with (leaves invariant, or
commutes with) the corresponding vorticity dynamics induced by the Euler
kinetic energy. The LIA and HT each preserve this compatibility. Langer &
Perline [1991] show that the LIA space curve dynamics (4.13) is compatible
with the da Rios-Betchov equation for space curve motion of vorticity fila-
ments induced by the Euler kinetic energy. And of course by mapping these
to the NLS isospectral hierarchy of integrable equations, the HT preserves
compatibility.

Simple Solution Behavior

The behavior of some simple solutions to the filament equation (4.7),

Ṙ(σ, t) = κsn + κτb, (4.14)

can immediately be seen.

Circles A circle has constant curvature and zero torsion. Thus the filament equa-
tion above with a circular filament as the initial condition has a simple solution: the
circular filament remains where it is. The velocity field it generates is then steady
and given by the Biot–Savart law.

In contrast, a circular filament for the standard da Rios-Betchov LIA equation,

Ṙ(σ, t) = κb , (4.15)
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behaves in a different manner. This is the well-known LIA vortex filament solution
for 
[u] = 1

2

∫
u · u, the Euler fluid. The circular filament moves with constant

velocity along the axis through its center. The velocity field it generates is then a
Galilean shift of the velocity field generated by the circular filament solution to equa-
tion (4.14). For this case of the Euler-fluid, the vortex filament moves with the fluid.
By the way, note that reparameterization σ → s(σ, t) leaves the form of equation
(4.15) invariant. That is, in the da Rios-Betchov case, Ṙ(σ, t) = Xt(s(σ, t), t).

Filaments Lying in a Plane Since any space curve which lies in a plane has zero
torsion, any planar filament evolving under equation (4.14) will remain in the plane.
This may not be surprising, because the helicity for a flow in the plane vanishes
identically.

5 Langer-Perline reparameterization and mapping to
the NLS hierarchy

Langer & Perline [1991] found the hierarchy of compatible filament equations which
are mapped to the NLS hierarchy under the Hasimoto transformation. In fact, they
showed that the Hasimoto transformation is a Poisson map with respect to the
Marsden-Weinstein bracket and the fourth NLS bracket. The recursion operator R
that generates the hierarchy of filament equations from the da Rios-Betchov local
induction equation Xt = κb is given by

RW = P(t × ∂sW). (5.1)

The operator P acts on a vector field W = gn + hb by

PW =
(

s
∫ gκ ds′

)

t + gn + hb. (5.2)

Thus, P reparametrizes a vector field Ṙ(σ, t) = W by writing it in the equivalent
form Xt(s, t) = PW, as is seen from equation (4.8) above.

With the result of Langer & Perline [1991] showing the correspondence between
filament equations and the NLS hierarchy, a natural question arises when we take one
step back: Which fluid Hamiltonians lead to those filament equations? We showed
in §4 that using the helicity Λ =

∫
u · curlud3x in the RRD bracket generates the

the filament equation Xt = 1
2κ

2t + κsn + κτb, which maps to the second equation
(complex mKdV) in the NLS hierarchy under the Hasimoto transformation. The
filament equations we seek which map to the higher NLS flows are given by

Xt(s, t) = [P(t × ∂s)]n(κb), n = 0, 1, · · · . (5.3)

As a step in the direction of finding the fluid Hamiltonians needed to obtain equation
(5.3), we note the correspondence

curl ↔ t × ∂s. (5.4)



6 Outlook 13

But the Hamiltonians ∫
u · curlnu (5.5)

will lead 2 to the ω-filament equations

Xt(s, t) = P(t × ∂s)n(κb),

which are slightly different from those in equation (5.3). The other part of the
recursion operator R which must be accounted for is the operator P given in equation
(5.2).

The correspondence (5.4) does not provide the desired recursion relation linking
other fluid properties in (5.5) beyond the kinetic energy (n = 0) and the helicity
(n = 1) to higher NLS flows via LIA and the Hasimoto transformation. In addition,
the higher degree curls in (5.5) do not produce vorticity functionals which mutually
commute under the Lie-Poisson vorticity bracket. To account for the integral in
equation (5.2), we can speculate that the relation (see also equation (4.8))

∫ x

ω · ∇x′W d3x ↔
∫ s

t · ∂sW ds′,

would indicate the correspondence

(1 −
x
∫ d3x′ω · ∇x′) curlW ↔ P(t × ∂sW) ,

which includes the required reparameterization. However, iterating this correspon-
dence produces a sequence of Hamiltonians which apparently have no fluid dynami-
cal significance. Kuznetsov & Ruban [2000] reach a similar conclusion for a different
set of Hamiltonians defined using a mixture of vorticity and filament properties such
as curvature and torsion.

6 Outlook

Brief summary A time-dependent reparameterization of coordinates along a vor-
tex filament corresponds to a collinear flow along the filament. This collinear flow
is a gauge symmetry which has no physical significance, but it facilitates the appli-
cation of the Hasimoto transformation through the use of the Serret-Frenet equa-
tions, when the reparameterization is chosen to be the arclength coordinate on the
filament. The helicity produces the LIA filament equation (4.7) which may be repa-
rameterized into (4.9), whose space curve dynamics in the arclength representation
was shown in Langer & Perline [1991] to map into the complex mKdV equation
(4.11) under the Hasimoto transformation. Further applications of the Langer &
Perline [1991] recursion to obtain space curve dynamics corresponding to higher or-
der equations in the NLS hierarchy seem not to correspond to physically interesting
fluid Hamiltonians.

2We note that the Local Induction Approximation curl−1ω ≈ κb must be used even if it is not
needed. For instance, when the Hamiltonian

∫
ω · curl2ω is used with the bracket of equation (4.2),

we would obtain Xt(s, t) = P(t × ∂s)
4(κb) by writing curl2Rσ = curl3curl−1Rσ ≈ curl3 (κb).
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Other Issues Of course there are many other issues remaining to explore that are
suggested by the above setting. These include investigating,

• Typical motions of space curves according to the dynamics of the space curve
equation (4.9) for vortex filaments driven by helicity in the LIA.

• Vortex solitons, that is, the map from the solitons of the complex modified
KdV equation (4.12) to filament motions.

We shall, however, leave these issues for other publications and other researchers.
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