EXPLICIT LOWER BOUNDS ON THE MODULAR DEGREE OF
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MARK WATKINS

ABSTRACT. We derive an explicit zero-free region for symmetric square L-functions
of elliptic curves, and use this to derive an explicit lower bound for the modu-

lar degree of rational elliptic curves. The techniques are similar to those used

in the classical derivation of zero-free regions for Dirichlet L-functions, but
here, due to the work of Goldfield-Hoffstein-Lieman, we know that there are

no Siegel zeros, which leads to a strengthened result.

1. INTRODUCTION

Let E be a rational elliptic curve of conductor N; by the work of Wiles [24]
and others, it is known that there is a surjective map ¢ from Xo(N) to E known
as a modular parametrisation. Our aim in this paper is to indicate sundry lower
bounds on the modular degree of an elliptic curve. Our starting point is a formula
of convolution type essentially due to Shimura [21] which states that we have
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where L(Sym?®E, s) is the motivic symmetric-square L-function of E normalised so
that s = 1/2 is the point of symmetry, € is the area of the fundamental paral-
lelogram associated to the curve, c is the Manin constant which is known to be
an integer (see [8] or [22, 1.6]), and the U,(1) are fudge factors that can be given
explicitly. From the above we have that
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One of our goals is to show a bound of the type degp > N7/67¢ as N — oo.
Indeed, this has been known in folklore (see for instance the paper by Papikian [18§]
that deals with a functional field analogue) since the time of the Goldfeld-Hoffstein-
Lieman [10] appendix to the work of Hoffstein-Lockhart [11], but herein we give
a more complete proof and compute explicit constants. We shall assume that
N > 20000, (and thus we have that the symmetric-square conductor N(?) > 142),
as else the tables of Cremona [6] can be used.

Previously, explicit bounds had been obtained in a couple of ways. As N. Elkies
pointed out to us, one can use an idea of Ogg [17] to show that d = deg ¢ > N/p
where p is any prime of good reduction. Here is the argument. Reduce the modular
parametrisation map mod p, and consider it over the field k of p? elements. Now
Xo(N) has about pN/12 supersingular points, all defined over k; whereas the elliptic
curve has at most (p + 1)? k-rational points. Since each of these has at most d
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preimages, and these preimages must include all the k-rational points, the estimate
d > N/p follows, with a constant of 1/12 as N — oo.

One can make a “characteristic zero” version of this argument by using lower
bounds for the eigenvalues of the Laplacian on X (V) in place of the supersingular
points. This allows one to obtain a linear lower bound on the modular degree.
Already in a paper of Li and Yau [14] there appears the technique for passing from
an eigenvalue bound to a modular degree bound, and this is then made explicit by
Abramovich [1] whose result is equivalent to deg ¢ > 7N /1600 which would improve
to deg ¢ > N/192, upon assuming the Selberg eigenvalue conjecture. We shall see
that these linear bounds are superior to ours unless N is quite large, as the constant
in our bound will turn out to be rather small.

2. BOUNDING THE AREA OF THE FUNDAMENTAL PARALLELOGRAM

Let E be an elliptic curve, which we write in the form y? = 423 +byx? 4 2bsx + bg
in such a way that the discriminant is minimal away from 2. The polynomial on the
right side of this equation is sometimes called the 2-torsion polynomial. There are
two natural cases depending on whether the discriminant is positive or negative.
In either case we have that €2 is the real period multiplied by the imaginary part
of the imaginary period. We have the following lower bound on 1/9Q.

Lemma 2.1. Let E be an elliptic curve, () the area of its fundamental parallelo-
pl/6

gram, and D the absolute value of its discriminant. Then 1/Q > 175:=.

Proof. The proof naturally divides into 2 cases, depending on whether A > 0.
Case I: positive discriminant. When the discriminant is positive the 2-torsion
polynomial has three real roots, which we order as e; > es > e3. We then have
that (see Chapter 7 of Cohen [4]) the real period of E is w/agm(y/e1 — ea,v/e1 — €3)
and the imaginary period is 7i/agm(y/es — es,/e1 — e3), and that we also have
VA/16 = (e1 —e2)(e1r —e3)(ea —e3). Let t = % so that we have t € (0,1) and

(e1 —e3)-[4t(1—1)]'/3 = A6 and recall that agm(x, y) = z-agm(1,y/z), implying

1/Q= %(61 —e3) - agm(1, V1) - agm(1,v1 —¢)

1/6
>

(e1 —es) - [4t(1 —t)]'/3. agm(1, 1/\/5)2 _D

T2

% -agm(l,l/\/if,
where the inequality follows from calculus, the relevant quotient function being
minimised at t = 1/2.

Case II: negative discriminant. When the discriminant is negative we let
r be the real root of the 2-torsion polynomial, and write 7 = r + b3/12, so that
—7/2 4 iZ are the other roots. The real period is now 2m/agm(2v/B, /2B + A)
and the (vertical part of the) imaginary period is 7i/agm(2v/B, /2B — A) where
A =3r+by/4=3F and B = \/3r2 + bor /2 + by /2 = \/(37/2)2 + Z2. Also note
that 2ZB? = \/—A/16. Write ¢ = 7/Z, so that A = 3cZ and B = Z\/1 + 9c2/4,
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so that DV6 = 27(1 4+ 9¢2/4)'/3. Writing M (z) = agm(1, z), we have

1 2B+ A /2B — A
1/Q2ﬂ_2~2\/§~agm<1, 1B )-2\/§~agm<1, 43)

1y TW«M.M( ;+30>.M< ! 3)

(V)

o V16 + 362 2 /16 + 36¢2

D/6
== (1+9c2/4)"/5. M<

1 3c 1 3c
B M — -
2 16+ 3602> < 2 16+ 36c2>

™

D1/6 1 V3 1 V3
> .41/6 . 142422} 1.4/ = X2
Z—" agm( , 2—|— 1 ) agm( "\ 3 R

. . e _ DL/
as the function is minimised at ¢ = 44/4/3. In both cases we have 1/Q > 75=. O
3. ZERO-FREE REGIONS AND LOWER BOUNDS FOR SYMMETRIC SQUARE
L-FUNCTIONS

We next turn to making the argument of [10] explicit. We first need to de-
rive a zero-free region for L(Sym?E, s), and then turn this into a lower bound for
L(Sym?E, 1).

3.1. Zero-free regions for curves without complex multiplication.

Lemma 3.1. Let L(SymeE,s) be the symmetric-square L-function of fg, where
fE is the form associated to a rational elliptic curve E that does not have complex
multiplication. Then L(Sym?fg,s) has no real zeros with s > 1 — §/log(N® /C),
where § = 2(5 — 2v/6)/5 ~ 0.040408, C = 96, and N® > 142 is the symmetric-
square conductor of E.

Proof. We follow the proof in the appendix [10] of [11], which uses the idea that
a function with a double pole at s = 1 cannot have a triple zero too close to this
pole. The product L-function in question (see page 180) is L(s) = ((s) - L(F, s)? -
L(Sym?F, s) = ((s)? - L(Sym?fg, s)% - L(Sym® fg, s) where F = Sym?fp and all
L-functions of symmetric powers are motivic. As that paper notes earlier in a
slightly different context (see page 167, after the proof of Lemma 1.2), we have that
the Dirichlet series L(s) has nonnegative coefficients at primes of good reduction,
and, more important for our immediate purposes, by taking the logarithmic deriva-
tive we see that (L’/L)(s) has nonpositive coefficients at such primes. It is asserted
in [11] that the Langlands correspondence implies the nonpositivity at bad primes.
For our case of elliptic curves, the proper Euler factor at bad primes is worked out
in the Sheffield dissertation of Phil Martin [15], and it can be verified directly that
we do indeed have the desired nonpositivity. Note that Dabrowski [7] claims to
compute the Euler factors at bad primes in Lemma 1.2.3 on page 63 of that paper,
but the method used therein appears to be erroneous; similarly the method in an
appendix of a previous version of this paper failed to consider the cases of noncyclic
inertia group correctly.

We also need to compute the factor at infinity and the conductor of L(s). For the
factor at infinity, this is done on pages 60-61 of [7]: we have a factor of I'(s/2)/m*/?
for {(s), a factor of I'(s+1)I'((s+1)/2) /(47%)*/2 for L(Sym?fg, s), and a factor of
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I(s + 2)T(s + 1)I'(s/2)/(167°)*/? for L(Sym®fg,s). For the bad primes, we refer
to [15]; we should note that we can bound the symmetric-square conductor by the
square of the conductor, that is, N < N2, and similarly the symmetric-fourth-
power conductor is bounded by the square of the symmetric-square conductor, that
is, N < (N(®))2, This also follows from [3]. Note the symmetric-square conductor
is actually a square, and so some authors (for instance [23]) define it to be the square
root of our choice here.
So we claim that

N@3 @\ Y
1024716 '

¢(s)* - L(Sym*fp, ) - L(Sym" fp, 5)

O(s) =T(s/2)°T(s+ 1)T((s + 1)/2)°T(s + 2)(

is meromorphic and symmetric under the map s — 1 — s. The asserted analytic
properties follow from work of Gelbart and Jacquet [9] and Shimura [20] for the
symmetric square, and later authors such as Kim and Shahidi for higher symmetric
powers [13]. By Bump and Ginzburg [2], when fg is not a GL(1)-lift (when F does
not have complex multiplication), ®(s) has a double pole at s = 1 (see also the
work of Kim [12]).

So the function A(s) = s%(1 — 5)2®(s) is entire, and by taking the logarithmic
derivative of its Hadamard product, we get that 3_ Sui”p =2 4+24 %(s), where
w, is an appropriate weight for the zero and the order of summation is taken
over conjugate pairs of zeros of ®(s), and so is convergent. Now assume that

L(Sym®fg, s) has a zero at . Then ®(s) has a triple zero at 3, so that we have

3 3 W,
s—ﬁ+s—(1—ﬂ)+zp:8—p_

2 2 1
+ -+ §logN(2) + Zlog N —log 327+
s—1 s 2 2
I I I’ I’ L’
+ 3?(5/2) + 4f(5 +1)+ 3?((3 +1)/2) + ?(s +2)+ f(s)’

where the sum over p is over the non-Siegel zeros of ®(s).

Now assume that L(Sym?fg, s) has a zero at > 1 —2(5—2v/6)/5log(N?)/C).
We let C' = 96 and write § = (1 — 3)log(N?)/C) and evaluate the above displayed
equation at s = o = 14+n/log(N?) /C) where n = 65 [ (2—58)—+/2562 — 1000 + 4]
is the smaller positive root of 362% + (36 — 1)z + 2. Note that both roots are real
and positive when 0 < § < 2(5 — 2v/6)/5. We get a crude lower bound of zero for
the p-sum by pairing conjugate roots, and so

3 2 2 3 5
<= 42 7 4 10 N® _log 3278
a—ﬂ*a—1+a a—(1—6)+20g 08 SamF

—1-31%(0/2) —1—41%(04- 1) +3%<(0+ 1)/2) + 1%(0—&-2).
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From this we get that
3 log(N®/C) -

n+1 ) -
ng(?]];m/m % - ﬁ + glog(N(Z)/C) — log 3278+
+3%(a/z) +41%(0+ 1) +3%((0+ 1)/2) + %(04— 2) + glogC,
and here the terms with log(N(?)/C) cancel due to the definition of 7. So we have
0< %—ﬁ — log327r8+
+3I%(0/2) +4F%(a +1) +3%((a+ 1)/2) + %(am) + glogC,

Now 7nd is maximised at the endpoint where § = (5 — 2v/6)/5, giving us that
o < 1+2(v6—2)/5log(N®/C). Under our assumption that N2 > 142 and
definition of C' = 96, this gives that ¢ < 1.46, so that

I’ I’ I/ I
T = = = < 174,
3F(0/2)+4F(J+1)+3F((U+1)/2)+ 1ﬂ(a—i—2) <1.74
We also have that
2__ 3 2 B 3
o o—1+8 14+n6/log(N®/C) 1+6(n—1)/log(N®/C)
< 2 — 3 < —0.84,
1+2(v/6 —2)/510g(N®@/C) 1+ 2(~7+36)/5log(N?/C)

so that we get the contradiction that 0 < —0.84 — 12.62 + 1.74 + %logC < —0.30.
Thus there are no zeros in the region indicated. (I

Remark 3.2. The constant ¢ can be improved if we could lower-bound >_ # less
crudely as some constant times log(N(?), which is likely feasible by zero-counting

arguments. The constant C' can be improved simply by requiring N to be larger.
3.2. Zero-free regions for curves without complex multiplication.

Lemma 3.3. Let E be a rational elliptic curve with complex multiplication by an
order in the complex quadratic field K. Then L(SmefE, s) has no real zeros with
o >1-6/1og(N? /C), where here we have § = 2/242—27/* ~ 0.050628, C' = 64,
and N > 142 is the symmetric-square conductor of E.

Proof. When E has complex multiplication by an order of K, the representation
associated to fg is dihedral, and so by [12] the fourth symmetric power L-function
has a pole at s = 1, so that the ®(s) of above has a triple pole at s = 1. However,
as noted by [10], in this case we have that L(Sym?fg,s) can be factored. Recall
that there is some Hecke character ¢ of K such that L(fg,s) = L(¢, K, s) with
¥(z) = x(2)(z/|z|) for some character y defined on the ring of integers of K. Here
X has order at most 6, and is of order 1 or 2 unless K is Q(¢) or Q(¢3). We have
the factorisation L(Sym®fg,s) = L(0,s)L(¢? K,s) where 6 is the quadratic
character of the imaginary quadratic field K. Here 9?2 is the “motivic” square
of 9, so that if ¥(z) = x(2)(z/|z|) for some quadratic character y, we then have
¥?(z) = (2/]2])?. Thus the square of y is the trivial character on K and not the
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principal character of the same modulus of x. The same convention shall apply to
higher symmetric powers.

Similar to the above factorisation of the symmetric-square L-function, by com-
parison of Euler factors we find that L(Sym®fz,s) = ((s)L(¢? K,s)L(y*, K, s)
and L(Sym®fp,s) = L(0k,s)L(¢? K,s)L(¥* K,s)L(¢% K,s) Here we can note
that L(Sym®fg, s) has a pole at s = 1 but L(Sym°®fz, s) does not.

For the seven choices of K with disc(K) < —4, we thus have only one function
L(¥?, K, s) to consider, and a direct computation establishes the indicated zero-free
region. For K = Q(¢) we need to consider quartic twists, and for K = Q((3) we
need to consider both cubic and sextic twists. Note that Theorem 2 of Murty [16]
erroneously only considers quadratic twists, and thus the proof that the modular
degree is at least N3/2=¢ for elliptic curves with complex multiplication is wrong.
In fact, simply by taking sextic twists of X (27) we can easily achieve a growth rate
of only N7/6+¢,

Case I: We first consider the case where K = Q(i). Using the above decom-
position of the symmetric-square L-function, we get that the completed L-function
that is symmetric under s — 1 — s is

<N<2> /4

s/2
) I'(s+1)L(¥* K, s).

472
In order for the fourth symmetric power to work out, we see that
AN@ /N @) $/2
(P55) reranwt K
m

is symmetric under s — 1 —s. Here we have N = N from [15], due to the fact
that the relevant inertia groups are all Cs, Cy, or Qs.

The standard ingredient of proofs of a zero-free region for a Hecke L-function is a
trigonometric polynomial that is always nonnegative. Here we take (1—|—\/§ cosf)? =
2+ 2v/2cos 6 + cos 26. A better result might come about from using higher degree
cosine polynomials, but the I'-factors might be burdensome. Also note that the
work of Coleman [5] could be used if we did not need to be explicit. Note that at
bad primes we still have the desired nonpositivity since 2 > cos 26 for all 6.

So we are led to consider the nonpositive sum

/ U / /
Lf(s) = 2%(5) + 2\@%(1/)2,1(, s) + %(@Z;“,K, s).

Assume there is a zero of L(¢?, K, s) at 3. By the functional equation we get

22 22 w,
- 1*6)+¥S*p_

s—0 s—(
. 3 Tt % + 2log(1/v/7) + 2v2log(V N@ /47) + log(2/27)+
T’ I’ r’ L’
-1-2?(5/2)+2\/§f(8+1)+?(s+2)+f(3),

where, in the sum over zeros, w,, is an appropriate weight for the zero.

Now we assume that the function L(Sym®fg,s) = L(0k,s)L(1? K,s) has a
zero at 3 > 1 — (212 42 — 27/4)/1og(N?) /C). We define C' = 100 and write
§ = (1 = B)log(N®/C) and proceed to evaluate the above displayed equation
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at s = 0 = 1+ nd/log(N® /C) where 7 is given by the smaller positive root of
6222 4 (6v/2 — 2v/2 + 2)x + 2. Note that both roots are real and positive when
0<d<2Y2 42274

We again get a crude lower bound of zero for the p-sum by pairing conjugate
roots and have that (L’/L)(c0) < 0, and so

24/2 2 2 2v/2
J—Bgafl—’—;_of(lfﬂ)

+ 2v/21og(1/47) + log(1/7) + +211: (0/2) + 2\@%(0 +1)+ Ff(a +2).

+log(1/7) + v21log N +

From this we get that

2v/2 log(N) /0) < 21log(N@/C) 2 2v/2
n+1 B = né o o—(1-p)

+v2log(N® /C)+
+ 2log(1/7) + 2v2log(1 /47) + —&—2%(0/2)—!—

I I
+2\/§?(0+ 1)+ =(0+2)+V2logC

r
and here the terms with log(N(?)/C) cancel due to the definition of 7. So we have
2 2v2
0<—— L + 2log(1/7) + 2v2log(1/4m)+
A )
I I I
+25(0/2) + 2\/5?(0 +)+ e +2)+ V2log C.

Now 67 is maximised as v/2(2'/* — 1) when § = 21/2 4 2 — 27/4 and so under our
assumption that N(?) > 142 and C' = 100 we have that ¢ < 1.8, so that the I'-terms
contribute less than 2.821. We also have that

2 2v/2 2 2v/2

o0 o—1+3 1+n0/log(N®/C) 1+6(n—1)/log(N®/C)
- 2 B 2v/2
T L V2(2Y/4 —1)/10g(N@/C) 1+ (3-23/4 —2V2 - 2)/log(N?)/C)
< —0.612,

so that we get the contradiction that 0 < —0.612—9.448+2.821+\/§log C < -0.726.
Case II: Next we consider the other case where K = Q((3). By examining the
above functional equations for symmetric-power L-functions, we find that

(N(2)/3 3N(4)/N(2)

s/2
b ) T+ DL K.s)

s/2

) ez g, (

N©) /3N@

and (47‘_2

are all invariant under s — 1 — s. Using [15], the fact that all the relevant inertia

groups are C3 or Cg implies that we have that N(©) = N(*) = (N(2)2 except in the

case when 33|| IV, when the inertia group is the semi-direct product C3xCjy and we
have N(6) = 9N 1) = (N(2))2,

Here we choose a trigonometric polynomial of the form (1 + cos@)(1+ 3 cos)?.

It turns out that the optimal § for our purposes is twice the positive root of the

s/2
) ['(s+3)L(y°, K, s)
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polynomial 2® —25z* — 423 4 3022 + 192 + 3, approximately 2.629152166, but we do
not lose much by taking § = 5/2, so that our nonnegative trigonometric polynomial
is 11—6(1064— 171 cos 0+90 cos 26425 cos 30). So we are led to consider the nonpositive
sum

L/ ! L/ L/ L/

f(s) = 106%(5) + 171f(¢2, K,s)+ 9of(¢4, K,s)+ 25f(w6, K,s),
with the nonpositivity at bad primes following as before.

Assume there is a zero of L(¥?, K, s) at 3. By the functional equation we get

171 171 w
+ + L =
s—0 s—(1-p) Zp:s—p
106 106

171
1+, +106log(1/vm) + - log(N® /1272)+

25 25
+451log(NW/N®@) 4 4510g(3/472) + ) log(N© /N@W) + =5 log(1 /127%) 4
I’ I’ I’ I’ L’
+ 106f(s/2) + 171?(5 +1)+ 90?(5 +2)+ 25f(5 +3)+ f(s).

Now assume that 3 > 1 — (554 — 121/2014)/261log(N® /C). We let C' = 64
and 0 = (1 — 3)log(N?)/C) and proceed to evaluate the above displayed equation
at s = 0 = 14+ nd/log(N® /C) where 7 is given by the smaller positive root of
261622 + (2615 — 130)x + 212. Note that both roots are real and positive when
0 < & < (554 — 124/2014)/261.

We again get a crude lower bound of zero for the p-sum by pairing conjugate
roots and have that (L’/L)(c) < 0, and so

171 _ 106 106 171 261
co—p " o—-1 o o—(1-=7) 2
+53log(1/7) — 171log V12 4 171 log(1/7)+
+ 451og 3/4 4+ 901og(1/7) — 25log V12 4 25 log(1/7)+
r’ I’ I’ I’
+ 106 (5/2) + 171 (s 4+ 1) + 905 (5 +2) + 25 (5 + 3)

log N®y

From this and the definition of n we get

106 171 261
0< — — ———— +339log(1/m) — log(3°°2**%) + = log C
P og(1/m) — log( )+ =5 log
1‘1/

r I I
+ 106 (5/2) + 1715 (s + 1) + 905 (s +2) + 255 (s +3)

Now dn is maximised as (64/2014 — 212)/261 when § = (554 — 12+/2014) /261, and
so under our assumption that N® > 142 and C = 64 we have that o < 1.28,
so that the above I'-sum is less than 153. We thus get the contradiction that
0 < —59 — 644 + 543 + 153. |

3.3. Lower bounds from zero-free regions. We use these zero-free regions to
lower bound L(Sym?fg,1).

Lemma 3.4. Let E be a rational elliptic curve with whose symmetric-square con-

ductor satisfies N® > 149. Then L(SmefE, 1) > %'
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Proof. We use Rademacher’s formulation [19] of the Phragmén—Lindel6f Theorem
to bound L(Sym?®fg,s) and ((s). First note that by the Euler product we have
|L(Sym? f,3/2 + it)| < ¢(3/2)%, and so by the functional equation we get

|L(Sym?fg, — 1/2 4 it)| =

- I0(5/2 4 it)] - [D(5/4 + it/2)| .
= (N /am) e e F /A it/2)| [L(Sym i, 3/2 + it)
(2) (2) 3
(3/2) 3N ‘2+it ";+it ‘i _C(3/2)3N B”t

So using the result of Rademacher with Q@ =2, a = —1/2,b6=3/2, « =3, 5 =0,
A =((3/2)*(N® /873), and B = ((3/2)?, we get that

N(®)
[L(Sym® f,1/2 + it)| < (A[5/2 +it")' /2 BY? = ((3/2) - \| o [5/2 + it]*/?,
™

which is not anywhere near an optimal bound, but will suffice. Similarly we get
, 3/2
that [¢(1/2+it)] < S020, /9 42,
Let b=1— m so that L(s) = L(Sym?fg, s)¢(s) has no zeros in [b, 1), so

that L(b) < 0. Note also that b > 0.99 due to our assumption that N® > 142,
Writing L(s) = ), an/n® as a Dirichlet series with nonnegative coefficients, by the
Mellin transform we have that

(7% 7n/X / F Xs dS
2 e ., DXL+ D)7,

Via moving the contour to where the real part of s is 1/2 — b, we get that the
integral is RX'~°T'(1 — b) + L(j) + E(X) where R = L(Sym?®fg, 1) and the error
term E(X) is bounded by L [*|I'(1/2 — b+ it) X*/?>7PL(1/2 + it)|dt. By another
theorem in Rademacher [19] we have that

IT(1/2 = b+it)| < |1/2 4 it|* =0 - |T(=1/2 + it)|

|1—|—it‘0'01 ) 2(1—|—t2)1/200
<0 r(1/24it)| = =L V/msechrt
|1/2 + it V14412

We compute that

g(3/2)4/ 25 82 fg 2(1 + £2)1/200
t2 Sy o rsechwtdt < 62,
in? ; T + 1 + T msecnm

so that |E(X)| < 20V N® . X1/2-_ Since L(3) < 0 we ge

Y Ememn/X < RXVIT(L - b) + 20V N@) /X0,
n

n

Taking X = (4000000N(2))50/49 and noting that a; = 1 with the other terms on
the left side being nonnegative, this says that e~1/19" < RX1=PI(1 — b) + 0.01.
Since we assume N > 142 we have log X < 4.21og N®| and so we finally get
that X'~ < exp(4.2/25) < 1.19. We also have I'(1 — b) < 25log N(?), and so we
conclude that R > 10%?5’?2) . O
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4. TSOGENOUS CURVES, MANIN CONSTANTS, AND FACTORS FROM TWISTS AND
BAD PRIMES

Finally we can turn to the other objects in our formula for the modular degree.
For the Manin constant we simply use the fact that ¢ > 1. So we have that

N 0.033 033 ND/6
deg d > — Uy( Uy(
82 H > srsiog v 11
p2|N p2|N

To bound the effects from the U,(1)~!, we recall its definition. First we assume
that F is a global minimal twist; this is hke requiring that the model of £ be minimal
at every prime, except that now we further require that it be minimal when also
considering quadratic twists. See the author’s paper [23] for details. For a minimal
twist we have that U,(s) = (1 — €,/p®)~! where ¢, = +1,0,—1, depending on
certain properties of inertia groups (see [23]). In particular, we have that €, = +1

for all primes congruent to 1 mod 12, and ¢, = —1 for all primes congruent to
11 mod 12. When p is 5 mod 12 we have that €, = +1 exactly when p?|cs and p|cs,
while these conditions imply that €, = —1 for primes that are 7 mod 12. Note in

particular that Up(l)’1 is greater than 1 for primes that are 11 mod 12. Also, when
Up,(1)~! =1 — 1/p for primes that are 5 mod 12, we have that p*|D while p?||N.
For such primes we have that N,(D,)Y°U,(1)~' > Ng/6p1/6(1 —1/p) > Ng/ﬁ.
Finally we need to consider p = 2 and p = 3. There is not much to be done with
Us(1)~! except lower bound it as 1 —1/3 = 2/3, whilst for p = 2 in order for Us(s)
to equal (1 — 1/2°)~! we need that 28||N and thus have 2°||D. So we have that
Ny (D2)Y/6U(1)~1 > NI/%21/6(1 — 1/2). Thus for a global minimal twist we have
that

N7/6
d ——— - 1-1/p).
ego > 7150 log N®@) 12_|£ ( /p)
p=1(3)

We can estimate the product over primes using facts from prime number theory;
for N > 20000 the logarithm of the product is bounded by

1/2p 1
g g = 1/p g 5 +0.02 < 0.5loglog(1.02log N) — 0.33,
p \N pSl._O2(lg)gN
p=1(3) p=1

and so we have that
N7/6 60'33 N7/6 1/5150
degp > 2 .
71501log N(2) \/0.02 + loglog N ~ log N(?) ,/0.02 + loglog N

We wish to compare what happens on each side of this inequality upon twisting
our curve by an odd prime p. There are three cases, depending on the reduction
type of the minimal twist F' at p. If it has additive reduction, we simply have the
same U,(s) as above, and the conductor stays the same, with D increasing by a
factor of pb. The modular degree goes up by p upon twisting, whilst the right side
of the inequality stays the same. If F' has multiplicative reduction at p, we have
that Up(s)~! = (1 — 1/p®). Here the conductor goes up by p and the discriminant
by p® upon twisting, with the modular degree gaining a factor of (p?> — 1). This is
bigger than the factor of p7/6 by which the right side increases. Finally, if F has
good reduction at p we have that U,(2)"' = (p—1)(p+1—a,)(p+ 1+ a,)/p®
where a, is the trace of Frobenius for F. The conductor goes up by p? and the
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discriminant by p°. The modular degree goes up by (p—1)(p+1—a,)(p+1+ay),
which is bigger than the factor of p7/? gained by the right side, even when p = 3
and a, = £3. So the above inequality is true for curves that are twist-minimal at 2.
Finally, we consider curves that are non-twist-minimal at 2. If 28| N, the right
side of our inequality stays the same upon twisting, while the left side does not
diminish. When 256 does not divide the conductor, we can simply note that
Us(1)7' > (2-1)(2+1—-2)(24 1+2)/2% = 5/8 and so directly compute that

ND6 52 033 N7/6 1/5000
deg ¢ > e > :
2675log N2 83 ,/0.02 +loglog N — log N® ,/0.02 + loglog N

5. SUMMARY OF RESULTS

We conclude this paper by giving a summary of the various lower bounds that
can be obtained.

Theorem 5.1. Suppose that E is a rational semistable elliptic curve. Then

N 0.033 N7/6
degop > 2 '
Q 2log N = 5350log N

Theorem 5.2. Suppose that E is a rational elliptic curve. Then
N 0.033 N7/6
d >———— [[u,0)"' > - 1-1
g = Qlog N I[ = 7150log N(2) 1L a-vp)

p |N p2|N
p=1(3)
- NT7/6 1/10300

~ log N 4,/0.02 + loglog N

Remark 5.3. Note that we need N > €868 in order to derive that deg ¢ > N from
Theorem 2.
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