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ABSTRACT

We study the topology of field lines threading buoyant magnetic flux struc-

tures. The magnetic structures, visually resembling idealised magnetic flux tubes,

are generated self-consistently by numerical simulation of the interaction of mag-

netic buoyancy and a localized velocity shear in a stably-stratified atmosphere.

Depending on the parameters, the system exhibits varying degrees of symmetry.

By integrating along magnetic field lines and constructing return maps, we show

that, depending on the type of underlying behaviour, the stages of the evolution,

and therefore the degree of symmetry, the resulting magnetic structures can have

field lines with one of three distinct topologies. When the x-translational and

y-reflectional symmetries remain intact, magnetic field lines lie on surfaces but

individual lines do not cover the surface. When the y symmetry is broken, mag-

netic field lines lie on surfaces and individual lines do cover the surface. When

both x and y symmetries are broken, magnetic field lines wander chaotically over

a large volume of the magnetically-active region. We discuss how these results

impact our simple ideas of a magnetic flux tube as an object with an inside and

an outside, and introduce the concept of “leaky” tubes.

Subject headings: MHD – Sun: interior – Sun: magnetic fields – Stars: spots
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1. Introduction

One of the more remarkable features of the magnetic field at the solar photosphere is its

degree of spatial intermittency (see e.g. Weiss (1994)). Magnetic flux often appears in the

form of intense, isolated elements surrounded by flux free, or nearly flux free plasma. This

observation, together with the fact that the solar plasma has high electrical conductivity and

therefore the magnetic field is nearly frozen into the ambient fluid, has led to the development

of the flux tube as a useful idealization of magnetic behaviour (Parker 1979). In an ideal

flux tube, the magnetic field is entirely confined to a compact region, typically cylindrical in

shape, and embedded in a field-free environment. Because of its simple geometrical structure

and conceptual appeal, it is often easier to describe magnetic phenomena in terms of a flux

tube or a collection of such objects than in terms of a continuous magnetofluid. Indeed,

the flux tube idea is so useful and versatile that much of our present understanding of solar

magnetic activity is formulated in the language of flux tube models (see e.g. Ossendrijver

(2003) and references therein). One of the distinctive properties of an idealised flux tube

is that it has well-defined inside and outside. This feature, together with the frozen-in

condition, implies that fluid that is initially inside the flux tube should remain inside, and

fluid that is initially outside should not be able to penetrate the flux tube except through the

end-points or through small resistive effects. This property can be reconciled with the more

fundamental description of magnetic elements in terms of continuous fields by assuming that

the magnetic field lines form flux surfaces. Since flux surfaces are material surfaces in an

ideal fluid, a closed flux surface also divides the volume into an inside and an outside with

the fluid in the inside unable to escape. However, the existence of flux surfaces in magnetic

systems is by no means a foregone conclusion. In fact, it is not generally known if flux

surfaces are a generic property of magnetic structures, or if they are rare and only found

in special, highly symmetric situations. Clearly, if flux surfaces are present then flux tube

models provide a simplified but still realistic description. If, on the other hand, they are

absent, a description in terms of flux tubes may be misleading. Of course, the flux tube

description may remain useful even when flux surfaces are not present, provided that the

field lines remain close to surfaces.

This distinction between systems with or without good flux surfaces is not just of aca-

demic interest, but can actually lead to very different models of magnetic field evolution.

This point can be illustrated by considering a simple example. Let us suppose that at some

initial instant an axisymmetric buoyant flux ring is released from the equatorial plane some-

where in the interior of an idealized stratified but non-rotating and non-convecting “Sun”.

One possible evolution is that the flux ring moves radially outward towards the surface in an

axisymmetric fashion. If the ring has flux surfaces, the fluid inside the ring cannot escape,

forcing the flux ring to expand as it rises. If the stratification is severe, as it is in the Sun,
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the cross-section of the ring must become huge to maintain transverse mechanical equilib-

rium. One way around this paradoxical situation is to assume that the rise of the ring is

not axisymmetric, and that an upwards bump (or “Ω loop”) develops, with material from

the looping region draining down to the lower parts to avoid the catastrophic expansion.

However, another possibility would be to assume that the flux ring is not bounded by flux

surfaces so that fluid within the structure can be readily exchanged with the external envi-

ronment. In this case, provided that the structure is “leaky” enough, the ring could, at least

in principle, rise axisymmetrically without any need to expand. The axisymmetric case is,

of course, an extreme situation; in general one would expect the buoyant rise of a flux ring

to be non-axisymmetric, in which case the amount of drainage required would depend on

the “permeability” of the flux ring and how it entrains. Either way, it is of some importance

to know whether flux surfaces exist.

Clearly, the existence of flux surfaces depends on circumstances. One would not expect

to find flux surfaces in fully-developed MHD turbulence. On the other hand, there are

cases where it looks as if flux surfaces exist, and the problem is then to ascertain whether

the assumed surfaces are actually present. In the current paper, we study a simple system

in which the combined effects of a localized velocity shear and magnetic buoyancy lead to

the formation of isolated magnetic flux structures. The appearance of these structures is

such as to invite a description in terms of flux tubes, i.e., magnetic structures with flux

surfaces. However, as we will find presently, the situation is more complicated, and flux

surfaces sometime exist and sometimes do not, depending on the parameters and stages of

the evolution. The general feeling one gets from these results is that flux surfaces may not

be as generic as is commonly, if implicitly, assumed.

2. Model and methods

The present objective is to study the geometry of field lines in a system where a simple-

minded analysis would suggest that flux surfaces are present and therefore that the flux

structures are flux tubes. To this end, we consider a simple system in which a localized

velocity shear interacts with an externally-imposed weak poloidal magnetic field to form

localized toroidal structures. In the stratified environment, these structure are subject to

magnetic buoyancy which, in some cases, causes them to rise and eventually leave the region

of the localized shear. Despite its simplicity, this system contains many of the dynamical

ingredients believed to be important for magnetic field evolution at the base of the solar

convection zone, and is capable of complex spatio-temporal behaviour. This system has

been examined in some detail in a number of papers (Brummell, Cline, & Cattaneo 2002;
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Cline, Brummell, & Cattaneo 2003a,b). We refer the reader to Cline, Brummell, & Cattaneo

(2003a) (hereinafter known as CBC) for details of the mathematical formulation and method

of numerical solution. We limit ourselves here to a brief discussion of the geometry and of the

three characteristic dynamical regimes that will be used as the basis for the present study.

2.1. Formulation

We study the evolution of magnetic fields in a stably-stratified, compressible atmo-

sphere, subject to a driven parallel shear flow. The problem is examined in a Cartesian

domain with aspect ratio xm : ym : 1, with z increasing downwards. In this geometry, the x

direction is considered to be toroidal and the y and z directions poloidal. We assume that

the domain contains a perfect gas and that the specific heats cp, cv, dynamic viscosity µ,

thermal conductivity K, magnetic diffusivity η and gravitational acceleration are finite and

constant. The evolution of the velocity u = (u, v, w), magnetic field B = (Bx, By, Bz), den-

sity ρ, temperature T , and pressure p is then described by the compressible MHD equations

(not reproduced here for brevity; see CBC for details). At the upper and lower bound-

aries, we impose stress-free, impenetrable velocity conditions, and require that the vertical

gradient of the horizontal components of the magnetic field vanish. We impose a constant

temperature on the upper surface and a fixed heat flux through the lower one. We assume

periodic boundary conditions in the horizontal directions.

A forcing function F is included in the momentum equations, chosen to drive, in the

absence of magnetic effects, a steady, stable target velocity profile U0. The chosen profile

(Figure 1) contains shear in both the y and z directions: U0 = (U0, 0, 0) with U0(y, z) =

P (z) cos(2πy/ym). Here, P (z) is a polynomial function of z chosen so that the velocity is

non-zero between two horizontal levels, z0 = 0.4 and z1 = 0.95, with maximum amplitude

Um at zv = (z0 + z1)/2 = 0.675, joined smoothly to the surrounding quiescent layers. Since

the nonlinear advective terms for this profile are identically zero, setting F = (F, 0, 0) with

F = −PrCk∇
2U0 with no magnetic fields present, forces an initial condition u = 0 to evolve

to U0. Provided that Um is not too large, this velocity profile is stable to hydrodynamic

perturbations.

The atmosphere is initially in polytropic hydrostatic balance with polytropic index

m, and is threaded by a uniform, weak, horizontal, poloidal (y-directed) magnetic field

of strength B0.

Under standard nondimensionalisation of the equations, a number of parameters arise

that govern the problem: Ck is the thermal dissipation parameter (related to the thermal
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conductivity, K), Pr = µcp/K is the Prandtl number, ζ = ηcpρ0/K, and the Chandrasekhar

number Q = B2

0
d2/ (µ0µη), with µ0 the magnetic permeability, measures the strength B0

of this background magnetic field (although a related parameter appears explicitly in the

equations, α = PrζQC2

k). The other parameters are fixed: γ = cp/cv = 5/3, xm = ym =

0.5, θ = 2, m = 1.6. These parameters, together with the Pr and Ck chosen, ensure that

the Rayleigh number is large and negative, and thus that the system is stable to convective

motions.

Related derivable quantities that describe the importance of the viscous, magnetic, and

thermal diffusivities relative to advection, are the Reynolds number Re, magnetic Reynolds

number Rm, and the Peclet number Pe,

Re ≡
Ufymρ

σCk

(1)

Rm ≡
Ufym

ζCk

(2)

Pe ≡
Ufymρ

γCk

(3)

respectively.

The evolution equations are solved numerically using a hybrid pseudo-spectral/finite

different scheme with spatial resolution of at least 643 (see CBC for details).

2.2. Geometrical considerations

The effect of the localized velocity shear is to stretch the weak poloidal field into two

oppositely-oriented flux structures in the x (toroidal) direction. The evolution of these

structures depends on the parameters, as we shall describe presently. The objective of this

paper is to study the geometry of the magnetic field lines in order to establish to what

extent these magnetic structures conform to our natural ideas of flux tubes. The basic

building blocks for our discussion are the magnetic field lines, or integral lines on B defined

by the relation

dX ×B = 0, (4)

or equivalently
dXi

ds
= Bi(X(s)), X(0) = X0, (5)

where the last expression defines the parametric representation in terms of s of the field line

through the point X0. It should be noted that we examine the geometrical properties of the
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vector field B frozen in time; the variable s should not be interpreted as time. The magnetic

field, of course, evolves with time, but we are concentrating on its properties at a sequence of

instants. The equations for the field lines were integrated using a fourth-order Runge-Kutta

method with cubic interpolation to evaluate values of the magnetic field between the grid

points of the original simulation.

Since the system is periodic in both horizontal directions x and y, it is also useful to

construct return maps defined in terms of the successive intersections of the magnetic field

lines with a reference vertical plane, typically either the y = 0 or x = 0 plane (maps Mx

and My respectively). The sets that are invariant under the iterated action of this map are

either sets of isolated points, or lines, or more complicated objects. Of particular significance

for the present discussion are invariant lines, because they correspond to flux surfaces. In

particular, any closed invariant line corresponds to a flux surface that encloses a volume,

i.e., a surface with an inside and an outside. We note that if the evolution were ideal, the

existence of a flux surface at one instant would guarantee its existence for all time. However,

non-ideal effects can lead to reconnection with associated changes in field topology, and

possibly the destruction of flux surfaces.

3. Results

3.1. General behaviour of the system

The system under study here exhibits three regimes of behaviour (I, II and III) that

we distinguish in terms of the symmetry of the solutions. Regime I solutions, realised

for sufficiently small magnetic Reynolds numbers, possess translational symmetry in x and

reflectional symmetry in y about the vertical mid-plane (y = ym/2). Regime I solutions

consist of two steady toroidal magnetic structures of opposite polarity whose centres are

located slightly above the region of maximum shear. In this configuration, buoyancy drives

a slow poloidal circulation, so that advection of magnetic field balances resistive diffusion

and the structures persist for all time. At higher Rm, Regime II solutions are found, where

the y mirror symmetry is broken. The equilibrium is unstable and, since diffusion is no

longer sufficient to retard the magnetic buoyancy, one of the magnetic structures rises. This

disrupts the region of shear production below, enforcing amplification of the other structure.

This oppositely-polarised toroidal structure then rises next, and the process repeats, creating

a continuous cycle of emerging alternating-parity structures. If the kinetic Reynolds number

is sufficiently high, Regime III solutions, where the x invariance is also broken, are found.

Here, the rise of the structures is influenced by a secondary Kelvin-Helmholtz instability

(induced by the magnetic field) that causes the structures to twist.
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The three regimes of behaviour are illustrated in Figure 2 which shows volume renderings

of the magnetic intensity and time traces of the peak velocity and toroidal magnetic field

magnitude. In all three cases, the magnetic structures have the visual appearance of tubes

in the volume renderings. It is tempting to associate surfaces of constant color in these

visualizations with actual magnetic flux surfaces. However, as we shall see presently, volume

rendering (and consequently isosurfacing or contouring), though being very useful visual

tools, do not always give a good representation of the geometry of field lines.

3.2. Field geometry and flux surfaces

We now examine the geometry of field lines in each of the three regimes. It is instructive

to examine the return maps defined along the two horizontal (periodic) directions; Mx is the

return map induced by the magnetic field of an x − z plane back onto itself and My is the

similar map for a y − z plane. The typical situation for regime I is shown in Figure 3. The

first panel shows the successive iterates with respect to Mx of fifteen distinct points. In this

case, each point is mapped back onto itself, i.e., the invariant subsets with respect to Mx are

single isolated points. The projection of the field lines going through one of these points (in

the region of shear at z = zv) onto the plane z = 0 is shown in the fourth panel (Fig. 3d).

It can be seen that the field line enters the domain (at the bottom, y = 0), is dragged a

long distance (multiple x periods) in the negative x direction by the velocity field of the

bottom half of the domain, and then is carried back exactly the same amount (due to the y

symmetry) in the positive x direction in the second half, eventually to exit at precisely the

same location as it entered. The invariant sets of the fifteen field lines with respect to the My

map (Fig. 3b) are sets of points, with the number of points in each set depending on height.

For example, the field line whose projection is shown in Figure 3d can be seen to cross the

x = 0 plane sixteen times and therefore appears as a set of sixteen points in Figure 13b.

The points in a set do not necessarily lie horizontally, since field lines threading through a

dynamically-active region may be raised or lowered. Figure 3c shows the projection of the

fifteen field lines onto a y−z plane, illustrating this point. In this regime, all field lines lie on

flux surfaces, but, due to the reflectional symmetry, individual field lines close on themselves,

and therefore no single line covers a surface.

This should be contrasted with the typical behaviour for regime II, as illustrated in

Figure 4. In this case, the y mirror symmetry has been broken, individual field lines typically

do not close back onto themselves (Fig. 4d) and therefore map out an entire flux surface.

Consequently, the invariant sets of the return maps Mx and My are lines and not isolated

points (Figs. 4a, b). The invariant sets in the return map My in Figure 4b are now identical
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to the projections of the field lines shown in Figure 4c since the x translational symmetry

is preserved. It should be noted that surfaces on which the field lines do close back upon

themselves still exist. However, this behaviour is not generic since it requires the average

pitch angle of the field line to be rational. In general, one expects the average pitch angle

on any randomly chosen (generic) surface to be irrational.

The evolution of the flux surfaces as the regime II instability proceeds through one

cycle is exhibited in Figure 5. An interesting feature is already apparent, namely that the

flux surfaces (upper panels) do sl not coincide with contours of Bx (lower panels). In fact,

in general they do not even have the same topology, since the flux surfaces in the return

maps never form closed loops. However, it is precisely these closed contours that correspond

closely to our visual perception of the magnetic structure.

In regime III, where the x invariance is finally lost and all the symmetries of the solution

are now broken, flux surfaces do not exist in the region of shear for a substantial fraction of

the evolution cycle. Figures 6 and 7 show the return maps Mx and My together with the

contours of Bx during the rise and subsequent decay of one twisted structure. It can be seen

that as the cycle progresses and a twisted structure is formed, increasingly chaotic regions

of field lines appear in the return maps (Fig. 6). When the structure decays and before the

next one forms, the regions of chaoticity in the maps decrease (Fig. 7). It should be noted

that at the time of Figures 7a, d, e (which also corresponds to the volume rendering seen in

Figure 2c), a substantial fraction of the domain volume does not contain any flux surfaces.

Although the volume rendering gives the impression of two distinct magnetic structures, in

actual fact field lines follow complicated trajectories visiting large portions of both structures

and the surrounding regions. Thus, any fluid element initially inside one of the magnetic

structures can end up in the interior of the other structure by moving entirely along a field

line. In this sense, the magnetic structures are “leaky”, without a well-defined inside and

outside.

From Figures 7a, d, for example, it is clear that a chaotic field line can visit a large

fraction of a volume. However, it is not apparent from this figure how many iterations of

the map are needed for any given field line to wander a substantial distance. For instance,

if the successive iterates remain close together in the map so that it takes many iterations

to fill a substantial fraction of the plane, then, even though formally no flux surfaces exists,

the flux structure is not very permeable. To explore this issue, we consider five iterations

of the My return map acting on a set of points that are initially inside one of the closed

contours (in Bx) delineating the rising magnetic structure. The results of this procedure are

shown in Figure 8. At the end of the first iteration, the mapped points are still close to

where they originated; at the end of the second, they have been displaced substantially but
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they are still within the same magnetic structure; by the third iteration, many of the points

have migrated to the other magnetic structure; and by the fourth iteration, they are widely

scattered.

We can quantify the separation rate for trajectories by defining Lyapunov exponents for

My by

λ1(a) =
1

n
ln

( |δnr(a)|

|δr(a)|

)

, (6)

where

δnr(a) = Mn
y δr(a), (7)

and δr(a) is a small displacement vector in the y − z plane centered at a and Mn
y represents

the action of My iterated n times2. This construct then measures the rate of separation of

points when acted on by successive iterations of My. The results of this calculation for the

magnetic field in Figure 2c (and the map in Fig. 7d) are shown in Figure 9. It can be seen

that there is a large area encompassing the shear layer, and thus the strongly magnetized

region, where the Lyapunov exponent is substantial. It should be noted that the average

value of the exponent quoted in Figure 9 is computed as an average over the entire plane; an

average over the strongly chaotic regime gives a value of approximately 0.3, corresponding

to an e-folding rate of once every three returns.

4. Conclusion

We have examined the geometry of field lines in a system where strong toroidal magnetic

structures are spontaneously generated by the interaction of a localized velocity shear with a

weak background poloidal magnetic field. Our objective was to establish whether magnetic

surfaces exist in such a system. The existence of closed flux surfaces, which are required

to define the inside and outside of structure, is commonly, if implicitly, assumed in many

simplified models of magnetic structure evolution. We have found that, in this system, flux

surfaces only exist in highly symmetric cases, and that for cases with no symmetry, no flux

surfaces are present in the regions occupied by the magnetic structures. Furthermore, when

flux surfaces are not present, the magnetic structures are quite “leaky”, in the sense that

the “outside” and the “inside” can readily communicate.

2Strictly speaking the orientation of the infinitesimal vector should be chosen so as to maximize the ratio

(6). In practice, the vector quickly becomes aligned with the direction of largest stretching so that a formal

maximization is not required.
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It is natural to speculate about the existence of flux surfaces in more general systems

and, in particular, in structures that arise naturally in the solar interior. In addressing

this question, we note that the problem discussed in this paper is very laminar; the back-

ground environment is not turbulent and the Reynolds numbers of the induced flows are

moderate. Even so, the generic behavior was such that the magnetic structures had no flux

surfaces. This suggests that the chance of finding flux surfaces in the highly turbulent solar

environment are slim, unless the dynamics surprisingly conspire to enforce a high degree of

symmetry. However, the more basic issue for constructing meaningful models is not whether

flux surfaces exist, but rather whether the associated magnetic structures are very permeable

or not. This requires a detailed knowledge of the geometry of field lines, as provided here,

for instance, by the Lyapunov exponents. Determination of such quantities for realistic solar

situations is challenging, but should nevertheless be addressed.
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Fig. 1.— The target shear velocity profile U0(y, z). In the absence of magnetic effects, the

forcing F drives this stable shear flow. The fluid in the upper and lower parts of the domain

is at rest, and the shear is localized to a region in the lower portion of the layer.
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(a)

(b)

(c)

Fig. 2.— The generic classes of behaviour of the system. Shown are volume renderings

of the magnetic intensity (where increasing intensity ranges through the colour sequence

purple-blue-green-yellow-red and from translucent to opaque), together with time traces of

the peak values of the x-directed velocity, u, and magnetic field, Bx (where peak values

of positive Bx are the solid lines, and peak values of |Bx < 0| are dashed). The volume

renderings show a representative time in the evolution. (a) Regime I: the equilibrium state,

with both translational symmetry in x and reflectional symmetry about the mid-y plane. (b)

Regime II: found at higher Rm, the reflectional symmetry is broken, and alternately-directed

magnetic structures emerge cyclically. (c) Regime III: found at higher Ree, the x symmetry is

broken by a magnetically-induced Kevin-Helmholtz instability that creates twisted magnetic

structures.
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(a) (b) (c) (d)

Fig. 3.— Return maps and projected field lines for the equilibrium case, regime I. (a) The

return map Mx for fifteen field lines initiated at evenly spaced intervals in the vertical at

x = 0.25. (b) The corresponding My map for the same field lines. (c) The projection of the

same field lines onto the y − z plane. (d) The projection of the single field line at height

z = zv onto the x−y plane. The invariant sets under Mx are individual points. The invariant

sets under My are groups of points, where the number in a group depends on height. Field

lines connect back on themselves and so it takes an infinite number of lines to map out a

plane.

(a) (b) (c) (d)

Fig. 4.— Return maps and projected field lines for the cyclically emerging state, regime II.

The panels are the same as in Fig. 3. The invariant sets of both Mx and My are now lines,

since, with the loss of reflectional symmetry, field lines no longer close back on themselves

(as emphasised by the circle in (d)) and therefore cover an entire flux surface.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.— The time dependence of the map My for regime II. Panels (a)− (d) show the map

My at various snapshots throughout the cycle found in this regime, and panels (e)−(h) show

contours of Bx at the corresponding times. The invariant sets of the map remain as lines

at all times, and show little correspondence with the closed contours defining the magnetic

structure in Bx.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6.— The time dependence of the maps Mx and My for regime III behaviour. Panels

(a) − (c) show Mx, panels (d) − (f) show My, and panels (g) − (i) show contours of Bx, for

three times respectively during the formation, rise and twist (by Kelvin-Helmholtz modes)

of a magnetic structure in this regime. The invariant sets of the maps are close to planes

initially, but then the sets related to field lines that traverse the three-dimensional structure

of the twisted tube expand to create complicated sets occupying an area. Some field lines

wander chaotically through a substantial volume in the system. In the region where a

magnetic structure is clearly delineated by the closed contours of Bx, no flux surfaces can

be identified.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7.— Continuation of Fig. 6 to show further time-dependence of Mx and My for regime

III. Fig. 6 is extended with three subsequent times during the Kelvin-Helmholtz twist and

then decay of a magnetic structure. Panels (a), (d), (g) show particularly clearly that the loss

of all symmetries in the system has led to the existence of field lines that wander chaotically

throughout the region of magnetic activity. As the three-dimensionality of the structures

is eroded during their diffusive decay, the system tends back towards a state close to the

regime II behaviour, and the invariant sets in Mx and My collapse back towards lines.
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(a) Initial (b) Return 1 (c) Return 2

(d) Return 3 (e) Return 4 (f) Return 5

Fig. 8.— Five iterations of the return map My for the regime III twisted structure that

produces Fig. 7(d). A set of field line initial positions are chosen within the closed contours

of Bx(z = 0) so that they may be considered “inside” the magnetic structure. The map

is iterated five times and the subsequent returns plotted. It can be see that even after a

small number of iterations, the field lines have wandered substantially outside of the obvious

magnetic structure.



– 19 –

Fig. 9.— A grey-scale plot of the values of the Lyapunov exponents (representing the rate

of exponential divergence of the field lines) against position for the system during the three-

dimensional phase of regime III. The same time snapshot is used as was for Fig. 7(d) and

Fig. 8. The region of magnetic activity is filled with large values of the exponent, averaging

about 0.3, confirming the visual inference of Fig. 8 that merely three returns produce a

substantial wandering of the trajectories field lines.


