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Abstract

The growth of magnetic field is considered in the stretch–fold–shear map in the
limit of weak diffusion. Numerical results are given for insulating, perfectly con-
ducting and periodic boundary conditions. The resulting eigenvalue branches and
magnetic fields are related to eigenvalue branches for perfect dynamo action, ob-
tained for zero diffusion using a complex variable formulation.

The effect of diffusion on these perfect dynamo modes depends on their structure,
growth rate and the diffusive boundary conditions employed. In some cases, the
effect of diffusion is a small perturbation, giving a correction going to zero in the
limit of weak diffusion, with a scaling exponent given analytically. In other cases
weak diffusion can entirely destroy a perfect dynamo branch. Diffusive boundary
layers can also generate entirely new branches.

These different cases are elucidated, and within the framework of the asymptotic
approximations used (which do not constitute a rigorous proof), it is seen that for all
three boundary conditions employed, the stretch–fold–shear map is a fast dynamo.

Key words: Magnetic field, dynamo, fast dynamo, hyperbolic map, mixing,
baker’s map.

1 Introduction

This paper concerns fast dynamo action in the stretch–fold–shear (SFS) map,
an idealised dynamo model, introduced by Bayly & Childress (1988, 1989) to
model the amplification of magnetic fields in chaotic flows. The model was in-
spired by numerical studies of flows of the form u = (ux, uy, uz)(x, y, t), that is
with two-dimensional dependence on spatial coordinates, but having all three
components of flow. Examples of such flows were considered in Bayly & Chil-
dress (1988), Galloway & Proctor (1992), Klapper (1992) and Otani (1993),
using either a continuous flow field or by means of ‘pulsing’ the flow and dif-
fusion, that is, applying the flow (or corresponding Lagrangian mapping) and
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Fig. 1. The stretch–fold–shear map. (a) Magnetic field depending on z is stretched
and folded with a baker’s map in the (x, y)-plane to give (b). In (c) the field orien-
tation is shown in the (x, z)-plane, which after the shear operation gives (d). The
effect of the stretch–fold–shear operations from (a) to (d) is to double the magnitude
of field vectors and partially bring like-signed field together.

then allowing the magnetic field to diffuse. This technique was first exploited
by Backus (1958) in proving the possibility of dynamo action in fluid flows.

An example of a flow used is that of Otani (1993),

u(x, y, t) = 2 cos2 t (0, sin x, cos x) + 2 sin2 t (sin y, 0,− cos y), (1.1)

and consists of two modulated helical waves. This produces amplification of
magnetic fields, found by solving the induction equation,

∂tB = ∇× (u × B) + ε∇2B, (1.2)

numerically, taking B ∝ eikz. Here ε is a diffusivity or an inverse magnetic
Reynolds number. Numerically a robust amplification of field is obtained with
real growth rate tending to γ0 ' 0.39 for k ' 0.8 as ε→ 0. The corresponding
magnetic eigenfunctions, which take a Floquet form, however become more
and more complicated in this limit.

The mechanism of magnetic field amplification is stretching and folding of
sheets of field in the (x, y)-plane, followed by shearing in z which, through the
eikz phase factor, allows like-signed belts of field to be brought together. This
‘stretch–fold–shear’ mechanism was identified by Bayly & Childress (1988),
who then idealised it in the stretch–fold–shear map, depicted in figure 1. In
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the model a magnetic field of the form

B(x) = eikzb(x)ŷ + complex conjugate (1.3)

reduces to a single one-dimensional complex function b(x). We take this to
be defined on the interval [−1, 1] and to possess finite energy, with b lying in
L2[−1, 1]. The dynamo process depicted in figure 1 corresponds to the action
of a linear operator T on b, defined below in (2.1). The mathematical problem
is to understand the evolution of magnetic fields under repeated applications
of T and some form of diffusion Hε, in the limit of weak diffusion (see below
for precise definitions). The main issue is to show that growth of fields under
repeated iteration of the combined operator Tε ≡ HεT is robust in this limit of
weak diffusion, ε→ 0, and despite the magnetic eigenfunctions becoming more
and more fine-scaled. Because of this fine scaling, it is unclear whether any
meaning at all can be assigned to eigenfunctions with strictly zero diffusion,
ε = 0.

A key advance by Bayly & Childress (1989) was to realise that the adjoint op-
erator T ∗

ε (working in the space of L2 functions) apparently possesses smooth
eigenfunctions in the limit of small ε, and this can be exploited to study the
limit ε→ 0 numerically. In fact one can set ε = 0 and use T ∗ to obtain certain
smooth eigenfunctions numerically, even though the corresponding computa-
tions for T are essentially meaningless! This suggested the possible approach
of studying T ∗, taking the smooth eigenfunctions generated, and then intro-
ducing diffusion as a perturbation. This is not straightforward since diffusion
is not always a small perturbation for baker’s maps: the discontinuity in the
mapping can lead to diffusive boundary layers, as we shall find (see also Chil-
dress & Gilbert, 1995, §9.6.2).

The aim of the present series of papers is to introduce analytical tools to
justify the above approach of studying T ∗ for zero diffusion, and to discuss
the limit of weak diffusion. Our work builds on studies of Rugh (1992) and
Mestel, Osbaldestin & Winn (2000), and is closely linked to computations of
fast dynamo growth rates using periodic orbit sums (Aurell & Gilbert, 1993;
Balmforth et al., 1993).

In paper I (Gilbert, 2002), the adjoint SFS dynamo operator T ∗ was discussed
using a complex variable formulation. The idea was to consider adjoint eigen-
functions, T ∗c = λc, but to restrict consideration from functions c(x) defined
on [−1, 1] and lying in L2[−1, 1], to a subset B∗ of functions c(z) that are
analytic in a complex disc containing the real line segment [−1, 1]. This leads
to a new 1 operator T ∗ on this restricted space which has well-defined eigen-

1 This operator was denoted S in paper I and the space B∗ was called B. There
are a number of other minor changes, our aim being to make the notation more
intuitive for the purposes of this paper.
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functions and eigenvalues; they are also eigenfunctions of the original adjoint
operator T ∗ but have good smoothness properties. Furthermore taking the
adjoint T of T ∗ gives an operator which is essentially the same as the original
direct operator T , but acts in a larger space B which includes distributions.
It now becomes sensible to talk about direct eigenfunctions, not lying in L2

but in this bigger space; see Childress & Gilbert (1995), §9.5.2, Bayly (1992,
1994) and Rado (1993).

The focus of paper I was to prove ‘perfect dynamo action’, that is to take zero
diffusion, and to show that T ∗ has a growing eigenfunction, a ‘perfect mode’,
corresponding to an eigenvalue λ with |λ| > 1. This was done by a mixture
of analytical techniques involving ideas from the theory of pseudo-spectra
(Trefethen, 1997), together with numerical computations. The result was that
there are eigenvalues with |λ| > 1 obtained when the operator T ∗ is truncated
to become a matrix of size N 2. The errors caused by this truncation could
be bounded and are sufficiently small to guarantee that |λ| remains bounded
above unity for the untruncated operator T ∗. Paper I involved no diffusion,
ε = 0, and amounted to showing that the SFS dynamo amplifies magnetic
fluxes in the absence of diffusion; this property of constructive folding of field
appears to be the key property a chaotic flow must have to be a fast dynamo.
This was stressed by Finn & Ott (1988) and Bayly & Childress (1989), but
there are no general mathematical results, even applying to models as basic
as the SFS map.

The aim of the present paper, paper II, is to reintroduce diffusion. The basic
idea is that having identified smooth eigenfunctions of T ∗ with no diffusion
through the complex variable formulation in paper I, the effects of diffusion
may be a small perturbation. This is what lay behind the original thinking
of Bayly & Childress (1989) and is generally supported by their numerical
studies. We begin in section 2 by studying numerically the limiting behaviour
of eigenvalues for weak diffusion and different boundary conditions. This leads
straightforwardly to suggest possible criteria for a given perfect mode of T ∗ to
be ‘robust’ to diffusion, that is, to correspond to a limiting eigenmode of T ∗

ε

as ε → 0. These criteria depend on the boundary conditions, and sensitivity
to boundary conditions in such dynamo problems has been noted by Bayly &
Childress (1988) and Finn & Ott (1990).

To put some theory behind these numerical results, in section 3 we summarise
what is known about perfect dynamo modes, extending the results from paper
I. We compare eigenfunctions of T ∗

ε , with diffusion ε > 0, and those of T ∗,
without diffusion. In some cases these correspond, but the eigenfunctions of T ∗

need to be supplemented by a thin boundary layer, whose scale goes to zero as
ε→ 0. In sections 4 and 5, we study the effects of diffusion and obtain scaling
laws for the diffusive corrections, as well as criteria for when diffusion will or
will not destroy a branch of perfect dynamo modes. Few explicit calculations
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are possible, but in section 6 we calculate the diffusive corrections for a branch
of perfect modes, by solving a boundary layer integral equation numerically.
We offer concluding discussion in section 7.

The aim has been to make this paper essentially self-contained, reproducing
the few key results needed from paper I. The style is however different from
paper I. Whereas in paper I we bounded errors on eigenvalues rigorously (with
the aid of numerical computations), we now adopt more of a perturbation ap-
proach, using some asymptotic matching of solutions. This is not rigorous in
the sense of being able to bound the errors using functional analytic tech-
niques; however it allows us to isolate the key features of diffusion in these
systems. A third paper, III (Gilbert, 2004), again self-contained and com-
plementary, discusses related problems involving the decay of passive scalar
scalars in baker’s maps with uneven stretching.

2 Numerical results with diffusion

We pick up the basic definitions from paper I, which may be consulted for more
background. The SFS dynamo process is depicted schematically in figure 1;
the corresponding SFS dynamo operator is given by

Tb(x) =







2e−iαkxb(1 + 2x) (−1 ≤ x ≤ 0),

−2e−iαkxb(1 − 2x) (0 < x ≤ 1),
(2.1)

and acts on complex magnetic fields b(x) defined for −1 ≤ x ≤ 1. The cor-
responding actual magnetic field is given in (1.3). An alternative way of ex-
pressing T is to take b(x) to be defined for all real x, but to be zero outside
the interval [−1, 1]. In this case we may write

Tb(x) = 2e−iαkxb(1 + 2x) − 2e−iαkxb(1 − 2x). (2.2)

In either case we see that the parameters α and k occur in the combination αk
and so it is convenient to set k = 1 from here on, with little loss of generality.

The key effects of the operator T are the reduction in field scale by a factor
two, together with stretching and folding. There are also the complex phase
shifts induced by shear in the z-direction given by a shear parameter α ≥ 0,
which are essential to the operation of the dynamo. Note that the baker’s map
is ‘even’, that is the stretching of field and the compression of structure in x is
the same, by a factors of 2, in the two pieces. Uneven stretching (as in paper
III) could be introduced, but would simply add an extra parameter to the
dynamo problem.
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In this paper we incorporate pulsed diffusion: we apply the SFS map instanta-
neously, and then allowing the field to diffuse for a time unity with diffusivity
ε. We apply ∂tb = ε∂2

xb to the magnetic field, with one of the following three
boundary conditions applied at the end points x = ±1,

b(1) = b(−1) = 0, (I), (2.3)

∂xb(1) = ∂xb(−1) = 0, (C), (2.4)

b(x) periodic, (P), (2.5)

that is, insulating (I), perfectly conducting (C) and periodic (P). In each case
this can be achieved by integrating the magnetic field against a heat kernel
Hε(x, y) incorporating boundary conditions. We use the same symbol Hε for
each of the resulting (self-adjoint) operators on the magnetic field,

Hεb(x) ≡ H∗

ε b(x) =
∫ 1

−1
Hε(x, y)b(y) dy. (2.6)

We have for insulating (upper sign) and conducting (lower sign),

Hε(x, y) =
∑

p even

Gε(x− y − 2p) ∓
∑

p odd

Gε(x + y − 2p), (I/C), (2.7)

and for the periodic boundary condition

Hε(x, y) =
∑

p

Gε(x− y − 2p), (P). (2.8)

In each case p ranges over the integers, and

Gε(x) = ε−1/2g(x/
√
ε), (2.9)

with

g(x) = (4π)−1/2 exp(−x2/4). (2.10)

Note that we neglect the effect of diffusion on the variation of the true magnetic
field (1.3) in the z-direction. Reintroducing k, this would simply incorporate
an extra factor e−εk2

, that is, a large-k cut-off. We return to this point in the
final discussion section.

We may now define the dynamo operator

Tε = HεT. (2.11)

Our focus is on eigenvalues and eigenfunctions

Tεb = λb, (2.12)

particularly when there is dynamo action, |λ| > 1, in the limit of small ε.
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Fig. 2. Moduli of eigenvalues |λ| as a function of α for the insulating boundary
condition (I). The values for the diffusivity and resolution are (a) ε = 10−4, N = 512,
(b) ε = 10−5, N = 1024 and (c) ε = 10−6, N = 1024.

The above forms (2.7) and (2.8) for the diffusion kernel Hε will be useful when
we develop boundary layer theory later on. However from the point of view of
obtaining numerical results for growth rates as a function of ε and, having in
mind magnetic fields that have finite energy, it is better to use orthonormal
bases for L2[−1, 1] which satisfy the boundary conditions automatically. We
therefore define an L2 inner product by

(b, c) =
∫ 1

−1
b(x)c(x) dx, (2.13)

and the L2 norm is given by

‖b‖2 = (b, b), (b(x) ≡ b(x)). (2.14)

The absence of complex conjugation in the definition (2.13) is designed to avoid
confusion when we replace x by a complex variable in the next section. (It also
yields a number of inessential differences between this paper and paper I, which
we will not flag in detail.) For similar reasons, to obtain results numerically it
is convenient to use a real orthonormal basis {ψn(x)} satisfying

(ψm, ψn) = δmn. (2.15)

Representing a magnetic field by the set of complex coefficients {bn} given by

b(x) =
∑

n

bnψn(x), bn = (ψn, b), (2.16)

we may compute the action of T or Hε using the matrix elements

Tmn = (ψm, Tψn), Hεmn = (ψm, Hεψn). (2.17)

The bases used for the (I), (C) and (P) boundary conditions, and the corre-
sponding matrix elements, are listed in appendix A.
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Fig. 3. Moduli of eigenvalues |λ| as a function of α for the conducting boundary
condition (C), as in figure 2.

We obtain numerical results by truncating the matrices in (2.17) to a size
N2 and applying a numerical eigenvalue solver from the NAG library. Results
for eigenvalues with the insulating (I) boundary condition are shown in figure
2 with |λ| shown as a function of the shear parameter α (using a resolution
0.01 in α). In (a,b,c) the diffusivity ε is decreased, the resolution N being
increased appropriately. Also, to give an indication of accuracy, similar results
at a resolution N/2 are overplotted with dotted lines in all three subfigures,
but this is only visible in figure 2(c). This is also done in figures 3, 4, 9, 11
below.

We observe that for the insulating boundary condition the eigenvalue branches
appear to converge cleanly for

|λ| > 1/4, (I). (2.18)

This includes all the growing, dynamo modes, that is those with |λ| > 1 and
so gives clear numerical evidence for fast dynamo action with this boundary
condition. For |λ| < 1/4 there is no clear picture yet emerging for ε→ 0.

Note that at α = 0, when there is no shear, all the branches go down to λ = 0.
This is a consequence of the fact that the action of Tε on the appropriate basis
(A.1) is a doubling of wavenumber and a diffusive damping:

Tε sin 1
2
nπ(x + 1) = 2e−εn2π2

sin 1
2
2nπ(x+ 1) (2.19)

(see also Childress & Gilbert (1995), §9.5.3). As is easily checked by substi-
tuting into (2.12), this implies that at α = 0 there are no eigenfunctions and
that magnetic fields undergo superexponential decay. This feature was also
observed by Finn & Ott (1990), who noted that this rapid decay appeared to
be special for the insulating boundary condition and even stretching in the
underlying baker’s map. Note that this case of α = 0 is closely related to the
behaviour of passive scalars in the baker’s map; see paper I, §4.3, and paper
III.
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Fig. 4. Moduli of eigenvalues |λ| as a function of α for the periodic boundary con-
dition (P), as in figure 2.

Results for the conducting (C) boundary condition are shown in figure 3. Here,
now for

|λ| > 1/2, (C), (2.20)

we appear to have convergence to the same branches as in figure 2, except
that there is an additional branch emerging with |λ| = 1: this will be referred
to below as the ‘exact branch’. For growing, dynamo modes, having |λ| > 1
the picture emerging is the same as for the insulating boundary condition.

Note that for α = 0, instead of superexponential decay for (C), we now have
an eigenvalue branch with |λ| → 1 as ε→ 0. This indicates the sensitivity to
boundary conditions that can occur. In fact the behaviour of the growth rate
is

λ ' 1 − 2K
√
ε, K ' 0.33 (α = 0, ε→ 0), (2.21)

and we shall later, in section 6, track down the origin of this scaling and the
constant K.

Finally figure 4 shows results for the periodic boundary condition. For

|λ| > 1/2, (P), (2.22)

we appear to have convergence to the branches seen for insulating and the
conducting boundary condition. However the exact branch with |λ| = 1 seen in
figure 3 is absent, and we appear to have an additional branch with three peaks
at |λ| ' 1 within the range of α surveyed. At α = 0 we have no eigenfunctions
and superexponential decay of field for the (P) boundary condition, using a
similar argument to that employed above for the case (I).

Our aim in what follows is to understand the features of these three sets of
results. For |λ| > 1 all three sets of results agree nicely, and point the way to
fast dynamo action, with limiting growth rates as ε→ 0 that are independent
of boundary conditions. We will track down how the growth rates tend to these
limiting values. We will also understand why the exact branch is present in
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Fig. 5. Eigenfunctions for α = 2, ε = 10−3 and insulating (I) boundary condition,
showing real part (solid) and imaginary part (dotted). (a) depicts the most unstable
and (b) the next most unstable eigenmode of Tε. (c) and (d) show the corresponding
eigenmodes of T ∗

ε .

Fig. 6. Eigenfunctions as in figure 5 but for the conducting (C) boundary condition.

figure 3 and not elsewhere, justify the (rather precisely stated) results (2.18),
(2.20) and (2.22), and discover the origin of the additional branch in figure 4.

We now plot the corresponding eigenfunctions for the case α = 2 and ε = 10−3,
for each boundary condition. Here for each eigenvalue λ we may reconstruct the
direct eigenfunction b(x) of (2.12) using the right eigenvector of the truncated
matrix Tεmn, or alternatively compute the adjoint eigenfunction c(x) from the
left eigenvector. An adjoint eigenfunction satisfies

T ∗

ε c = λc, (2.23)

where T ∗
ε is the adjoint operator, defined by (c, Tεb) = (T ∗

ε c, b) with the inner
product (2.13), explicitly,

T ∗

ε = T ∗H∗

ε (Hε ≡ H∗

ε ), (2.24)

with

T ∗c(x) = e−iα 1

2
(x−1)c(1

2
(x− 1)) − e−iα 1

2
(1−x)c(1

2
(1 − x)). (2.25)
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Fig. 7. Eigenfunctions as in figure 5 but for the periodic (P) boundary condition.

For the insulating boundary condition, figure 5 shows the leading direct eigen-
functions b(x) of Tε in (a,b), and the leading adjoint eigenfunctions c(x) of T ∗

ε

in (c,d). The key point to note is that whereas the direct eigenfunctions are
quite rough (and indeed gain finer and finer structure as ε is decreased), the
adjoint eigenfunctions are really quite smooth, because the effect of the opera-
tor T ∗ in (2.25) is to stretch out and average fine structure (Bayly & Childress,
1989). In fact the adjoint eigenfunctions have a structure of a ‘mainstream’
part, in which diffusion is insignificant, with a diffusively controlled boundary
layer at the left end, x = −1, as we shall see. By contrast, the folding in the
baker’s map means that the direct eigenfunctions have boundary layers in the
interior, and more of these emerge as ε is reduced. Figures 6 and 7 show the
corresponding eigenfunctions for the two most unstable branches with (C) and
(P) boundary conditions respectively. Again the key feature is that the adjoint
eigenfunctions are well-behaved, in contrast to the direct eigenfunctions.

Another point to note is that the first adjoint eigenfunction in each figure, that
is in 5(c), 6(c) and 7(c), corresponds to the same eigenvalue branch for λ (see
figures 2, 3 and 4). These adjoint eigenfunctions indeed have a very similar
structure, only differing close to x = −1. In fact the relatively large value of ε
used is chosen so that the differences can be seen, as they shrink away if ε is
much further reduced. By contrast the second adjoint eigenfunctions depicted
in 5(d), 6(d) and 7(d) all correspond to different eigenvalue branches for λ.

3 Eigenvalues and eigenfunctions without diffusion

We now consider what happens if diffusion is turned off. Our aim is to sum-
marise the key points we shall need from paper I in a non-technical way
(skating over some detail); see Kato (1980), Bollobás (1990) and Childress &
Gilbert (1995) for background. The situation is summarised in figure 8.

First consider the operators Tε and T ∗
ε for non-zero diffusion ε > 0; these are

11



point spectrumresidual spectrum 

(a) (b)

(c) (d)

(e) (f)

T T *
εε

T T *
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L
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∗ (in B(in B ) *)
Fig. 8. Schematic figure showing spectra of operators and their adjoints in the
complex plane. Spectra of (a) Tε and (b) T ∗

ε for ε � 1. Spectra of (c) T and (d) T ∗.
Spectra of (e) T and (f) T ∗.

compact operators in L2 because of the effect of diffusion, however weak, in
suppressing small scales. They therefore have only point spectrum, eigenvalues,
with corresponding direct and adjoint eigenfunctions. Direct eigenfunctions,
that is of Tε, gain finer and finer structure as ε→ 0, while those of T ∗

ε appear
smooth and well-behaved (except for possible boundary layers at the left-hand
side). The eigenvalues are depicted schematically in figure 8(a,b) (shown by
+ or +×).

Now suppose diffusion is turned off. Then T0 ≡ T has no eigenfunctions at
all in L2, unsurprisingly. Perhaps more surprisingly T ∗

0 ≡ T ∗ has a whole disc
|λ| < 2 of eigenvalues, but the corresponding eigenfunctions are generally not
infinitely differentiable. The situation is depicted in figure 8(c,d), and leaves
us in a poor situation to study the limit of weak diffusion.

The key idea in paper I was to consider T ∗ with zero diffusion, but to fix a
constant r > 1 and restrict our attention to functions c in the space B∗ of
complex functions analytic in the open disc D, |z| < r, and continuous in the
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Fig. 9. Eigenvalues |λ| of T ∗ or T as a function of α, with N = 128.

Fig. 10. Eigenfunctions for α = 2 (and no diffusion); (a) depicts the most unstable
and (b) the next most unstable eigenmode of T ∗ in B∗.

closed disc D̄, with a supremum norm,

‖c‖ = sup
z∈D

|c(z)|. (3.1)

This new space B∗ is a subspace of L2, but functions in it have much nicer
properties, for example being infinitely differentiable. Also, the restriction of
T ∗ to B∗, which we denote T ∗, is given again by the formula (2.25), and is
a compact operator. The reason for this is that T ∗ is ‘analyticity improving’:
if a function c(z) is analytic in D, then T ∗c is analytic in the larger disc
|z| < 2r − 1. Iterating this process, we see that eigenfunctions of T ∗ with
non-zero eigenvalue λ are in fact entire, analytic in all of C. Using (3.1) one
can also show that eigenfunctions grow no faster than exponentially in the
complex plane. The property of compactness means that T ∗ and its adjoint
T have a spectrum of only point eigenvalues, as shown in figure 8(e,f) by ×
or +×. These were obtained numerically in paper I and are shown as a function
of α in figure 9; the corresponding leading eigenfunctions are shown for α = 2
in figure 10. They may also be obtained by methods based on periodic orbit
sums (Rugh, 1992; Aurell & Gilbert, 1993; Balmforth et al., 1993).

Unfortunately for the stretch–fold–shear model very few of the corresponding
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eigenfunctions are known explicitly (contrast the case of passive scalars in
paper III). However for zero shear, α = 0, we have eigenfunctions

c0(z) = z − 1, λ = 1, (3.2a)

c1(z) = z3 − 3z2 − z + 3, λ = 1
4
, (3.2b)

c2(z) = z5 − 5z4 − 10
3
z3 + 30z2 + 7

3
z − 25, λ = 1

16
, (3.2c)

and for any shear we have what we shall describe as the ‘exact branch’,

c0(z) = eiα(z−1) − eiα(1−z) = 2i sinα(z − 1), λ = eiα (3.3)

(Dr. B.J. Bayly, personal communication, and Rado (1993)). This is the hor-
izontal branch in figure 9; see also figure 10(b). Note that (3.2a) and (3.3)
coincide at α = 0, up to normalisation.

Useful properties of eigenfunctions can be obtained by evaluating T ∗c = λc
at z = ±1 to give

c(1) = 0 (λ 6= 0), (3.4)

c(−1) = 0 (λ 6= 0, eiα). (3.5)

Thus, except for the exact branch (and the uninteresting case λ = 0), every
eigenfunction is zero at the two endpoints; this will become important in the
boundary layer theory of section 5.

The strategy we will pursue is to attempt to link the eigenvalues of T ∗ and
T in figure 8(e,f) for zero diffusion, to those of T ∗

ε and Tε for weak diffusion,
encouraged by the obvious links between figure 9 for ε = 0 and figures 2, 3 and
4 for ε � 1 (as well as the corresponding eigenfunctions). Some terminology
(similar to that in Childress & Gilbert (1995)) may be helpful :

(i) A perfect mode is an eigenfunction pair of T and T ∗ with eigenvalue
λ 6= 0 (shown as × or +× in figure 8(e,f)).

(ii) A perfect mode with eigenvalue λ is robust to diffusion if there is an
eigenvalue λε of Tε and T ∗

ε with λε → λ as ε → 0 (+× in 8(e,f)). The
corresponding limiting eigenfunction pair of Tε and T ∗

ε is called non-

diffusive (+× in 8(a,b)).
(iii) A perfect mode which is not robust is called delicate; it completely dis-

appears under the effects of diffusion, no matter how weak (× in 8(e,f)).
(iv) An eigenmode pair for Tε and T ∗

ε that fails to be non-diffusive is called
diffusive; it owes its existence entirely to diffusion (+ in 8(a,b)).

The robustness of a perfect mode depends on the boundary condition and on
the structure of the mode itself. Our aim is to obtain the criteria for a perfect
mode to be robust to diffusion, that is, (2.18), (2.20), (2.22) for all branches
other than the exact branch. When such a mode is robust, we want to obtain
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the leading correction that arises through the effects of diffusion. Also we will
find out why the exact branch is robust only for the (C) boundary condition,
and the origin of the diffusive branch (with three peaks) that appears for the
(P) boundary condition in figure 4.

We have discussed the restricted operator T ∗ acting on the space B∗ ⊂ L2

and we now consider its adjoint T and the space B in which it acts 2 ; the key
idea is that B is ‘bigger’ than L2, and so whereas T has no eigenfunctions in
L2, the operator T has well-defined eigenfunctions which can be calculated
numerically; these can be thought of as distributions. We again summarise
paper I, skating over a few technical points.

Suppose we are given a function c ∈ B∗; the action of a member b of the
adjoint space B can be written as

〈b, c〉 =
1

2πi

∮

∂D
b(z)c(z)dz (3.6)

and any b ∈ B has the property that it is analytic in the region C \ D̄. Also
we can add an entire function to b without affecting the value of this integral,
so we are really considering b as an equivalence class of functions that differ
by an entire function (but we will not adopt a formal notation for this).

The adjoint operator to T ∗ is

T b(z) = 2e−iαz[b(1 + 2z) + b(1 − 2z)]). (3.7)

Bases of B and B∗ are given by

en(z) = rnz−n−1, e∗n(z) = znr−n, 〈em, e
∗

n〉 = δmn (3.8)

and eigenfunctions of T and T ∗ may be expanded as

b(z) =
∞
∑

n=0

βnz
−n−1, c(z) =

∞
∑

n=0

γnz
n, (3.9)

giving

〈b, c〉 =
∞
∑

n=0

βnγn. (3.10)

Matrix elements of T ∗ with respect to these bases are given in appendix B.
Truncating these matrices to N 2 elements allows easy computation of eigen-
values (see figure 9), left eigenvectors {βn} and right eigenvectors {γn} (see
figure 10).

2 Strictly these should be denoted T ∗∗ and B∗∗, but our aim is to keep the notation
straightforward.
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Just as for eigenfunctions of T ∗, few are known explicitly for T . However
corresponding to (3.2) we have

bj(z) = (z − 1)−2j−1 − (z + 1)−2j−1, λ = 2−2j (α = 0). (3.11)

These satisfy 〈bj, ck〉 = 2(2j + 1)δjk. Also note that for α = 0,

c′′j = 2j(2j + 1)cj−1, b′′j = (2j + 1)(2j + 2)bj+1, (3.12)

since (T ∗c)′′ = 1
4
T ∗c′′ and (T b)′′ = 4T b′′.

Corresponding to the exact branch (3.3) we have

b0(z) = e−iα(z − 1)−1 − eiα(z + 1)−1, λ = eiα, (3.13)

for any α, with

〈b0, c0〉 = 2ieiα sin 2α. (3.14)

There is a degeneracy that occurs when α = nπ/2, corresponding to mode
crossings (in the complex plane) between the exact branch and other branches
(see figure 9). Note for (3.13) that T b0 − λb0 does not immediately appear to
be zero, but as it is an entire function

(T b0 − λb0)(z) = λ[(e−iαz − e−iα)(z − 1)−1 − (e−iαz − eiα)(z + 1)−1] (3.15)

once removable singularities at z = ±1 are taken into account, it is equivalent
to zero, given our remarks about equivalence classes above.

Finally we need to link T to the original T ; certainly (2.2) and (3.7) are the
same up to a sign! It turns out (see paper I) that eigenfunctions of T are in
fact analytic in C except on the real line segment [−1, 1]. Given that they
are equivalence classes modulo addition of entire functions, this means they
are termed ‘hyperfunctions’ supported on [−1, 1] as discussed in Schlichtkrull
(1984). Suppose we have a magnetic field b(x) defined on [−1, 1], as at the
start of this paper. We can define a corresponding hyperfunction Fb via

Fb(z) =
∫ 1

−1

b(x)

z − x
dx, (3.16)

so that the field distribution in b is encoded into the singularities of Fb along
[−1, 1] ⊂ C. With this definition the actions of T and T correspond; we have
for b ∈ L2, and c ∈ B∗ ⊂ L2

T Fb = FTb, 〈Fb, c〉 = (b, c). (3.17)

We can then interpret the eigenfunctions given explicitly above as distribu-
tions on the interval [−1, 1]. For example the eigenfunctions bj(z) in (3.11)
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correspond to distributions,

(2j)! bj(x) = δ(2j)(x− 1) − δ(2j)(x+ 1) (3.18)

(involving the 2jth derivative of a delta function at each end point). By this
we mean that applying F to bj(x) in (3.18) above gives the bj(z) in (3.11).
Similarly, for general α,

b0(x) = e−iαδ(x− 1) − eiαδ(x + 1) (3.19)

corresponds to (3.13). Magnetic field eigenfunctions taking this form of delta
function distributions, located at the end points of the interval, have been
discussed by Bayly (1992), Rado (1993) and Childress & Gilbert (1995), §9.5.2.

4 Mainstream diffusion and eigenvalue corrections

The discussion of eigenfunctions without diffusion, of direct and adjoint oper-
ators, in the previous section is needed so that we can do perturbation theory
to account for the introduction of diffusion. It is convenient to break up the
interval [−1, 1] into a ‘mainstream’ part

−1 < x < 1, x fixed as ε→ 0, (4.1)

and two boundary layers,

x ≡ −1 +
√
εX (left), x ≡ 1 −

√
εX (right), X fixed as ε→ 0, (4.2)

where the boundary conditions play an important role.

In this section we consider the mainstream region only, where we may approx-
imate Hε for any boundary condition by

Gεc(x) ≡ G∗

εc(x) =
∫

∞

−∞

Gε(y)c(x+ y) dy. (4.3)

Our aim is to quantify the effects of diffusion in the mainstream region; in
the next section we will consider the boundary layers that can occur. The
attraction of mainstream diffusion is that it gives just a small perturbation of
order ε to the eigenvalues of T ∗ or T , obtained for zero diffusion.

In fact one can discuss mainstream diffusion rigorously if we temporarily re-
place the symmetric Gaussian kernel (2.10), which has infinite support, by
one which is symmetric, has unit area and has compact support, with g(x)
only nonzero on [−κ, κ] for some κ > 0. In this case we can define an operator
G∗

ε on functions in B∗, given by the same formula (4.3) for G∗
ε. Acting on a
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Fig. 11. Moduli of eigenvalues |λ| as a function of α for the mainstream diffusive
problem. The values for the diffusivity and resolution are (a) ε = 10−2, N = 128, (b)
ε = 3 × 10−3, N = 128 and (c) ε = 10−3, N = 128. Dashed lines show eigenvalues
computed by leading order perturbation theory (which overlap completely in (c));
see equation (4.10).

function c ∈ B∗, G∗
ε c is only analytic in a smaller disc |z| < r− κ

√
ε. However

T ∗G∗
ε c is now analytic in |z| < 2(r− κ

√
ε)− 1 and so is analyticity improving

provided we take r > 1 + 2κ
√
ε.

Therefore, for a compactly supported kernel g(x), the operator T ∗G∗
ε is a

compact operator and has a discrete spectrum of eigenvalues, shared with the
adjoint operator GεT ; the latter operator will have eigenfunctions as hyper-
functions now supported on the interval [−1− 2κ

√
ε, 1 + 2κ

√
ε]. Furthermore

it may be established that, working in B∗

‖T ∗(G∗

ε − I)‖ ≤ 2Ceαr/2εκ2, (C ≡ 8(r − 1)−2(r − 1 − 2κ
√
ε)−1), (4.4)

and so the eigenvalues of T ∗G∗
ε converge to those of T ∗ as ε → 0 (see Kato

(1980), paper I).

To summarise, working in B∗, diffusion in the mainstream can be thought of
as diffusion on [−1, 1] with the boundary condition provided by analytically
extending the function c on [−1, 1] beyond the endpoints and then applying
a smoothing kernel. It gives small corrections, as is established rigorously for
a compact smoothing kernel. Presumably the same is true for the full, non-
compact Gaussian kernel (2.10) and we use this from now on as it is more
convenient for computations; numerically, there is no difficulty in computing
matrix elements for the operator G∗

ε and these are given in appendix B. We
have found eigenvalues of the combination T ∗G∗

ε numerically for varying ε,
and these are shown in figure 11, confirming the relatively harmless effect of
mainstream diffusion.

We can compute the leading order correction by developing perturbation the-
ory (which we will need also for the next section). Start with a normalised
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eigenmode pair without diffusion,

T b0 = λ0b0, T ∗c0 = λ0c0, 〈b0, c0〉 = 1. (4.5)

We solve T ∗G∗
ε c = λc perturbatively by setting εT ∗

1 = T ∗(G∗
ε − I) and ex-

panding

T ∗G∗

ε ≡ T ∗ + εT ∗

1 , c = c0 + εc1 + · · · , λ = λ0 + ελ1 + · · · , (4.6)

to obtain at order ε

(T ∗ − λ0)c1 = −T ∗

1 c0 + λ1c0. (4.7)

Then the solvability condition (integrating the left-hand side against the direct
eigenmode b0) gives the leading order shift in eigenvalue as

ελms
1 = ε〈b0, T ∗

1 c0〉 = λ0〈b0, (Gε − I)c0〉, (4.8)

where we have incorporated a label ‘ms’ to indicate that this is only the
correction from mainstream diffusion. Note that weak diffusion for unit time
on a smooth function can be expanded as

G∗

ε = 1 + ε∂2
x + 1

2
ε2∂4

x + · · · (4.9)

and so the leading order eigenvalue shift can be rewritten to this order as

δλms ≡ ελms
1 ' ελ0〈b0, ∂2

xc0〉 = ελ0

∞
∑

n=0

βn(n+ 1)(n+ 2)γn+2 (4.10)

where we have expanded b0 and c0 as in (3.9) and used (3.10).

For the exact eigenfunction (3.3) this shift is simply

ελms
1 = −εα2eiα, (4.11)

and for the eigenfunctions (3.2) at α = 0 the shift is zero using, say, (3.12).
Figure 11 shows the leading order corrections as dashed lines; the agreement
is good.

We can in fact calculate the exact analogues of the α = 0 eigenfunctions (3.2)
for mainstream diffusion, satisfying T ∗G∗

ε c = λc, without perturbation theory.
c0 is unchanged,

c1(x) = x3 − 3x2 − (1 + 8ε)x+ (3 + 8ε), λ = 1
4
, (4.12)
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and cn(x) is a polynomial of degree 2n+1 in x and degree n in ε. Correspond-
ingly,

bj(x) =
d2j

dx2j
[e−(x−1)23/16ε − e−(x+1)23/16ε], λ = 2−2j . (4.13)

These satisfy GεTb = λb, where we now define T by (2.2). Relations similar
to (3.12) continue to hold. The exact solution (3.3) remains an eigenfunction
with mainstream diffusion, but now λ = eiα−εα2

.

With mainstream diffusion, the delta function distributions become spread out
into Gaussians (4.13) localised near the endpoints x = ±1 but spilling over
them. In general we expect the effect of mainstream diffusion to have a sim-
ilar smoothing effect on any distributional eigenfunction of T . Note that the
eigenfunctions (4.13) when re-expressed as hyperfunctions using (3.16) (and
the integration extended to the whole real line), are singular all along the real
axis, although the singularity becomes extremely weak as x → ±∞, whereas
for a compactly supported heat kernel this would not be the case. Thus for
a Gaussian heat kernel a contour integral such as that in (3.6) becomes of
questionable interpretation. On the other hand we can still compute numeri-
cally a sum as in (3.10), and this is how we proceed in our present pragmatic
approach.

5 Boundary layers and scaling laws

We now consider the effect on growth rates of boundary layers, by considering
the operators Tε = HεT and T ∗

ε = T ∗H∗
ε . The problem is that unlike main-

stream diffusion, the effect of boundary layers at the end points need not be
a small perturbation. To see this consider a field c ∈ B∗ ⊂ L2, so analytic in
the disc D; plainly applying H∗

ε to it will yield an entire function, as it in-
volves taking the values of c in [−1, 1], extending them periodically and then
diffusing. So H∗

ε can be considered as an operator, say H∗
ε given by (2.6) and

mapping B∗ to itself (in fact to entire functions). However if we then define
T ∗

ε = T ∗H∗
ε, this need not be close to T ∗ as an operator in B∗. The reason is

that boundary layers generated by H∗
ε will depend as exp(−(z ± 1)2/ε) near

the endpoints z ' ±1, and this means that they will grow exponentially out
into the complex plane, and ever more rapidly as ε→ 0. A norm such as (3.1)
in B∗ is sensitive to this.

There is thus no reason a priori why the eigenvalues of T ∗
ε should be close to

those of T ∗; however in some circumstances they may be. To find out when
this may occur we adopt a pragmatic approach using perturbation theory. We
start with an eigenmode pair (4.5) and write

T ∗

ε = T ∗ + T ∗

1 + T ∗

2 (5.1)
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with

T ∗

1 = T ∗(G∗

ε − I), T ∗

2 = T ∗(H∗

ε − G∗

ε ). (5.2)

Here T ∗
1 gives the mainstream diffusion correction δλms, which has already

been dealt with, and T ∗
2 the boundary layer correction δλbl; we do not scale

explicitly by ε in what follows.

We first proceed with a naive, but very informative argument. Given an eigen-
function pair (4.5), to assess the shift in the eigenvalue from the effect of T ∗

2

we should consider

δλbl(ε) = 〈b0, T ∗

2 c0〉, (5.3)

by analogy with (4.8).

Now b0 is supported on [−1, 1], and so we are only interested in the behaviour
of T ∗

2 c0 there. To calculate T ∗
2 c0 consider first (H∗

ε − G∗
ε )c0 which has two

boundary layers, one at each end point,

(H∗

ε − G∗

ε )c0(1 −X
√
ε) = −2

∑

n even/odd

c
(n)
0 (1)

n!
εn/2gn(X), (5.4a)

(H∗

ε − G∗

ε )c0(−1 +X
√
ε) = −2

∑

n even/odd

c
(n)
0 (−1)

n!
εn/2(−1)ngn(X), (5.4b)

with n ≥ 0 even or odd for (I) or (C) respectively, and in the periodic case

(H∗

ε − G∗

ε )c(1 −X
√
ε) = −

∑

n

c(n)(1) − c(n)(−1)

n!
εn/2gn(X), (5.5a)

(H∗

ε − G∗

ε )c(−1 +X
√
ε) =

∑

n

c(n)(1) − c(n)(−1)

n!
εn/2(−1)ngn(X). (5.5b)

Here for each boundary layer it is only necessary to retain two terms in the
sums (2.7) and (2.8), and we have defined

gn(s) =
∫

∞

0
g(s+ t)tn dt (5.6)

with

g0(s) = 1
2
erfc(s/2), (5.7)

g1(s) = −sg0(s) + 2g(s), (5.8)

g2(s) = (s2 + 2)g0(s) − 2sg(s). (5.9)

The boundary layers at each end are triggered by the action of diffusion: if
the function c0 is periodically extended to fit the boundary condition (see
(2.3)–(2.5)), a discontinuity in the nth derivative in this periodic extension
generates the terms above.
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Now when we apply T ∗ to (5.4) or (5.5) the effect is to fold over the two
boundary layers, with phase shifts, giving one boundary layer in T ∗

ε c0 at the
left hand end, this function being zero in the mainstream and at the right-
hand end. This has the form of a boundary layer of scale

√
ε and of magnitude

εn/2 where

n = 0 (insulating (I) for exact mode (3.3) only), (5.10a)

n = 0 (periodic (P) for exact mode (3.3) only), (5.10b)

n = 1 (conducting (C) for all modes), (5.10c)

n = 1 (periodic (P) for all other modes), (5.10d)

n = 2 (insulating (I) for all other modes). (5.10e)

The value of n gives the leading term in (5.4) or (5.5) for the perfect mode,
and corresponds to a discontinuity in the nth derivative of c0 when the mode is
periodically extended. Thus for the conducting case (C), any extended perfect
mode c0 has a discontinuity of slope at the end points, corresponding to n = 1.
For (I) and (P) boundary conditions, the situation depends on the mode in
question, and the information in (3.4) and (3.5) becomes relevant. For the
exact mode (except at α = nπ/2), there is a discontinuity in value when
extended with either boundary condition, giving n = 0. However the other
modes are zero at both end points: for the (P) boundary condition there is a
discontinuity in slope, n = 1, but for the (I) boundary condition there is only
a discontinuity in second derivative, n = 2.

It is not worth writing out T ∗
2 c0 in every case but, as an example we shall use

later, for the (C) boundary condition and the exact mode (3.3) we obtain at
leading order

T ∗

2 c0(−1 +
√
εX) =

√
εK1g1(X/2) (5.11)

with
K1 = 2(eiαc′0(−1) + e−iαc′0(1)) = 2iα(e3iα + 3e−iα). (5.12)

It is not clear how to evaluate (5.3) in general, but we can easily obtain useful
scaling information. If the diffusivity ε is multiplied by four, then the boundary
layer thickness is doubled and the boundary layer strength multiplied by 2n.
However also applying T ∗ has the effect of pulling out the boundary layer and
multiplying by a factor eiα locally. Using T b0 = λ0b0 we obtain the key scaling
result

δλbl(ε) = 〈b0, T ∗

2 c0〉 = λ−1
0 〈T b0, T ∗

2 c0〉 = λ−1
0 〈b0, T ∗T ∗

2 c0〉 = λ−1
0 2−neiαδλbl(4ε).

(5.13)
Assuming an exponential scaling law we obtain

δλbl(ε) = Cεq, 2q = n + (logλ0 − iα)/ log 2. (5.14)

Strictly there could be oscillations of period log 4 in log ε superposed, but we
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Fig. 12. Comparison of scaling laws: log10 |λ(ε)−λ0| (solid) and a power law (dashed)
are plotted against log10 ε for the leading, most unstable branch. In (a) α = 1 (I),
power law ε0.7749, (b) α = 2 (I), power law |C1|ε1, (c) α = 1 (C), power law ε0.5,
(d) α = 2 (C), power law ε0.5919, (e) α = 1 (P), power law ε0.2749 and (f) α = 2 (P),
power law ε0.5919.

will ignore this subtle feature; it can sometimes be just about observed in the
passive scalar problem in paper III.

This gives some important information. First, for perturbation theory to be
self-consistent, we require the correction δλbl to be small, scaling to zero as
ε→ 0. This requires Re q > 0, and so |λ0| > 2−n. If this condition is satisfied,
diffusion will be a small perturbation to the perfect mode and it will be robust;
if it fails to be satisfied, there is no reason why diffusion should not destroy
the mode — it is likely to be delicate. For all perfect modes other than the
exact mode, combining this information with (5.10) gives immediately the
criteria (2.18), (2.20) and (2.22) for modes to be robust under each boundary
condition. For the exact mode itself, |λ| = 1 and so the mode is robust to
the (C) boundary condition, n = 1, but is delicate for (I) or (P) boundary
conditions, n = 0, in agreement with results in section 2.

The other information given is the way in which λ(ε) approaches λ0 for a
robust mode: for the boundary layer correction this is as a complex power q of
ε in (5.14), so as a real power law with oscillations in real and imaginary parts
superposed. The mainstream correction is of order ε, given explicitly by (4.10).
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To test our results figure 12 shows results for a number of different cases; in
each case the |λ(ε)−λ0| (solid) is plotted, together with the theoretical power
law (dashed), against ε on a log–log scale.

In (a) the insulating boundary condition is used for α = 1; the mode decays,
|λ0| < 1, and there is good agreement between the actual correction and the
predicted power law with Re q ' 0.7749. In (b) the (I) boundary condition
is again used, but now for the growing mode with α = 2. Here the predicted
boundary layer correction scales as ε1.0919, which is (just) steeper than the
mainstream correction, which may be computed as C1ε with C1 ' −0.62546−
1.6751i obtained by computing c0 and b0 in (3.9) for this mode numerically
and then using (4.10). The comparison between the numerical results and this
mainstream correction is good.

The remaining parts (c–f) of figure 12 show results for (C) and (P) boundary
conditions. The comparison is excellent except for (e) when the numerical
correction falls off much more slowly than the prediction, for (P) and α =
1. This appears to occur because of the interaction between two modes, a
possibility not included within our theory. Looking back at figure 4 we see
that at α = 1 the non-diffusive mode (seen as a perfect mode in figure 9
for zero diffusion) is extremely close to the 3-peaked diffusive branch that
appears for the (P) boundary condition. We confirm this behaviour of the
diffusive branch towards the end of the next section. The slow convergence
seen is likely to be the reason for the diffusive dynamo action for α < π/2
reported in Childress & Gilbert (1995) (figure 9.5); in our simulations we do
not see evidence of dynamo action for α < π/2 in the limit ε→ 0.

Note that the corrections in figure 12(b,d,f) are for the same underlying robust
perfect mode. Those in figure 12(a,e) are also for the same perfect mode,
but (c) refers to the exact mode, which is only robust for the (C) boundary
condition.

Our perturbation theory for the boundary layer correction appears to work
well in giving the correct scaling results, but is actually quantitatively incor-
rect, as the leading order boundary layer correction is not given by (5.3)! The
problem is that if one imagines developing perturbation theory to higher or-
ders, the next correction will arise from applying H∗

ε to the boundary layer
we have obtained above, e.g., in (5.11), and because the layer has a spatial
scale of order

√
ε the correction will be of a similar magnitude O(εn/2) to the

original boundary layer, and will give a correction of the same order as (5.3).

What this indicates is that the proper procedure is to solve an integral equation
for the structure of the boundary layer, forced by the term T ∗

2 c0, in which
diffusion enters in a non-perturbative fashion. Only then should one integrate
against b0 as in (5.3) to obtain the eigenvalue correction. Having given all these
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caveats, of course the scaling result (5.3) will continue to hold in this more
careful approach, as it depends only on the spatial scale and magnitude of the
boundary layer, and the scaling property of the distributional eigenfunction
b0.

There is no problem in writing down the integral equation for the boundary
layer structure in a given case and solving it numerically. The problem arises in
employing a solvability condition, since this involves integrating this boundary
layer, known numerically for x = −1+

√
εX and X = O(1), against b0, which

is generally only known as a power series of the form (3.9). It is not clear how
to do this integration robustly, and we will therefore not pursue this further in
general. It can be done for the passive scalar problem since more explicit for-
mulae are known, and we refer the reader to paper III for further information.
Suffice it to say that this paper confirms that the scaling arguments presented
here remain valid when backed up by more detailed analysis.

6 Boundary layer theory for the exact branch

One case where the boundary layer eigenvalue correction can be calculated
without too much difficulty is for the exact branch (3.3) with the (C) boundary
condition (figure 3), which we study in this section, together with a boundary
layer problem that gives the diffusive 3-peaked branch seen in figure 4.

For the diffusive correction to the exact mode, we need to solve

T ∗

ε c = (T ∗ + T ∗

1 + T ∗

2 )c = λc (6.1)

approximately (see (5.2)). We expand

c = c0 + c1 + · · · , λ0 + λ1 + · · · , (6.2)

where c0 and λ0 give the exact mode (3.3) satisfying T ∗c0 = λ0c0. The quan-
tities c1 and λ1 ≡ δλbl give the leading corrections, and are of order

√
ε.

We substitute this expansion into (6.1), subtract T ∗c0 = λ0c0 and retain all
possible leading terms (which will be of order

√
ε) to give

T ∗

2 c0 + T ∗

ε c1 = λ0c1 + λ1c0. (6.3)

Here we have neglected T ∗
1 c0, mainstream diffusion, giving an O(ε) correction

already discussed in the previous section. The leading correction c1 will vary
on the X-scale within the boundary layer, but on the larger x-scale in the
mainstream.
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We now focus on the left-hand boundary layer itself, takingX = O(1), x ' −1;
there is no right hand boundary layer. We have evaluated T ∗

2 c0 for this case
already in (5.11) and (5.12) above. Also in the boundary layer we have

T ∗

ε c1(−1+
√
εX) ' eiα

∫

∞

0
[g(X/2+Y )+g(X/2−Y )]c1(−1+

√
εY )−e−iαc1(1),

(6.4)
approximating the shear to leading order, and neglecting diffusion near x = 1
(where it would give an order ε correction). Also c1(1) = 0 since c(1) = 0 may
be deduced from T ∗

ε c = λc.

Now put
c1(−1 +

√
εX) =

√
εe−iαK1d(X) (6.5)

to give from (6.3) the integral equation

g1(X/2) +
∫

∞

0
[g(X/2− Y ) + g(X/2 + Y )]d(Y ) dY = d(X) +K, (6.6)

with K defined by
K = λ1c0(−1)/

√
εK1. (6.7)

This integral equation is degenerate in that a constant may be added to a solu-
tion d(X) to obtain another solution. With this there is a solvability condition,
in that a solution only exists for a certain value of K. This may be found nu-
merically by setting K and then attempting to obtain d(X) by straightforward
iteration of the left-hand side of (6.6). It is found numerically that

K ' 0.3257355 (6.8)

and this fixes the correction to the growth rate as

λ1 =
√
εKK1/c0(−1) = −αK

√
ε
e3iα + 3e−iα

sin 2α
. (6.9)

Note that taking the limit α → 0 gives the result (2.21) with the constant K
pinned down conclusively.

The structure of the boundary layer obtained for this value of K is shown in
figure 13 and it has a logarithmic tail of the form

d(X) ' −K logX/ log 2 + C2 (X → ∞). (6.10)

The constant C2 would be fixed by matching to a mainstream solution of
T ∗

ε c1 ' T ∗c1 = λ0c1 + λ1c0, but we do not need to do this.

To confirm this theory figure 14 shows the moduli of the eigenvalues |λ| ob-
tained numerically for the exact mode and the (C) boundary condition (solid),
while the approximation |λ0 +λ1| is shown dashed. The agreement is excellent
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Fig. 13. Structure of the boundary layer. In (a) d(X) is plotted against X, and in
(b) against log X.

Fig. 14. Moduli of eigenvalues |λ| for the exact mode against α. Numerical results
for the (C) boundary condition are shown solid. Dashed lines show the asymptotic
approximation |λ0+λ1|; see (3.3) and (6.9). In (a) ε = 10−4, N = 512, (b) ε = 10−5,
N = 1024 and (c) ε = 10−6, N = 1024.

Fig. 15. Eigenvalues |λ| as a function of α for the unforced periodic boundary layer
problem (6.12).

as ε is reduced from (a) to (c), with the extent of the vertical scale changing
in concert.

Finally we consider the diffusive 3-peaked mode seen in figure 4. This has no
perfect counterpart, and so it is probable that this mode is driven from the
boundary layer rather than forced by a mainstream perfect mode. We consider
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a mode with T ∗
ε c = λc, and put

c(−1 +
√
εX) = d(X). (6.11)

Noting that c(1) = 0 by virtue of T ∗
ε c = λc, we may obtain the integral

equation

∫

∞

0
[eiαg(X/2 − Y ) − e−iαg(X/2 + Y )]d(Y ) dY = λd(X). (6.12)

Here we have again assumed that c varies on the rapid,X-scale in the boundary
layer, and on the x-scale outside.

For a given value of α this equation may be iterated to obtain a free decay
rate λ and these are shown in figure 15 as a function of α. Comparison with
figure 4 indicates that clearly this is the origin of the diffusive mode seen;
this boundary layer solution would be matched onto a (forced) mainstream
part, but we need not determine this. Note the exact solutions: for α = nπ,
λ = 1

2
eiα, and d(X) = X, while for α = (n + 1

2
)π, λ = eiα, and d(X) = 1.

This latter case has an eigenvalue coinciding with the exact mode (3.3), which
explains the slow convergence seen in figure 12(e).

7 Discussion

We have studied dynamo action in the SFS map by means of numerical simu-
lation and then asymptotic approximations using a combination of boundary
layer theory and the diffusionless framework developed in paper I. We have
been able to show how diffusion can destroy perfect eigenmode branches, and
that this depends on the structure of the branch, its growth rate, and the
boundary conditions, as found by Bayly & Childress (1988) and Finn & Ott
(1990). However we have found that all perfect branches where the modes are
growing, with |λ| > 1, are unaffected by diffusion, regardless of their structure,
or the boundary conditions. Thus our study gives support for fast dynamo ac-
tion in the SFS map for all boundary conditions.

We should note that diffusion is a strong effect in the SFS map, because of
its discontinuous nature, and essentially there is a competition between the
growth of the field through stretching, in the mainstream interior, and its
destruction through diffusion. For T ∗ this destruction occurs in the bound-
ary layer at the left end point (which is continually being stretched into the
interior) or for T by the accumulation of boundary layers in the interior. Essen-
tially if the perfect mode grows fast enough (at least |λ| > 1), the stretching
wins. This paper has proceeded by asymptotic approximation, and while it
has captured key aspects of the SFS model, this does not constitute a proof.
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The key problem is to show that eigenvalues T ∗ with |λ| large enough are
only perturbed when one introduces diffusion giving T ∗

ε . This is not obvious
because only some eigenvalues are perturbed, others disappear completely.

In terms of interpreting our results for the limit of weak diffusion it is worth
reintroducing the parameter k which was set to k = 1 after (2.1). In the body
of this paper we have discussed growth rates λ(α, ε). For a general k, the
parameter α becomes αk once again and there is in addition an exponential
damping factor exp(−εk2), which we ignored. The growth in a given mode per
iteration of Tε will be by a factor of λ(αk, ε)e−εk2

. If we now consider a given
fluid flow, modelled by the SFS map with a given value of α, then roughly
speaking the range of modes π/2α < k ≤ O(ε−1/2) will be destabilised, and
this range will increase as ε is reduced. These modes will be competing for
the optimal growth rate, and since we know little about the structure of the
peaks in |λ| in figure 9 over a wide range of α, it is unclear which modes will
be dominant for small ε. This suggests that the structure of a growing field in
the z-direction could be quite complicated, at small ε.

The theory we have developed has exploited the fact that for T there is con-
traction of structure in the x-direction, while for T ∗ the structure is expanded
in this direction, the y-direction being trivial in both cases. It would be in-
teresting to attempt to extend the above theory to hyperbolic dynamos with
two non-trivial directions, one stretching and one contracting, for example, cat
maps with shear (Aurell & Gilbert, 1993). In this case T and T ∗ are on an equal
footing as neither gives a simpler system. However it should still be possible
to define T and T ∗ and seek eigenfunctions, following ideas of Rugh (1992).
The procedure would be to divide space into a Markov partition, and in each
piece to expand eigenfunctions in powers of a coordinate z1 in the expanding
direction and in inverse powers of a coodinate z2 in the contracting direction.
This would give perfect modes with eigenvalues that could be compared with
eigenfunctions in L2 for an operator Tε that incorporates diffusion.

Finally note that the dynamos discussed here are based on underlying hy-
perbolic maps, and this is crucial in getting the machinery developed in this
series of papers to work; the challenge of studying non-hyperbolic maps re-
mains considerable.

A Appendix: matrix elements in L2

Here we list bases and matrix elements used for numerical computations of
eigenvalues and eigenvectors for magnetic fields with ε > 0, lying in L2. The
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basis for the insulating (I) boundary condition is indexed by n ≥ 1,

ψn(x) = sin 1
2
nπ(x + 1) (n ≥ 1) (I). (A.1)

For the conducting (C) boundary condition we use, indexed by n ≥ 0,

ψn(x) = cos 1
2
nπ(x + 1) (n ≥ 1), ψ0(x) = 2−1/2 (C), (A.2)

and for the periodic (P) boundary condition we use, indexed by n ≥ 0,

ψn(x) =















2−1/2 (n = 0),

cos qπx (n even, n = 2q > 0), (P),

sin qπx (n odd, n = 2q − 1).

(A.3)

Define F (k) = 2k−1 sin k and coefficients νm by

ν0 = 2−1/2, νm = 1 (m > 0). (A.4)

The matrix elements for (I) (upper sign) and (C) (lower sign) with the appro-
priate legal values for m and n are,

Tmn = ∓1
4
νmνn[(ei( α

2
−

mπ

4
−

nπ

2
) ± ei(−α

2
−

3mπ

4
+nπ

2
))F (α

2
+ mπ

4
+ nπ

2
) (A.5)

+(∓ei( α

2
−

mπ

4
+nπ

2
) − ei(−α

2
−

3mπ

4
−

nπ

2
))F (α

2
+ mπ

4
− nπ

2
)

+(∓ei( α

2
+mπ

4
−

nπ

2
) − ei(−α

2
+ 3mπ

4
+nπ

2
))F (α

2
− mπ

4
+ nπ

2
)

+(ei( α

2
+mπ

4
+nπ

2
) ± ei(−α

2
+ 3mπ

4
−

nπ

2
))F (α

2
− mπ

4
− nπ

2
)].

For the heat kernel Hε we have for either of these bases,

Hεmn = e−εn2π2/4δmn. (A.6)

For the (P) boundary condition,

Tmn = 1
4
νmνni

1

2
(ρ−1)i

1

2
(σ−1) (A.7)

×[ρ(σei 1

2
(α+pπ) − ei 1

2
(−α−pπ))(F (α

2
+ pπ

2
+ qπ) + σF (α

2
+ pπ

2
− qπ))

+(σei 1

2
(α−pπ) − ei 1

2
(−α+pπ))(F (α

2
− pπ

2
+ qπ) + σF (α

2
− pπ

2
− qπ))],

where we let (p, ρ) = (m/2, 1) if m is even, and ( 1
2
(m + 1),−1) if m is odd.

We define (q, σ) similarly in terms of n. For the heat kernel,

Hεmn = e−εp2π2

δmn. (A.8)

Note that to obtain numerically eigenvalues and eigenvectors, these infinite
matrices are truncated to size m,n ≤ N , replacing Tε by an operator TεN ≡
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PNTε, where PN is a projection. We are guaranteed that the eigenvalues ob-
tained numerically will converge as N → ∞ for any fixed ε > 0. For example
for the (I) boundary condition and working in L2,

‖Tε−TεN‖ = ‖(I−PN )HεT‖ ≤ ‖(I−PN )Hε‖‖T‖ ≤ 2e−ε(N+1)2π2/4 → 0 (A.9)

in this limit (also see the discussion in §7.1 of paper I).

B Appendix: matrix elements in B

We now give matrix elements with respect to the bases (3.8) of B and B∗,

T ∗

mn = 〈em, T ∗e∗n〉. (B.1)

For the operator T ∗ we have from paper I with i→ −i,

T ∗

mn = rm−n
m

∑

p=max(m−n,0)

2−n(−1)mn!

p!(m− p)!(n−m+ p)!

(−iα
2

)p

[eiα/2(−1)n+p−e−iα/2].

(B.2)
Note that for α = 0 this matrix has T ∗

mn = 0 for m > n and so is upper
triangular, with entries 0, 1, 0, 1

4
, 0, 1

16
, etc., along the diagonal, giving the

eigenvalues in (3.2). For matrix elements of G∗
ε we have all elements zero except

G∗

εmn =
(

2ε

r2

)

1

2
(n−m) n!

m!(n−m)!
(n−m− 1)(n−m− 3) · · ·5 · 3 · 1, (B.3)

(n ≥ m,n−m even).

Note that the matrix for G∗
ε is upper triangular with elements unity along

the diagonal. Although requiring that the constant r > 1 is essential for the
properties of the operators T and T ∗, for numerical computations the specific
value of r is unimportant, and r can be set to one.
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