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Abstract

The decay of passive scalars is studied in baker’s maps with uneven stretching,
in the limit of weak diffusion. The map is alternated with diffusion, and three
different boundary conditions are employed, zero boundaries, no-flux boundaries,
and periodic boundaries. Numerical results are given for scalar decay modes.

A set of eigenmode branches and eigenfunctions is also set up for case of zero
diffusion, using a complex variable formulation. The effects of diffusion may then
be included by means of a boundary layer theory. Depending on the boundary
conditions, the effect of diffusion is to either simply perturb or entirely destroy each
zero-diffusion branch.

The paper considers analytically the decay of passive scalar fluctuations for each
boundary condition, and elucidates scaling laws that govern the behaviour of eigen-
values in the limit of weak diffusion.

Key words: Passive scalar, hyperbolic map, mixing, baker’s map, diffusion,
Ruelle–Pollicott resonance.

1 Introduction

This paper concerns the mixing and decay of passive scalars under the action
of baker’s maps. These idealised models are prototypes for understanding the
mixing and decay of scalar fluctuations in fluid flows. Here the mathematical
challenge arises because the interaction of the stretching and folding of scalar
concentration, with weak molecular diffusion, gives complex scalar fields which
are hard to describe and analyse. Key references include [2] and [26].

One way to simplify the problem is to replace a fluid flow by a Lagrangian
mapping and to consider models where one alternatively applies the mapping,
say M , instantaneously and then allows diffusion of strength ε to operate for
a unit time. The advantage is that one can write down explicitly how a scalar
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field, say a(x), is mapped to a new scalar field, say Tεa, after one iteration of
the map–diffuse cycle. The mathematical problem remains challenging though,
because for small ε the field can adopt complicated structures under repeated
application of Tε, especially in the case where the mapping M possesses chaotic
trajectories.

One attractive family of maps to study is that of baker’s maps, as the scalar
fields can be taken to be one-dimensional, and the mappings are hyperbolic.
These have been used a great deal in modelling the behaviour of passive
scalars, and the closely analogous phenomenon of magnetic field amplifica-
tion in conducting fluid flows, the kinematic dynamo. For example Ott and
Antonsen [25] consider advection of scalar and vector fields and show that the
scalar gradient and vector field concentrate on fractal sets under iterations of
Tε with weak diffusion. The problem of how passive scalars decay in baker’s
maps has been discussed in [13,14,37]. For magnetic fields dynamo action in
baker’s maps has been studied by Finn and Ott [15,16] and in the closely re-
lated stretch–fold–shear model by Bayly and Childress [7,8]; for a review see
[10].

While baker’s maps have been widely studied as a prototype dynamical sys-
tem, including the complications of uneven stretching and folding, little is
known mathematically about the effects of weak diffusion of passive scalar or
of magnetic field in even these very simplified systems. Our aim in this paper
and two earlier studies [18,19] is to understand the effects of diffusion. We use
a combination of boundary layer theory, and complex variable methods that
allow us to make sense of a problem with zero diffusion and define what are
known as ‘strange eigenfunctions’ [23,27,34]. These are ‘eigenfunctions’ that
take the form of distributions rather than well-behaved functions. They have
been discussed in the kinematic dynamo problem [6,10], though not under this
name, and observed experimentally as limiting scalar field structures for weak
diffusion [31].

Our aim is to explain the observations of passive scalar decay in baker’s maps
discussed in [14,37]. For example these authors note that the decay of pas-
sive scalars with periodic boundary conditions is oscillatory, corresponding
to a complex eigenvalue λ of the operator Tε, and that the approach to the
diffusionless limit is very slow, only logarithmic with diffusion ε. Also in an
idealised Gaussian model [37] a decay rate is found that is sensitive to the
boundary conditions employed during the diffusion step. We find this to be
true in our study also, and this feature has been noticed in analogous dynamo
problems [16].

The paper is structured as follows. Section 2 introduces the baker’s map and
presents results for scalar decay under various boundary conditions, showing
the sensitivity noted by previous authors. Eigenfunctions and adjoint eigen-

2



functions are also plotted, and it is seen that whereas the direct eigenfunctions
(that is of Tε) have fine structure for small ε, adjoint eigenfunctions (that is of
T ∗

ε ) are smooth, except for boundary layers at the edges of the region mapped.

Section 3 studies the decay of a scalar with the zero boundary condition.
This corresponds to allowing scalar to leak out of the domain when it dif-
fuses, and we find the leakage rate, i.e., the exponential decay rate of scalar,
approximately for small ε, by using a boundary layer theory and a solvabil-
ity condition. In section 4 we set up a complex variable framework which
enables us to define eigenvalues λ(n) for zero diffusion. The corresponding ad-
joint eigenfunctions (that is of T ∗) are polynomials, but those of T can only be
thought of as distributions; these are ‘strange eigenfunctions’. Section 5 uses
these strange eigenfunctions to discover which λ(n) survive the introduction of
diffusion. It also enables us to give approximate formulae for the decay rate
of scalar fluctuations in the baker’s map under a no-flux boundary condition.

Section 6 discusses the decay of passive scalar fluctuations with a periodic
boundary condition and shows why the corresponding eigenvalues governing
decay of scalar fluctuations are complex and converge logarithmically slowly
in the limit of weak diffusion. Section 7 discusses a baker’s map involving a
fold operation which has some unusual features. In particular for the no-flux
boundary condition the eigenvalue governing decay of scalar fluctuations has
an oscillatory behaviour as a function of the diffusivity ε as ε → 0. This
surprising feature has been noted in a related model [13].

Our study will link closely to ideas in dynamical systems theory: for example
the eigenvalues λ(n) that we obtain for passive scalar decay for zero diffusion
are actually what are known as Ruelle–Pollicott resonances [29,32]. We will
revisit this in the final discussion section 8.

2 Numerical results with diffusion

We are interested in the evolution of passive scalars in baker’s maps, with
weak diffusion. The baker’s map we will use is depicted schematically in figure
1 and is given by a parameter α with 0 < α < 1. We also define

β ≡ 1 − α, Υ ≡ −1 + 2α ≡ 1 − 2β ≡ α− β. (2.1)

It is convenient to define the baker’s map on the square −1 ≤ x, y ≤ 1 by

M(x, y) =







(αx− β, α−1(y + β)) (−1 ≤ y ≤ Υ),

(βx+ α, β−1(y − α)) (Υ < y ≤ 1).
(2.2)
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Fig. 1. The uneven baker’s map. (a) The square [−1, 1]2 is cut horizontally. (b) The
two pieces are stretched and (c) reassembled.

The map is symmetrical under the interchange of α and β and reversal of the
x-direction.

We consider the evolution of a passive scalar field a(x), which we will oc-
casionally refer to as temperature: under one iteration of the map M , the
temperature field is mapped to

Ta(x) =







a(α−1(x+ β)) (−1 ≤ x ≤ Υ),

a(β−1(x− α)) (Υ < x ≤ 1).
(2.3)

Note that to avoid unnecessary use of brackets we write Ta(x) rather than
the more pedantic version (Ta)(x) here and elsewhere.

We will make considerable use of the adjoint operator T ∗. To define this we
start with an inner product on L2[−1, 1]:

(b, a) =
∫ 1

−1
b(x)a(x) dx. (2.4)

This may also be thought of as the action of a member b of the dual space
(again L2[−1, 1]) on a function a, which is why we do not place a complex
conjugate in this definition. The L2 norm (for functions on [−1, 1] henceforth
understood) is given by

‖a‖2 = (a, a) (a(x) ≡ a(x)). (2.5)

The adjoint operator T ∗ is then defined by (b, Ta) = (T ∗b, a) and is given by

T ∗b(x) = αb(αx− β) + βb(βx + α). (2.6)

A trivial but important eigenvalue of T and T ∗ is λ = 1, with a constant field
in each case. We have Ta = λa and T ∗b = λb and label it with zero subscript
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as
a(0) = 1

2
, b(0) = 1, λ(0) = 1 (constant scalar mode). (2.7)

This is conveniently normalised so that

(a(0), b(0)) = 1. (2.8)

We now wish to consider the evolution of a passive scalar under T and weak
diffusion, and so after each application of T , we apply diffusion, solving ∂ta =
ε∇2a for a time unity in the region −1 ≤ x ≤ 1 with suitable boundary
conditions. One aim of this paper is to understand the effect of boundary
conditions, and so we consider zero temperature (Z), no-flux or insulating (F),
and periodic (P) boundary conditions, defined by

a(±1) = 0 (Z), (2.9)

∂xa(±1) = 0 (F), (2.10)

a(x) periodic (P). (2.11)

We will also occasionally find the asymmetric zero–no-flux boundary condition
(ZF) useful, though we will not treat it as thoroughly as the other cases. This
is defined by

a(−1) = 0, ∂xa(1) = 0 (ZF), (2.12)

and breaks the symmetry of interchanging α and β.

Diffusion can be achieved by integrating the scalar field against a heat kernel
Hε(x, y) incorporating the appropriate boundary condition. We use the symbol
Hε also for the resulting operator, given by

Hεa(x) =
∫ 1

−1
Hε(x, y)a(y) dy. (2.13)

We have for zero (upper sign) and no-flux (lower sign) boundary conditions,

Hε(x, y) =
∑

p even

Gε(x− y − 2p) ∓
∑

p odd

Gε(x+ y − 2p) (Z/F), (2.14)

and for the periodic boundary condition

Hε(x, y) =
∑

p

Gε(x− y − 2p) (P). (2.15)

In each case p ranges over the integers, and

Gε(x) = ε−1/2g(x/
√
ε), g(x) = (4π)−1/2 exp(−x2/4). (2.16)

We then define the scalar transport operator with diffusion, Tε, and its adjoint
T ∗

ε by
Tε = HεT, T ∗

ε = T ∗H∗
ε , (2.17)
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Fig. 2. Moduli of eigenvalues |λ| as a function of α for the zero boundary condition
(Z). The values for the diffusivity and resolution are (a) ε = 10−3, N = 128, (b)
ε = 10−4, N = 512 and (c) ε = 10−5, N = 1024.

noting that Hε is self-adjoint, H∗
ε = Hε. For positive ε both of these operators

are compact in L2 and so have spectra consisting of only point spectrum, i.e.,
discrete eigenvalues. For each eigenvalue λ, there will be a pair of eigenfunc-
tions, of Tε and T ∗

ε ,

Tεa = λa, T ∗
ε b = λb. (2.18)

Corresponding to any given eigenvalue λ there will be an exponential growth
rate p = logλ, with negative (or zero) real part; for example, the asymptotic
scalar variance decays proportional to e2np as the number of iterations n→ ∞.

To obtain eigenvalues λ numerically it makes sense to use a real orthonormal
basis {ψn} of L2 adapted to the boundary conditions, and to compute matrix
elements

Tmn = (ψm, Tψn), Hεmn = (ψm, Hεψn). (2.19)

The matrices may then be truncated to size N 2 and eigenvalues found numeri-
cally. The corresponding right and left eigenvectors of Tεmn give the direct and
adjoint eigenfunctions a and b in (2.18) above. The bases and matrix elements
are given in appendix A.

We now present results, plotting the moduli |λ| of the eigenvalues λ of Tε

against α for given values of ε. In each case we show only the leading 30
branches, and the resolution in α in the plots is 0.001. Figure 2 shows results
for the case of the zero boundary condition, with ε = 10−3 in (a), 10−4 in (b)
and 10−5 in (c). The resolutions N are given in the caption, and in each case
the curves are overplotted with results at a resolution N/2 in dotted lines.
These cannot be seen, and this confirms the accuracy of the results shown;
dotted lines are used similarly in figures 4, 6, 8 and 22 below.

In each of figure 2(a,b,c) we see clearly the branch corresponding to the con-
stant scalar mode (2.7); however this is now perturbed because of diffusion
under the zero boundary condition. Scalar escapes from the system and this
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Fig. 3. Eigenfunctions for α = 0.3, ε = 10−4 and the zero (Z) boundary condition.
Solid lines show the real part and dotted the imaginary part. (a) depicts the least
damped and (b) the next least damped eigenmode of Tε. (c) and (d) show the
corresponding eigenmodes for T ∗

ε .

mode now decays. In fact we will find that for this mode

λ ' 1 + [C0(α) + C0(β)]ε1/2, (2.20)

where we shall obtain the (negative) constants C0 by solving a boundary layer
problem for each value of α, in section 3. The contributions C0(α) and C0(β)
arise because of loss of scalar through the left- and right-hand boundaries.
The corresponding direct eigenfunction is shown in figure 3(a) for α = 0.3
and ε = 10−4, and can be seen to be the constant scalar mode, a(0) in (2.7),
perturbed by accumulating internal boundary layers, which decrease in scale
and increase in number as ε is reduced.

However the corresponding adjoint eigenfunction, shown in figure 3(c) has a
much simpler structure, and is essentially the constant scalar mode, b(0) in
(2.7), with a boundary layer at each end. As ε is reduced, the boundary layers
become narrower, but the interior tends to a constant. This arises because the
adjoint operator T ∗ in (2.6) tends to pull out and smooth fine structure, in
contrast to T . This property is what allows possible analytical study of the
awkward limit ε→ 0, and was originally stressed in related dynamo problems
by Bayly and Childress [8].

Note that this leading mode as shown in figure 3(a,c) is the key mode governing
scalar decay in the system; even if the mean scalar is taken to be zero in an
initial condition, this will not generally be preserved by the zero boundary
condition as Tε is iterated. The lower branches in figure 2 are therefore perhaps
only of theoretical interest; they seem to accumulate as diffusion is reduced.
The next branch down in fact corresponds to a complex conjugate pair of
eigenvalues. One of the pair of direct eigenfunctions is shown in figure 3(b),
and the corresponding adjoint eigenfunction in figure 3(d); both are complex.
Note again that the adjoint eigenfunction is much smoother than the direct
one.
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Fig. 4. As for figure 2 but with the no-flux (F) boundary condition.

Fig. 5. Eigenfunctions as in figure 3 but for the no-flux (F) boundary condition,
except that we exclude the constant mode (2.7).

Figure 4 shows results for the no-flux (F) boundary condition. Now the con-
stant scalar mode (2.7) satisfies the boundary condition and so remains there
as an exact λ = 1 branch. The next branch down is new, not present for the
zero boundary condition in figure 2, and corresponds to a scalar field with
zero mean. This branch therefore governs the decay of scalar fluctuations in
the system, and is the key mode to study analytically. We will in fact find
that for this mode there are contributions from the two boundaries, with

λ ' λ(1) + C1(α, ε)ε
q(α) + C1(β, ε)ε

q(β), λ(1) = α2 + β2, (2.21)

where we will pin down the exponents q analytically (see (5.14)) and obtain
the quantities C1 (which vary only weakly with ε) by solving a boundary layer
problem numerically, in section 5.

The direct and adjoint eigenfunctions for this mode (with α = 0.3, ε = 10−4)
are shown in figure 5(a,c) respectively. Again while the direct eigenfunction
is very irregular, the adjoint eigenfunction appears to be tending to a linear
function, with boundary layers at each end, open to analysis. The next, third
branch down in figure 4 corresponds to a complex conjugate pair of eigenvalues
λ, and figure 5(b,d) shows one of the eigenfunction pairs.

To stress the role of boundary conditions figure 6 shows eigenvalues for the
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Fig. 6. As for figure 2 but with the zero–no-flux (ZF) boundary condition. Note that
some numerical noise is apparent in (c) for the N = 512 resolution results, shown
dotted.

Fig. 7. Eigenfunctions as in figure 3 but for the zero–no-flux (ZF) boundary condi-
tion.

zero–no-flux boundary condition (2.12), and figure 7 the corresponding eigen-
functions for the leading two branches. The first branch is again linked to
the constant scalar mode (2.7), now decaying because of the left-hand zero
boundary condition (cf. figure 3(a,c)). Its decay rate is given by a formula

λ ' 1 + C0(α)ε1/2, (2.22)

akin to (2.20). On the other hand for α < 1
2
, the second branch down in figure

6 has features in common with the second branch for the no-flux (F) boundary
condition in figure 4. For this branch eigenfunctions for the (ZF) boundary
condition are shown in figure 7(b,d) and for the (F) boundary condition in
figure 5(a,c).

Finally figure 8 shows the case of the periodic boundary condition. The lead-
ing branch is the constant scalar solution (2.7), again exactly preserved by the
boundary condition. The remaining branches seem to accumulate as the dif-
fusivity is reduced, and correspond to pairs of complex conjugate eigenvalues.
Figure 9 shows a complex eigenfunction for the first two non-trivial branches.
In section 6 we will establish that for α 6= β

λ = max(α, β) + o(ε) (2.23)
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Fig. 8. As for figure 2 but with the periodic (P) boundary condition.

Fig. 9. Eigenfunctions as in figure 3 but for the periodic (P) boundary condition,
except that we exclude the constant mode (2.7).

as ε → 0, where the leading correction in o(ε) is purely imaginary and de-
creases as the inverse of log ε−1.

For α = β = 1
2

all branches, except the constant-scalar one, go to zero with the
periodic boundary condition. In this case the action of Tε on the appropriate
basis (A.3) is given by

Tε cos qπx = e−4εq2π2

(−1)q cos 2qπx, Tε sin qπx = e−4εq2π2

(−1)q sin 2qπx.
(2.24)

From this it is easily deduced that there are no eigenfunctions of Tε in L2

except the constant scalar one (2.7), and that zero-mean fields undergo super-
exponential decay [14]. Note that by similar arguments, for the (Z) boundary
condition there is super-exponential decay for the subspace of odd fields (n
even in (A.1)), and for (F) this occurs for even non-constant fields (n > 0 and
even in (A.2)).

To summarise, we are primarily interested in the first non-trivial decay mode
in each case: this means

(i) (Z) boundary condition, first branch of figure 2, eigenfunctions in figure
3(a,c), and formula (2.20); see section 3,

(ii) (F) boundary condition, second branch of figure 4, eigenfunctions in figure
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5(a,c), and formula (2.21); see section 5,
(iii) (P) boundary condition, second branch of figure 8, eigenfunctions in figure

9(a,c); see section 6.

3 Scalar decay with the zero boundary condition

Since it requires no special machinery, we begin our analysis by studying the
decay of scalar in the case of the zero boundary condition. In other words we
wish to understand how the constant scalar mode (2.7) is modified by diffusion
to give decay according to (2.20). We give a fairly detailed exposition, as it
will be the basis for later calculations in sections 5, 6, where we will be more
succint.

We home in on the adjoint eigenfunction shown in figure 3(c) which clearly
has the structure of a constant ‘mainstream’ interior with boundary layers at
each end, x = ±1. We write

T ∗
ε = T ∗ + T ∗

1 , T ∗
1 ≡ T ∗(Hε − I), (3.1)

thinking of T ∗
1 as a small perturbation to T ∗, and aim to solve

T ∗
ε b = (T ∗ + T ∗

1 )b = λb (0 < ε� 1) (3.2)

approximately. We expand λ, a (the adjoint eigenfunction) and b by

λ = λ0 + λ1 + · · · , a = a0 + a1 + · · · , b = b0 + b1 + · · · , (3.3)

where λ0 = λ(0), and a0 = a(0), b0 = b(0) is the constant scalar mode defined
in (2.7) and normalised by (2.8). λ1 � 1 is the leading correction to the
eigenvalue, and b1 the leading correction to the eigenfunction (2.7) generated
by the perturbation T ∗

1 .

Substituting into (3.2), subtracting off T ∗b0 = λ0b0 and retaining all possible
leading terms gives an equation for b1 forced by the term T ∗

1 b0,

T ∗
1 b0 + T ∗

ε b1 = λ0b1 + λ1b0. (3.4)

This equation describes both the boundary layer structure and the mainstream
correction, though different elements come into dominance in different regions.
We define the mainstream region by

−1 < x < 1, x fixed as ε→ 0, (3.5)

and the two boundary layers by

x ≡ −1 +
√
εX (left), x ≡ 1 −√

εX (right), X fixed as ε→ 0. (3.6)
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We take b1 to vary on the X-scale in the boundary layers, and on the longer,
x-scale in the mainstream. The key feature of the mainstream is that diffusion
can be ignored at leading order, since for functions here varying on the x-scale,

Hε = I +O(ε). (3.7)

Let us focus on the left-hand boundary layer with X = O(1), x ' −1 and
consider each term of (3.4) in turn. In the layer, we may approximate Hε(x, y)
from (2.14) by retaining only the terms p = 0,−1. We then compute, using
(2.7) and (2.16),

(Hε − I)b0(−1 +
√
εX) ' −2g0(X), (3.8)

where we define, for future use,

gn(s) =
∫ ∞

0
g(s+ t)tn dt (3.9)

with
g0(s) = 1

2
erfc(s/2). (3.10)

This yields the first term in (3.4) as

T ∗
1 b0(−1 +

√
εX) = −2αg0(αX), (3.11)

a source term that is localised on the X-scale, vanishing rapidly as X → ∞,
and which drives the boundary layer.

The second term in (3.4) in the boundary layer is

T ∗
ε b1(−1 +

√
εX) ' αHεb1(−1 +

√
εαX) + βb1(Υ). (3.12)

Here through the action of T ∗
ε we have picked up a contribution from x ' Υ in

the mainstream and we have also neglected diffusion there using (3.7). In the
boundary layer Hε can again be approximated by retaining terms p = 0,−1
in (2.14).

We have so far made no assumptions about the magnitude of b1 and λ1.
However below we shall find that b1 = O(1) in the boundary layer, being
forced by the term (3.11), but decays to take values of size b1 = O(

√
ε) in

the mainstream (see (3.16)). Also we shall find below that λ1 = O(
√
ε) (see

(3.22)). This means that in the boundary layer we can neglect λ1b0 in (3.4)
and βb1(Υ) in (3.12), and then (3.4) becomes the integral equation

−2αg0(αX) + α
∫ ∞

0
[g(αX − Y ) − g(αX + Y )]d(Y ) dY = λ0d(X), (3.13)

where we set
b1(−1 +

√
εX) = d(X). (3.14)
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Now to link this to the mainstream solution we need the far field X → ∞.
Here the source term (3.11) goes rapidly to zero, diffusion drops out and we
are left with

α
∫ ∞

0
g(αX − Y )d(Y ) dY ' αd(αX) = λ0d(X) (3.15)

as an approximation to (3.4) valid in an overlap region 1 � X � ε−1/2

between boundary layer and mainstream (see (3.17)). The solution is

d(X) = X−1f(logX), (f periodic, period logα), (3.16)

with λ0 = 1 substituted. For the right-hand boundary layer the theory goes
through identically with α replaced by β.

We now consider the solution in the mainstream, defined in (3.5), for which
(3.4) reduces at leading order to

T ∗b1 = λ0b1 + λ1b0. (3.17)

Here we have used (3.7) to replace T ∗
ε with T ∗. The form of (3.17) suggests

employing a solvability condition, multiplying by the adjoint eigenfunction a0

and integrating; however we cannot integrate all the way from −1 to 1, and
have to exclude boundary layers. Let µ be a parameter satisfying

√
ε� µ� 1

and consider

∫ 1−µ

−1+µ
a0(T

∗ − λ0)b1 dx = λ1

∫ 1−µ

−1+µ
a0b0 dx ' λ1(a0, b0) = λ1, (3.18)

using (2.8). However using the form of T ∗ in (2.6), we have

∫ 1−µ

−1+µ
a0T

∗b1 dx =

(

∫ Υ−αµ

−1+αµ
+
∫ 1−βµ

Υ+βµ

)

(Ta0)b1 dx. (3.19)

With Ta0 = λ0a0 and substituting into (3.18) we obtain

λ1 = λ0

[

∫ −1+µ

−1+αµ
+
∫ 1−βµ

1−µ
−
∫ Υ+βµ

Υ−αµ

]

a0b1 dx. (3.20)

Of course here a0 = 1/2 and λ0 = 1 so we just have integrals of b1 over short
segments to deal with. Given that b1 increases to O(1) as we approach the
boundary layers, but is only O(

√
ε) in the mainstream, the third integral may

be neglected. The contribution from the left-hand boundary layer arises from
the first integral, which amounts to

λ1L ≡ 1
2

∫ −1+µ

−1+αµ
b1 dx = 1

2

√
ε
∫ Y

αY
d(X) dX (3.21)
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Fig. 10. Solution to boundary layer integral equation (3.13), showing (a) d(X)
against X, and (b) Xd(X) against log X.

with Y = µ/
√
ε � 1 and using (3.14). So finally we obtain the eigenvalue

correction, including the right-hand boundary layer, as

λ1 = (C0(α) + C0(β))
√
ε, (3.22)

where the constant C0 is extracted from the solution of the integral equation
(3.13) and is given by

C0(α) = 1
2

∫ Y

αY
d(X) dX = 1

2

∫ Y

αY
X−1f(logX) dX. (3.23)

This is independent of the choice of Y � 1 from (3.16). The interpretation
here is that the integral from αY to Y is a measure of how much scalar is
being pumped from the mainstream into the boundary layer and lost to the
system.

This appears to be as far as one can go analytically. A code was therefore
written to solve the boundary layer integral equation (3.13) and obtain the
function d(X). The code followed d(X) on a grid, and simply iterated the
left-hand side of the integral equation, leading to speedy convergence of d(X).
For α = 0.3, the solution d(X) obtained is shown in figure 10(a), plotted
against X. To confirm that it has the correct large-X behaviour (3.16), in (b)
Xd(X) = f(logX) is plotted against logX. Clearly visible are oscillations of
period logα ' −1.2.

From the boundary layer solution for a given α, the constant C0(α) may be
extracted by the numerical integration (3.23) of the far field. Adding C0(α)
and C0(β) gives the contribution from the two boundary layers to the scaling
law (2.20). Figure 11(a) shows C0(α) + C0(β) obtained from the boundary
layer calculation, plotted against α. For comparison, the quantity ε−1/2(λ−1)
is computed for the upper branches in figure 2(a,b,c), and this is plotted for
ε = 10−3 (dot), ε = 10−4 (dash) and ε = 10−5 (dot–dash). These curves
converge nicely on the correct theoretical curve as ε is reduced, confirming the
theory.
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Fig. 11. Comparison of boundary layer calculation. (a) C0(α) + C0(β) is plotted
against α for 0.06 ≤ α ≤ 0.94 (solid). Also ε−1/2(λ − 1) is plotted for ε = 10−3

(dot), 10−4 (dash) and 10−5 (dot–dash) with the (Z) boundary condition. (b) C0(α)
against α for 0.06 ≤ α ≤ 0.94 (solid); other curves are as in (a) but for the (ZF)
boundary condition.

The quantity C0(α) + C0(β) is quite flat as a function of α, and so for a fur-
ther test of the theory, we consider the (ZF) boundary condition, for which
the eigenvalue is given by (2.22); the right-hand, no-flux boundary gives a sub-
dominant effect. Figure 11(b) shows C0(α) plotted against α, and the curves
ε−1/2(λ−1) with data taken from the upper branches of figure 6(a,b,c). Again
the collapse onto the theoretical curve is very clear.

4 Eigenvalues and eigenfunctions without diffusion

The analysis of the scalar decay in the last section was based on the constant
scalar mode (2.7). As this is the only obvious eigenmode pair we have of T and
T ∗, we need to develop further machinery to study decay of fluctuations under
the no-flux boundary condition and to develop a family of ‘strange eigenfunc-
tions’. This involves us with the spectral theory of linear operators [9,10,18,21];
we relegate some technicalities to appendix B, and give an overview in this
section.

First suppose that diffusion is non-zero, ε > 0; then Tε is a compact operator
in L2 and so Tε and T ∗

ε have only point spectrum σp, accumulating nowhere
except perhaps at zero. For each eigenvalue λ in the point spectrum there is
an eigenfunction of Tε and one of T ∗

ε . The eigenvalues are shown schematically
in figure 12(a,b) as points marked by + or +× in the complex plane. In fact
the spectrum depicted schematically is similar to that in figure 4 for the (F)
boundary condition, with two leading real eigenvalues (+×) and some complex
conjugate pairs (+).

Now suppose we turn off diffusion and consider the operators T and T ∗ in
L2. These operators lose the key property of compactness (which arises be-
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Fig. 12. Schematic picture showing the spectra of various operators in the complex
plane for a given value of α: (a) Tε and (b) T ∗

ε in L2 for a small value of ε, (c) T

and (d) T ∗ in L2, and (e) T in B and (f) T ∗ in B∗. σp denotes point spectrum, σr

residual spectrum, and σc continuous spectrum.

cause of the effect of diffusion in suppressing small scales for ε > 0), and the
corresponding spectra change discontinuously. Appendix B gives the details,
which are also summarised in figure 12(c,d). Here we focus only on the point
spectrum of T and T ∗, that is eigenvalues with corresponding eigenfunctions
in L2.

We have the constant scalar mode (2.7) with λ = 1 as an eigenvalue of T and
T ∗; otherwise T has no eigenvalues at all. Perhaps more surprisingly, for T ∗

every λ with |λ| < 1 is also an eigenvalue. Corresponding eigenfunctions are
written down more-or-less explicitly in appendix B; while they lie in L2, they
have structure on every scale and are generally not infinitely differentiable.
Our aim is to understand the diffusionless limit of Tε and T ∗

ε and so this large
family of eigenfunctions of T ∗ is not particularly helpful, as members will not
generally be robust to diffusion.

However, amongst this large collection of eigenfunctions of T ∗ are some which
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Fig. 13. Eigenvalues λ(n) of T or T ∗ as a function of α.

Fig. 14. Leading four eigenfunctions b(n) of T ∗ for α = 0.3 and zero diffusion; in
(a,b,c,d) n = 0, 1, 2, 3.

are perfectly well-behaved. Plainly there is a collection of eigenvalues of T ∗

λ(n) = αn+1 + βn+1 (n ≥ 0), (4.1)

for which the eigenfunction is simply an nth order polynomial b(n), with

b(0) = 1, b(1) = x, b(2) = x2 + 2Υx− 1
3
; (4.2)

see [10]. Figure 13 shows the eigenvalues λ(n) as a function of α, and figure
14 shows the leading four eigenfunctions for α = 0.3. These eigenvalues and
eigenfunctions of T ∗ will be used to understand the diffusionless limit of Tε.
Indeed the first non-trivial branch, λ(1) in (4.1) is responsible for the decay of
fluctuations in the case of the no-flux boundary condition; see (2.21). These
eigenvalues (4.1) are also known as Ruelle–Pollicott resonances [20,29,32] and
may be obtained using methods based on periodic orbit sums [4,5,33].

While we have these eigenfunctions (4.2) of T ∗, to apply perturbation theory
we will need to impose solvability conditions, which will mean that we need
to have corresponding ‘eigenfunctions’ of T . This raises issues as these take
the form of distributions or ‘strange eigenfunctions’, lying outside L2, and to
handle this we need a change of viewpoint. We follow [18,33] closely, and these
papers should be consulted for further information. The study [20] has a similar
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approach and gives the example of a baker’s map with even stretching, α =
β = 1/2. We fix any real constant r > 1 and consider the space B∗ of complex
functions b(z) analytic in the open disc D = {z : |z| < r} and continuous in
the closed disc D, under the supremum norm, ‖c‖ = supz∈D |c(z)|. This space
is a subspace of L2 and we may restrict 1 the adjoint operator T ∗ to B∗, calling
this restriction T ∗. This operator is given by the original formula (2.6), that
is,

T ∗b(z) = αb(αz − β) + βb(βz + α), (4.3)

but has different properties from T ∗ as it acts in a different space. In partic-
ular T ∗ is ‘analyticity improving’: given b ∈ B∗, the left-hand term of T ∗b is
analytic in the disc |z − β/α| < r/α and right-hand term in |z + α/β| < r/β.
This implies that T ∗b is analytic in the disc

|z| < min((α−1(r − β), β−1(r − α)) ⊃ D. (4.4)

Because of the analyticity improving property of T ∗, any eigenfunction b with
non-zero eigenvalue λ is an entire function, as is easily deduced by writing
b = λ−1T ∗b and applying (4.4) repeatedly.

This analyticity improving property also implies that T ∗ is a compact operator
from B∗ to itself, and so has point spectrum only, as depicted in figure 12(f).
A function b ∈ B∗ may be expanded as a power series

b(z) =
∞
∑

n=0

bnz
n. (4.5)

The operator T ∗ can be considered as a map of coefficients bn in the above
power series, and truncating the power series gives a finite matrix with el-
ements (4.9) below, whose eigenvalues may be found numerically. This was
done numerically yielding figure 13, which consists of precisely the branches
λ(n) in (4.1).

In this way, restricting from L2 to B∗ and considering T ∗ rather than T ∗, we
obtain a sensible family of eigenfunctions with smoothness properties likely
to be useful in considering the limit of weak diffusion. We now consider the
adjoint space B of bounded linear functionals 2 acting on B∗. One convenient
way to define B is to consider a function taking the form

a(z) =
∞
∑

n=0

anz
−n−1 (4.6)

1 In [18] this restriction was called S and the space B∗ was called B.
2 Strictly this space should be denoted B∗∗ as the adjoint to B∗. Our notation is a
little informal so as to be intuitive for the reader.
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whose action on a function b ∈ B∗ is given by

〈a, b〉 =
1

2πi

∮

∂D
a(z)b(z) dz =

∞
∑

n=0

anbn. (4.7)

So bases of B and B∗ are given, respectively, by

en = rnz−n−1, e∗n = znr−n, 〈em, e
∗
n〉 = δmn, (4.8)

and the matrix elements of T ∗ using these bases are

T ∗
mn ≡ 〈em, T ∗e∗n〉 =

n!

m!(n−m)!
rm−n (αm+1(−β)n−m + βm+1αn−m) (4.9)

for m ≤ n, or zero otherwise.

For a ∈ B to be a bounded linear functional it must have bounded values
when it acts on the basis {e∗n}, and from this the coefficients an in (4.6) must
satisfy that an/r

n is bounded. We conclude that an = O(rn) and so in (4.6)
a(z) must be analytic in the open complement C \ D of the disc D.

Given this framework we can compute the adjoint operator T of T ∗ via con-
sidering

〈a, T ∗b〉 =
1

2πi

∮

∂D
a(z)[αb(αz − β) + βb(βz + α)] dz. (4.10)

A change of variable in each term gives

〈a, T ∗b〉 =
1

2πi

∮

∂D
a(α−1(z+β))b(z) dz+

1

2πi

∮

∂D
a(β−1(z−α))b(z) dz, (4.11)

where we have used the analyticity of b in D and of a in C \ D to distort the
contours resulting from the change of variables back to ∂D in each case. From
this form we extract the adjoint operator to T ∗:

T a(z) = a(α−1(z + β)) + a(β−1(z − α)). (4.12)

Since T ∗ is a compact operator, so is T , and they share the same eigenvalue
spectrum, as depicted schematically in figure 12(e,f). We need to know about
the corresponding eigenfunctions in order to employ solvability conditions, as
we did in section 3. Now just as T ∗ is analyticity improving, so is T : given
a function a in B and so analytic in |z| > r, we have that T a is analytic
in the larger region defined by |z + β| > αr and |z − α| > βr. As T is
iterated the region of analyticity grows, and tends to C\ [−1, 1], that is all the
complex plane except the real line-segment [−1, 1]. If a is an eigenfunction of
T with non-zero eigenvalue λ, it then follows that a is analytic in C \ [−1, 1],
which makes a a hyperfunction supported on [−1, 1]; see the book [35] for
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formal definitions and further information. Thus we have identified our strange
eigenfunctions as lying in this space of hyperfunctions, which is ‘larger’ than
L2 and includes distributions, as we will explain below.

By substituting the power series (4.6) into (4.12) we can compute the first
few terms of the eigenfunctions of T corresponding to the eigenvalues λ(n) in
(4.1),

a(0) = z−1 + 1
3
z−3 + · · · , (4.13)

a(1) = z−2 − 2Υz−3 + · · · . (4.14)

There is no obstacle to computing these eigenfunctions numerically as left
eigenvectors of the matrix for T ∗ in (4.9). Generally the nth eigenfunction is
a power series in z−1 starting with the term z−n−1,

a(n) = z−n−1 − (n+ 1)
αn − βn

αn + βn
z−n−2 + · · · . (4.15)

Given any power series a(z) in (4.6) with this property that a0 = a1 = · · · =
an−1 = 0, T a has the same property and this gives a convenient means of
specifying the above eigenfunctions as a limit

a(n) = lim
m→∞

λ−m
(n) T mz−n−1. (4.16)

It may be checked that, with this definition

〈a(m), b(n)〉 = δmn. (4.17)

Explicitly we have a formula

a(0) = 1
2
log[(z + 1)/(z − 1)], (4.18)

as is easily confirmed. For α = β = 1
2

only the remaining eigenfunctions are
simply derivatives of this, up to normalisation,

2na(n) = (z − 1)−n − (z + 1)−n (n ≥ 1). (4.19)

Finally, just as we restricted T ∗ to B∗ ⊂ L2 to obtain T ∗, with pleasanter
properties, it is worth relating B to L2 and T to T . To do this we first note
that given any function a in L2 we can define a hyperfunction Fa by

Fa(z) =
∫ 1

−1

a(x)

z − x
dx; (4.20)

here the information in a(x) is coded into the lack of analyticity of Fa along
the line segment [−1, 1]. With this definition it is clear that for a ∈ L2, and
b ∈ B∗ ⊂ L2

T Fa = FTa, 〈Fa, b〉 = (a, b), (4.21)
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the latter being just the L2 inner product (2.4). As an example of this, we can
see that the leading eigenfunction (4.18) of T is just the constant scalar mode
(2.7) mapped into B by means of (4.20).

In this way we can consider members of L2 as being naturally embedded
as hyperfunctions, lying in B, and then the actions of T in B and T in L2

correspond; indeed this is suggested by the close similarity of (2.3) and (4.12).
However the space B is rather larger than L2, and includes distributions on
[−1, 1] [35]. So, for example, a delta function distribution at y ∈ [−1, 1] is
given by

a(x) = δ(x− y), Fa(z) = (z − y)−1, (4.22)

and for the nth derivative of a delta function,

a(x) = (−1)n d
nδ

dxn
(x− y), Fa(z) = n! (z − y)−n−1. (4.23)

Thus in the special case α = β = 1
2

the eigenfunctions (4.19) correspond to
distributions,

a(n) =
(−1)n−1

2n!

(

dn−1δ

dxn−1
(x− 1) − dn−1δ

dxn−1
(x + 1)

)

(n ≥ 1), (4.24)

localised at each endpoint. Similar results apply in the dynamo problem; see
§9.5.2 of [10], [30,18].

This also means we can understand an eigenfunction a(n) (4.16) in the sense of
a distribution. For a given m the quantity λ−m

(n) T mz−n−1 is a complex function
with 2m poles of order n+ 1, with certain weights attached. Each pole lies on
[−1, 1] and corresponds to the nth derivative of a delta function. To formalise
this, define sets Wm for m ≥ 0 of pairs (y, w) of points y and weights w
recursively, by W0 = {(0, 1)} and

Wm = {(αy − β, αn+1λ−1
(n)w), (βy + α, βn+1λ−1

(n)w) : (y, w) ∈ Wm−1}. (4.25)

With this we can rewrite the eigenfunction a(n) using the form (4.16) as a
limiting sum of nth derivative delta functions

a(n)(x) = lim
m→∞

∑

(y,w)∈Wm

(−1)n w

n!

dnδ

dxn
(x− y). (4.26)

Its action on a function b ∈ B∗ is given by

(a(n), b) = 〈Fa(n), b〉 = lim
m→∞

∑

(y,w)∈Wm

w

n!

dnb

dxn
(y). (4.27)

In the case when n = 0, this in fact corresponds to integrating b(x) multiplied
by 1

2
over the line segment [−1, 1], in keeping with (2.7) or (4.18). For n ≥ 1
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there is no obvious interpretation, except in the special case α = β = 1/2,
when all the weights w are equal and points y equally spaced, giving

(a(n), b) =
1

2n!

∫ 1

−1

dnb

dxn
dx, (4.28)

in agreement with (4.24); see §9.5.2 of [10].

In conclusion, we find that the theory developed in this section has led us to
a nicely symmetrical situation. Referring to figure 12, on the right-hand side
restricting our space from (d) L2 to (f) B∗ allows us to select key well-behaved
eigenfunctions of T ∗ that may be relevant when we introduce diffusion. On the
left-hand side, expanding our space from (c) L2 to (e) B, means that instead
of having no eigenfunctions bar (2.7) in L2, we have a set of well-defined
(strange) eigenfunctions, now taking the form of distributions, lying in B but
not corresponding to functions in L2.

5 Scalar decay with the no-flux boundary condition

We now return to the problem of scalar decay with weak diffusion, focussing
particularly on the no-flux boundary condition. The key result we need from
the last section is the identification of the set of eigenvalues (4.1) with well-
behaved eigenfunctions (4.2) of T ∗ and the set of distributional eigenfunctions
(4.26) of T , all for zero diffusion.

These eigenvalues of T and T ∗ are depicted schematically in figure 12(e,f); in
some cases these diffusionless eigenvalues may be close to eigenvalues in the
spectrum of Tε and T ∗

ε for small diffusion ε, shown in 12(a,b). In other cases
there may be no link. Some terminology (broadly in line with [10]) may be
helpful:

(i) A perfect mode is an eigenfunction pair of T and T ∗ with eigenvalue
λ 6= 0 (shown as × or +× in figure 12(e,f)).

(ii) We call such a perfect mode robust to diffusion (+× in 12(e,f)) if there is
an eigenvalue λε of Tε and T ∗

ε with λε → λ as ε→ 0. The corresponding
limiting eigenfunction pair of Tε and T ∗

ε is called non-diffusive (+× in
12(a,b)).

(iii) A perfect mode which is not robust is called delicate, being entirely de-
stroyed by diffusion, no matter how weak (× in 12(e,f)).

(iv) A mode of Tε that fails to be non-diffusive is called diffusive; it owes its
existence entirely to diffusion and does not have a perfect mode counter-
part (+ in 12(a,b))

The idea is that for a robust perfect mode, weak diffusion gives only a small
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perturbation, and links the perfect mode to a non-diffusive mode of Tε and
T ∗

ε for small ε. This terminology is plainly somewhat informal, as it does not
consider ways in which eigenvalues might accumulate in the limit ε→ 0 (and
such accumulation is visible in the lower branches of figures 2, 4, 6 and 8). Also
we should note that the above properties depend on the boundary condition
employed, and the value of α. For example, in figure 13 the leading perfect
branch λ(0) = 1 is robust for all boundary conditions, whereas the next perfect
branch λ(1) = α2 + β2 is robust for the (F) boundary condition, and for the
(ZF) boundary condition for α < 1/2 but delicate otherwise (see figures 2, 4,
6 and 8).

In this section we have two aims: the first is to obtain criteria for when a
perfect mode will be robust or be delicate. If such a mode has eigenvalue λ
for a given value of α and β = 1−α, we will establish that the mode is robust
provided

λ0 > max(α, β) (Z) or (P), (5.1)

λ0 > max(α2, β2) (F), (5.2)

λ0 > max(α, β2) (ZF). (5.3)

These criteria are in good accord with the numerical results of section 2,
comparing with the perfect modes of figure 13.

Our second aim is to establish the decay rate formula (2.21) for the no-flux
boundary condition in the limit of weak diffusion. We will take a pragmatic
approach, dropping the distinction between T and T , T ∗ and T ∗, and not
be too concerned about the space in which we are working. In particular
whereas the distributional eigenfunctions (4.26) were defined with reference
to their action on analytic functions (in B∗), we will apply these distributions
to functions whose analyticity properties are unknown. This is justified on the
basis that we will obtain formulae that we can confirm numerically.

Our general approach is to follow through the approximations in section 3,
equations (3.1)–(3.3), but instead of using the constant scalar mode (2.7), we
set λ0 = λ(1), b0 = b(1) and a0 = a(1), given in (4.1), (4.2) and (4.26), with
(4.17) holding. This starting point is motivated by the similarity of figures
5(c) and 14(b). The approximate eigenvalue equation remains (3.4). In the
left-hand boundary layer the source term becomes

T ∗
1 b0(−1 +

√
εX) = 2

√
εαg1(αX), (5.4)

in place of (3.11), with

g1(s) = −sg0(s) + 2g(s), g′1(s) = −g0(s) (5.5)

(see (3.9)). The boundary layer is now weaker, of magnitude ε1/2 and instead
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Fig. 15. Solution to boundary layer integral equation (5.7), showing (a) d(X) against
X, and (b) d(X) against log X.

of (3.14) we set
b1(−1 +

√
εX) =

√
εd(X) (5.6)

in the boundary layer, giving an integral equation

2αg1(αX) + α
∫ ∞

0
[g(αX − Y ) + g(αX + Y )]d(Y ) dY + 2C1 = λ0d(X), (5.7)

in place of (3.13), with

2
√
εC1 = βb1(Υ) − λ1b0(−1). (5.8)

Here we have made no assumptions about the size of b1 or λ1 and so have
retained terms βb1(Υ) (see (3.12)) and λ1b0 (see (3.4)).

5.1 Even stretching

We begin with the case α = β = 1/2, of even stretching. By symmetry the
solution for b1 must be an odd function of x and so b1(Υ) = b1(0) = 0 drops
out of (5.8). However it turns out that we cannot drop the term in (5.8)
involving λ1. Instead we need to retain C1 in (5.7) since this integral equation
is degenerate for α = λ0 = 1

2
: given a solution for d, adding a constant to d gives

another solution. Together with this goes a solvability condition: numerically
it is found that a solution only exists when C1 takes a certain value and this
fixes the correction λ1, with

λ1 = 2C1(α)εq(α), C1(α) ' −0.16287, q(α) = 1/2 (α = 1/2), (5.9)

which is of the form (2.21), mentioned at the outset. The resulting boundary
layer has a logarithmic tail

d(X) = −4C1 logX/ logα + f(logX), (f periodic, period logα), (5.10)

as is seen in figure 15. Confirmation of the results in (5.9) is given below in
figure 17(a).
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Fig. 16. Solution to boundary layer integral equation (5.12), showing X 2qd′(X)
against log X for (a) α = 0.3 and (b) α = 0.7.

5.2 Uneven stretching

For the case α 6= β a change of tack is worthwhile. The calculations will use
a solvability condition as we did in section 3 for the (Z) boundary condition.
This will involve integrating b1 against the distribution a0 = a(1) defined in
(4.26). To do this integration, however, we do not need to know b1 itself, but
only its derivative b′1. For this reason (and others) it is best to work with b′1
directly.

Therefore, suppose we have an eigenvalue and eigenfunction, T ∗
ε b ≡ T ∗Hεb =

λb with the no-flux boundary condition incorporated in Hε (lower sign in
(2.14)). Then b′ satisfies T ′∗

ε b
′ ≡ T ′∗Hεb

′ = λb′, where

T ′∗b′(x) = α2b′(αx− β) + β2b′(βx+ α), (5.11)

and where now the zero boundary condition (upper sign in (2.14)) is employed
in the definition of Hε. This reformulation is exact, and has the advantage that
we eliminate the constant scalar mode (2.7) from consideration. 3

We can now go through the calculations analogous to (3.4)–(3.13), with dashes
everywhere, to obtain the integral equation,

−2α2g0(αX) + α2
∫ ∞

0
[g(αX − Y ) − g(αX + Y )]d′(Y ) dY = λ0d

′(X), (5.12)

where

b′1(−1 +
√
εX) = d′(X). (5.13)

Of course this integral equation is simply the derivative of (5.7). It is based on
the assumptions that b′1 decays from the boundary layer into the mainstream,

3 Note that in L2 in this case, ‖T ′∗‖ = α2 +β2 and ‖Hε‖ = e−επ2/4, and so this also
gives a rigorous upper bound on the decay of fluctuations, |λ| ≤ e−επ2/4(α2 + β2).
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and that λ1 → 0 as ε→ 0, which we will verify below. In the far field

d′(X) = X−2qf(logX), 2q(α) ≡ 2 − log λ0

logα
, (f periodic, period logα).

(5.14)
Note that q is real (contrast the case in section 7 below) and that it is positive,
under the conditions for robustness we stated above in (5.2). The boundary
layer equation (5.12) was solved numerically on a grid by simply iterating
the left-hand side, and the results are shown in figure 16, which confirms this
large-X behaviour.

Now we need to link the boundary layer to the mainstream in the overlap
region 1 � X � ε−1/2. If we follow the argument in section 3 from (3.17) to
(3.20) using undashed variables we obtain as the analogue of (3.21),

λ1L = λ0

∫ −1+µ

−1+αµ
a0b1 dx (5.15)

for the contribution from the left-hand boundary layer. The problem is that
a0 is the distribution (4.26) with n = 1. To manipulate this into a useful form
we first set, without loss of generality, µ = 2αp, so that the interval is over the
range [−1 + 2αp+1,−1 + 2αp], in the overlap region.

Next we use the property that a0 is an eigenfunction of T , in the sense of a
distribution satisfying Ta0 = λ0a0. For x in the range −1 ≤ x ≤ Υ this gives
that

a0(x) = λ−1
0 a0(α

−1(x + β)). (5.16)

If we substitute this into (5.15) and change variable from x to α−1(x+β) this
gives

λ1L = λ0
α

λ0

∫ −1+2αp−1

−1+2αp
a0(x)b1(α(x + 1) − 1) dx. (5.17)

If this process is repeated a total of p times we end up with

λ1L = λ0
αp

λp
0

∫ 1

Υ
a0(x)b1(α

p(x + 1) − 1) dx. (5.18)

Setting for the moment ã0 as the integral of a0 = a(1) in (4.26), that is

ã0(x) = lim
m→∞

∑

(y,w)∈Wm

−w δ(x− y), (5.19)

and using (5.13) allows us to rewrite this as

λ1L = λ0
α2p

λp
0

∫ 1

Υ
−ã0(x)d

′(αp(x+ 1)/
√
ε) dx. (5.20)

Finally substituting in for the far field of d′(X) from (5.14) and using the
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Fig. 17. Comparison of boundary layer theory and numerical simulations for the (F)
boundary condition; plotted is log10 |λ − λ0| against log10 ε (solid). Also shown are
the asymptotic contributions from left- (see (5.21)) and right-hand boundary layers
(dotted) and their sum (dashed). In (a) α = 0.5, (b) α = 0.3, and (c) α = 0.1.

Fig. 18. (a) The exponent q(α) is plotted against α. (b) Plot against α of the
maximum and minimum values of C1(α, ε) for varying ε.

definition of q yields the left-hand contribution as

λ1L = C1(α, ε)ε
q(α), (5.21)

with

C1(α, ε) = λ0

∫ 1

Υ
−ã0(x)(x + 1)−2qf(log(x+ 1) − 1

2
log ε) dx, (5.22)

that is,

C1(α, ε) ≡ λ0 lim
m→∞

∑

(y,w)∈Wm,y>Υ

w (y + 1)−2qf(log(y + 1) − 1
2
log ε). (5.23)

Combining the right-hand boundary layer gives us (2.21) and we have iden-
tified the exponents q in (5.14). The ‘constant’ C1 has period logα in the
variable 1

2
log ε.

To confirm our theory, for a given α we compute the solution to the integral
equation (5.12). Using data for large X, we can then compute C1(α, ε) for a
given value of ε by evaluating the sum (5.23) for a reasonable value of m (say
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up to m = 20). This gives the contribution from the left-hand boundary layer,
and with a similar contribution from the right-hand boundary layer we obtain
our asymptotic approximation; this is shown as dashed curves in figure 17,
with the full numerical results shown solid. The results for α = β = 0.5 in (a)
correspond to those found earlier in (5.9). For α = 0.3, β = 0.7 in (b), the right-
hand boundary layer gives the dominant contribution, and clear convergence
of the numerical results is seen as ε → 0. In (c) for α = 0.1 and β = 0.9
convergence is much slower, but this is unsurprising given the shallowness of
the power law dependence generated by the right-hand boundary layer.

Figure 18 shows q(α) and the maximum and minimum values of C1 (for varying
diffusivity ε), plotted against α. Note that C1(α, ε) is in fact constant as a
function of ε for α ≥ 1/2, as far as we can tell numerically; we have no
particular theoretical reason why this should be the case (except when α = β =
1/2 in section 5.1 above). Since for α < β, say, the right-hand boundary layer
dominates, and is controlled by q(β) and the constant C1(β, ε), oscillations in
C1 are never really visible in the total correction λ1. This may be contrasted
with the situation for the stretch–fold map in section 7 below.

We also obtain from our analysis straightforward criteria for the robustness
of perfect branches (recalling the definitions at the beginning of this section).
For the above perturbation theory to make sense we require q > 0, otherwise
the ‘correction’ (5.21) diverges as ε → 0, and we conclude that diffusion is
sufficiently strong that the boundary layers overwhelm the perfect branch.
This gives the criterion in (5.2). This is for the (F) boundary condition, where
boundary layers of magnitude O(

√
ε) are triggered, from (5.4). For the case of

a (Z) or (P) boundary condition the layers are of magnitude O(1) from (3.11),
and so the corresponding value of q(α) is given by 2q = 1 − log λ0/ logα.
Requiring q > 0 for left- and right-hand boundary layers gives the criteria
(5.1) and (5.3) for robustness.

6 Scalar decay with the periodic boundary condition

The case of the periodic boundary condition (P) has some distinct features
from the (Z) and (F) cases considered above. First of all there is no obvious
link between the branches of Tε depicted in figure 8 and the perfect modes
of T shown in figure 13. Except for the branch with λ = 1, the branches of
Tε therefore count as diffusive modes, in the terminology of section 5, that
decay more slowly than the non-constant perfect modes. The eigenvalues of
Tε also come in complex conjugate pairs, and appear to accumulate on the
curve |λ| = max(α, β) as ε→ 0. However they converge rather slowly with ε,
suggesting that powers of log ε−1 are involved [14,37].
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Our aim is to understand these features and provide analysis for small ε. To
begin with note that the adjoint eigenfunctions for α = 0.3, with diffusion,
in figure 9(c,d), show smooth behaviour in the mainstream, but then some
rapid variation in the boundary layers, especially the right-hand one, x ' 1.
This indicates that the mode is likely to be ‘driven’ by the boundary layers,
and we should seek a solution in which these ‘control’ the mainstream (in
contrast to the (Z) and (F) cases, where a perfect mode, if robust, exists in
the mainstream and drives the boundary layers).

Suppose we have an eigenfunction, T ∗
ε b = λb. Then a key quantity we will

need is

∆ = b(1) − b(−1). (6.1)

The quantity −∆ is the jump in b at the ends of the interval if we imagine b to
be periodically extended in space. Assuming ∆ 6= 0, we are free to normalise
an eigenfunction so that ∆ = 1. Imagine taking such an eigenfunction and
apply Hε: this will smooth out the jump in a boundary layer of scale

√
ε

with negative gradients of magnitude ε−1/2. Applying T ∗ again to give λb will
generate a new jump, of size −λ∆. It is this continual creation of fine scales
at the boundaries that enables a slowly-decaying eigenfunction to ‘live’ there,
and control the mainstream.

In terms of analysis it is convenient to work with the derivative b′(x) of our
eigenfunction (for −1 < x < 1). Differentiating T ∗Hεb = λb and using ∆ = 1
gives

T ′∗Hεb
′(x) − [α2Gε(α(x+ 1)) + β2Gε(β(x− 1))] = λb′(x). (6.2)

Here T ′∗ is given in (5.11) and there is no approximation beyond taking ε small
so that we neglect terms in (2.15) that give only exponentially small effects.
The terms involving Gε arise from diffusion acting on the jump −∆ = −1.
This equation is to be solved for b′(x) subject to the integral constraint

∆ ≡
∫ 1

−1
b′(x) dx = 1. (6.3)

Again we consider a boundary layer problem; define d′(X) by

b′(−1 +
√
εX) = ε−1/2d′(X) (X > 0), (6.4)

b′(1 +
√
εX) = ε−1/2d′(X) (X < 0) (6.5)

in the left- (L) and right-hand (R) boundary layers respectively, and then (6.2)
becomes

α2
∫ ∞

−∞
g(αX − Y )d′(Y ) dY − α2g(αX) = λd′(X) (X > 0),

β2
∫ ∞

−∞
g(βX − Y )d′(Y ) dY − β2g(βX) = λd′(X) (X < 0). (6.6)
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Here we have neglected a term involving b′(Υ) since b′ is weaker in the main-
stream than in the boundary layers, as we shall see.

The far field behaviour of the solution to this integral equation is given by

d′(X) = X−2qLfL, 2qL ≡ 2 − logλ

logα
, (X > 0, X � 1), (6.7)

d′(X) = (−X)−2qRfR, 2qR ≡ 2 − logλ

log β
, (X < 0, X � 1). (6.8)

Here fL and fR are, generally, functions of logX with periods logα and log β,
respectively.

These decaying tails will drive a solution in the mainstream. It is convenient
to take α < β (without loss of generality, as if α = β = 1/2 we know that
super-exponential decay occurs). In this case the right-hand boundary layer
given by d′(X) for X < 0, decays most slowly into the mainstream, and so
is dominant. Also we find numerically that fR is actually constant when the
integral equation (6.6) is solved, and so will drop any dependence of fR on
logX (see figure 20 below). In the mainstream we set

b′(x) ≡ εqR−1/2fRb
′
ms(x), (6.9)

where
T ′∗b′ms = λb′ms (6.10)

at leading order. This must match onto the far field of the right-hand boundary
layer,

b′ms ∼ b′sing(x), b′sing(x) ≡ (1 − x)−2qR, (6.11)

as x→ 1.

Interestingly we can now see why eigenvalues λ will be complex in this periodic
case. Suppose λ is real and positive, and imagine solving the integral equation
(6.6) by iteration of the left-hand side. Since the source terms involving g are
wholly negative, the solution d′(X) that is developed will also be negative
everywhere. The far field tails that arise from the stretching action of T ′∗

will also be negative with fL, fR < 0. These then must drive a mainstream
solution which is again everywhere negative, as in the mainstream the action
of T ′∗ is of stretching out and averaging. The result will be that b′(x) will
be negative across the whole interval, and it is then impossible to satisfy
(6.3). The conclusion is that λ real and positive is impossible, and λ must be
complex or negative. In either case the decay of the passive scalar with the
(P) boundary condition would be oscillatory as seen.

Now let us consider how this problem can be avoided. If λ is, say, negative,
then there will be an oscillations, with complex qL, qR in (6.7), (6.8) (cf. section
7.2 below) and this would make it easier to satisfy ∆ = 1. However this will
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Fig. 19. (a–d) show the leading non-constant eigenmodes b of T ∗
ε for the (P) bound-

ary condition with ε = 10−5 and α = 0.3, normalised by ∆ = 1. (e–h) show the
corresponding derivatives b′.

also imply stronger diffusive damping in the boundary layer and reduce λ.
The best way in which ∆ = 1 can be satisfied for the least diffusive penalty
is to put λ close to the real line, but just far enough off it that the oscillation
in the exponent εqR−1/2 in the tail (6.8) allows a change of sign of b′ in the
mainstream. For this effect to give a contribution of order unity to ∆, (and not
too large) we require that Re qR ∼ 1/2 as ε → 0. Also, for εqR−1/2 to change
sign, we require the imaginary part of qR to be of order n(log ε−1)−1, where n
counts the number of sign changes. Thus we obtain a very basic estimate

λ = β + o(ε), qR = 1
2

+ o(ε), (6.12)

or more precisely we might expect

λ = β +O(in(log ε−1)−1), qR = 1
2

+O(in(log ε−1)−1). (6.13)

This argument, although somewhat informal, gives much of what we see nu-
merically in figure 8, in particular the slow convergence to λ = β, the complex
eigenvalues, and the slow accumulation of branches.

We will flesh out this argument in what follows, but to confirm that it is
broadly correct, figure 19(a–d) shows eigenmodes b(x) (one per complex pair
of eigenvalues), normalised by ∆ = 1, and (e–h) shows their derivatives b′(x).
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Fig. 20. Solution to boundary layer integral equation (6.6), showing (a) d ′(X) against
X, (b) X2qLd′(X) against log X, and (b) X2qRd′(−X) against log X.

We see clearly that the nth eigenfunction has n peaks in b′ corresponding to
increasing numbers of changes of sign, going in to the mainstream from the
right-hand boundary layer.

Returning to the mainstream, we require a solution of (6.10) with (6.11) hold-
ing. Now if we apply λ−1T ′∗ to b′sing we obtain the same singular solution at
x = 1, and another term which is regular in [−1, 1],

λ−1T ′∗b′sing = b′sing + λ−1α2−2qR(α−1(1 + β) − x)−2qR. (6.14)

The second term is bounded in [−1, 1] only having a singularity further along
the real line. If we iterate this process, we can write down the mainstream
solution as a limit

b′ms = lim
n→∞

λ−n(T ′∗)nb′sing ≡ b′sing + b′conv, (6.15)

where b′conv is well-behaved in [−1, 1] and is given by the sum

b′conv =
∑

(y,w)∈V∞,y 6=1

w(y − x)−2qR, (6.16)

which is geometrically convergent for small ε given (6.12) and α < β. Here we
have defined points and weights (y, w) recursively, by V0 = {(1, 1)},

Vm = {(α−1(y + β), α2−2qRλ−1w), (β−1(y − α), β2−2qRλ−1w) : (y, w) ∈ Vm−1},
(6.17)

and we set V∞ = V0 ∪ V1 ∪ V2 ∪ · · · . Clearly this is not a very explicit form
for the mainstream solution, but it does converge and could be manipulated
numerically.

We have completed our asymptotic description of the solution in the main-
stream and in the boundary layers. We now need to satisfy the integral
constraint (6.3), i.e., ∆ = 1. To do this we first fix a parameter µ with√
ε � µ � 1. In the boundary layer we use the leading order approxima-

tion λ ' β and qR ' 1/2. We can then solve the integral equation (6.6)
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numerically for these values, and the solution depicted in figure 20 confirms
the scaling behaviours in (6.7) and (6.8) above. We now extract from (6.8)
that

∫ 1

1−µ
b′(x) dx =

∫ 0

−µε−1/2

d′(X) dX = CR + fR log(µε−1/2), (6.18)

where the constants CR < 0 and fR < 0 can be obtained numerically, and
depend on the value of α, but not on ε.

Now in the mainstream region we set

qR = 1/2 + δq, λ = β + δλ, δλ ' (−2β log β)δq, δq, δλ = o(ε), (6.19)

and retain leading effects in δq, δλ. We may evaluate

∫ 1−µ

−1
b′(x) dx = fR(−2δq)−1[(2ε−1/2)−2δq − (µε−1/2)−2δq] + Iconv, (6.20)

using (6.9), (6.11) and (6.15). Here Iconv is the contribution from b′conv. Let us
drop this term to simplify the ensuing argument, and revisit this later.

Summing (6.18) and (6.20) and approximating the terms in µ, then yields

∆ = CR + fR(−2δq)−1[(2ε−1/2)−2δq − 1], (6.21)

and putting ∆ = 1 gives the equation

−C ≡ f−1
R (1 − CR) = (−2δq)−1[(2ε−1/2)−2δq − 1] (6.22)

for δq. Now in the boundary layer we will have CR < 0, fR < 0, giving C > 0,
so that the left-hand side is negative, whereas for any real, non-zero δq, the
right-hand side is positive. Thus δq must be complex, as argued originally.

We can rewrite (6.22) as

1 + 2Cδq = (2ε−1/2)−2δq ≡ e−2δq log(2ε−1/2). (6.23)

The argument of the left-hand side is approximately 2Cδqi − 2nπ where sub-
scripts ‘r’ and ‘i’ denote real and imaginary parts and n is any integer. Equat-
ing arguments of both sides of the equation gives at leading order

δqi = nπ/ log(2ε−1/2) (n 6= 0). (6.24)

Curiously this does not require knowledge of C, so in fact there is no need to
solve the boundary layer problem numerically!

Looking at the modulus of (6.23) would yield

δqr = −C2n2π2[log(2ε−1/2)]−3. (6.25)
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Fig. 21. Plot of eigenvalues λ against log10 ε with numerical results shown solid and
the leading approximation (6.26) dotted, for the leading three branches. In (a–c)
Re λ is plotted and in (d–f) Imλ is shown for (a,d) α = 0.3, (b,e) α = 0.2 and (c,f)
α = 0.1.

This is quite a small term, given that our expansion is in powers of (log ε−1)−1.
In fact numerical study of δqr reveals that it scales as (log ε−1)−2. We therefore
conclude that the approximation (6.25) is giving a subdominant effect, and
we can only say that δqr = 0 to the order at which we are working.

We finally obtain the eigenvalue, correct up to order (log ε−1)−1 as

λ = β − 2inπβ log β

log(2ε−1/2)
(n 6= 0), (6.26)

valid for α < β. To check this is correct, figure 21 shows real and imaginary
parts of the eigenvalues (solid) compared with the leading approximation (dot-
ted) for the leading three branches, n = 1, 2, 3. Given that the approximation
goes in inverse powers of log ε−1, the agreement is good, especially as α is
reduced. It is probable that this is because the left-hand boundary layer, neg-
ligible for any fixed α < 1/2 in the limit ε→ 0, will tend to reassert itself for
fixed ε and α increasing towards 1/2.

Finally we discuss briefly the contribution from Iconv to the problem, which
we dropped above. For δq = 0 the contribution from Iconv is real and negative,
and so this component can be bundled in with C in (6.22) without changing
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Fig. 22. Moduli of eigenvalues |λ| as a function of α for (a) zero (Z), (b) no-flux (F),
and (c) periodic (P) boundary conditions, with ε = 10−5, N = 1024.

the result (6.24). Now as δq increases and becomes complex, so will Iconv; how-
ever it can be shown that Iconv(δq) = Iconv(0) + O(δq) (using the geometrical
convergence present in (6.16)) and so the variation of Iconv with δq would be
a subdominant effect if put into (6.23); the dominant effect would still come
from the right-hand side. In conclusion, our result (6.26) remains valid for
small ε.

7 Numerical results and theory for the stretch–fold map

This map is defined by

Ta(x) =







a(α−1(x+ β)) (−1 ≤ x ≤ Υ),

a(β−1(α− x)) (Υ < x ≤ 1),
(7.1)

and corresponds to figure 1, except that the second piece is rotated by π
radians before being reassembled. This map is a simple model of folding in
a fluid flow, and forms the basis of the stretch–fold–shear dynamo model [7].
We consider it briefly here, as it has some features that distinguish it from the
stretch–stack model defined back in (2.3). The corresponding adjoint operator
is

T ∗b(x) = αb(αx− β) + βb(α− βx). (7.2)

Eigenvalues for ε = 10−5 and the three key boundary conditions are shown in
figure 22. For α = β = 1

2
super-exponential decay occurs for all fields with the

(F) boundary condition, and with (P) for the subspace of non-constant, even
fields (n > 0 and even in (A.3)).

In the absence of diffusion, we can define operators T ∗ (as in (7.2)), with
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Fig. 23. Moduli of eigenvalues, |λ(n)| of T or T ∗ as a function of α for the stretch–fold
map.

Fig. 24. Leading four adjoint eigenfunctions b(n) for α = 0.3 and zero diffusion; in
(a,b,c,d) n = 0, 1, 2, 3.

matrix elements

T ∗
mn =

n!

m!(n−m)!
rm−n(αm+1(−β)n−m − (−β)m+1αn−m) (7.3)

(for m ≤ n) and T given by

T a(z) = a(α−1(z + β)) − a(β−1(α− z)). (7.4)

These have eigenvalues shown in figure 23,

λ(n) = αn+1 − (−β)n+1 (n ≥ 0). (7.5)

The leading mode remains (2.7), and the next eigenfunctions of T ∗ are given
by

b(1) = x, b(2) = x2 + 2
Υ + 1

3Υ − 1
x− 1

3
, (7.6)

(except for α = 2/3, Υ = 1/3, when there is a degeneracy λ(1) = λ(2)). The
corresponding eigenfunctions of T again take the form of distributions and
can be defined as in (4.26), but the weights are now defined recursively by

Wm = {(αy − β, αn+1λ−1
(n)w), (α− βy,−(−β)n+1λ−1

(n)w) : (y, w) ∈ Wm−1}.
(7.7)
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Fig. 25. Comparison of boundary layer calculation. C0(α) is plotted against α for
0.06 ≤ α ≤ 0.94 (solid). Also ε−1/2(λ−1) is plotted for ε = 10−3 (dot), 10−4 (dash)
and 10−5 (dot–dash) with the (Z) boundary condition.

Note that for eigenfunctions with n odd the weights now vary in sign; for
example for n = 1 this arises because of the reversal of scalar gradients by
the folding action of the mapping (7.1). The definition is then reminiscent of
a sign-singular measure [12]. With this framework we can again address the
effects of diffusion using perturbation theory.

7.1 Decay with the zero boundary condition

For the zero boundary condition the theory is very similar to that in section
3. The main difference is that whereas applying Hε generates both a left- and
a right-hand boundary layer, the action of T ∗ is to fold these two boundary
layers over to the left-hand side. Thus in our perturbative approach we have
the source term

T ∗
1 b0(−1 +

√
εX) = −2αg0(αX) − 2βg0(βX) (7.8)

in place of (3.11) and there is no right-hand boundary layer to consider. The
theory goes through as before to give λ1 = λ1L = C0(α)

√
ε with C0(α) shown

in figure 25; there is good agreement with numerical results.

7.2 Decay with the no-flux boundary condition

More interesting is the case of the no-flux boundary condition. Again there
is just one, left-hand boundary layer to be considered. The conditions for
robustness then become

|λ0| > α (Z) or (P), (7.9)

|λ0| > α2 (F), (7.10)
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in general accord with the numerical results shown in figure 22.

For the (F) boundary condition, the decay of scalar fluctuations is dominated
by the λ(1) = α2 − β2 branch for α < 1/3 and by the λ(2) = α3 + β3 branch
for 1/3 < α < 1/2. For α > 1/2 it is dominated by diffusive modes.

We consider here only the range 0 < α < 1/3 for which λ(1) is dominant; λ(1)

is also negative in this range, which makes the exponent q below complex.
The boundary layer calculations proceed as before for the left-hand boundary
layer with the source term

T ′∗
1 b

′
0(−1 +

√
εX) ' −2α2g0(αX) + 2β2g0(βX), (7.11)

where
T ′∗b′(x) = α2b′(αx− β) − β2b′(α− βx). (7.12)

In the far field q becomes complex in the equation analogous to (5.14) and we
can write

2q = 2q̃ + iπ/ logα, 2q̃(α) ≡ 2 − log |λ0|
logα

, (7.13)

so that, for the stretch–fold model, we have

d′(X) = X−2q̃f̃(logX), f̃(logX + logα) = −f̃(logX). (7.14)

f̃ now varies in sign and has period 2 logα in logX. The boundary layer has an
oscillatory tail, as it is trying to match to an eigenfunction in the mainstream
with a negative eigenvalue.

The calculations now proceed to yield the correction as

λ1 = λ1L = C1(α, ε)ε
q̃(α), (7.15)

with

C1(α, ε) = λ0 lim
m→∞

∑

(y,w)∈Wm,y>Υ

w (y + 1)−2q̃f̃(log(y + 1) − 1
2
log ε) (7.16)

in place of (5.23). We see that for the stretch–fold model the correction λ1 is
a power law with oscillations in sign of period 2 logα in the variable 1

2
log ε,

for α < 1/3. (For 1/3 < α < 1/2 there are no oscillations.) A similar non-
monotonic approach of λ to λ0 as ε→ 0 is seen in a closely related model [13]
(also involving a fold in the mapping).

To test this theory figure 26 shows a comparison of numerical results (solid)
with theory (dashed) for (a) α = 0.3 and (b) α = 0.1. In each case the correc-
tion |λ1| is plotted against ε in a log–log scale. Clearly visible are oscillations
in the numerical results and as ε → 0 there is excellent agreement with the
theoretical results, which were obtained by solving the boundary layer equa-
tion analogous to (5.12) (but with the source term (7.11)) and then computing
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Fig. 26. Comparison of boundary layer theory and numerical simulations for the
(F) boundary condition. For (a) α = 0.3 and (b) α = 0.1, plotted is log10 |λ − λ0|
against log10 ε (solid), with the asymptotic approximation (7.15) (dashed). In (c),
for α = 0.1 the quantities ε−q̃(λ − λ0) (solid) and C1(α, ε) (dashed) are plotted
against log10 ε.

C1(α, ε) from (7.16) for each value of ε. Note that the phase and sign of the
oscillations are predicted correctly, and that the oscillations are not purely
sinusoidal as seen in figure 26(c), showing C1(α, ε) for α = 0.1.

8 Discussion

We have discussed the decay of passive scalars in baker’s maps with uneven
stretching, under the influence of weak diffusion. We have found rather a
complicated set of results, which we have set out already in section 2. Some
of the surprises involve the sensitivity to boundary conditions: for example
the decay of scalar fluctuations is quite different in the cases of no-flux and
periodic boundary conditions.

We have also seen significant differences in behaviour between a baker’s map
where the two pieces are stacked together (see figure 1), and where one piece
is rotated to give a fold in the scalar in section 7. These maps have identical
stretching properties, but different properties in terms of reversals of scalar
gradients. One possible direction of research would be to try to quantify the
differences between the two mappings in terms of a cancellation exponent
[12]; the different forms of the direct eigenfunctions (see (4.25) and (7.7)) are
suggestive of a link, as the stretch–fold (strange) eigenfunction has oscillations
in sign on arbitrarily small scales. It would also be interesting to link the
strange eigenfunctions we have constructed to the study [1] giving the initial
decay of scalar fields in terms of the distribution of finite time Lyapunov
exponents, and more generally to the fractal properties of the scalar field [25].

During our study we set down a problem of scalar advection without diffusion,
by defining the operators T and T ∗. The eigenvalues λ(n) so obtained gave us
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a problem to which we could apply perturbation theory. The eigenvalues are
in fact the same as Ruelle–Pollicott resonances [29,32] as shown in [33], which
give the decay of correlations in the system, i.e., the decay of quantities such
as

(b, T na) ≡ (T ∗nb, a) (8.1)

in the limit of large n, where b and a are smooth functions.

In these terms, we have been investigating when the effect of diffusion on a
scalar field is equivalent to the decay of correlations in the scalar field under
iteration of T . To summarise our results, we have found that the effect of
boundary conditions and the magnitude of the decay rate |λ| are crucial. The
larger |λ| is, and the weaker the boundary layers developed, the more likely is
the decay of a passive scalar to be governed by the Ruelle–Pollicott resonance.
The precise results are given in (5.1)–(5.3). The analogous question in the fast
dynamo problem is when the growth of magnetic fluxes for zero diffusion
corresponds to the growth of magnetic fields for very weak diffusion; this has
been referred to as the ‘flux conjecture’ and there is much evidence that it is
correct, at least for the case of growing magnetic fields [10,18].

In terms of extending our study, it would be good to have a rigorous proof that
gives the citeria (5.1)–(5.3) for the perfect modes to be robust to diffusion.
It would also be of interest to consider two-dimensional hyperbolic maps,
with both a contracting and an expanding direction and understand the links
between the Ruelle–Pollicott resonances and the decay of passive scalars in
this case. Real fluid flows, of course, tend to lack such uniformly hyperbolic
behaviour and the decay of passive scalars tends to be dominated by islands
if they are present. This is a subject of active research, both on the relation
between Ruelle–Pollicott resonances and the decay of correlations [17,22,36],
and how these link to passive scalar decay rates [28].

A Appendix: matrix elements in L2

In this appendix we give the orthonormal bases and matrix elements used for
numerical computations of eigenvalues and eigenvectors in section 2 above.
The basis for the zero (Z) boundary condition is indexed by n ≥ 1:

ψn(x) = sin 1
2
nπ(x + 1) (n ≥ 1) (Z). (A.1)

For the no-flux (F) boundary condition we use, indexed by n ≥ 0,

ψn(x) = cos 1
2
nπ(x+ 1) (n ≥ 1), ψ0(x) = 2−1/2 (F), (A.2)
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and for the periodic (P) boundary condition we use, indexed by n ≥ 0,

ψn(x) =















2−1/2 (n = 0),

cos qπx (n even, n = 2q > 0), (P),

sin qπx (n odd, n = 2q − 1).

(A.3)

It is convenient to define F (k) = 2k−1 sin k and coefficients νm by

ν0 = 2−1/2, νm = 1 (m > 0). (A.4)

The matrix elements for (Z) (upper sign) and (F) (lower sign) with the ap-
propriate ranges of m and n are,

Tmn = 1
2
ανmνn[ ± cos 1

2
π(mα + n)F (1

2
π(mα + n)) (A.5)

+ cos 1
2
π(mα− n)F (1

2
π(mα− n))]

+1
2
βνmνn[ ± cos 1

2
π(m(β − 2) − n)F ( 1

2
π(mβ + n))

+ cos 1
2
π(m(β − 2) + n)F ( 1

2
π(mβ − n))].

For the heat kernel Hε we have for either basis

Hεmn = e−εn2π2/4δmn. (A.6)

The zero–no-flux (ZF) boundary condition is given simply by restricting m
and n to odd values and replacing 1

2
π by 1

4
π in (A.1), in (A.5) with the lower

signs, and in (A.6).

For the (P) boundary condition,

Tmn = 1
4
νmνn i

1

2
(ρ−1) i

1

2
(σ−1) (A.7)

×[α(ρσeiπpβ + e−iπpβ)(F (π(pα + q)) + σF (π(pα− q)))

+β(eiπpα + ρσe−iπpα)(F (π(pβ + q)) + σF (π(pβ − q)))],

where we let (p, ρ) = (m/2, 1) if m is even, and ( 1
2
(m + 1),−1) if m is odd.

We define (q, σ) similarly in terms of n. In this case we have also for the heat
kernel

Hεmn = e−εp2π2

δmn. (A.8)

For the stretch–fold model (7.1), the final terms in equations (A.5) and (A.7)
are replaced by, respectively,

· · ·+ 1
2
βνmνn[ cos 1

2
π(m(β − 2) + n)F ( 1

2
π(mβ + n)) (A.9)

± cos 1
2
π(m(β − 2) − n)F ( 1

2
π(mβ − n))],

· · ·+ β(eiπpα + ρσe−iπpα)(σF (π(pβ + q)) + F (π(pβ − q)))]. (A.10)
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B Appendix: spectra of T and T ∗ in L2

In this section we discuss briefly the spectra of the diffusionless baker’s map
operators T and T ∗ in L2; a more extended discussion for the dynamo problem
may be found in [18]. We use the framework in [9,10]; related results for Anosov
diffeomorphisms may be found in [3,11,24].

The spectrum σ(A) of an operator A, in L2 say, is the set of λ ∈ C for
which λI − A is not invertible as a bounded operator in L2. For λ in the
point spectrum σp(A), there are eigenvectors of A, Av = λv; for λ in the
approximate spectrum σap(A), λI −A is not bounded below, and for λ in the
compression spectrum σcom(A), the image of λI − A is not dense in L2.

We use the general results for an operator A and its adjoint A∗,

σ(A) = σ(A∗) is a closed subset of {λ : |λ| ≤ ‖A‖}, (B.1)

σ(A) = σap(A) ∪ σcom(A), (B.2)

σp(A) ⊂ σap(A), (B.3)

σcom(A) = σp(A
∗), (B.4)

∂σ(A) ⊂ σap(A), (B.5)

and the following specific properties of T and T ∗

T is an isometry, ‖Ta‖ = ‖a‖, (B.6)

T ∗T = I. (B.7)

Equation (B.6) implies that ‖T‖ ≡ ‖T ∗‖ = 1.

First we show that any λ with |λ| < 1 is an eigenvalue of T ∗ and so in σp(T
∗).

To do so choose such a λ and a function f(x) in the kernel of T ∗, for example

f(x) =







α−1 sin π(x + 1)/2α (−1 ≤ x ≤ Υ),

β−1 sin π(x− 1)/2β (Υ < x ≤ 1),
(B.8)

then the function defined by the sum (convergent in L2)

b =
∞
∑

n=0

λnT nf (B.9)

satisfies T ∗b = λb by virtue of (B.7). Note however that eigenfunctions con-
structed in this manner generally have structure on all scales, and fail to be
infinitely differentiable, no matter how smooth we make f [18]. They are thus
not generally robust to the effects of diffusion.

At the end of this appendix we will show that the only eigenvalue λ of T or
of T ∗ with |λ| = 1 is given by the constant scalar mode (2.7). Also from (B.6)
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all eigenvalues of T must have modulus |λ| = 1, and so

σp(T ) = σcom(T ∗) = {1}, σp(T
∗) = σcom(T ) = {1} ∪ Int ∆, (B.10)

where ∆ ≡ {λ : |λ| ≤ 1} and Int denotes its interior. Given that ‖T‖ = 1
(B.1) implies that

σ(T ) = σ(T ∗) = ∆. (B.11)

Now (B.6) also implies that any λ ∈ σap(T ) has modulus |λ| = 1 and so, with
(B.3) and (B.5), we have

σap(T ) = ∂∆, σap(T
∗) = ∆. (B.12)

Finally we may define residual spectrum σr and continuous spectrum σcom of
an operator A by

σr(A) = σcom(A) \ σp(A), σc(A) = σ(A) \ {σcom(A) ∪ σp(A)}, (B.13)

to give

σr(T ) = Int ∆, σr(T
∗) = ∅, σc(T ) = σc(T

∗) = ∂∆ \ {1}. (B.14)

With σ(A) = σp(A) ∪ σc(A) ∪ σr(A) as a disjoint union, the results in (B.10)
and (B.14) are summarised in figure 12(c,d).

To conclude we show that the only eigenvalue λ of T or T ∗ with |λ| = 1 is
λ = 1, corresponding to the constant scalar mode (2.7). To do so we first
note that an eigenfunction b of T eigenvalue λ immediately gives one of T ∗

eigenvalue λ−1. That is, Ta = λa implies T ∗a = λ−1a, from (B.7). It therefore
suffices to consider T and, to exclude the constant scalar mode, consider only
scalar fields a with zero mean.

We define a basis for zero-mean fields in L2 by first setting

ψ(x) =







−(β/2α)1/2 (−1 ≤ x ≤ Υ),

(α/2β)1/2 (Υ < x ≤ 1).
(B.15)

We obtain two descendants ψ0 = S0ψ, ψ1 = S1ψ of ψ with

S0ψ(x) =







α−1/2ψ(α−1(x+ β)) (−1 ≤ x ≤ Υ),

0 (Υ < x ≤ 1),
(B.16)

S1ψ(x) =







0 (−1 ≤ x ≤ Υ),

β−1/2ψ(β−1(x− α)) (Υ < x ≤ 1).
(B.17)

Applying S0 and S1 repeatedly to ψ gives an orthonormal basis (essentially a
Haar basis) {ψs} of L2, labelled by finite binary strings s. Here S0ψs = ψs0
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and S1ψs = ψs1 are the descendants of ψs. The operator T maps members of
this basis onto their descendants only

Tψs = α1/2ψs0 + β1/2ψs1. (B.18)

If a zero-mean scalar field a is expanded in this basis, then from Ta = λa it
may be seen that all the expansion coefficients are zero, and so there are no
eigenfunctions of T for any λ, except for (2.7).
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Ben Mestel and Jean-Luc Thiffeault for valuable discussions and references.

This study was begun at the ‘Geometry and Topology of Fluid Flows’ pro-
gramme held at the Isaac Newton Institute in Cambridge (Autumn 2000) and
completed at the programme ‘Magnetohyodrodynamics of Stellar Interiors’
(Autumn 2004). I an grateful to the organisers and directors for inviting me
to participate.

References

[1] Antonsen, T.M., Fan, Z., Ott, E. & Garcia–Lopez, E. 1996 The role of chaotic
orbits in the determination of power spectra of passive scalars. Phys. Fluids 8,
3094–3104.

[2] Aref, H. 1983 Stirring by chaotic advection. J. Fluid Mech. 143, 1–21.

[3] Arnold, V.I. & Avez, A. 1967 Problèmes Ergodiques de la Mécanique
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