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Abstract. We present MUSTA-type upwind numerical fluxes that avoid the solution of the
Riemann problem in the conventional manner. The upwinding of the present schemes comes in-
stead, from a newly proposed numerical flux and the predictor-corrector procedure first reported
in [23]. The proposed fluxes can be used as the building block for finite volume and discontin-
uous Galerkin finite element methods to solve hyperbolic conservations laws. Monotonicity,
accuracy and stability properties of the schemes are established. Numerical implementations of
the MUSTA schemes for the Euler equations for ideal gases, covolume gases and compressible
liquids, in one, two and three space dimensions, are reported. The results demonstrate that
the proposed schemes are comparable to those using complete Riemann solvers and superior to
those using incomplete Riemann solvers. Our schemes however, have the added advantage of
simplicity and generality, requiring only the vector of conserved variables, the vector of fluxes
normal to the volume/element interface and appropriate closure conditions, such as equations
of state. In this paper we also report on extensions of the MUSTA fluxes to higher order of
accuracy via the TVD and WENO approaches for non-linear systems in one, two and three
space dimensions.
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1 Introduction

Numerical methods for solving non-linear systems of hyperbolic conservation laws via finite
volume methods or discontinuous Galerkin finite element methods require, as the building block,
a monotone numerical flux. The choice of the building block has a profound influence on
the properties of the resulting schemes. There are essentially two approaches for providing
a monotone numerical flux, the simplest of which utilizes a symmetric stencil and does not
explicitly make use of wave propagation information, giving rise to centred or symmetric schemes
[12], [8], [26], [28], [13], [1]. A more refined approach utilizes wave propagation information
contained in the differential equations. This is done through the exact or approximate solution



of the Riemann problem, giving rise to upwind methods [3], [7], [16], [30], [18], [25]. For up-to-
date background on these methods see, for example, [6], [11], [27].

Within the class of existing monotone first-order fluxes, the first-order upwind scheme of
Godunov is the best, it has the smallest local truncation error. However, the superior accuracy
of established upwind methods comes at a cost, one must solve exactly or approximately, the
Riemann problem. Conventional Riemann solvers are usually complex and are not available for
many hyperbolic systems of practical interest, such as for models for compressible multi-phase
flows. It is thus desirable to construct a numerical flux that emulates the best flux available
(upwind) with the simplicity and generality of symmetric schemes.

In this paper we build upon a newly proposed flux and the MUSTA approach [23] to construct
schemes that have the simplicity and generality of symmetric schemes and the accuracy of
upwind schemes. First we present a new flux that is a particular average of symmetric fluxes
and which reproduces Godunov’s upwind scheme for the model hyperbolic equation. For non-
linear systems it is found that this flux gives superior results to those of the whole family of
incomplete Riemann solvers that do not explicitly account for linearly degenerate fields, such as
the HLL Riemann solver [9] and flux vector splitting schemes. Then we incorporate this flux into
the MUSTA multi-staging approach, as predictor and corrector. It is found that the resulting
MUSTA schemes reproduce the Godunov upwind scheme for the model hyperbolic equation
for any number of stages. For non-linear systems the MUSTA scheme with one or two stages
gives results that are indistinguishable from those of complete Riemann solvers, such as the exact
Riemann solver, Roe’s approximate Riemann solver [18] and Toro’s approximate Riemann solver
HLLC [29]. For the model hyperbolic equation the resulting simultaneous updating schemes are
linearly stable in two and three space dimensions and the stability region is identical to that of
the Godunov upwind method. We recall this is not the case for established centred schemes,
such as the Lax-Friedrichs (not the so-called local Lax-Friedrichs, or more precisely, the Rusanov
scheme) and the FORCE scheme [28]. We extend the new MUSTA schemes to multi-dimensional
non-linear hyperbolic systems and to higher order of accuracy in the frame of TVD and WENO
schemes. We assess the schemes on carefully chosen test problems for the one, two and three-
dimensional Euler equations for compressible materials, including the computation of shock
waves in compressible liquids.

The rest of the paper is organized as follows: Sect. 2 introduces the finite volume frame work
and recalls well-known numerical fluxes. In Sect. 3 we present a new numerical flux. In Sect. 4
we incorporate this flux into the MUSTA framework. In Sect. 5 we illustrate the application of
the proposed schemes to the solution of the Euler equations with general equations of state and
present one-dimensional numerical examples for ideal and covolume gases. In Sect. 6 we extend
the schemes to multi-dimensional problems in the frame of the high-order WENO methods and
apply the schemes to a double Mach reflection problem in two dimensions and to an underwater
explosion problem in three space dimensions. Conclusions are drawn in Sect. 7.

2 The Framework

Finite volume and discontinuous Galerkin finite element methods rely on a monotone, first-order
intercell numerical flux, the building block of the schemes. Here we are concerned with numerical
fluxes in the frame of the finite volume approach.



2.1 Finite Volume Schemes

For the purpose of this section it is sufficient to consider a time-dependent non-linear system of
hyperbolic conservation laws in two space dimensions

%Q+0:F(Q)+9,G(Q)=0, (1)

in which Q is the vector of conserved variables and F = F(Q) and G = G(Q) are the vectors of
fluxes in the Cartesian coordinate directions z and y respectively. In the presence of discontin-
uous solutions one uses the integral form of (1), which is obtained, for example, by integrating
(1) on a control volume V with boundary A, leading to

%//‘/dez—/A(F,G)-ndA. (2)

Here n is the unit vector normal to the boundary A pointing in the outward direction. In the
finite volume approach one does not require a change of coordinates, such as body-fitted coor-
dinates, to deal with domains whose boundaries are not aligned with the Cartesian directions.
Discretization can be performed directly in physical space. Assuming the domain of interest has
been discretized by an appropriate mesh, we then apply (2) to a finite volume, or cell, V; to
construct numerical schemes. In particular, a fully discrete finite volume scheme reads:

At XL
A 2o Lo T Fi) - (3)

v s=1

1
QM =Qi -

Here Q7 is the integral average of Q in volume V; at time level n, AV is the area of V;, At is
the time step, N is the total number of faces of V;, L; is the length of face s, T; is the rotation
matrix corresponding to side s and T} ! is its inverse, F(; s is the numerical flux for face s in
the direction d normal to it, and is obtained by solving the Riemann problem in the direction
d, namely

aTQ + adF(Q) =0,

Q 0):{ Q¥ =T,(QY) if d<0, @
’ QY =T,Q?) if d>0.
Here 7 =t — t" is local time; QY is the integral average of the conserved variable vector in the
control volume adjacent to V; having s as a common face. T aligns the original initial data in
the normal direction d to the interface s, prior to solving the Riemann problem. The inverse
matrix T ! restores back the flux information to the Cartesian frame.

From this point on, the discussion on the numerical flux in an arbitrary direction d can be
reduced to that of the augmented one-dimensional problem in the z-direction, say, without losing
generality.

2.2 Numerical Fluxes

Consider the m x m one-dimensional system of hyperbolic conservation laws

0:Q + azF(Q) =0, (5)

where Q is a vector of m components, the conserved variables, and F(Q) is the corresponding
vector of fluxes. The finite volume scheme to solve (5) reads

At
Q;H—l = Q? - A_x[Fi+l - Fz_%] ’ (6)
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where F, 1 is the numerical flux, Az is the length of the control volume and At is the time step.

Godunov’s upwind method [7] defines the intercell numerical flux F, 1 in terms of the
2
solution, if available, of the corresponding Riemann problem

9Q+ 0. F(Q) =0,

Q(w,0)={ RS

noif >0,

(7)

The so-called Riemann fan in the z — t plane consists of m + 1 constant states separated by
m wave families, each one associated with a real eigenvalue A*), The similarity solution of (7)
depends on the ratio /¢ and is denoted by Q; +1 (z/t). The Godunov intercell numerical flux
is found by first evaluating Q, 41 (z/t) at £/t = 0, that is along the t-axis, and then evaluating

the physical flux vector F(Q) in (7) at Q,, 1 (0), namely
Fi" =F(Q;,1(0) . (®)

The exact solution of (7) for complicated systems will generally involve the iterative solution of
a non-linear system and thus in practice, whenever available, one uses approximate Riemann
solvers. For a review on Riemann solvers see, for example, [27].

Non-upwind (or centred, or symmetric) schemes do not explicitly utilize wave propagation
information and are thus simpler and more generally applicable. Commonly, the numerical
fluxes can be computed explicitly as algebraic functions of the initial condition in (7), namely

Fipy = F 0 (QF Q) - (9)

One may interpret centred fluxes as resulting from a low-level approzimation to the solution of
the Riemann problem (7), in which the Riemann fan is not opened. Two classical centred fluxes
are the Lax-Friedrichs flux

pLF 1Az

M = SIRQD) + F(Q)] - 5 e 1Ql — Q7] (10)

and the two-step Lax-Wendroff flux
1 At
P = RQUY) , QUYL = SIQ0 + Q] - g e FQE) F@) . ()

Another, more recent, centred flux is the FORCE flux, which was derived [26] from a de-
terministic interpretation of the staggered-grid version of Glimm’s method [5] and results in a
non-staggered one-step conservative scheme of the form (6) with intercell numerical flux

. 1 Az
Flre = 1 [R(QE) + 2P(@QLY) + FQE) — 50 (@1 — Q) (12)
with QL as in (11). For further details on the FORCE flux see [27] and [28]. See also [1], where

convergence is proved for the case of two non-linear hyperbolic systems, namely the equations
of isentropic gas dynamics and the shallow water equations with a bottom slope source term.



3 Generalized FORCE Fluxes

Here we construct generalizations of the FORCE flux (12) by considering convex averages of
fluxes (10) and (11). To this purpose we first consider the model linear advection equation

0iq + N0zqg =0, \: constant . (13)

The physical flux function is a linear function of the unknown ¢, namely f(q) = Ag. The
corresponding conservative scheme is written as

2

At
Q?H =q; — A_x[fﬂ-% - fifl] ) (14)

for which the Lax-Wendroff, Lax-Friedrichs and FORCE fluxes are

1 1
7y = 540G + (1 - (i) (15)
I I+, (d=0), 4,
il =5 0 = S O (16)
e (1+0) (1-0p
1+¢ 1—c¢
force __
fir =4 (') = = (dg) (17)
where ¢ is the CFL or Courant number
AL
== 1
C=xL (18)

Now consider a generalization of the FORCE flux, called GFORCE, given by the convex
average ; ;
95 _ lw l

with the weight w satisfying 0 < w < 1. Written in full, the generalized FORCE flux for (13)
reads

o, =0+ [ oy + 50 -9 [ gy . @)

In the ¢ — w plane of Fig. 1 we show special curves w(c) that when substituted into (20)
reproduce well-known numerical fluxes. For example, the bottom horizontal line with constant
weight w = 0 gives the Lax-Friedrichs flux. The top horizontal line with constant weight w =1
gives the Lax-Wendroff flux. For the constant weight w = % we reproduce the FORCE flux (12)
for non-linear systems (5) and the flux (17) for the linear advection equation (13).

By comparing the coefficients of the flux (20) with those of the Godunov upwind flux

i+ Aty if A<O0),

we obtain the Courant number dependent weight given by

wg(c) = ; (22)
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Figure 1: Numerical fluxes as convex averages of the Lax-Friedrichs (LF) and Lax-Wendroff
(LW) fluxes in the ¢ — w plane. Here ¢ is Courant number and w is weight, whose constant
values 0, % and 1 reproduce the Lax-Friedrichs, FORCE and Lax-Wendroff fluxes; w = I—JFIH
reproduces the Godunov upwind method

for which the generalized FORCE flux (20) reproduces identically the Godunov’s upwind flux.
For any constant value of the weight w, with 0 < w < 1 we have a 3-point scheme (14) whose
coefficient of numerical dissipation is

)1 —w
agp = % lw] DYAV (23)

which varies linearly with w, it is a maximum for the Lax-Friedrichs flux (w = 0) and zero for
the Lax-Wendroff flux (w =1).

The curve wy(c) divides the unit square of Fig. 1 into two subregions. The region associated
with weights lying above the Godunov weight wy(c) contains non-monotone schemes and the
region below wy(c) contains monotone schemes. The range of constant weights w (no dependence
on ¢), with 0 < w < %, defines a sub-class of monotone schemes, with the FORCE flux (17)
corresponding to the limiting case w = %, which is the scheme with the smallest numerical
dissipation within the class, and thus the optimal scheme, for which no dependence on ¢ (no

upwind information) is required.

For any constant weight w, with % < w < 1, we enter the non-monotone region, for the
larger range of Courant numbers. Thus the only way to improve upon the FORCE flux, that is
to reduce its numerical viscosity further, is to take a weight that goes above % But in order to
preserve also monotonicity such weight would have to depend on the Courant number c¢. This
in turn would mean that the scheme would have to depend on wave propagation information,
that is on upwinding. As it happens, the curve w(c) that would give a monotone scheme with
the smallest truncation error would be wy(c) given by (22), which corresponds precisely to the
Godunov’s upwind flux (21), with coefficient of numerical viscosity given by

1
Qgod = 5(1 — |c|)AAz . (24)



In Fig. 1 there is region that may be described as a triangle with a curved hypotenuse that

lies above w = % and below w = wy(c) = This region represents additional numerical

1
1+]c] "
dissipation to that of the optimal centred scheme FORCE with constant w = % This extra
dissipation exists because of non-upwinding and in order to dispose of it, we require schemes

with some dependence on the Courant number (upwinding).

In this paper we present two ways of disposing of the additional numerical dissipation of
the optimal centred method, FORCE. The simplest way is through the use of the GFORCE
approach (19), which for non-linear hyperbolic systems (5) as solved by (6) has numerical flux

Fng% = Qlochj‘g +(1— Qloc)FiLf% , (25)
where ), has the form
1
Qioe = ——— . 26
loc ]-+Cloc ( )

Cloe 18 a prescribed local Courant number coefficient, with 0 < Cj,. < 1, from which a local time
step is computed. See section 4, algorithm (36). It is obvious that for the model equation (13)
the proposed flux (25) reproduces the Godunov’s upwind flux (22). The second way of recovering
the region above w = % and below w = wy(c) = ﬁ in Fig. 1 is through the use of the MUSTA
approach [23] utilizing symmetric fluxes in a multi-stage predictor-corrector procedure.

4 MUSTA Fluxes

In computing an intercell numerical flux for the conservative scheme (6) one knows the governing
differential equations in (7) and the initial condition Qf, Q7. ; either side of the interface 7 + %
In other words, the point of departure in computing the numerical flux in precisely the Riemann
problem (7). Recall also that the optimal monotone numerical flux is that obtained from the
solution of the Riemann problem (7) followed by the flux evaluation (8), that is the Godunov’s
upwind flux. Alternatively, one could use the MUSTA approach [23], whereby known flux
functions, such as the newly proposed flux (25), could be used in a predictor-corrector fashion,
avoiding in this manner the explicit solution of the Riemann problem (7).

4.1 The MUSTA Predictor-Corrector Approach

The MUSTA approach may be interpreted as a method in which the Riemann problem (7) is
solved numerically on a coarse mesh on the d — 7 plane, see Fig. 2. We define a local domain
of length D and a local mesh of 2m cells, with m a positive integer. The local mesh has size
Ad = $D/m and the initial condition becomes

. Qr if 1<0,
Q¥ = (27)
Qp, if 1>0,

for | = —m+1,...,m. The interface z; 1 in the global mesh for scheme (6) corresponds to the
2
interface % in the local mesh.
For the local time marching, or multi-staging, we use an explicit method, such as (25). This

requires the prescription of a CFL coefficient, denoted by Cj, in (26), and the computation of a
local time step imposing a local CFL stability condition. Concerning local boundary conditions,



we recall that the initial condition extends to —oo and +oo and thus we would like to have
unimpeded passage of waves through the local numerical boundaries at —m + 1/2 and m + %
We apply simple transmissive boundary conditions Q(_k,)n = Q(_k,)n 41 and Q(mkll = Q(mk) so that
the boundary fluxes are

)

® e =FQY.,), F¥, =F@QP). (28)

=

4.2 The MUSTA-1 Scheme

Here we describe a practical MUSTA scheme, MUSTA-1, that uses the GFORCE flux (25) as
predictor and corrector, on the simplest local mesh of 2 cells (m = 1) and one stage (K = 1)
This is illustrated in Fig. 2, where the two computational cells, numbered, from left to right, as
0 (associated with Q') and 1 (associated with Q7' ;). The corresponding local mesh interfaces
are denoted by —1/2, 1/2 and 3/2. The relevant interface i + 1 of the conservative scheme (6) is
associated with the local interface 1/2. The boundary fluxes in Fig. 2 are shown as thin arrows,
while the fluxes at the relevant interface % are shown by the thicker arrows.

T
A
(1)
l:1/2
1 1
QY QY _]
______________________ ‘. e
FO, Fin F{)
Qn il B . n
: ) ) :
1 0 Q, I 1+1
e e ~ d

-1/2 0 1/2 1 3/2
Figure 2: Ilustration of the MUSTA-1 flux in the local d — 7 frame.

The method is started by first prescribing a local CFL coefficient Cj,.. As we use the
GFORCE flux as predictor, the CFL coeflicient satisfies 0 < Cj,. < 1. Then we compute the
weight Qy,c, for a prescribed Cjyc, according to (26). The initial conditions are set as follows

Q¥ =qr, Q”=qr,. (29)

Then, one estimates a local maximum wave speed S, based on the local initial condition,
that is the states Q((]O) and ng). This part of the method depends crucially on the particular
hyperbolic system of interest. Then, a local time step is computed

Ad

0) — el
ATV = 01005(0) . (30)



The transmissive boundary conditions applied result in the boundary fluxes
0 0 0 0
FO ,=FQ), ), =F@QP). (31)
The intercell numerical flux (25) corresponding to the interface of interest is

F, = 0 FLY (Q, Q1 A0, Ad) + (1 - ) FIL(Q)Y, Q1Y, A7, Ad) . (32)

Then we advance in local time according to

1 o A0 0 1 o A0 0

= Q) - = F0, -FY L Q= - =), -FO. (9)
Having computed the predicted values Q(()l) and le) we compute a corrected flux. First we
compute a new local wave speed S(!) and an associated time step A7) as in (30). Then the

(1)

corrected flux function Fy /o 18 computed as in (32), namely
Fgl/)Q - QlocFl/Q( (()1)7 1 7A7—(1),Ad) ( QlOC)Fl/Q(QO 3 AT( ) Ad) . (34)

Finally we set the numerical flux F;;/; = Fgl/)Q and use it in the conservative formula (6).

As argued earlier, the MUSTA fluxes are meant to use a very coarse approximation to the
numerical solution of the Riemann problem (7). The case of Fig. 2 (MUSTA-1) uses a mesh
of only two cells and very simple transmissive boundary conditions, which provide the left and
right fluxes F(Q(()k)) and F(ng)). In general, for a larger number of stages we must consider a
larger local domain and a larger local mesh so that the numerical boundaries are sufficiently far
away from the relevant interface. Note that at stage k£ = 1 we already have Q(()l) #+ Q(()O) (the
left state at —oo) and le) # ng) (the right state at +00). Therefore, the boundary fluxes
may not prevent the influence of the numerical boundaries, where waves will then be produced
and which will then propagate back to the interface, affecting the multi-staging procedure for

((]k) and ng). Therefore, if a large number of stages is desired, one must consequently increase
appropriately the domain and the mesh. If a convergent numerical predictor is used, then one
would expect that as the number of mesh points p and the number of stages k tend to oo we
should expect that the states Q(k and Qlk) would be close to the exact solution of the Riemann
problem (7) at the interface and that the corrected numerical flux F( 1/9 5 (Qg ,Q K)| Ad)

would be close to that of the Godunov upwind flux (8) using the exact solutlon of the Rlemann
problem.

4.3 Properties of the MUSTA Schemes

As already remarked, for the linear advection equation (13) the generalized FORCE scheme (19)
reproduces identically the Godunov upwind flux (21) when w = ﬁ Here we note that this
property also holds for the MUSTA schemes based on the GFORCE flux (20) used as predictor
and corrector. This property is easily proved for an arbitrary number of stages K. Table 1
illustrates the evolution of the initial data states qr,, gg in the MUSTA multi-staging procedure.
For a positive wave speed A the left state g7, remains unaltered while the right state g changes
at every stage. However, the relevant intercell flux f1 /2 remains constant and equal to that of
the Godunov’s upwind scheme.
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Table 1: The MUSTA flux for linear advection using the GFORCE scheme as predictor and
corrector, for 3 stages. At each stage, the Godunov upwind flux is reproduced identically, see
column 5.

The MUSTA-1 scheme has the following properties, when applied to the one-dimensional
model hyperbolic equation (13),

e The scheme has linear stability condition

0 < e €1 in one dimension . (35)

e The scheme is monotone under the above stability condition and has the smallest trunca-
tion error within the class of monotone schemes. The leading term of the truncation error
has coefficient as given by (24).

e When extended to multidimensional problems in a straightforward unsplit form (see Sect.
6) the scheme has the following linear stability conditions:

¢z + ¢y <1 intwo dimensions, c¢;+¢y+c, <1 in three dimensions, (36)

where ¢;, ¢y and ¢, are directional CFL numbers. See Sect. 5 for more details.

5 MUSTA Fluxes for Compressible Materials

An attractive feature of the MUSTA numerical flux is the easy with which one can solve compli-
cated problems. As seen in (34) the computation of the numerical flux only involves evaluation
of the normal flux F, without having to solve directly the Riemann problem (7). This means
that the method can be applied to general hyperbolic systems in conservation form. The re-
striction imposed by a particular hyperbolic system enters in the estimation of a local maximum
signal speed. We assume that sufficient information on the eigenvalues of the system is avail-
able to compute a stable time step At for the global scheme; for very complicated systems
such information will probably be available by numerical means. Therefore, such procedure can
also be applied locally to estimate the speeds S*) in the computation of the numerical flux.
Here we illustrate the applicability of the methods via the Euler equations of gas dynamics for
compressible materials with general equation of state.
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5.1 The Euler Equations

The non-linear time-dependent one dimensional Euler equations are

9Q+0:F(Q) =0,

P pu (37)
Q=|pu|; FQ=| pul+p
E u(E + p)
Here p, u, p and E are density, particle speed, pressure and total energy, given by
1
E=p(;u’+e), (38)
where e is the specific internal energy. The eigenvalues of (37) are easily found to be
AM=u—a, M=u, A3=u-+ta, (39)

where a is the speed of sound in the material, which depends on the appropriate equation of
state for the material.

The Euler equations (37), that govern the dynamics of wave propagation in a material,
are supplemented by a thermodynamics statement as to the nature of that material, via a
caloric equation of state (EOS), which is a functional (non-differential) relationship between
three variables. A popular choice is the trio p, p and e. Another choice is furnished by the
specific volume v = 1/p, pressure p and specific entropy s. The particular form of the equation
of state determines the form of the sound speed a. Three forms of the equation of state and the
corresponding expressions for the speed of sound are:

p=plp,e), a= /5pe+p,,

€
€= e(pap) , = pzpep - é ) (40)
pzp(v,s) y 4= V_U2pva

where subscripts denote partial derivatives.

For hyperbolicity of the Euler equations (37) one requires the sound speed to be real, which
from (40) results in the condition

Py = —€y(v,8) <0. (41)

A further restriction on the EOS results from imposing that the acoustic characteristic fields
associated with the eigenvalues Ay = u — a and A3 = u + a be genuinely non-linear. This is
usually known as the convezity condition for the Euler equations and may be expressed as

ey (v,8) 0. (42)

More general materials not obeying the convexity assumption may also be considered, in which
case, complex wave patterns may occur, such as rarefaction shock waves and composite waves.

See [15].

5.2 Examples of Compressible Materials

Upwind Godunov-type methods require the solution of the Riemann problem for (37) along with
a general equation of state (40). This can be costly, complex or impossible. For background see
the works of Colella and Glaz [2], Glaister [4], Menikoff and Plohr [15] and Quartapelle et al.
[17], amongst others. The methods of this paper do not require such solution.
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5.2.1 Covolume Gases
A generalization of the ideal gas equation of state is the so-called covolume equation of state

e_pﬂ—ﬁm vp (43)

I CED R T

where v is the ratio of specific heats (assumed constant) and b is called the covolume, which
in ST units has dimensions of m®kg !. The conventional ideal gas case is obtained from (43)
with b = 0. Equation of state (43) applies to dense gases at high pressure, for which the volume
occupied by the molecules themselves is no longer negligible. There is therefore a reduction in
the volume available to molecular motion. Sometimes, this equation is also called the Noble-
Abel equation of state. In the study of propulsion systems, gaseous combustion products at very
high densities are reasonably well described by the covolume equation of state. In its simplest
version the covolume b is a constant and is determined experimentally or from equilibrium
thermochemical calculations. For an exact Riemann solver see [24].

5.2.2 Van der Waal Gases

The covolume EOS (43) can be further corrected to account for the forces of attraction between
molecules, the van der Waal forces. These are neglected in both the ideal and covolume equations
of state. Accounting for such forces results in a reduction of the pressure by an amount c/v?,
where c is a quantity that depends on the particular gas under consideration. The pressure is
corrected as

RT c
= - —. 44
P=0 "0 u2 (44)
Then we can write ¢
(p—i-ﬁ)(v—b) :RT, (45)

where T is temperature. This is generally known as the van der Waal’s equation of state for
real gases. For an exact Riemann solver see Quartapelle et al. [17].

5.2.3 Compressible Liquids

Liquids at high pressures must be treated as compressible fluids [21]. Application areas of
interest include nuclear-reactor technology and underwater explosions, amongst many others.
The simplest choice of equation of state for compressible liquids is the modified Tait’s equation
of state

p=plp) = B[(L)y -1, (46)
Po

where B is a weak function of entropy, and thus is usually taken as a constant; ; is a constant and
po is the reference density, the density of the liquid at atmospheric pressure. The corresponding

expression for the sound speed is
a:d%@+3y (47)

A more complete equation of state for liquids is the Tammann equation of state

p=p(p,e) = (y — 1)pe — ypc , (48)
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where the constants v and p, are liquid dependent. For p, = 0 and 1 < v < 2 one reproduces the
ideal gas equation of state obtained from setting the covolume b = 0 in (43). The corresponding

sound speed is
a= 3o+ (49)

For Riemann solvers see [10].

5.3 One-Dimensional Numerical Examples

In order to assess the performance of the proposed MUSTA methods we select here three test
problems for the time-dependent one-dimensional Euler equations, two for ideal gases and one
for covolume gases for a problem with moving boundaries. In section 6 we solve the three-

dimensional Euler equations with a high order WENO scheme, for the computation of shock
waves in liquids arising in underwater explosions.

e H|L Riemann solver
MUSTA-0
\ —_— — = MUSTA-1
A MUSTA-4
MUSTA-15

Density (kg/m °)
H
N

0 0.5 1
Position (m)

Figure 3: Test 1: Stationary contact. Numerical solutions for density at time ¢ = 2.0 using
a mesh of M = 100 cells and a CFL coefficient CFL=0.9. Results include those from the HLL
Riemann solver, the GFORCE (MUSTA-0) flux and MUSTA-k, for k = 1,4, 15.
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Figure 4: Test 2: Blast wave interaction. Numerical solutions for density at time ¢t = 0.038
using a mesh of M = 3000 cells and a CFL coeflicient CFL=0.9. Results include those from the
HLLC Riemann solver (thick line), GFORCE or MUSTA-0 (thin line) and MUSTA-1 (symbol).
Results from HLLC and MUSTA-1 are indistinguishable.

TEST 1: Stationary contact.

We solve the Euler equations in a domain [0, 1] using the ideal gas equation of state, obtained
from (43) with v = 1.4 and b = 0. The initial condition consists of constant pressure p = 1,
constant velocity v = 1 and a discontinuous distribution of density: p = 1.4 in [0,1/2] and
p = 1.0 in (1/2,1]. The purpose of this test is to assess the performance of the methods
proposed in this paper for resolving delicate features, such as contact discontinuities, for which
most numerical methods have large numerical dissipation, being the largest for the case in which
the wave is stationary. Numerical results are shown in Fig. 3. The exact solution consists of
an isolated stationary contact discontinuity positioned at z = 1/2. As the reference numerical
solution we take that of the Godunov method in conjunction with the popular (incomplete)
HLL Riemann solver [9], along with very accurate wave speed estimates [27]; it is seen that
the contact discontinuity is smeared very badly. The next more accurate result is that from
GFORCE (or MUSTA-0). It is surprising to see that a particular linear combination (25) of
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symmetric fluxes produces more accurate results than the HLL Riemann solver. The MUSTA-k
schemes give again more accurate results; realistic values of k are k = 1 and k = 2, which give
acceptable results. For the limiting case of k = 15 (unrealistic) one obtains the exact solution,
see Fig. 3. We note that a complete Riemann solver that includes all waves of the structure of
the exact solution, such as Roe’s [18] and HLLC [29], for example, will recognize exactly this
isolated stationary contact.

TEST 2: Blast wave interaction.

We solve the Euler equations in a domain [0, 1], using the ideal gas equation of state, obtained
from (43) with v = 1.4 and b = 0. The initial condition [31] consists of constant density
p = 1, constant velocity 4 = 0 and a discontinuous distribution of pressure: p; = 1000 in
[0,1/10], par = 0.01 in (1/10,9/10] and pr = 100 in (9/10,1]. For a detailed discussion on
the solution of this problem see [31]. The purpose of this test is to assess the robustness and
accuracy of the proposed methods for resolving very strong shock waves and multiple wave-
wave and wave-boundary interactions. Numerical results for density are shown in Fig. 4. The
reference numerical solution is that obtained from the Godunov method in conjunction with the
(complete) HLLC Riemann solver [29], [27] (thick line). We note here that the results with the
exact Riemann solver are identicall to those with HLLC. The result from the GFORCE (or
MUSTA-0) scheme (25) (thin line) is almost as accurate as that of the HLLC Riemann solver
and the result of MUSTA-1 (symbol) is indistinguishable from that of HLLC and the symbols
are thus covered by the thick line.

TEST 3: Lagrange’s problem with covolume.

The Lagrange’s problem is a test for both Euler solvers with the covolume equation of state
(43) as well as for testing moving boundary schemes. The problem consists of a tube of constant,
circular cross-sectional area with a combustion chamber at the left end, filled with stationary
combustion products at high density and pressure. At the right-hand end of the combustion
chamber is the base of a piston of a given mass, assumed to occupy the full cross-sectional area
of the tube, so that the gases are sealed. See Table 2. A theoretical solution to this problem was
obtained by Love and Pidduck [14], of which Table 3 gives the solution at 10 values of time.

Tube total length of tube 7.698 (m)
Tube radius 0.075 (m)
Combustion chamber length 1.698 (m)
Initial gas density in chamber | 400.0 (kg/m?)
Initial gas speed in chamber 0 (m/s)
Initial gas pressure in chamber | 621.0 (M Pa)
Ratio of specific heats 11/9
Covolume 0.001 (m3/kg)
Total mass of piston 50 (kg)

Table 2. Data for the Lagrange’s problem.
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Time, ms | Piston base position || Piston speed | Breech pressure | Piston base pressure
0.4772 1.72165 99.64 621.06 554.17
0.9544 1.78965 187.70 621.06 499.84
1.4785 1.91165 275.40 507.10 451.01
2.1170 2.11965 371.80 408.84 402.27
2.8980 2.45165 466.20 325.19 291.26
3.8590 2.94065 550.40 255.95 212.84
5.1540 3.71865 632.50 169.46 150.53
7.1370 5.05365 718.30 106.50 101.10

10.2300 7.41665 801.30 63.74 57.04
10.5800 7.69765 807.70 * 60.88 54.19

Table 3. Theoretical solution for the Lagrange’s problem [14]. Value * obtained from
interpolation procedure using a reference numerical solution with the WAF scheme [25].

At time ¢ = 0 one assumes instantaneous combustion in the chamber and the piston is free to
move under the action of the high pressure. At time ¢ = 10.58 ms the base of the piston leaves
the end of the tube at z = 7.698 m at an exit speed of V' = 807.70 m/s. Fig. 5 show results, as
functions of time, for the piston base position, the piston speed, the pressure at the centre of the
tube at x = 0 (the breech), and the pressure at the base of the piston. The numerical solution
(full line) is compared with the theoretical solution (symbols) given in Table 3. The numerical
results were obtained from a TVD extension of the MUSTA scheme, starting the computations
with an initial mesh of M = 100 cells and then adding cut cells as the computational domain
was enlarged due to the traveling of the piston towards the exit of the tube. As seen in Fig. 5
the agreement between the numerical and the theoretical solution is satisfactory.

5.4 Extensions of MUSTA

The MUSTA fluxes can be used in the frame of existing finite volume and discontinuous Galerkin
approaches to obtain schemes of higher order of accuracy, along with various ways of constructing
non-oscillatory versions of the schemes.

In two and three space dimensions one can construct unsplit, or simultaneous updating
schemes of the form (3), with MUSTA-type intercell fluxes. Any existing finite volume scheme
based on some Riemann solver can be used by simply replacing the Godunov-type flux by a
MUSTA flux. In the context of unsplit finite volume methods for multi-dimensional problems
it is worth remarking that centred fluxes such as Lax-Friedrichs (10) (not to be mistaken with
Rusanov’s flux [19]) and the FORCE flux (12) lead to schemes that are linearly, unconditionally
unstable [28]. Split versions may produce stable schemes, but these will not be suitable for
unstructured meshes or for very-high order extensions in multiple space dimensions.

The multi-staging process of the MUSTA approach results in numerical fluxes that give
unsplit schemes that have identically the same stability region as the simple unsplit Godunov
first-order upwind method, as shown in section 6. In fact the GFORCE flux (MUSTA-0) also
enjoys this very desirable property for multi-dimensional problems.

The MUSTA fluxes can be used to construct schemes of very high order of accuracy in space
and time. In section 6 we illustrate this in the frame of WENO schemes with Runge-Kutta time
stepping as applied to the three-dimensional Euler equations for compressible liquids.
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Figure 5: Test 3: Lagrange’s problem with covolume. Numerical (line) and theoretical
(symbol) solution as function of time for piston base position, piston speed, pressure at breech
and pressure at the base of the piston.

6 MUSTA Fluxes in High-Order WENO Schemes

In this section we use the MUSTA fluxes constructed in previous sections as the building block in
the state-of-art weighted essentially non-oscillatory (WENO) schemes. For a detailed description
of finite-volume WENO schemes in two space dimensions see [20] and references therein. Here
we use its three dimensional extension reported in [22]. In all examples fifth-order reconstruction
and third-order time integrations are used, see [20, 22] for details. We note that in 2D the variant
of the WENO scheme from [22] is different from that of [20] in that it uses a two-point Gaussian
quadrature instead of a three point one.
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6.1 Linear Stability of the Multi-Dimensional Schemes

We first perform a von Neumann stability analysis of the first-order MUSTA scheme as applied
to the model linear advection equation with constant coefficients in three space dimensions.

0 0 0 0
54T %f(CI) + a—yg(q) + %h(q) =0, f=XMg, g=2Xg, h=DAq.

The scheme now reads

At
1
Qe = Gk — Az (fi—|—1/2,jk - fiq/z,jk)

At At
Ay (gij+1/2,k - gij71/2,k) ~ AL (hijk+1/2 - hz’jkq/z) ;

or in a more concise form: .
n+1 __ n
%Gjr = > bimpdlismbp - (50)
l,m,p=—1

We remind the reader that for the linear advection equation with constant coefficient the new

1.25 —

CFL number in 'Y direction
CFL number in 'Y direction

T T T T I T T T T = . |
. 0 0.25 0.5 0.75 1 1.25
CFL nunmber in X direction CFL nunmber in X direction

Figure 6: Stability regions for the three-dimensional Godunov scheme for ¢, = 0 (left plot) and
¢, = 1/3 (right plot).
MUSTA scheme of this paper reduces to the Godunov upwind method.

We then consider a trial solution gj;, = S™ exp (I(ice + 3B + k), where «, 8 and ~y are phase
angles in z, y and z directions respectively. Inserting the trial solution into (50) we obtain the
following algebraic expression for the modulus of the amplification factor S:

1 ? ! ’
‘5‘2:( > blmpCOS(la-I-mﬁ-l‘p’)’)) +( ) blmpsin(la+mﬂ+p7)> .

lym’p:_l l,map:_l

For linear stability we impose the condition |S| < 1. Since the resulting expression for |S| is
algebraically intractable we adopt the idea of verifying the condition |S| < 1 numerically rather
than analytically [28] as follows. Let us define Courant numbers for each coordinate direction
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as ¢z = MAt/Az, ¢y = MAt/Ay, ¢, = A3At/Az. For a given set (cg, ¢y, c;), we evaluate the
amplification factor S(c,cy,c,,q, B,7) for many values of the phase angles «, 3,7 and record
the proportion p(cy, ¢y, ¢,) for which |S| < 1. Then a contour plot of p(cs, ¢y, c;) in the ¢; — ¢,
plane for different values of ¢, will give an indication of the linear stability region of the scheme.

Fig. 6 shows stability regions for the MUSTA-1 method for ¢, = 0 and ¢, = 1/3. The
stability condition for the scheme can be approximately written as

czt+cyt+ec, <1

Note that in the limiting case of Ay = A3 = 0 the scheme recovers the one-dimensional stability
condition (35), which can be derived analytically.

In the rest of this section we carry numerical computations for multi-dimensional problems.

6.2 Computation of Double Mach Reflection

We solve the two-dimensional compressible Euler equations for an ideal gas in a rectangular
domain. The formulation of the problem, computational setup and detailed discussion of the
flow physics can be found in [31]. At the given output time a complicated flow pattern forms
containing two Mach shocks, two slip surfaces and a jet. Figs. 7-8 show numerical results from
the WENO scheme with the MUSTA flux of this paper on three meshes: 240 x 60, 480 x 120
and 960 x 240 cells. We observe that the scheme produces the flow pattern generally accepted
in the present literature [31, 20] as correct, on all meshes. All discontinuities are well resolved
and correctly positioned.

Delicate features of the flow, such as slip surfaces, are generally more difficult to resolve
accurately, particularly when using symmetric methods or upwind methods with incomplete
Riemann solvers. The results of the present MUSTA scheme are comparable to those with the
complete HLLC Riemann solver [29] found in Figs. 2, 4 of [22], not reproduced here.

6.3 Three-Dimensional Explosion in Water

Finally, we solve the three-dimensional Euler equations for compressible liquids with the Tam-
mann equation of state (48). The initial condition defined on [—1 : 1] x [-1 : 1] x [-1 : 1]
consists of two regions of constant but different values of liquid parameters separated by a
sphere of radius 0.6:

2

(p’p):{ (1100, 5000), r<06 o 222, 0

(1000, 0.1), r>0.6 ’

Here units are kg x m~3 and MPa for density and pressure, respectively. The constant values
of v and p. in (48) are taken to be v = 7.15 and p, = 300 MPa, as in [10]. We compute the
numerical solution at the output time 7 x 10~°s on meshes of 51 and 101 cells in each coordinate
direction. We use C.y; = 0.3 for all runs. We compare the results of the WENO-MUSTA
scheme with a reference radial solution, which is obtained by solving the one-dimensional Euler
equations with a geometric source term on a very fine mesh. See Section 17.1 of [27] for details.
The solution contains a spherical shock wave, a spherical contact surface, initially travelling
away from the centre, and a spherical rarefaction wave travelling towards the origin (0,0, 0).

Figs. 9 — 10 show a comparison between the one-dimensional reference radial solution (solid
line) and the cell averages of the three-dimensional WENO solution (symbols) along the radial
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line that is coincident with the z-axis. We show the results only for x > 0. We present
distributions of gas density p and pressure p. We observe that the MUSTA-WENO scheme
obtains the correct solution, with the correct values behind the shock wave and the contact
surface. As the mesh is refined, the numerical solution approaches the reference solution. The
resolution of the smooth parts of the solution and of discontinuities is satisfactory, no spurious
oscillations are present.

7 Summary and Conclusions

We have first presented a new upwind numerical flux, called GFORCE, that is a generalization of
the FORCE symmetric flux. Then we have incorporated this flux into the MUSTA framework,
leading to schemes of accuracy that is comparable to that of complete Riemann solvers for non-
linear hyperbolic systems. But unlike conventional upwind methods with complete or incomplete
Riemann solvers, our schemes are applicable to general systems of hyperbolic conservation laws.
For a given vector of conserved variables, a corresponding flux vector and appropriate closure
relations, the proposed MUSTA numerical flux is most easily computed. For multi-dimensional
problems the unsplit versions of the schemes are linearly stable, unlike those of well-known
symmetric fluxes such as Lax-Friedrichs and FORCE. The schemes have been implemented for
the Euler equations in one, two and three space dimensions. Then the flux has been used as
the building block for high order non-linear schemes via the TVD approach and the WENO
approach. The performance of the new schemes has been demonstrated via the Euler equation
for ideal gases, covolume gases and compressible water.

Acknowledgements. Part of the work was carried out while the first author was an EP-
SRC senior visiting fellow (Grant GR N09276) at the Isaac Newton Institute for Mathemati-
cal Sciences, University of Cambridge, UK, as joint organiser (with P. G. LeFloch and C. M.
Dafermos) of the research programme on Non-linear Hyperbolic Waves in Phase Dynamics and
Astrophysics, Cambridge, January to July 2003. The second author acknowledges the support
provided by the Isaac Newton Institute, University of Cambridge, UK, as a participant to the
same research programme.

20



06
05
0.4

02

08
06
04

02

N

06

04

02

0 1 X 2 3

Figure 7: Double Mach reflection test problem. Results from the WENO-MUSTA scheme.
Meshes of 240 x 60 (top), 480 x 120 (middle) and 960 x 240 (bottom) cells are used. 30 contour
lines from 2 to 22.
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Figure 8: Double Mach reflection test problem. Results from the WENO-MUSTA scheme.
Close-up view of Fig. 7 in the region around the contact surface.
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Figure 9: Spherical explosion in water. WENO-MUSTA 3D numerical (symbol) and reference
radial (line) solutions for density (left) and pressure (right) for the mesh of 51 x 51 x 51 cells.
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Figure 10: Spherical explosion in water. WENO-MUSTA 3D numerical (symbol) and reference
radial (line) solutions for density (left) and pressure (right) for the mesh of 101 x 101 x 101 cells.
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