
CONSERVATIVE HYPERBOLIC MODEL FOR
COMPRESSIBLE TWO-PHASE FLOW WITH DIFFERENT

PHASE PRESSURES AND TEMPERATURES

E. ROMENSKI 1 †, A.D. RESNYANSKY ‡ and E. F. TORO †

† Laboratory of Applied Mathematics, Faculty of Engineering,
University of Trento, via Mesiano, 77, 38050 Italy

romenski@ing.unitn.it; toro@ing.unitn.it

‡ Weapons System Division, Defence Science and Technology Organization,
P.O. Box 1500, Edinburgh SA 5111, Australia

Anatoly.Resnyansky@dsto.defence.gov.au

Abstract

A model for two-phase compressible flow is presented, the derivation of which is

based on extended irreversible thermodynamics principles. An isentropic two-phase

flow model proposed earlier and the hyperbolic model for heat transfer underlie the

developed theory of this paper. The governing equations of the model form a hyperbolic

system of differential equations in conservation-law form. A set of interfacial exchange

processes such as pressure relaxation, interfacial friction, temperature relaxation and

phase transition are taken into account by source terms in the balance equations. It is

shown that the heat flux relaxation limit of governing equations can be written in the

Baer-Nunziato form, in which the Furier thermal conductivity diffusion terms for each

phase are included.

1 Introduction

Multi-phase flow modelling has undergone intensive developments in recent years because
of its great importance for practical applications. In resent decades several theories of two-
phase flow have been developed and exploited successfully for the needs of industry and
environmental sciences.

In this paper we study a model of two-phase two-fluid flow in which the constituents
of the mixture have different velocities, pressures and temperatures. Mathematical models
for such a flow are still far from a final satisfactory state. The pioneering work [1] in this
field has formulated two-phase flow governing equations as a set of two separate system of
conservation laws for each phase coupled by interface exchange terms. This model has been
applied to the study of many concrete problems, and some modifications and generalizations
of this model has been made, in for example [2, 25, 8, 18] and references therein. Note that
the governing equations of the Baer-Nunziato model are hyperbolic. This is a very important
attribute of the model, which gives a theoretical basis for its mathematical study and for
confidence in numerical solutions of the equations. But not all equations of Baer-Nunziato
type model are in conservative form, and this results in difficulties in definition and studying
discontinuous solutions [26, 13].

We propose a different approach to model two-phase flows, which is based on extended
irreversible thermodynamics principles. This theory allows us to formulate classes of hyper-
bolic conservation equations using generating thermodynamic potentials and variables. Its
core is a phenomenological approach in modelling of continuous media and using thermo-
dynamic laws, which determine the structure of the governing equations. Extended ther-
modynamics has been developed in the last decades and has been successfully applied in
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different areas of continuum mechanics and mathematical physics [9, 6, 7, 11, 20, 12, 17, 21].
With respect to multi-phase compressible flow a general principle has been constructed,
and the models for quasi-isentropic flows has been developed and applied to studying some
specific problems [22, 23, 19, 24]. In this approach the mixture is supposed to be a con-
tinuum in which the two-phase character of the flow is taken into account. The complete
set of governing equations is a hyperbolic system and consists of the mass, momentum and
energy conservation laws for the mixture, which are completed by balance laws for addi-
tional mixture parameters, namely, for the volume fraction and relative velocity. Moreover
all equations of the system have a conservative form. This fact is very attractive from the
mathematical and numerical viewpoints, because it gives a straightforward way to develop
the theory of discontinuous solutions and modern numerical methods. Note that the equa-
tions of the conservative model can be transformed to a system which is similar to the
Baer-Nunziato form. The difference consists of the distinct definition of interfacial pressure
and appearing lift forces in the phase momentum equations. These forces are not included
into the traditional Baer-Nunziato model.

In this paper we present a generalization of the model [24] for the case of flow with two
different phase temperatures. The design methodology of the model is based on the syn-
thesis of the conservative isentropic model from [24] and hyperbolic heat transfer equations
which have been formulated in [16]. The hyperbolic equations for heat conductivity are
well-known and widely discussed in the literature, see for example [17]. This model is based
on the Cattaneo equation for heat transfer, and the temperature and heat flux are used
as variables. In the present paper we use phase entropies and entropy fluxes as physical
variables which seems to be more convenient for our study and are typical variables in irre-
versible thermodynamics [4]. The resulting system of governing equations is also hyperbolic.
Moreover, all equations are written in a conservative form. The use of a hyperbolic model
for heat transfer in multi-phase flows seems to be reasonable because of the small scales and
characteristic times of the processes.

The paper is organized as follows. In Section 2 we give a brief formulation of the con-
servative isentropic compressible two-phase flow model and its comparison with the Baer-
Nunziato formulation. Section 3 describes the hyperbolic heat transfer equations, on the
basis of which the sophisticated conservative model for two-phase flow with two tempera-
tures is presented in Section 4. Also in Section 4 the diffusive limit of the hyperbolic heat
flux relaxation is discussed. It is shown that such an approximation leads to equations,
which are similar to the Baer-Nunziato equations with parabolic phase thermal conductiv-
ity terms. Conclusions are drawn in Section 5. Finally, in the Appendix a description of the
generative system is given, which is formulated by the extended thermodynamics laws and
generates the presented two-phase model.

2 Isentropic conservative model for two-phase flow

In this section we briefly describe the model for isentropic two-phase flow which has been
proposed in [24]. Its derivation is based on the principles of extended thermodynamics and
the governing equations are a hyperbolic system of differential equations in conservative
form. We ignore here many possible dissipative processes and phase transition and take into
account only interfacial friction and pressures relaxation of phases to the common pressure
value.

2.1 The system of balance laws for two-phase isentropic flow

We consider processes in the Cartesian coordinate system, the tensor notation such as upper
and lower indexes, and summation with respect to common index are used. Assume that
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the mixture is a continuum in which the two-phase character of flow is taken into account.
Suppose that the state of each phase with a number i = 1, 2 is characterized by its volume
fraction αi, mass density ρi and velocity vector uk

i , k = 1, 2, 3. For the volume fractions the
saturation constraint α1 + α2 = 1 is assumed.

The set of physical parameters of state which is convenient in applying the extended
thermodynamics for the derivation of the governing equations is as follows:

α, ρ, c, uk, wk, (1)

where α = α1 is the volume fraction of the first phase, ρ is the mixture mass density, c = c1
is the mass fraction of the first phase, uk is the average velocity of the mixture, and wk is
the relative velocity of phases.

These parameters of state for the mixture are connected with the parameters of state for
each phase by the relations

α = α1, ρ = α1ρ1 + α2ρ2, c = c1 =
α1ρ1

ρ
, uk = c1u

k
1 + c2u

k
2 , wk = uk

1 − uk
2 . (2)

Using (2) we can derive the relations expressing the individual parameters, such as mass
densities and velocities, by the mixture parameters:

ρ1 =
c1ρ

α1
=
cρ

α
, ρ2 =

c2ρ

α2
=

(1 − c)ρ

(1 − α)
, (3)

uk
1 = uk + c2w

k = uk + (1 − c)wk, uk
2 = uk

− c1w
k = uk

− cwk. (4)

The system of governing equations for isentropic two-phase flow written in terms of the
mixture parameters (2) can be derived with the help of extended thermodynamics principles
(see Appendix) and looks as follows:

∂ρα

∂t
+
∂ρukα

∂xk
= −φ,

∂ρ

∂t
+
∂ρuk

∂xk
= 0,

∂ρul

∂t
+
∂(ρuluk + pδkl + ρwlEwk)

∂xk
= 0, (5)

∂ρc

∂t
+
∂(ρukc+ ρEwk)

∂xk
= 0,

∂wk

∂t
+
∂(ulwl + Ec)

∂xk
= −(eklju

lωj + λk).

The equations of the above system are the balance law for volume fraction, total mass
conservation law, total momentum conservation law, mass fraction balance law and the bal-
ance law for the relative velocity respectively. Here eklj is the unit pseudoscalar. Fluxes
in the three last equations contain the derivatives of the equation of state (specific internal
energy) E, which is supposed to be a known function of the parameters of state. Its deriva-
tion with the use of the equations of state for individual phase will be described below. The
momentum flux contains the mixture pressure p, which is also defined by the derivative of
the equation of state with respect to the mixture density:

p = ρ2Eρ = ρ2 ∂E

∂ρ
. (6)

The two source terms in the first and in the last equation of system (5) are the pressure
relaxation term and interfacial friction term respectively. The variable ωj is an auxiliary
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variable and its introduction is necessary to write the equation for the relative velocity in
conservative form. Thereby two additional equations should be added to the system (5) in
order to provide its compatibility [21]. The first one is a steady conservative equation

ejkl ∂wk

∂xl
= ωj , (7)

which defines ωi as the vorticity of the relative velocity vector, and the second one is as
follows

∂ωk

∂t
+
∂(ulωk − ukωl + ekljλj)

∂xl
= 0. (8)

We emphasize again that the vector variable ωi is introduced only to write the equation
for the relative velocity in conservative form. Actually one can use in the system (5) the
equivalent nonconservative equation for the relative velocity

∂wk

∂t
+ ul ∂wk

∂xl

+
∂Ec

∂xk

+ wl

∂ul

∂xk
= −λk, (9)

instead of the conservative one. Nevertheless, the additional equations (7), (8) can be useful
in studying discontinuous solutions.

It is reasonable to define the source terms in the following way:

φ =
ρ

τ (p)
Eα =

ρ

τ (p)

∂E

∂α
, (10)

where τ (p) is the pressure relaxation time which is assumed to be a function of parameters
of state:

λk = κEwk = κ
∂E

∂wk
, (11)

where κ is the interfacial friction coefficient, which also can be a function of parameters
of state. Further we will see that such a definition will provide the positiveness of entropy
production in more sophisticated models of two-phase flow.

The very important property of the system (5) is that its solution to the system satisfies
the energy balance law. Its derivation can be reached by summing up all equations of the
system (5) multiplying by the Eα, E + ρEρ − uiui/2−αEα − cEc, ul, Ec, ρEwk respectively,
and as a result we have

∂ρ(E + ulu
l/2)

∂t
+
∂(ρuk(E + ulu

l/2) + Πk)

∂xk

= −ρQ, (12)

where Πk is the energy flux

Πk = ukp+ ρukwlEwl + ρEcEwk
(13)

and Q is the dissipative function producing the energy dissipation

Q =Eαφ+ ρEwk
λk = ρ

(

1

τ
E2

α + κEwk
Ewk

)

≥ 0.

Note that energy dissipation appears because we consider isentropic processes. In [24]
the model with mixture entropy has been considered in which the dissipation appears as
entropy production source term in an entropy balance law. In such a model the flow is
governed by the energy conservation law (with zero right hand side). In this paper we shall
consider a more sophisticated model with two different phase entropies.
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2.2 Equations in terms of individual phase parameters

The closing relations for the system (5) are the source terms φ, λk and the equation of
state E. The source terms are defined by formulae (10), (11) in which the derivatives of
the equation of state Eα, Ewk are included. Only the pressure relaxation time τ (p) and the
interfacial friction coefficient κ should be defined empirically using physical assumptions and
experimental data.

Now we describe how to define the equation of state for the mixture if the equations of
state for each phase are known. First of all we assume that the equation of state for the
mixture is a sum of thermodynamic energy e and kinematic energy of relative motion:

E(α, ρ, c, w1, w2, w3) = e(α, ρ, c) + c(1 − c)
wiw

i

2
. (14)

Let us suppose now that the equation of state (specific internal energy) for each phase is
a known function of its mass density ei = ei(ρi), i = 1, 2. We define the thermodynamic
mixture energy as follows:

e(α, ρ, c) = c1e
1(ρ1) + c2e

2(ρ2).

Using the relations connecting phase mass densities and parameters of the mixture we obtain

e(α, ρ, c) = ce1
(cρ

α

)

+ (1 − c)e2
(

(1 − c)ρ

(1 − α)

)

, (15)

which gives us the thermodynamic equation of state for the mixture.
The definition of the equation of state for the mixture (14), (15) via equations of state for

each phase gives the possibility to rewrite the system (5) in terms of individual parameters
of each phase. To do this it is necessary to express the derivatives of the equation of state via
derivatives with respect to individual phase parameters. First we obtain Eα = eα, Eρ = eρ,
Ec = ec, Ewk = c(1 − c)wk. Further, using (2),(3) we obtain

∂e

∂α
= −

ρ2
1

ρ

∂e1

∂ρ1
+
ρ2
2

ρ

∂e2

∂ρ2
=
p2 − p1

ρ
, (16)

∂e

∂c
=e1 +

ρc

α

∂e1

∂ρ1
− e2 −

ρ(1 − c)

(1 − α)

∂e2

∂ρ2
= e1 +

p1

ρ1
− e2 −

p2

ρ2
, (17)

∂e

∂ρ
=
α1

ρ2
ρ2
1

∂e1

∂ρ1
+
α2

ρ2
ρ2
2

∂e2

∂ρ2
=
α1p

1 + α2p
2

ρ2
. (18)

From (18) it follows that the mixture pressure is an average of constituents pressures: p =
ρ2Eρ = α1p

1+α2p
2. Finally we obtain the system which is written in terms of parameters of

state for individual phases (note that in some equations the mixture density ρ and velocity
uk are used for simplicity)

∂ρα1

∂t
+
∂ρukα1

∂xk
= −φ,

∂(α1ρ1 + α2ρ2)

∂t
+
∂(α1ρ1u

k
1 + α2ρ2u

k
2)

∂xk
= 0,

∂(α1ρ1u
l
1 + α2ρ2u

l
2)

∂t
+
∂(α1ρ1u

l
1u

k
1 + α2ρ2u

l
2u

k
2 + (α1p

1 + α2p
2)δlk)

∂xk
= 0,

∂α1ρ1

∂t
+
∂α1ρ1u

k
1

∂xk
= 0, (19)

∂(uk
1 − uk

2)

∂t
+
∂(

ul

1
ul

1

2 −
ul

2
ul

2

2 + e1 + p1

ρ1

− e2 − p2

ρ2

)

∂xk
= −eklju

lωj + λk,
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where the source terms are

φ =
1

τ (p)
(p2 − p1), λk = κc(1 − c)wk.

We see that the first four equations of the system (19) are well-known in the two-phase flow
theory (the balance law for volume fraction, the total mass density conservation law, the
total momentum conservation law, and the mass conservation law for the second phase).
The fifth equation is the balance law for the relative velocity. It postulates that the relative
velocity appears if there is a nonzero gradient of difference of phase enthalpies and/or kinetic
energies.

In the next subsection we see that system (19) can be written in the form of Baer-
Nunziato type model with some differences. Further, the system (5), or equivalence (19),
will be used as the basis for the model of two phases with two different temperatures.

2.3 Equations in a Baer-Nunziato type form

The system (19) can be rewritten in the Baer-Nunziato type form as it is for example in
[25], in which two sets of balance equations for each phase are coupled by the interfacial
momentum exchange terms. The transformation of equations is not difficult but cumbersome
procedure. We provide the final system only, which is as follows:

∂ρα1

∂t
+
∂ρα1u

k

∂xk
=
p1 − p2

τ
,

∂α1ρ1

∂t
+
∂α1ρ1u

k
1

∂xk
= 0,

∂α2ρ2

∂t
+
∂α2ρ2u

k
2

∂xk
= 0,

∂α1ρ1u
i
1

∂t
+
∂α1ρ1u

i
1u

k
1

∂xk

+
∂α1p

1

∂xi

= p̂I

∂α1

∂xi

+ fi + κ
(α1α2ρ1ρ2)

2

ρ3
(ui

2 − ui
1), (20)

∂α2ρ2u
i
2

∂t
+
∂α2ρ2u

i
2u

k
2

∂xk

+
∂α2p

2

∂xi

= p̂I

∂α2

∂xi

− fi − κ
(α1α2ρ1ρ2)

2

ρ3
(ui

2 − ui
1).

Here, as before, ρ = α1ρ+ α2ρ2, u
k = α1ρ1

ρ
uk

1 + α2ρ2

ρ
uk

2 , and p̂I is an interfacial pressure:

p̂I =
α2ρ2p

1 + α1ρ1p
2

α1ρ1 + α2ρ2
. (21)

The definition of interfacial pressure in our model differs from the definition in the con-
ventional Baer-Nunziato type model, in which pI = α1p1 + α2p2. The more significant
difference is the appearing terms fi in the momentum equations which do not appear in the
Baer-Nunziato model:

fi =ρc1c2(u
k
1 − uk

2)

(

c1

(

∂ui
2

∂xk
−
∂uk

2

∂xi

)

+ c2

(

∂ui
1

∂xk
−
∂uk

1

∂xi

))

. (22)

These body forces arise for the flow with nonzero relative velocity and are caused by the
phase vorticities. Such type of force is called lift force, see for example [5].

3 Hyperbolic heat transfer equations

The model for two-phase compressible flow with two temperatures proposed in this paper
uses a hyperbolic heat transfer approach, which gives a finite speed of propagation of thermal
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perturbations. Such an approach in heat transfer modelling was founded by Cattaneo and
has been studied by many researches, see for example [17]. The Cattaneo theory is usually
formulated in terms of temperature T and heat flux Jk, and the governing equation for Jk

is as follows

τ
∂Jk

∂t
+ κ

∂T

∂xk
= −Jk. (23)

Here ρ is the mass density of medium which is assumed to be incompressible, κ is the thermal
conductivity coefficient, and τ is heat flux relaxation time.

For our purpose another set of variables is preferable, namely, entropy and entropy flux.
These variables accepted in irreversible thermodynamics [4] have been used in [16]. We
also presuppose the existence of a thermodynamic potential - specific internal energy E.
Moreover we assume that the entropy flux is a derivative of the equation of state (specific
internal energy) with respect of the conjugate variable which we call the thermal impulse.
Such set of variables as the entropy and thermal impulse seem to be more convenient for
models of complicated media. Finally we assume that heat transfer processes are governed
by the following system

ρ
∂S

∂t
+
∂Ejk

∂xk
= σ,

ρ
∂jk
∂t

+
∂T

∂xk
= −

Ejk

κ
. (24)

Here S is the specific entropy, jk is the thermal impulse, E(S, jk) is the specific internal
energy, T = ES is the temperature, σ is the entropy production.

Multiplying equations of the above system by ES and Ejk
respectively and summing the

results we obtain the energy balance law in the form

ρ
∂E

∂t
+
∂ESEjk

∂xk
= σES −

Ejk
Ejk

κ
. (25)

From to the first law of thermodynamics, namely conservation of energy, we conclude
that the right hand side in the latter equation must be zero and hence for the entropy
production we have

σ =
1

T

Ejk
Ejk

κ
≥ 0.

Now we have to define the dependence of internal energy on S and jk. The simplest one
we can choose is

E = e(S) +
A

2
jkj

k, A =
ρκ

τ
.

The term e(S) can be defined by integrating the equation de = C(T )dT = TdS, where C(T )
is the specific heat capacity.

It is important to note that the classical Fourier heat transfer law can be obtained
assuming that the heat flux relaxation time τ is sufficiently small and that the time scale
of the processes under consideration is much bigger than τ . Appealing to physical intuition
we do not provide a proof of this statement. Some mathematical results concerning the
relaxation limit of hyperbolic equations can be found in [15, 3]. So the relaxation limit can
be obtained neglecting the term ∂jk/∂t in the second equation of the system (24), and the
entropy flux becomes

Ejk
= −κ

∂T

∂xk
.

Hence the entropy equation takes the form

ρ
∂S

∂t
−

∂

∂xk

(

κ
∂T

∂xk

)

= κ
1

T

3
∑

k=1

(

∂T

∂xk

)
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and neglecting terms of second order with τ2, the energy conservation equation (25) takes
the form

ρ
∂E

∂t
−

∂

∂xk

(

κT
∂T

∂xk

)

= 0. (26)

These equations are well-known in heat transfer Furier theory.
Note that if we denote jk = τ

ρκ
Jk and take A = ρκ

τ
we obtain for Jk equation (23)

directly.

4 Conservative model for two-phase flow with two tem-

peratures

Now we can construct a more complete model for the flow of the mixture of two compress-
ible phases with different velocities, pressures and temperatures. The model is based on the
synthesis of two models presented in previous sections, isentropic model for two-phase flow
and the hyperbolic equations for heat transfer. We shall consider mechanisms such as in-
terfacial exchange, pressure relaxation, interfacial friction, interfacial temperature exchange
and phase transition.

4.1 Generating system of conservative equations

First of all we define the set of parameters of state for each phase

αi, ρi, si, uk
i , jk

i ,

where i is the phase number (i = 1, 2), αi is the volume concentration of i-th phase, ρi is
the mass density of i-th phase, si is the specific entropy of i-th phase, uk

i is the velocity
vector of i-th phase, jk

i is the specific thermal impulse of i-th phase. It is supposed that the
saturation constraint for volume fractions α1 + α2 = 1 holds.

The extended thermodynamics principles allow to formulate the system of governing
equations in terms of parameters of state for the mixture:

α1, ρ = α1ρ1 + α2ρ2, c1 =
α1ρ1

ρ
, uk = c1u

k
1 + c2u

k
2 , w

k = uk
1 − uk

2 , Si = cisi, j
k
i . (27)

Here ρ is the total mass density of the mixture, ci is the mass concentration of i-th phase, uk

is the mixture velocity vector, wk is the relative velocity vector, Si is the partial entropy of
i-th phase, jk

i is the thermal impulse vector of i-th phase. It is obvious that the saturation
constraint c1 + c2 = 1 is valid also for phase mass fractions.

As in the Section 2 let us denote α = α1, c = c1. The basic generating system of
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governing equations in a conservative form is

∂ρ

∂t
+
∂ρuk

∂xk
= 0,

∂ρα

∂t
+
∂ραuk

∂xk
= −φ,

∂ρc

∂t
+
∂(ρcuk + Ewk

)

∂xk
= −ψ,

∂ρui

∂t
+
∂(ρuiuk + pδi

k + ρwiEwk
)

∂xk
= 0,

∂wk

∂t
+
∂(ulwl + Ec)

∂xk
= −eklju

lωj
−

1

ρ
λk

0 , (28)

∂ρji
1

∂t
+
∂(ρji

1u
k + ES1

δi
k)

∂xk
= −λi

1,

∂ρji
2

∂t
+
∂(ρji

2u
k + ES2

δi
k)

∂xk
= −λi

2,

∂ρS1

∂t
+
∂(ρS1u

k + Ejk

1

)

∂xk
= Π1 − π1,

∂ρS2

∂t
+
∂(ρS2u

k + Ejk

2

)

∂xk
= Π2 − π2.

The equations of system (28) are the total mass conservation law, the balance law for the
volume fraction, the balance law for the mass fraction, the total momentum conservation
law, the balance law for the relative velocity, two balance laws for phase thermal impulses,
and two balance laws for the phase entropies respectively. The pressure p is defined in the
same way as in the Section 2: p = ρ2Eρ.

The constitutive relations which should be defined for closure of the system (28) are the
specific internal energy E and the source terms φ, λk

0 , λ
i
1, λ

i
2, λ

i
3,Π1,Π2, π1, π2.

The procedure of derivation of E by the known equations of state for each phase is similar
to Subsection 2.2 and will be given below. The source terms are defined by the following
way:

φ =
1

τ (p)
Eα, ψ =

1

τ (c)
Ec,

λk
0 = χ00Ewk

+ χ01Ejk

1

+ χ02Ejk

2

,

λk
1 = χ01Ewk

+ χ11Ejk

1

,

λk
2 = χ02Ewk

+ χ22Ejk

2

, (29)

Π1 =
1

ES1

χ11

3
∑

k=1

(

Ejk

1

+
χ01

χ11
Ewk

)2

+
c1
ES1

(

χ00 −
χ2

01

χ11
−
χ2

02

χ22

) 3
∑

k=1

(Ewk)2

+
c1
ES1

E2
α

τ (p)
+

c1
ES1

E2
c

τ (c)
,

Π2 =
1

ES2

χ22

3
∑

k=1

(

Ejk

2

+
χ02

χ22
Ewk

)2

+
c2
ES2

(

χ00 −
χ2

01

χ11
−
χ2

02

χ22

) 3
∑

k=1

E2
wk

+
c2
ES2

E2
α

τ (p)
+

c2
ES2

E2
c

τ (c)
,

π1 =
1

τ (T )

ES1
− ES2

ES1

, π2 =
1

τ (T )

ES2
− ES1

ES2

.
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These source terms are responsible to the following physical processes: φ governs the
relaxation of phase pressures to a common uniform state, ψ governs the rate of phase tran-
sition, λ0 simulates the interfacial friction force, λ1 and λ2 simulate relaxation of the phase
thermal impulses to the corresponding equilibrium states. Here a mutual dependence of
thermal impulses and relative velocity from each other is taken into account. We also em-
phasize that coefficients χij in formulae for λi

j are symmetric, which is a consequence of
the Onsager principle [4]. Π1 and Π2 simulates the phase entropy production caused by
all above mentioned relaxation processes, and finally π1 and π2 governs the phase energy
exchange leading to the phase temperatures equalizing.

We emphasize that the source terms Π1,Π2 in the equations for partial entropies must
be nonnegative and hence the coefficients

(

χ00 −
χ2

01

χ11
−
χ2

02

χ22

)

, χ11, χ22, τ (p). τ (c)

must be nonnegative.
We also suppose that τ (T ) is nonnegative. This requirement is necessary to provide the

positiveness of the production of total entropy S = S1 + S2, the equation for which can be
obtained by a summation of the equations for partial entropies, namely

∂ρS

∂t
+
∂(ρSu+ Ejk

1

+ Ejk

2

)

∂xk
= Π = Π1 + Π2 +

1

τ (T )

(ES1
− ES2

)2

ES1
ES2

≥ 0. (30)

Note that all coefficients in the source terms can be functions of the parameters of state.
As in the model for isentropic two-phase flow (Section 2) an additional compatibility

equation connected with the relative velocity vorticity should be added to system (28).
These equations are identical to (7) and (8):

ejkl ∂wk

∂xl
= ωj ,

∂ωk

∂t
+
∂(ulωk − ukωl + ekljλj

0)

∂xl

= 0,

and we emphasize again that the relative velocity vorticity ωk is an auxiliary variable, but
not a parameter of state.

The solution to system (28) satisfies an additional total energy conservation law, which
can be derived by the summing up of all equations of this system multiplied by the corre-
sponding factors: E + ρEρ − ulu

l/2 − αEα − cEc − jk
1Ejk

1

− jk
2Ejk

2

− S1ES1
− S2ES2

, Eα,

Ec, u
k, ρEwk , Ejk

1

, Ejk

2

, ES1
, ES2

. The equation itself has the following form

∂ρ
(

E + ulu
l

2

)

∂t
+
∂

(

ρuk
(

E + ulu
l

2 + p
ρ

+ wlEwl

)

+ EcEwk + Ejk

i

ESi

)

∂xk
= 0. (31)

Below we describe how to choose closing relationships, namely, equation of state and
coefficients in the source terms.

4.2 Equation of state

Suppose that we know the internal energy ei(i = 1, 2) for each phase as a function of its
mass density ρi, specific entropy si and specific thermal impulse jk

i : ei = ei(ρi, si, j
k
i ). The

dependence on the thermal impulse jk
i can be taken as in Section 3: ei = ei

0(ρi, si)+Ai jk

l
jk

l

2 ,
where Ai is a constant.
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As in Section 2 we take the specific internal energy of the mixture as a sum of thermo-
dynamic internal energy and kinematic energy

E(ρ, α, c, S1, S2, j
k
1 , j

k
2 , w

k) = e(ρ, α, c, S1, S2, j
k
1 , j

k
2 ) + c(1 − c)

wkw
k

2
.

The thermodynamic energy e we define using known e1, e2 by the formula

e(ρ, α, c, S1, S2, j
k
1 , j

k
2 ) = c1e1(ρ1, s1, j

k
1 ) + c2e2(ρ2, s2, j

k
2 ).

Now we derive the dependence of the parameters of state for each individual phase on
the parameters of state for the mixture using formulae (27). This dependence is as follows

uk
1 = uk + (1 − c)wk, uk

2 = uk
− cwk, ρ1 =

cρ

α
, ρ2 =

(1 − c)ρ

(1 − α)
,

s1 =
S1

c1
, s2 =

S2

c2
, jk

1 = jk
1 , jk

2 = jk
2 .

Using these formulae we can derive the derivatives of the equation of state for the mixture
Eα, Eρ, Ec, Ewk , ES1

, Ejk

1

, ES2
, Ejk

2

by the derivatives of equations of state for individual

phases e1ρ1
, e1s1

, e1
jk

1

and e2ρ2
, e2s2

, e2
qk

2

.

To do this we can use the following set of thermodynamic identities

de = d(c1e
1 + c2e

2) = (e1 − e2)dc+ c1de
1 + c2de

2,

de1 = e1ρ1
dρ1 + e1s1

ds1 + e1
qk

1

dqk
1 ,

de2 = e2ρ2
dρ2 + e2s2

ds2 + e2
qk

2

dqk
2 ,

dρ1 =
c1
α1
dρ−

ρ1

α1
dα+

ρ

α1
dc, dρ2 =

c2
α2
dρ+

ρ2

α2
dα−

ρ

α2
dc,

ds1 =
1

c1
dS1 −

s1
c1
dc, ds2 =

1

c2
dS2 +

s2
c2
dc.

These identities lead us to the final thermodynamic identity

de(ρ, α, c, S1, S2, j
k
1 , j

k
2 ) = eρdρ+ eαdα+ ecdc+ eS1

dS1 + eS2
dS2 + ejk

1

djk
1 + ejk

2

djk
2 =

1

ρ2
(α1ρ

2
1e

1
ρ1

+ α2ρ
2
2e

2
ρ2

)dρ+
1

ρ
(ρ2

1e
1
ρ1

− ρ2
2e

2
ρ2

)dα+

((e1 + ρ1e
1
ρ1

− s1e
1
s1

) − (e2 + ρ2e
2
ρ2

− s2es2
))dc+

e1s1
dS1 + c1e

1
jk

1

djk
1 + e2s2

dS2 + c2e
2
jk

2

djk
2 ,

from which we obtain

Eρ =
1

ρ2
(α1ρ

2
1e

1
ρ1

+ α2ρ
2
2e

2
ρ2

) =
1

ρ2
(α1p

1 + α2p
2), (32)

Eα = eα =
1

ρ
(ρ2

1e
1
ρ1

− ρ2
2e

2
ρ2

) =
p1 − p2

ρ
, (33)

Ec = ec + (1 − 2c)
w2

2
= ((e1 + p1/ρ1 − s1e

1
s1

) − (e2 + p2/ρ2 − s2e
2
s2

)) + (1 − 2c)
w2

2
, (34)

ES1
= e1s1

= T 1, ES2
= e2s2

= T 2, Ejk

1

= c1e
1
jk

1

, Ejk

2

= c2e
2
jk

2

. (35)
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Here T 1, T 2 are temperatures of phases. It is interesting to note that the derivative ec of
thermodynamic part of equation of state with respect to c is simply the difference of chemical
potentials of phases µi:

ec = µ1
− µ2, µi = ei +

pi

ρi

− siT
i.

Now we can write the system of governing equations in terms of individual parameters
of state for each phase.

4.3 Governing equations in terms of individual parameters of state

The system of conservative balance equations (28) can be rewritten using individual param-
eters of each phase α1, α2, ρ1, ρ2, u

k
1 , u

k
2 , s1, s2, j

k
1 , j

k
2 (recall that the volume fraction of the

second phase can be determined via the volume fraction of the first phase: α2 = 1 − α1).
To do this it is necessary to use formulae (27),(29) and (32)-(35). The resulting system is
as follows (note that we left the equation for α as in (28)):

∂(α1ρ1 + α2ρ2)

∂t
+
∂(α1ρ1u

k
1 + α2ρ2u

k
2)

∂xk
= 0,

∂ρα

∂t
+
∂ραuk

∂xk
= −φ,

∂α1ρ1

∂t
+
∂α1ρ1u

k
1

∂xk
= −ψ,

∂(α1ρ1u
i
1 + α2ρ2u

i
2)

∂t
+
∂(α1ρ1u

i
1u

k
1 + α2ρ2u

i
2u

k
2 + α1p

1 + ρα2p
2)

∂xk
= 0,

∂(uk
1 − uk

2)

∂t
+
∂(ui

1u
i
1/2 − ui

2u
i
2/2 + µ1 − µ2)

∂xk
= −ekljukωj −

1

ρ
λk

0 , (36)

∂ρji
1

∂t
+
∂(ρji

1u
k + e1s1

δik)

∂xk
= −λi

1,

∂ρji
2

∂t
+
∂(ρji

2u
k + e2s2

δik)

∂xk
= −λi

2,

∂α1ρ1s1
∂t

+
∂(α1ρ1s1u

k + c1e
1
jk

1

)

∂xk
= Π1 − π1,

∂α2ρ2s2
∂t

+
∂(α2ρ2s2u

k + c2e
2
jk

2

)

∂x
= Π2 − π2.

As in Section 2, this system must be supplemented by the compatibility relations (7), (8)
for the relative velocity vorticity ωj .

The source terms in the above equations can also be written in terms of individual
parameters of phases:

φ =
1

τ (p)

p1 − p2

ρ
, ψ =

µ1 − µ2

τ (c)
,

λk
0 = χ00c(1 − c)(uk

1 − uk
2) + χ01c1e

1
jk

1

+ χ02c2e
2
jk

2

,

λi
1 = χ01c(1 − c)(ui

1 − ui
2) + χ11c1e

1
ji

1

,

λi
2 = χ02c(1 − c)(ui

1 − ui
2) + χ22c2e

2
ji

2

,

Π1 =
1

T 1
χ11

3
∑

k=1

(

c1e
1
jk

1

+
χ01

χ11
c1c2(u

k
1 − uk

2)

)2

+ (37)
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c1
T 1

(

χ00 −
χ2

01

χ11
−
χ2

02

χ22

) 3
∑

k=1

(c1c2(u
k
1 − uk

2))2 +
c1
T 1

(p1 − p2)2

ρ2τ (p)
+
c1
T 1

(µ1 − µ2)2

ρ2τ (c)
,

Π2 =
1

T 2
χ22

3
∑

k=1

(

c2e
2
jk

2

+
χ02

χ22
c1c2(u

k
1 − uk

2)

)2

+

c2
T 2

(

χ00 −
χ2

01

χ11
−
χ2

02

χ22

) 3
∑

k=1

(c1c2(u
k
1 − uk

2))2 +
c2
T 2

(p1 − p2)2

ρ2τ (p)
+
c2
T 2

(µ1 − µ2)2

ρ2τ (c)
,

π1 =
1

τ (T )

T 1 − T 2

T 1
, π2 =

1

τ (T )

T 2 − T 1

T 2
.

Finally we can rewrite the total mixture entropy balance equation (30) end energy con-
servation law (31) in terms of individual parameters:

∂(α1ρ1s1 + α2ρ2s2)

∂t
+
∂((α1ρ1s1 + α2ρ2s2)u

k + c1e
1
jk

1

+ c2e
2
jk

2

)

∂xk
=

Π = Π1 + Π2 +
1

τ (T )

(T 1 − T 2)2

T 1T 2
≥ 0. (38)

∂

∂t

(

α1ρ1(e
1 +

ui
1u

i
1

2
) + α2ρ2(e

2 +
ui

2u
i
2

2
)

)

+

∂

∂xk

(

α1ρ1u
k
1

(

e1 +
p1

ρ1
+
ui

1u
i
1

2

)

+ α2ρ2u
k
2

(

e2 +
p2

ρ2
+
ui

2u
i
2

2

)

+ c1T
1e1jk

+ c2T
2e2jk

)

= 0,

(39)
It is interesting to note that the difference of chemical potentials of phases is presented

in the system (28) twice, namely in the relative velocity flux and in the source term which
is responsible for the phase transition. The thermodynamic theory uses equality of phase
chemical potentials as phase equilibrium condition [14]. In our model such an equality is also
responsible for the kinematic equilibrium of phases. In other words the chemical potentials
difference causes the relative motion of the phases.

There is a set of coefficients in the source terms which should be defined, and, in partic-
ular, the coefficients χ00, χ01, χ02, χ11, χ22 in the source terms λi

0, λ
i
1, λ

i
2. We take

χ00 = κ+
χ2

01

χ11
+
χ2

02

χ22
, χ01 = −

ρs1
c1κ1

, χ02 =
ρs2
c2κ2

, χ11 =
1

c1κ1
, χ22 =

1

c2κ2
, (40)

where κ is an interfacial friction coefficient, κ1, κ2 are the coefficients of thermal conductivity
for phases.

The motivation for this choice we explain in the next section, in which the diffusive limit

of the heat flux is discussed. It turns out that the equations, which are derived assuming τ
(T )
i

sufficiently small, look similar to the Baer-Nunziato equations in which the phases parabolic
thermal conductivity is taken into account.

4.4 Diffusive heat transfer limit

In Section 3 it was observed that the hyperbolic heat transfer equations give a parabolic
approximation of heat transfer processes if the heat flux relaxation time is small. In case
of two-phase flow we have two interacting heat transfer processes for each phase with two
different heat flux relaxation times. Here we study the relaxation limit in both phases
assuming that two heat flux relaxation times are sufficiently small. We also suppose that
the characteristic scale of the process is much larger than the relaxation times.
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Let us consider the equations from the system (36) for phase thermal impulses

∂ρji
m

∂t
+
∂(ρji

mu
k + em

sm
δmk)

∂xk
= −λi

m, m = 1, 2

where λi
m is defined by (37) with coefficients (40).

Following the assumption concerning the smallness of κ1, κ2 and the characteristic time
scale of processes, we can neglect the time derivative and convective term in the equation
for qi

m. The resulting equation is

λk
m = −

∂em
sm

∂xk
= −

∂Tm

∂xk
, m = 1, 2.

Now with the use of the formulae for coefficients (37), (40) we obtain

c1e
1
jk

1

= ρs1c1c2(u
k
1 − uk

2) − c1κ1
∂T 1

∂xk
, c2e

2
jk

2

= −ρs2c1c2(u
k
1 − uk

2) − c2κ2
∂T 1

∂xk
. (41)

Finally, the phases entropies balance equations are transformed to

∂α1ρ1s1
∂t

+
∂α1ρ1s1u

k
1

∂xk
−

∂

∂xk
c1κ1

∂T 1

∂xk
= Π1 − π1, (42)

∂α2ρ2s2
∂t

+
∂α2ρ2s2u

k
2

∂xk
−

∂

∂xk
c2κ2

∂T 2

∂x
= Π2 − π2.

Expressions (41) should be also substituted to entropy production terms Πk, πk, which are
defined by (37) and became (πk does not change)

Π1 =
c1κ1

T 1

3
∑

k=1

(

∂T 1

∂xk

)2

+
c1κ

T 1

3
∑

k=1

(c1c2(u
k
1 − uk

2))2 +
c1
T 1

(p1 − p2)2

ρ2τ (p)
+
c1
T 1

(µ1 − µ2)2

ρ2τ (c)
,

Π2 =
c2κ2

T 2

3
∑

k=1

(

∂T 2

∂xk

)2

+
c2κ

T 2

3
∑

k=1

(c1c2(u
k
1 − uk

2))2 +
c2
T 2

(p1 − p2)2

ρ2τ (p)
+
c2
T 2

(µ1 − µ2)2

ρ2τ (c)
,

π1 =
1

τ (T )

T 1 − T 2

T 1
, π2 =

1

τ (T )

T 2 − T 1

T 2
. (43)

So the diffusive limit leads to the traditional parabolic equations for phase heat transfer.
It is interesting to look at the transformed relative velocity equation, because the original

balance law contains a source term in which a thermal impulses are included. Substituting
(41) into the source term in the equation for the relative velocity we obtain

∂(uk
1 − uk

2)

∂t
+
∂(ui

1u
i
1/2 − ui

2u
i
2/2 + µ1 − µ2)

∂xk
=

− s1
∂T 1

∂xk
+ s2

∂T 2

∂xk
− κc1c2(u

k
1 − uk

2) − ekljukωj .

We see that although the heat flux relaxation times are small, the influence of heat transfer
on the relative motion is finite.

The latter equation can be transformed to

(

∂uk
1

∂t
+ ui

1

∂uk
1

∂xi
+

1

ρ1

∂p1

∂xk

)

−

(

∂uk
2

∂t
+ ui

2

∂uk
2

∂xi
+

1

ρ2

∂p2

∂xk

)

= −κc1c2(u
k
1 − uk

2),
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which can be used to derive individual phase momentum equations. It turns out that they
are identical to the phases momentum equations derived in the Section 2.

So we conclude that the diffusive limit of the system for two-phase flow (36) consists of
the balance laws for phase volume fraction α, mass and momentum balance equations for
two phases, and balance equations for partial entropies (42). The full system is similar to
the equations of the Baer-Nunziato model, in which the phase thermal conductivity is taken
into account:

∂ρα1

∂t
+
∂ρα1u

k

∂xk
=
p1 − p2

τ
,

∂α1ρ1

∂t
+
∂α1ρ1u

k
1

∂xk
= −

µ1 − µ2

τ (c)
,

∂α2ρ2

∂t
+
∂α2ρ2u

k
2

∂xk
=
µ1 − µ2

τ (c)
,

∂α1ρ1u
i
1

∂t
+
∂α1ρ1u

i
1u

k
1

∂xk

+
∂α1p

1

∂xi

= p̂I

∂α1

∂xi

+ fi + κ
(α1α2ρ1ρ2)

2

ρ3
(ui

2 − ui
1), (44)

∂α2ρ2u
i
2

∂t
+
∂α2ρ2u

i
2u

k
2

∂xk

+
∂α2p

2

∂xi

= p̂I

∂α2

∂xi

− fi − κ
(α1α2ρ1ρ2)

2

ρ3
(ui

2 − ui
1),

∂α1ρ1s1
∂t

+
∂α1ρ1s1u

k
1

∂xk
−

∂

∂x
c1κ1

∂T 1

∂xk
= Π1 − π1,

∂α2ρ2s2
∂t

+
∂α2ρ2s2u

k
2

∂xk
−

∂

∂x
c2κ2

∂T 2

∂x
= Π2 − π2,

where Πi, πi are defined by (43), pI is defined by (21), and fi is defined by (22).
Note that the phase entropy balance equations are presented in the latter system, but it is

not difficult to derive phase energies balance equations which are used in the Baer-Nunziato
model and looks as follows:

∂

∂t

(

α1ρ1

(

e1 +
ui

1u
i
1

2

))

+
∂

∂xk

(

α1ρ1u
k
1

(

e1 +
ui

1u
i
1

2

)

+ α1p
1uk

1 − c1κ1T
1 ∂T

1

∂xk

)

= −p1 ∂α1

∂t
+ (p̂I − p1)u

k
1

∂α1

∂xk
+ uk

1fk −
T 1 − T 2

τ (T )
,

∂

∂t

(

α1ρ1

(

e2 +
ui

2u
i
2

2

))

+
∂

∂xk

(

α2ρ2u
k
2

(

e2 +
ui

2u
i
2

2

)

+ α2p
2uk

2 − c2κ2T
2 ∂T

2

∂xk

)

= −p2 ∂α2

∂t
+ (p̂I − p2)uk

2

∂α2

∂xk
+ uk

2fk −
T 2 − T 1

τ (T )
.

So the diffusive limit of the proposed conservative equations for two-phase flow can be
written in the form of the Baer-Nunziato type equations, which are not in a conservative
form.

5 Conclusions

A system of governing equations for two-phase compressible flow with two different pressures
and temperatures of phases is proposed. The derivation of the system is based on extended
irreversible thermodynamics principles and on the synthesis of earlier proposed conservative
model for isentropic two-phase flow and a hyperbolic heat transfer model. The system is
hyperbolic and is written in conservation-law form.

The phase interaction is modelled by the source terms added to conservation equations
and include the phase pressure relaxation, phase transition, interfacial friction, and phases
temperatures equalizing.
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The diffusive limit in the heat transfer equations in the proposed model can be trans-
formed to the well-known Baer-Nunziato type of governing equations in which traditional
Furier thermal conductivity is taken into account.

Because of its conservation form the presented model seems to be promising in in applying
known mathematical means and the development of modern numerical methods for studying
different problems.

6 Appendix: Thermodynamically compatible system of

balance laws generating two-phase flow model

An Extended Irreversible Thermodynamics theory has been applied to the formulation of
general classes of conservation equations for the processes in complicated media in the pres-
ence of electromagnetic fields and external forces, see, for example [11, 12, 17]. This theory
gives an elegant way to write the system of conservation laws in terms of generating poten-
tials and variables. Such a formulation is based on the requirement for the system to be
thermodynamically compatible, in other words the complete system admits an additional
conservation law corresponding to the first law of thermodynamics. Each system written
in terms of canonical variables and generating potentials can be reduced to a symmetric
hyperbolic system, and together with its conservative form it allows us to apply known
mathematical means to study solutions of various initial-boundary problems. In [11, 20] the
class of thermodynamically compatible systems generated by only one potential has been
formulated. This class includes many system of governing equations of continuum mechan-
ics. If dissipation is not included into the governing equations, then the equations can be
derived by variational principle in Lagrangean coordinates [10]. After passing to Eulerean
coordinates dissipative processes can be included in the governing equations. Each concrete
system of continuum mechanics can be derived from the thermodynamically compatible
system by assigning a physical meaning to the canonical variables and special a choice of
generating potential.

In this paper the governing equations of two-phase flow are designed on the basis of
representatives of the class of thermodynamically compatible system presented below. Note
that we do not consider here possible dissipative processes. We give this description only to
give an explanation how the equations of the paper have been derived. Details concerning
the inclusion of dissipation can be found in [21].

∂Lqi

∂t
+
∂(ukL)qi

∂xk

= 0, i = 1, 2,

∂Lui

∂t
+
∂[(ukL)ui

+ zkLzi
− δikzαLzα

]

∂xk

= 0,

∂Lzk

∂t
+
∂(uαLzα

+ n)

∂xk

= 0,

∂Ln

∂t
+
∂(ukLn + zk)

∂xk

= 0, (45)

∂Lθn

∂t
+
∂((ukL)θn + vn

k )

∂xk

= 0, n = 1, 2,

∂Lvn

i

∂t
+
∂((ukL)vn

i
+ θδik)

∂xk

= 0, n = 1, 2,

∂Lzk

∂xα

−
∂Lzα

∂xk

= 0.

Here L(qi, ui, zk, n, θ
n, vn

i ) is the generating potential assumed to be a convex function. The
last steady equation must be added to the system in order to provide the compatibility of the
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system (45). Actually this steady equation is a consequence of the equation for Lzk
and can

be obtained by the differentiating the equation for Lzk
with respect to xα and substraction

the equation for Lzα
differentiated with respect to xk. After that we obtain

∂

∂t

(

∂Lzk

∂xα

−
∂Lzα

∂xk

)

= 0,

and if in the initial data ∂Lzk
/∂xα − ∂Lzα

/∂xk = 0, then this equality holds for every time
t > 0.

As was noted for the thermodynamically compatible system an additional (energy) con-
servation law exists, in our case it looks as follows

∂

∂t
(qiLqi

+ uiLui
+ zkLzk

+ nLn + θnLθn + vn
i Lvn

i
− L)+

∂

∂xk

(uk(qiLqi
+ uiLui

+ nLn + θnLθn + vn
i Lvn

i
) + ulzkLzl

+ zkn+ θnvn
k ) = 0.

To derive this conservation law it is necessary to sum all equations of the system (45)
multiplied respectively by

qi, ui, zk, n, θ
n, vn

i , 2uizk.

Finally, the symmetric hyperbolic system can be derived from the (45). To perform this we
rewrite the evolution equations in the equivalent form, which is simply obtained by adding

zk

(

∂Lzk

∂xi

−
∂Lzi

∂xk

)

= 0 to the equation for ui and ui

(

∂Lzk

∂xi

−
∂Lzi

∂xk

)

= 0 to the equation for

zk. After that we obtain the following system:

∂Lqi

∂t
+
∂(ukL)qi

∂xk

= 0,

∂Lui

∂t
+
∂(ukL)ui

∂xk

+ Lzi

∂zk

∂xk

− Lzα

∂zα

∂xi

= 0,

∂Ln

∂t
+
∂(ukL)n

∂xk

+
∂zk

∂xk

= 0,

∂Lzl

∂t
+
∂(ukL)zl

∂xk

+ Lzα

∂uα

∂xl

− Lzl

∂uk

∂xk

+
∂n

∂xl

= 0.

∂Lθn

∂t
+
∂(ukL)θ

∂xk

+
∂vn

k

∂xk

= 0,

∂Lvn

k

∂t
+
∂(ukL)vn

k

∂xk

+ δik
∂θn

∂xk

= 0,

It is clear that the quasilinear form of the latter system is symmetric, and if the generating
potential L is a convex function, then the system is symmetric hyperbolic.

This system is a prototype of the generating system (28) of Subsection 4.1. Actually in
order to give a physical meaning to above formal thermodynamically compatible system we
have to identify all variables as a physical variables and to define the generating potential
L. One can prove that the system (28) can be obtained taking the derivatives of generating
potential as

Lq1
= ρ, Lq2

= ρα, Lui
= ρui, Ln = ρc, Lzk

= wk, Lθn = ρSn, Lvn

k
= ρjn

k ,

the variables as

q1 = E + ρEρ −
uiui

2
− αEα − cEc − jn

kEjn

k
− θnEθn , q2 = Eα, u

i,
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n = Ec, zl = ρEwl , θn = ESn
, vn

k = Ejn

k
,

and finally the generating potential as

L = ρ2Eρ − ρwkEwk .

An explanation how to incorporate some kinds of dissipative processes into the system
(45) can be found in [21].
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