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Abstract

We present a theoretical solution for the Riemann problem for the five-equation

two-phase non-conservative model of Saurel and Abgrall. This solution is then

utilized in the construction of upwind non-conservative methods to solve the general

initial-boundary value problem for the two-phase flow model in non-conservative

form. The basic upwind scheme constructed is the non-conservative analogue of

the Godunov first-order upwind method. Second-order methods in space and time

are then constructed via the MUSCL and ADER approaches. The methods are

systematically assessed via a series of test problems with theoretical solutions.

1 Introduction

Mathematical modelling of multi-phase-flow phenomena is currently a very active field
of research. The mathematical models have application in many fields, such as Defla-
gration to Detonation Transition (DDT) in combustion theory, Self-propagating High-
temperature Synthesis (SHS), nuclear engineering, environmental disciplines, the oil in-
dustry, and many more. The underlying physics of the problems is complex and the aim
of the mathematical models is to account for the behavior of at least two phases or fluids
and the interactions due to exchange of mass, momentum and energy. A large class of
models are based on the continuum theory and make use of average quantities [9], [3],
[4], [5] inside each control volume allowing us to know the amount of each phase in the
volume but not the position of the interphases. Models in current use, when neglecting
dissipative effects, consist of non-linear systems of first-order partial differential equations
along with closure conditions. There are at present two important issues regarding these
models. The first of these refers to the hyperbolic or non-hyperbolic character of the
equations. It is now established that hyperbolicity is an essential requirement to have
well-posednes [9]. The second issue concerns the conservative or non-conservative charac-
ter of the equations, that is to say, whether the governing equations have, or not, a known
conservation-law form in the mathematical sense. In the absence of a conservative form
of the equations one speaks of non-conservative model, even though in the derivation of
the equations one invokes physical conservation principles. Mathematically, shock waves
and associated Rankine-Hugoniot conditions can be defined once a conservative form of
the equations exists.

Almost all the models in literature have non-conservative form due to the interface
interaction. Examples include the Saurel-Abgrall model [8] and the Baer-Nunziato model
[2]. See also [9]. We note here that conservative hyperbolic models have recently been
proposed [7], which are formulated in terms of parameters of state for the mixture. Given
that most models in current use are in non-conservative form, it is of interest to develop
numerical methodology that can be applied to solve such systems of hyperbolic equations
in non-conservative form.
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In this paper we consider the hyperbolic non-conservative model of Saurel and Abgrall
[8]. We solve the Riemann problem for this five-equation model approximately assuming
that all non-linear characteristic fields give rise to rarefaction waves. We call the approx-
imation, the four-rarefaction approximation, and is an extension of the two-rarefaction
approximation in single-phase gas dynamics [14]. The solution has close form and is ac-
tually exact in the case in which the Riemann problem has four rarefaction waves. For
other cases our theoretical solution becomes an approximation. Careful assessment of the
approximate theoretical solution indicates that this is sufficiently accurate for use in the
construction of upwind numerical methods. We note here that our theoretical solution
is direct, unlike that presented by Adrianov [1] for the more complicated Baer-Nunziato
model. Our Riemann solver is complete, in that it accounts for all waves present in the
eigenstructure of the exact solution. Our solver is also non linear and therefor avoids
typical problems of standard linearized Riemann solvers concerning low-densities flows,
sonic flows and strong shock waves.

The second contribution of this paper is the construction of non-conservative upwind
numerical methods that use locally the four-rarefaction Riemann solver. We construct a
non-conservative analogue of the Godunov first-order upwind method. We also construct
second-order nonlinear schemes using the TVD approach and the ENO approach.

The rest of this article is organized as follows: in section 2 we review the mathematical
model of Saurel and Abgrall and present two possible formulations for it. In section 3
we study the eigenstructure of the system for both formulations and find the generalized
Riemann invariants. In section 4 an approximate Riemann solver is developed. In section
5 we construct three upwind numerical methods and in section 6 we present numerical
results and discuss the performance of the numerical methods, the solutions of which are
compared with the theoretical solution of this paper. Conclusions are drawn in 7.

2 Governing equations

In this section we study the isentropic two phase flow model of Saurel and Abgrall [8]
that governs the dynamics of two compressible fluids (called phases, here after), such as
gas and liquid.

2.1 The close model

The Saurel-Abgrall model [8] for the mixture of two compressible fluids neglecting mass
transfer and drag force, in terms of conserved variables, reads.

∂

∂t
(αgρg) +

∂

∂x
(αgρgug) = S1, (1)

∂

∂t
(αgρgug) +

∂

∂x
(αgρgu

2
g + αgpg) − pi

∂

∂x
αg = S2, (2)

∂

∂t
(αlρl) +

∂

∂x
(αlρlul) = S3, (3)

∂

∂t
(αlρlul) +

∂

∂x
(αlρlu

2
l + αlpl) + pi

∂

∂x
αg = S4, (4)

∂

∂t
αg + λ

∂

∂x
αg = 0. (5)
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Here αk is the volume fraction of phase k, k = g (gas) and k = l (liquid); ρk is the
density of phase k; uk is the velocity of phase k, pk is the pressure of phase k, λ is
an interphase speed and pi an interphase pressure. Equations (1)-(4) express the laws
of conservation of mass and momentum for each phase. Equation (5) is an advection
equation for the gas volume fraction, where the advection speed is λ.

A distinctive feature of system (1)-(5) is that although it is based on the physical con-
servation principles of mass and momentum and it is expressed in terms of the conserved
variables, the mathematical form of (1)-(5) is not conservative, or equivalently, the system
is not in divergence form. Moreover, to our knowledge system (1)-(5) cannot be cast in
conservative or divergence form.

To close system (1)-(5) we need to define the pressures pg, pl via appropriate equations
of state. Here we choose isentropic laws of the form

pg = pg(ρg) , pl = pl(ρl). (6)

In particular for the gas phase we take

pg = pg(ρg) = Kgρ
γg

g , (7)

where Kg and γg are constants to be specified. For the liquid phase we use the Tait’s [10]
equation of state

pl = pl(ρl) = Kl

[(
ρl

ρo

)γl

− 1

]
, (8)

where Kl, γl and ρo are constants, also to be specified.

2.2 Formulations

Here we derive two formulations of the governing equations, based on two choices of
variables. Equations (1)-(5) with Si = 0 (i = 1, . . . , 4) can be cast in quasi-linear form as

∂tQ + A(Q)∂xQ = 0 , (9)

where

Q = [αgρg, αgρgug, αlρl, αlρlul, αg]
T (10)

is the vector of conserved variables and the coefficient matrix A(Q) is

A(Q) =




0 1 0 0 0

a2
g − u2

g 2ug 0 0 pg(1 − γg) − pi

0 0 0 1 0

0 0 a2
l − u2

l 2ul pl(γl − 1) + pi + Klγl

0 0 0 0 λ




, (11)
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which can be easily verified by expanding the spatial derivatives of products and algebraic
manipulations. The matrix contains the sound speeds of both phases

ag =

√
γgpg

ρg

al =

√
γl

ρl

(pl + Kl)





(12)

An alternative choice of variables, and formulations, is the vector of primitive or
physical variables

W = [ρg, ug, ρl, ul, αg]
T , (13)

for which the governing equations take the form

∂tW + A(W )∂xW = 0, (14)

where the coefficient matrix is

A(W ) =




ug ρg 0 0
ρg(ug − λ)

αg

a2
g

ρg
ug 0 0

pg − pi

αgρg

0 0 ul ρl
ρl(λ − ul)

αl

0 0
a2

l
ρl

ul
pi − pl
αlρl

0 0 0 0 λ




. (15)

3 Eigenstructure and generalized Riemann invariants

In this section we establish the eigenstructure of the systems (9), (14) and derive the gener-
alized Riemann invariants [6]; these will be utilized in section 4 for finding an approximate
solution to the Riemann problem. For both formulations (9), (14) the eigenvalues are

λ1 = ul − al, λ2 = ug − ag, λ3 = λ,

λ4 = ug + ag, λ5 = ul + al



 (16)

The corresponding right eigenvectors differ for each formulation. For the primitive-
variable formulation (14) the right eigenvectors are:

R(1) =




0

0

−ρl

al

0




, R(2) =




−ρg

ag

0

0

0




, R(4) =




ρg

ag

0

0

0




, R(5) =




0

0

ρl

al

0




, (17)
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R(3) =




− 1
αg

pi − pg + ρg(ug − λ)2

(ug − λ)2 − a2
g

− 1
αgρg

(λ − ug)(ρga
2
g − pg + pi)

(ug − λ)2 − a2
g

1
αl

pi − pl + ρl(ul − λ)2

(ul − λ)2 − a2
l

1
αlρl

(λ − ul)(ρla
2
l − pl + pi)

(ul − λ)2 − a2
l

1




. (18)

For the conserved-variable formulation (9) the right eigenvectors are:

R(1) =




0

0

1

ul − al

0




, R(2) =




1

ug − ag

0

0

0




, R(4) =




1

ug + ag

0

0

0




, R(5) =




0

0

1

ul + al

0




, (19)

R(3) =




pg(γ − 1) + pi

a2
g − (ug − λ)2

λ
pg(γg − 1) + pi

a2
g − (ug − λ)2

pl(1 − γl) − pi − Klγl

a2
l − (ul − λ)2

λ
pl(1 − γl) − pi − Klγl

a2
l − (ul − λ)2

1




. (20)

With the eigenvalues and eigenvectors available we establish the nature of the char-
acteristic fields associated with each pair (λi, R(i)). For example, the characteristic field
associated with λ3 = λ is seen to be linearly degenerate, as

∇λ3(W ) · R(3)(W ) = 0 ∀ W. (21)

The remaining characteristic fields are all genuinely non-linear, as

∇λk(W ) · R(k)(W ) 6= 0 ∀ W. (22)

The generalized Riemann invariants are used to establish useful relations across simple
waves connecting two constant states. Consider an n × n system with unknowns W =
[w1 . . . wn]T , for which given an eigenvalue λk and its corresponding eigenvector
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R(k)(W ) =
[
r
(k)
1 , . . . , r(k)

n

]T

the corresponding generalized Riemann invariant are [6]

dw1

r
(k)
1

=
dw2

r
(k)
2

= · · · =
dwn

r
(k)
n

.

From here one obtains (n− 1) ordinary differential equations in phase space. Now as-
sume two constant states WL = [ρgL, ugL, ρlL, ulL, αgL]T and WR = [ρgR, ugR, ρlR, ulR, αgR]T .

Across the wave family associated with λ1 = ul − al we have

dρg

0
=

dug

0
=

dρl

−ρl

=
dul

al

=
dαg

0
,

which gives

2al

γl − 1
+ ul = constant. (23)

Similarly, across the wave family associated with λ2 = ug − ag we have

dρg

−ρg

=
dug

ag

=
dρl

0
=

dul

0
=

dαg

0
,

from which we obtain

2ag

γg − 1
+ ug = constant. (24)

Analogously, for the wave family associated with λ4 = ug + ag and λ5 = ul + al we
respectively obtain

2ag

γg − 1
− ug = constant (25)

and

2al

γl − 1
− ul = constant. (26)

For the contact discontinuity associated with λ3 = λ we obtain the following relations

∆∗ρg = r
(3)
1 ∆αg,

∆∗ug = r
(3)
2 ∆αg,

∆∗ρl = r
(3)
3 ∆αg,

∆∗ul = r
(3)
4 ∆αg,





(27)

where the jumps are

∆q = qR − qL , ∆∗q = q∗R − q∗L,

with the unknowns q∗k to be defined.
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4 An approximate Riemann solver

In this section we define the Riemann problem, identify its solution structure and, under
the assumption that all non-linear characteristic fields are associated with rarefaction
waves, we construct an approximate solution to the Riemann problem. This solution has
close form and is exact when, in addition, the jump in volume fractions is trivial.

4.1 The Riemann problem

Consider the Riemann problem

∂tW + A(W )∂xW = 0

W (x, 0) =





WL, x < 0

WR, x > 0





(28)

where W is the vector of unknowns (13) and the coefficient matrix A(W ) is given by (15)
with definitions (12). The structure of the solution of (28) is depicted in Fig. 1.

WR

t

x

(λ3=λ)

WL

(λ1)

(λ2) (λ4)

(λ5)

ρgL* ρgR*

ugL
*

ugR
*

ρ
lL
*

u
lL
*

ρ
lR
*

u
lR
*

0

Figure 1: Structure of the solution of the Riemann problem for the two-phase isentropic
model of Saurel and Abgrall.

There are five wave families associated respectively with the eigenvalues λ1, ..., λ5.
There are six constant regions separated by waves, the nature of which is unknown in
advance except for the contact discontinuity of speed λ3 = λ, see equation (5) and (21).
Crucial to finding a solution to (28) is the determination of the two overlapping star
regions either side of the contact, in which a general unknown is denoted as q∗, see Fig.
1. The corresponding vectors W ∗

L and W ∗

R of unknowns are

W ∗

L =
[
ρ∗

gL, u∗

gL, ρ∗

lL, u∗

lL, αgL

]T

and

W ∗

R =
[
ρ∗

gR, u∗

gR, ρ∗

lR, u∗

lR, αgR

]T
.

Note that from the eigenstructure analysis we know that αg only changes (discontin-
uously) across λ3 = λ. We thus have eight unknowns in the star region.
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4.2 The four-rarefaction approximation

Here we find an approximate solution by assuming a-priori that the four outer waves
(non-linear) in Fig. 1 are rarefaction waves. For this reason the approximation may
be called a Four-rarefaction Riemann solver and is an extension of the well known two-
rarefaction approximation for compressible single phase gas dynamics. Obviously, if all
non-linear waves are in fact rarefactions, then the obtained solution is exact. Otherwise,
our solution will be an approximation.

For the liquid phase we assume that WL is connected to W ∗

L via the generalized
Riemann invariants (GRIs) (23), that is

2a∗

lL

γl − 1
+ u∗

lL =
2alL

γl − 1
+ ulL ≡ ClL. (29)

Similarly, the liquid phase in WR is connected to W ∗

R via (26)

2a∗

lR

γl − 1
− u∗

lR =
2alR

γl − 1
− ulL ≡ ClR. (30)

Analogous relations apply to the gas phase derived from (24) & (25) so that

2a∗

gL

γg − 1
+ u∗

gL =
2agL

γg − 1
+ ugL ≡ CgL (31)

and

2a∗

gR

γg − 1
− u∗

gR =
2agR

γg − 1
− ugL ≡ CgR. (32)

Across the contact discontinuity associated with λ3 = λ relations (27) hold. Consid-
ering the relevant relations for the liquid phase we utilize the third and fourth relations
of equation (27) and (29) & (30) to obtain a single algebraic non-linear equation for the
unknown ρ∗

lL ≡ y, namely

Fl(y) = y
γl−1

2 +
[
r
(3)
3 (αgR − αgL) + y

] γl−1

2
−

r
(3)
4 (αgR − αgL) + ClL + ClR

Cl

. (33)

Analogous use of the first and second relations of (27) and equations (31) & (32) give
another non-linear equation for the unknown ρ∗

gL ≡ z, namely

Fg(z) = z
γg−1

2 +
[
r
(3)
1 (αgR − αgL) + z

] γg−1

2
−

r
(3)
2 (αgR − αgL) + CgL + CgR

Cg

. (34)

The constant Cl and Cg are defined as

Cl ≡
2
√

Klγl/ρ
γl
o

γl − 1
, Cg ≡

2
√

Kgγg

γg − 1
.

If the initial data in (28) has αgL = αgR then equations (33) and (34) readily yield a
close form solution for the star region
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ρ∗

l =
(

ClR + ClL

2Cl

) 2

γl−1

,

u∗

l = ClR − ClL
2 ,

ρ∗

g =
(

CgR + CgL

2Cg

) 2

γg−1

,

u∗

g =
CgR − CgL

2 .





(35)

We note that in this case there is no jump across the contact discontinuity and W ∗

L =
W ∗

R, so that

ρ∗

lL = ρ∗

lR ≡ ρ∗

l

u∗

lL = u∗

lR ≡ u∗

l

ρ∗

gL = ρ∗

gR ≡ ρ∗

g

u∗

gL = u∗

gR ≡ u∗

g





(36)

we denote this close form solution by W ∗

0 = [ρ∗

g, u
∗

g, ρ
∗

l , u
∗

l , αg].
For the general case αgL 6= αgR, in (28) there is a jump across the contact wave and

the solution W ∗

L, W ∗

R is found by first finding the roots of (33) and (34) numerically via
a Newton-Raphson (NR) method and then use exact wave relations to find the complete
solution throughout the wave structure.

Assuming we have computed solutions y and z from (33) and (34), then we have

ρ∗

lL = y , ρ∗

gL = z,

ρ∗

lR = r
(3)
3 (αgR − αgL) + ρ∗

lL , ρ∗

gR = r
(3)
1 (αgR − αgL) + ρ∗

gL,

u∗

lL = ClL − Clρ
∗

lL

γl−1

2 , u∗

gL = CgL − Cgρ
∗

gL

γg−1

2 ,

u∗

lR = −ClR + Clρ
∗

lR

γl−1

2 , u∗

gR = −CgR + Cgρ
∗

gR

γg−1

2 .





(37)

Note that in (37) the first and third components of the eigenvector R(3) depend on
the unknowns of the problem. This leads us to various ways of solving the problem
approximately.

4.3 Iterative solution

In the presence of a non-trivial contact wave (αgL 6= αgR) there will be two distinct regions
either side of the contact, that is W ∗

L 6= W ∗

R, see Fig 1.
We have been unable to find a close-form solution for this case. We therefore introduce

another level of approximation in order to obtain approximate values for W ∗

L and W ∗

R by
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solving iteratively the equations (33) and (34), using as a guess values the closed form
solution W ∗

0 (36). This will be done by a kind of linearization. There are at least two
ways of doing this.

The simplest linearization is implemented by assuming that r
(3)
1 , r

(3)
2 , r

(3)
2 , r

(3)
4 in (33)

and (34) are constant and are evaluated at the arithmetic means of their arguments using
the initial conditions, that is

R(3) = R(3)(W̃ ), (38)

where,

W̃ =
1

2
(WL + WR). (39)

Another way is to start with

R
(3)
0 = R

(3)
0 (W ∗

0 ), (40)

where W ∗

0 is given by (36). For iteration k + 1 we set

R
(3)
k = R

(3)
k (W ∗

k ), (41)

where W ∗

k is an arithmetic mean of W ∗

L and W ∗

R obtained at the k-th Newton-Raphson
iteration.

There is some flexibility in this approach, as the vector R
(3)
k could be frozen for the

remaining iterations, saving computational time in this manner.

4.4 Typical theoretical solutions

In what follows we consider some specific examples, for which the initial conditions are
given in tables 1, 2, 3 and 4.

Table 1: Initial conditions for Test 1.

WL ρgL ugL ρlL ulL αgL

719.6856 -350 1225.8912 -350 0.9

WR ρgR ugR ρlR ulR αgR

719.6856 350 1225.8912 350 0.9

In Test 1 the exact solution consists on four symmetric rarefaction waves and a trivial
contact discontinuity, that is αL = αR. For this case our theoretical solution (36) is exact.

Table 2: Initial conditions for Test 2.

WL ρgL ugL ρlL ulL αgL

719.6856 -350 1225.8912 -250 0.9

WR ρgR ugR ρlR ulR αgR

719.6856 350 1225.8912 250 0.1
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Table 3: Initial conditions for Test 3.

WL ρgL ugL ρlL ulL αgL

719.6856 150 1225.8912 150 0.9

WR ρgR ugR ρlR ulR αgR

719.6856 150 1225.8912 150 0.9

Table 4: Initial conditions for Test 4.

WL ρgL ugL ρlL ulL αgL

719.6856 1000.00 1225.8912 2400.00 0.9

WR ρgR ugR ρlR ulR αgR

261.5970 2277.81 1028.3588 2774.36 0.9

See Fig. 2. Test 2 consists of four rarefaction waves and a non-trivial contact discontinuity.
For this example our theoretical solution is iterative and is only an approximation to the
exact solution, which is unknown to us. See Fig. 3. Test 3 consists of four symmetric
shock waves (weak) and a trivial contact discontinuity. For this case our theoretical
solution can only be regarded as a crude approximation to the exact solution. First
we remark that the theoretical correctness of shock wave solutions for non-conservative
hyperbolic systems is currently unknown. Our theoretical approximation is based on the
star values obtained from the four-rarefaction assumption and then we have estimated
the shock speeds as an arithmetic mean of the characteristic speeds ahead and behind
of the shock. It is surprising that this theoretical solution appears to be accurate, as
verified by independent numerical calculations. See also Fig. 11. Test 4 consists of a
single rarefaction wave for each phase. See Fig. 14. The point of having chosen this test,
for which our theoretical solution (36) is exact, is that it contains a sonic point, for which
numerical methods tend to encounter difficulties.

In section 5 we utilize the theoretical solution just described, locally, to construct
upwind methods, and in section 6 we utilize these theoretical solutions to assess the
performance of numerical methods.

In order to test the sensitivity of the NR iteration process we solved (33), (34) for
the case αgL = αgR, which has closed form solution W ∗

0 (36). We perform numerical
experiments for a variety of guess values. Table 5 shows the iterative process with a guess
value given by WL. Using a tolerance TOL = 10−10 we needed five iterations to reach the
exact solution. This assure us that the NR solver works as expected.

Tables 6 and 7 show the results of the iterative process for Test 2, see Table 2. With
initial guess W ∗

0 of eq. (36) and TOL = 10−10 one requires 17 iterations to achieve
convergence. We note that other choices of initial guess, such a WL, or WR do not
significantly increase the number of iterations required for convergence, see Table 7.

We also note that for numerical purposes when computing a numerical flux the approx-
imate solution obtained after a couple of iterations is sufficiently accurate, in particular
in the numerical results presented in section 6 the solution obtained with the tolerance
TOL = 10−6 was sufficiently good.
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Table 5: Newton-Rhapson iterative method for Test 1 using W ∗

0 and WL as guess values.

Guess Iterations ρ∗gL ρ∗lL

W ∗

0 0 556.326373426819 1043.712366756080

WL 0 719.685673001152 1225.891245955086

1 539.085437528560 1070.309619769666

2 556.109954607825 1044.391992046297

3 556.326339745587 1043.712825491585

4 556.326373426818 1043.712366756289

5 556.326373426819 1043.712366756080

Table 6: Newton-Rhapson iterative method for Test 2 with initial guess W ∗

0 .

Guess Iterations ρgL ρlL

W ∗

0 0 556.326373426819 1102.300274722990

1 467.936108470893 1062.762255129332

2 499.143312440224 1082.603301710746

3 505.307421321565 1087.953568950437

4 503.085390407153 1086.268154757242

5 502.893359547870 1086.101145817396

6 503.090428017176 1086.255866150020

7 503.099999842434 1086.264388588076

8 503.083373932929 1086.251378688327

9 503.083241771857 1086.251181838734

10 503.084617230534 1086.252262815385

11 503.084574708412 1086.252236969768

12 503.084462991198 1086.252148885975

13 503.084470840452 1086.252154440846

14 503.084479743406 1086.252161485132

15 503.084478750262 1086.252160753366

16 503.084478055064 1086.252160201203

17 503.084478163955 1086.252160282988
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Table 7: Newton-Rhapson iterative method for Test 2 with initial guess WL.

Guess Iterations ρgL ρlL

WL 0 719.685673001152 1225.891245955086

1 539.085437528560 1114.761512965500

2 486.563771816759 1073.835523325850

3 495.183975812781 1079.136911483718

4 503.448703767244 1086.620103549050

5 503.728042713983 1086.742797532298

6 503.008799654429 1086.197895861312

7 503.034388137897 1086.212178969972

8 503.092541654627 1086.258239352428

9 503.088292276292 1086.255202696258

10 503.083664516826 1086.251541657698

11 503.084195457077 1086.251933468607

12 503.084556260240 1086.252220133637

13 503.084498472983 1086.252176685260

14 503.084470981336 1086.252154747722

15 503.084476813385 1086.252159181866

16 503.084478852580 1086.252160817633

17 503.084478292589 1086.252160388548

18 503.084478146285 1086.252160270407

4.5 The complete solution

In the previous subsections we have obtained exact and approximate solutions for quan-
tities in the star region. The solution in the rest of the half plane of Fig. 1 is obtained
by applying exact waves relations. Fig. 2 shows the exact solution profiles for liquid and
gas variables at a given output time of 1.3 × 10−4s. For this example the assumption
that the four non linear waves are rarefaction waves is correct and the further assumption
αL = αR (trivial contact) allows us to find the analytical solution displayed in Fig. 2.

In Fig. 3 we display the complete approximate solution to Test 3. Again, the solution
consist of four rarefaction waves, as correctly assumed in the approximation scheme.
However, given the fact that αL 6= αR, we must employ an iterative procedure to find
numerical values for the variables in the star regions.

The theoretical solution obtained in this section can be used for validating numerical
computations for the two phase flow model (1)-(5). Moreover, we shall use the relevant
information available from the theoretical solution to implement upwind numerical meth-
ods to solve the general initial-boundary value problem for equations (1)-(5). This is the
subject of the next section.
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Figure 2: Exact solution profiles for Test 1.
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Figure 3: Approximate solution profiles for Test 2.
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5 Construction of upwind numerical methods

In this section we construct upwind numerical methods for solving the complete initial-
boundary value problem for equations (1)-(5) in the non-conservative forms (9) or (14).
The schemes presented make use of the approximate Riemann solver of section 4. One of
the methods is the non-conservative analogue of the Godunov first-order upwind method.
The other methods considered are second-order accurate in space and time and are non-
linear (non-oscillatory), using TVD (Total Variation Diminishing) and ENO (Essentially
Non-Oscillatory) criteria to control spurious oscillations near large gradients of the solu-
tion.

The non-conservative schemes are constructed on the basis of an extension of the finite
volume approach to non-conservative systems [13], [12]. The schemes have the form

W n+1
i = W n

i −
∆t

∆x
Âi

[
Wi+ 1

2

− Wi− 1

2

]
, (42)

where W n
i is a spatial integral average within volume, or cell, i of length ∆x, at time level

n; the coefficient matrix Âi is an approximation to a space-time integral of the coefficient
matrix of the relevant quasi-linear system within volume i; Wi+ 1

2

is an intercell state,
analogous to the intercell flux in conservative methods; ∆t is the time step, computed
from a stability condition, which for the methods presented here is 0 < Cclf ≤ 1, where
Cclf is the usual CFL or Courant number coefficient. The second order schemes are: an
ADER second order scheme and the MUSCL Hancock scheme.

5.1 A second order ADER scheme

To construct a second-order ADER scheme [11], we assume a piece-linear reconstruction
and consider the piece-wise linear Riemann problem

∂tW + A(W )∂xW = 0

W (x, 0) =





WL(x) ≡ W n
i + (x−xi)

∆x
∆i

WR(x) ≡ W n
i+1 + (x−xi+1)

∆x
∆i+1





(43)

The solution of this derivative Riemann problem at the interface is expressed as

Wi+ 1

2

(τ) = W
(0)

i+ 1

2

(0) + τ∂tWi+ 1

2

(0). (44)

The leading term is evaluated from the solution of the piece-wise constant Riemann prob-
lem with initial data consisting of the boundary extrapolated values from (43). To com-
pute the second term we use the Cauchy-Kowalewski method and express time derivatives
in terms of space derivatives. For example, from equation (14) we write

∂tW = −A(W )∂xW. (45)

Then we construct a new evolution equation for the derivative ∂xW and pose a piece-
wise constant Riemann problem (linearized) for the gradients at the interface leading to

a solution W
(1)

i+ 1

2

(0) for the second term and finally, we have

Wi+ 1

2

(τ) = W
(0)

i+ 1

2

(0) − τ A(W
(0)

i+ 1

2

(0)) W
(1)

i+ 1

2

(0). (46)
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From this, the intercell state is obtained by taking the integral average

Wi+ 1

2

=
1

∆t

∫ ∆t

0

(
W

(0)

i+ 1

2

(0) − τ A(W
(0)

i+ 1

2

(0)) W
(1)

i+ 1

2

(0)
)

dt , (47)

which integrates exactly to give

Wi+ 1

2

= W
(0)

i+ 1

2

(0) −
∆t

2
A(W

(0)

i+ 1

2

(0)) W
(1)

i+ 1

2

(0) , (48)

which is the ADER interface state to be used in formula (42), where the coefficient matrix
is taking as

Âi = A
(

1

2

(
Wi− 1

2

+ Wi+ 1

2

))
. (49)

5.2 The MUSCL Hancock method

In this approach [15] data reconstruction is performed using piece wise linear functions,
see (43), and boundary extrapolated values are evolved by half a time step and then used
as initial data for a a piece-wise constant Riemann problem. Non oscillatory properties
come from TVD slope limiters in the data reconstruction. See [14] for more details.

The piece wise linear reconstruction has boundary extrapolated values

WL
i = W n

i −
1

2
∆i , WR

i = W n
i +

1

2
∆i , (50)

where

∆i =
1

2
(1 + ω)∆i− 1

2

+
1

2
(1 − ω)∆i+ 1

2

, ∆i− 1

2

= Wi − Wi−1 , ∆i+ 1

2

= Wi+1 − Wi ,

with ω ε [−1, 1]. The boundary extrapolated values (50) are evolved thus

W
L

i = WL
i +

1

2

∆t

∆x
Ãi

[
WL

i − WR
i

]
, W

R

i = WR
i +

1

2

∆t

∆x
Ãi

[
WL

i − WR
i

]
,

leading to the expressions

W
L

i = W n
i −

1

2

[
I +

∆t

∆x
Ãi

]
∆i , W

R

i = W n
i +

1

2

[
I −

∆t

∆x
Ãi

]
∆i , (51)

where the coefficient matrix is taken as Ãi = A(W n
i ).

To compute the intercell state at xi+ 1

2

we utilize W
R

i and W
L

i+1 as the initial data for a
conventional piece-wise constant Riemann problem, leading to the sought solution Wi+ 1

2

,

which is then utilized in the update formula (42), the coefficient matrix of which has the
same form as for the ADER method, see (49).

6 Numerical Results

The proposed numerical methods are assessed via a number of test problems for which
we can also use the theoretical solutions on this paper to compare with. We consider
the four test problems introduced in Sect. 4.4, solved on a spatial domain [0, 1], and the
initial conditions of which are given in Tables 1, 2, 3 and 4. The structure of the exact
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solution for each of the test problems is described in Sect. 4.4. For Tests 1 to 3 the
initial discontinuity in flow variable is positioned at x = 0.5 and solutions are displayed
at time tout = 1.3 × 10−4s. For the sonic flow problem, Test 4 the initial discontinuity
is positioned at x = 0.3 and the solution is displayed at time tout = 4.0 × 10−4s. The
constant used in the equations of state (7) and (8) are: Kg = 1×105Pa, γg = 1.4, Kl =
3.03975 × 108Pa, γl = 7.15, ρo = 1 × 103kg/m3.

Numerical results are compared with theoretical solutions in Figs. 4 to 16. The
CFL coefficient used for each computation is displayed in each of the results. We use the
SUPERBEE limiter for the MUSCL Hancock, whereas for ADER we use piece-wise linear
ENO reconstructions.

In the computations we have used the following meshes: M = 100, M = 200 and
M = 800. The first mesh allows us to asses the performance of the method for realistically
coarse meshes. The second mesh allows us to asses the convergence trend of the numerical
solutions and the last mesh allows us to verify that the converged numerical solution is
close to the theoretical solution.

Results for Test 1 for liquid density are shown in Figs. 4 to 6 for three different
methods, namely the non-conservative Godunov first-order upwind, the non-conservative
MUSCL Hancock and the non-conservative ADER. As the mesh is refined we observe that
the numerical results appear to converge to the theoretical solution. As expected, the first-
order method converges more slowly. For this test problem there are no discontinuities in
the solution and the agreement between the numerical and theoretical solutions is overall
very satisfactory.

Results for Test 2 for liquid density are shown in Figs. 7 to 10. For this test problem
there is one discontinuity, namely a contact discontinuity. We observe that this is a
more demanding test for all methods considered. The second order non linear methods
still show some degree of spurious oscillations and even on the final mesh it is clear
that the converged solution has not yet been reached. The reconstruction and limiting
is performed component wise using physical variables. Characteristic limiting should
improve the second order results. Fig. 10 shows separate results for the volume fraction,
which changes only (discontinuously) across the contact discontinuity. For this quantity
the performance of the numerical method is very satisfactory, the discontinuity is sharp
and there are no spurious oscillations.

Results for Test 3 for liquid density are shown in Figs. 11 to 13. This test problem
consist of four shock waves (weak) and a trivial contact discontinuity. The theoretical
solution is not strictly valid. However it is remarkable to see the good agreement between
the numerical and theoretical solutions. The second order non linear methods are free
from spurious oscillation and the discontinuities are well resolved.

Results for Test 4 for liquid density are shown in Figs. 14 to 16. This test problem
has been constructed so that the solution consists of a single, isolated, rarefaction wave
with a sonic point, for which the theoretical solution is exact. The point of this test is
that sonic flows create difficulties to numerical methods, requiring special entropy fixes
for some well known numerical schemes, particulary those based on linearized Riemann
solvers. It is seen that the analogue of the Godunov first order upwind method shows the
typical entropy glitch. This is more evident in the coarse mesh, see Fig 14. As expected,
the entropy glitch tends to disappear as the mesh is refined, see Fig. 16. The second order
results do not seem to be affected by the presence of the sonic point.
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Figure 4: TEST 1:. Numerical results for liquid density (symbols) from three numerical
methods (Godunov, MUSCL Hancock and ADER) are compared with the theoretical
solution (line). CFL coefficient used is Ccfl = 0.9 and mesh used is M = 100 cells.
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Figure 5: TEST 1:. Numerical results for liquid density (symbols) from three numerical
methods (Godunov, MUSCL Hancock and ADER) are compared with the theoretical
solution (line). CFL coefficient used is Ccfl = 0.9 and mesh used is M = 200 cells.

19



Position (m)

Li
qu

id
D

en
si

ty
(k

g/
m3 )

0 0.5 1
1040

1100

1160

1220 Theoretical
Godunov

Position (m)

Li
qu

id
D

en
si

ty
(k

g/
m3 )

0 0.5 1
1040

1100

1160

1220 Theoretical
MUSCL-Hancock

Position (m)

Li
qu

id
D

en
si

ty
(k

g/
m3 )

0 0.5 1
1040

1100

1160

1220 Theoretical
ADER

Figure 6: TEST 1:. Numerical results for liquid density (symbols) from three numeri-
cal methods (Godunov, MUSCL Hancock and ADER)are compared with the theoretical
solution (line). CFL coefficient used is Ccfl = 0.9 and mesh used is M = 800 cells.
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Figure 7: TEST 2:. Numerical results for liquid density (symbols) from three numerical
methods (Godunov, MUSCL Hancock and ADER) are compared with the theoretical
solution (line). CFL coefficient used is Ccfl = 0.9 and mesh used is M = 100 cells.
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Figure 8: TEST 2:. Numerical results for liquid density (symbols) from three numerical
methods (Godunov, MUSCL Hancock and ADER) are compared with the theoretical
solution (line). CFL coefficient used is Ccfl = 0.9 and mesh used is M = 200 cells.
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Figure 9: TEST 2:. Numerical results for liquid density (symbols) from three numerical
methods (Godunov, MUSCL Hancock and ADER) are compared with the theoretical
solution (line). CFL coefficient used is Ccfl = 0.9 and mesh used is M = 800 cells.

23



Position (m)
0 0.5 1

0

1

Theoretical
Godunov

αg

Position (m)
0 0.5 1

0

1

Theoretical
MUSCL-Hancock

αg

Position (m)
0 0.5 1

0

1

Theoretical
ADER

αg

Figure 10: TEST 2:. Numerical results for gas volume fraction (symbols) from three
numerical methods (Godunov, MUSCL Hancock and ADER) are compared with the the-
oretical solution (line). CFL coefficient used is Ccfl = 0.9 and mesh used is M = 100
cells.
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Figure 11: TEST 3:. Numerical results for liquid density (symbols) from three numerical
methods (Godunov, MUSCL Hancock and ADER) are compared with the theoretical
solution (line). CFL coefficient used is Ccfl = 0.9 and mesh used is M = 100 cells.
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Figure 12: TEST 3:. Numerical results for liquid density (symbols) from three numerical
methods (Godunov, MUSCL Hancock and ADER) are compared with the theoretical
solution (line). CFL coefficient used is Ccfl = 0.9 and mesh used is M = 200 cells.
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Figure 13: TEST 3:. Numerical results for liquid density (symbols) from three numerical
methods (Godunov, MUSCL Hancock and ADER) are compared with the theoretical
solution (line). CFL coefficient used is Ccfl = 0.9 and mesh used is M = 800 cells.
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Figure 14: TEST 4:. Numerical results for liquid density (symbols) from three numerical
methods (Godunov, MUSCL Hancock and ADER) are compared with the theoretical
solution (line). CFL coefficient used is Ccfl = 0.9 and mesh used is M = 100 cells.
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Figure 15: TEST 4:. Numerical results for liquid density (symbols) from three numerical
methods (Godunov, MUSCL Hancock and ADER) are compared with the theoretical
solution (line). CFL coefficient used is Ccfl = 0.9 and mesh used is M = 200 cells.
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Figure 16: TEST 4:. Numerical results for liquid density (symbols) from three numerical
methods (Godunov, MUSCL Hancock and ADER) are compared with the theoretical
solution (line). CFL coefficient used is Ccfl = 0.9 and mesh used is M = 800 cells.
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7 Summary and Conclusions

We have presented a direct theoretical solution to the Riemann problem for the five-
equation two-phase non-conservative model of Saurel and Abgrall and have then utilized
this solution in the construction of upwind non-conservative methods to solve the general
initial-boundary value problem for the two-phase flow model in non-conservative form.
The basic upwind scheme constructed is the non-conservative analogue of the Godunov
first-order upwind method. Second-order methods in space and time have then been con-
structed via the MUSCL and ADER approaches. The methods have been systematically
assessed via a series of test problems with theoretical solutions. The theoretical solution
given is thus used in two ways (i) as a reference solution to assess the accuracy of nu-
merical methods for some special test problems, and (ii) to construct upwind numerical
methods to solve more general problems.
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