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Abstract

We present several results on the complexity of various forms of Sperner’s Lemma. In the black-box
model of computing, we exhibit a deterministic algorithm for Sperner problems over pseudo-manifolds
of arbitrary dimension. The query complexity of our algorithm is essentially linear in the separation
number of the skeleton graph of the manifold and the size of its boundary. As a corollary we get an
O(

√
n) deterministic query algorithm for the black-box version of the problem 2D-SPERNER, a well

studied member of Papadimitriou’s complexity class PPAD. This upper bound matches the Ω(
√

n) de-
terministic lower bound of Crescenzi and Silvestri. In another black-box result we prove for the same
problem an Ω( 4

√
n) lower bound for its probabilistic, and an Ω( 8

√
n) lower bound for its quantum query

complexity, showing that all these measures are polynomially related. Finally we explicit Sperner prob-
lems on a 2-dimensional pseudo-manifold and prove that they are complete respectively for the classes
PPAD, PPADS and PPA. This is the first time that a 2-dimensional Sperner problem is proved to be
complete for any of the polynomial parity argument classes.

1 Introduction

Papadimitriou defined in [23, 24] the complexity classes PPA, PPAD, and PSK in order to classify total
search problems which have always a solution.The class PSK was renamed PPADS in [6]. These classes can
be characterized by some underlying combinatorial principles. The class Polynomial Parity Argument (PPA)
is the class of NP search problems, where the existence of the solution is guaranteed by the fact that in every
finite graph the number of vertices with odd degree is even. The class PPAD is the directed version of PPA,
and its basic search problem is the following: in a directed graph, given a source, find another source or
a sink. In the class PPADS the basic search problem is more restricted than in PPAD: in a directed graph,
given a source, find a sink.

These classes are in fact subfamilies of TFNP, the family of all total NP-search problems, introduced by
Megiddo and Papadimitriou [20]. Other important subclasses of TFNP are Polynomial Pigeonhole Principle
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(PPP) and Polynomial Local Search (PLS). The elements of PPP are problems which by their combinatorial
nature obey the pigeonhole principle and therefore have a solution. In a PLS problem, one is looking for
a local optimum for a particular objective function, in some neighborhood structure. All these classes are
interesting because they contain search problems not known to be solvable in polynomial time, but which
are also somewhat easy in the sense that they can not be NP-hard unless NP = co-NP.

Another point that makes the parity argument classes interesting is that there are several natural problems
from different branches of mathematics that belong to them. For example, in a graph with odd degrees, when
a Hamiltonian path is given, a theorem of Smith [31] ensures that there is another Hamiltonian path. It turns
out that finding this second path belongs to the class PPA [24]. A search problem coming from a modulo 2
version of Chevalley’s theorem [24] from number theory is also in PPA. Complete problems in PPAD are the
search versions of Brouwer’s fixed point theorem, Kakutani’s fixed point theorem, Borsuk-Ulam theorem,
and Nash equilibrium (see [24]).

The classical Sperner’s Lemma [28] states that in a triangle with a regular triangulation whose vertices
are labelled with three colors, there is always a trichromatic triangle. This lemma is of special interest
since some customary proofs for the above topological fixed point theorems rely on its combinatorial con-
tent. However, it is unknown whether the corresponding search problem, that Papadimitriou [24] calls
2D-SPERNER, is complete in PPAD. Variants of Sperner’s Lemma also give rise to other problems in the
parity argument classes. Papadimitriou [24] has proven that a 3-dimensional analogue of 2D-SPERNER
is in fact complete in PPAD. In [15], Grigni described a non-oriented version of 3-dimensional Sperner’s
Lemma that is complete for the class PPA.

The study of query complexities of the black-box versions of several problems in TFNP is an active field
of research. Several recent results point into the direction that quantum algorithms can give only a limited
speedup over deterministic ones in this framework. The collision lower bound of Aaronson [1] and Shi [26]
about PPP, and the recent result of Santha and Szegedy [25] on PLS imply that the respective deterministic
and quantum complexities are polynomially related. As a consequence, if an efficient quantum algorithm ex-
ists for a problem in these classes, it must exploit its specific structure. In a related issue, Buresh-Oppenheim
and Morioka [9] have obtained relative separation results among PLS and the polynomial parity argument
classes.

2 Results

A black-box problem is a relation R ⊆ S × T where T is a finite set and S ⊆ Σn for some finite set Σ. The
oracle input is a function x ∈ S, hidden by a black-box, such that xi, for i ∈ {1, . . . , n} can be accessed via
a query parameterized by i. The output of the problem is some y ∈ T such that (x, y) ∈ R. A special case
is the functional oracle problem when the relation is given by a function A : S → T , the (unique) output is
then A(x). We say that A is total if S = Σn.

In the query model of computation each query adds one to the complexity of the algorithm, but all other
computations are free. The state of the computation is represented by three registers, the query register
i ∈ {1, . . . , n}, the answer register a ∈ Σ, and the work register z. The computation takes place in
the vector space spanned by all basis states |i〉|a〉|z〉. In the quantum query model introduced by Beals,
Buhrman, Cleve, Mosca and de Wolf [5] the state of the computation is a complex combination of all basis
states which has unit length in the norm l2. In the randomized model it is a non-negative real combination
of unit length in the norm l1, and in the deterministic model it is always one of the basis states.

The query operation Ox maps the basis state |i〉|a〉|z〉 into the state |i〉|(a + xi) mod |Σ|〉|z〉 (here we
identify Σ with the residue classes mod|Σ|). Non-query operations are independent of x. A k-query algo-
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rithm is a sequence of (k+1) operations (U0, U1, . . . , Uk) where Ui is unitary in the quantum and stochastic
in the randomized model, and it is a permutation in the deterministic case. Initially the state of the computa-
tion is set to some fixed value |0〉|0〉|0〉, and then the sequence of operations U0, Ox, U1, Ox, . . . , Uk−1, Ox, Uk

is applied. A quantum or randomized algorithm computes (with two-sided error) R if the observation of the
appropriate last bits of the work register yield some y ∈ T such that (x, y) ∈ R with probability at least
2/3. Then QQC(R) (resp. RQC(R)) is the smallest k for which there exists a k-query quantum (resp.
randomized) algorithm which computes R. In the case of deterministic algorithms of course exact compu-
tation is required, and the deterministic query complexity DQC(R) is defined then analogously. We have
DQC(R) ≥ RQC(R) ≥ QQC(R).

Beals et al. [5] have shown that in the case of total functional oracle problems the deterministic and
quantum complexities are polynomially related, and the gap is at most a degree 6 polynomial. No such rela-
tion is known for relations or for partial functional problems, in fact for several partial functional problems
exponential quantum speedups are known [11, 27].

An NP-search problem is specified by a polynomial time relation R(x, y), such that for some polynomial
p(n), for every x and y such that R(x, y), we have |y| ≤ p(|x|). Given an input x to the problem, the task
is to find a y such that R(x, y) if there is one, and else report failure. We call an NP-search problem total if
for every x there exists a solution y. The class of total NP-search problems is called TFNP by Megiddo and
Papadimitriou [20].

For two problems R1, R2 in TFNP, we say that R1 is reducible to R2 if there exist two functions f and
g computable in polynomial time such that f(x) is a legal input to R2 whenever x is an input to R1, and
R2(f(x), y) implies R1(x, g(x, y)).

The parity argument classes are defined via concrete problems, by closure under reduction. The LEAF
problem is defined as follows. The input is a pair (M, 0k) where M is the description of a polynomial time
Turing machine that on every input outputs a set of size at most 2, and k is a positive integer. Moreover, M
is such that M(0k) = {1k}, and 0k ∈ M(1k). Such an input specifies an undirected graph Gk = (V, E),
where V = {0, 1}k, and {u, v} is in E if u ∈ M(v), and v ∈ M(u). The output of the problem is a leaf
of Gk different from 0k. The class PPA is the set of total search problems reducible to LEAF. In the search
problems defining the classes PPADS and PPAD, the Turing machine defines a directed graph, where 0k

is always a source. The output in the case of PPADS is a sink, and in the case of PPAD a sink or source
different from 0k.

In this paper, we will give several results about various Sperner problems, both in the black-box and the
NP-search framework. In Section 5, we will prove that the deterministic query complexity of REGULAR
2-SPM, the black-box version of 2D-SPERNER is O(

√
n). This matches the deterministic Ω(

√
n) lower

bound of Crescenzi and Silvestri [10]. In fact, this result is the corollary of a general algorithm which we
present in this section and that solves the Sperner problems over pseudo-manifolds of arbitrary dimension.
The complexity analysis of the algorithm will be expressed in Theorem 4 in two combinatorial parameters
of the pseudo-manifold: the size of its boundary and the separation number of its skeleton graph. In Sec-
tion 6, we show that quantum, probabilistic, and deterministic query complexities of REGULAR 2-SPM
are polynomially related. More precisely, in Theorem 8 we will prove that its randomized complexity is
Ω( 4

√
n) and that its quantum complexity is Ω( 8

√
n). This result is analogous to the polynomial relations

obtained for the respective query complexities of PPP and PLS. Finally, in Section 7, in Theorem 9, we
show that there exists a Sperner problem on a 2-dimensional pseudo-manifold which is complete for the
class PPAD. This is the first time that a 2-dimensional Sperner problem is proved to be complete for a parity
argument class. We can generalize this completeness result for analogous problems in the classes PPADS
and PPA.
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3 Mathematical background

For an undirected graph G = (V, E), and for a subset V ′ ⊆ V of the vertices, we denote by G[V ′] the
induced subgraph of G by V ′. A graph G′′ = (V ′′, E′′) is a subgraph of G, in notation G′′ ⊆ G, if V ′′ ⊆ V
and E′′ ⊆ E. The ring Z/(2) denotes the ring with 2 elements.

3.1 Simplicial complexes

Definition 1 (Simplicial complex). A simplicial complex K is a non-empty collection of subsets of a finite
set U , such that whenever S ∈ K then S ′ ∈ K for every S ′ ⊆ S. An element S of K of cardinality d + 1
is called a d-simplex. A d′-simplex S ′ ⊆ S is called a d′-face of S. We denote by Kd the set of d-simplices
of K. An elementary d-complex is a simplicial complex that contains exactly one d-simplex and its subsets.
The dimension of K, denoted by dim(K), is the largest d such that K contains a d-simplex.

The elements of K0 are called the vertices of K, and the elements of K1 are called the edges of K. The
skeleton graph GK = (VK , EK) is the graph whose vertices are the vertices of K, and the edges are the
edges of K.

Fact 1. Let d be a positive integer. If S is an elementary d-complex, then GS is the complete graph.

Without loss of generality, we suppose that U consists of integers, and we identify {u} with u, for
u ∈ U . A geometrical realization K̃ of K can be constructed as follows: let b1, . . . , b|U | ∈ R|U | be linearly

independent vectors. For a simplex S ∈ K the set S̃ is the convex hull of {bu |u ∈ S}. The geometrical
realization K̃ is

⋃
S∈K S̃.

Definition 2 (Oriented Simplex). For every positive integer n, we define an equivalence relation ≡n over
Zn, by a ≡n b if there exists an even permutation σ such that σ ·a = b. For every a ∈ Zn we denote by [a]≡n

the equivalence class of a for ≡n. The two equivalence classes of the orderings of the 0-faces of a simplex
are called its orientations. An oriented simplex is a pair formed of a simplex and one of its orientations.

For an oriented d-simplex (S, [τ ]≡d+1
), where τ is an ordering of the 0-faces of S, and a permutation

σ over {1, . . . , d + 1}, we denote by σ · (S, [τ ]≡d+1
) the oriented d-simplex (S, [σ · τ ]≡d+1

). For every
integer d, and every simplicial complex K whose simplices have been oriented, we denote by Kd the set of
oriented d-simplices of K. From now on, S may denote an oriented or a non-oriented simplex. When S is
an oriented simplex, S̄ will denote the same simplex with the opposite orientation. We also define S (i) to be
S if i is even, and to be S̄ if i is odd. We will often specify an oriented simplex by an ordering of its 0-faces.

Definition 3. Let S = (v0, . . . , vd) be an oriented d-simplex. For every 0 ≤ i ≤ d, for every (d − 1)-face
{v0, . . . , vi−1, vi+1, . . . , vd} of S, the induced orientation is (v0, . . . , vi−1, vi+1, . . . , vd)

(i).

Definition 4. Let K be a simplicial complex whose simplices have been oriented, and let R be a ring. We
define Cd(K; R) as the submodule of the free R-module over the d-simplices of K with both possible
orientations, whose elements are of the form

∑
S∈Kd

(cS · S + cS̄ · S̄), with cS ∈ R, satisfying the relation
cS = −cS̄ . The elements of Cd(K; R) are called d-chains. For every oriented simplex S of K, we denote
by 〈S〉 the element S − S̄ of Cd(K; R).

Let S be an oriented d-simplex (v0, v1, . . . vd) of K. The algebraic boundary of 〈S〉, denoted by ∂d 〈S〉,
is the (d − 1)-chain of Cd−1(K; R)

∂d 〈S〉 =
d∑

i=0

(−1)i〈(v0, . . . , vi−1, vi+1, . . . , vd)〉.
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Since ∂d 〈S〉 = −∂d 〈S̄〉, the operator ∂d has been correctly defined on a basis of Cd(K; R) and can
therefore be uniquely extended into a homomorphism ∂d : Cd(K; R) → Cd−1(K; R). The next Lemma
follows immediately from the definition of ∂d.

Lemma 1. Let S be an oriented d-simplex of a simplicial complex K. Denote by FS the set of (d−1)-faces
of S, and for every S ′ ∈ FS by τS

S′ the induced orientation on S ′. Then ∂d 〈S〉 =
∑

S′∈FS
〈(S′, τS

S′)〉.
Following an early version of a paper of Bloch [8], in the next definition we generalize the notion of

pseudo-manifold, without the usual requirements of connectivity and pure dimensionality.

Definition 5. A simplicial complex M is a pseudo d-manifold, for a positive integer d, if

(i) M is a union of elementary d-complexes,

(ii) every (d − 1)-simplex in M is a (d − 1)-face of at most two d-simplices of M.

The boundary of M is the set of elementary (d − 1)-complexes in M that belong exactly to one d-simplex
of M. We denote it by ∂ M.

A pseudo d-manifold M is said to be orientable if it is possible to assign an orientation to each d-
simplex of M, such that for all (d − 1)-simplex of M that is not on its boundary the orientations induced
by the two d-simplices to which it belongs are opposite. Such a choice of orientations for all the d-simplices
of M makes M oriented.

If the d-simplices of M are oriented, then there is a natural orientation of the (d − 1)-simplices of
∂ M, where each (d − 1)-simplex has the orientation induced by the oriented d-simplex of which it is a
(d − 1)-face. Notice that if M is a pseudo d-manifold, then ∂ M need not be a pseudo (d − 1)-manifold.

From now, all the simplicial complexes will be pseudo-manifolds. Observe that if R = Z/(2), then for
any oriented d-simplex S, we have 〈S〉 = 〈S̄〉.
Definition 6. Given a simplicial complex K of dimension d, the standard d-chain K̂ of K will be defined
depending on whether K is oriented as follows:

• if K is non-oriented, then K̂ =
∑

S∈Kd
〈(S, τS)〉 ∈ Cd(K, Z/(2)), for an arbitrary choice of orienta-

tions τS of the d-simplices S in K,

• if K is oriented, then K̂ =
∑

S∈Kd
〈(S, τS)〉 ∈ Cd(K, Z) where τS is the orientation of S in K.

Fact 2. Let d be an integer, and let M be a pseudo d-manifold. Then,

1. if M is not oriented, then the equality ∂̂ M = ∂d M̂ holds in Cd−1(∂ M, Z/(2)),

2. and if M is oriented, then the equality ∂̂ M = ∂d M̂ holds in Cd−1(∂ M, Z).

Proof. For every d-simplex S in M, denote by FS the set of (d − 1)-faces of S, and for every S ′ ∈ FS

denote by τS
S′ the induced orientation of S ′ from S. From Lemma 1, we can write

∂d M̂ =
∑

S∈Md

∂d 〈(S, τS)〉 =
∑

S∈Md

∑

S′∈FS

〈(S′, τS
S′)〉.

From the definition of a pseudo d-manifold, we know that in the last sum each (d − 1)-simplex that is not
on the boundary of M appears exactly twice. If M is not oriented, then as the base ring is Z/(2), the only
(d−1)-simplices that remain in the sum are those that are in ∂ M. If M is oriented, then from the definition
of the orientability, it follows that each (d− 1)-simplex that appears in two d-simplices of M appears in the
sum once with each orientation. As for any oriented simplex S the equality 〈S〉 + 〈S̄〉 = 0 holds, the only
terms that do not cancel are the oriented (d− 1)-simplices of the boundary. These (d− 1)-simplices appear
with the correct orientation.
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3.2 Triangulated surfaces

Definition 7 (Surface). A surface S is a pseudo 2-manifold whose skeleton graph is connected, and such that
for every two 2-simplices T and T ′ that contain a vertex v, there exists a sequence T = T0, T1, . . . , Tk = T ′

of 2-simplices of S such that Ti ∩Ti+1 is a 1-simplex of S containing v, for 1 ≤ i < k. An oriented surface
S is a surface equipped with an orientation in the sense of Definition 5.

Notice that our definition of surface coincides with the usual definition of triangulated surface.

Definition 8. Let G = (V, E) be a graph. A rotation system for G is a set Π = {πv | v ∈ V } of permutations
such that for every v ∈ V the permutation πv is a cyclic permutation of the neighbors of v in G.

Fact 3. Let S be an oriented surface with empty boundary, and let v be a vertex of S . For every vertex v ′

such that {v, v′} is an edge, let v′′ be the (unique) vertex in V such that (v′, v, v′′) is an oriented 2-simplex
of S . Set πv(v

′) = v′′. The map πv is a cyclic permutation.

Definition 9. Let G be the skeleton graph of an oriented surface S with empty boundary. The rotation
system defined in Fact 3 is called the rotation system of S .

Definition 10. Let (Gn)n∈N = (Vn, En)n∈N be a family of undirected graphs where |Vn| = n, and Πn =
{πv | v ∈ Vn} be a rotation system for Gn. The rotation system Πn is said to be efficiently computable if
there exists a Turing machine M such that

(i) on input n and pair (v, v′), with {v, v′} ∈ En, computes the vertices v′′ and v′′′ such that πv(v
′) = v′′

and π−1
v (v′) = v′′′ using time polynomial in log n,

(ii) on input n and triple (v, v′, v′′), with {v, v′} and {v, v′′} in En, computes the smallest non-negative
integer i such that πi

v(v
′) = v′′ using time polynomial in log n. Later, we will refer to the integer i by

logπv

v′ (v′′).

Lemma 2. If m is a non zero integer that is equal to 7 modulo 12, then the complete graph Km over m
vertices is the skeleton graph of an orientable surface Sm of empty boundary. Moreover, the rotation system
of Sm can be efficiently computed.

The construction of the surface Sm can be found in [21]. The surface is completely specified by giving
an appropriate rotation system for Km. There are actually several such rotation systems [12], but in order
to uniquely define Sm, we focus on the one given in [21]. The proof of the efficient computability of the
rotation system is straightforward based on the constructions in [21, 12], although it requires a tedious case
study. We omit the details.

In the following definition, we will formalize the notion of “regular subdivision” of a surface, which
consists in substituting every 2-simplex with a regular subdivision of it, as shown on Figure 1.

We will make use of the free Abelian monoid N[V ] over the set of vertices V of a surface S: the
elements are those of the form

∑
v∈V cv · v, where cv is a non-negative integer, and v is a vertex of S . For

any subset V ′ ⊆ V and positive integer r let Nr[V
′] denote those elements

∑
v∈V ′ cv · v of N[V ] such that∑

v∈V ′ cv = r. If s =
∑

v∈V sv · v and t =
∑

v∈V tv · v are two elements of N[V ], we denote by d(s, t) the
distance

∑
v∈V |sv − tv|.

Definition 11. Let S be a surface, and r be a positive integer. Let S (r) be the simplicial complex whose
maximal simplices are of the form {s1, s2, s3} ⊆ Nr[{a, b, c}], for a 2-simplex {a, b, c} in S , and such that
d(s1, s2) = d(s2, s3) = d(s1, s3) = 2. We call S(r) the regular r-subdivision of S .

The subdivision S(r) of a surface S is again a surface with geometric realization homeomorphic to that
of S . Moreover, if S is oriented, then S (r) inherits the orientation of S .
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a

c

b 4 · a

4 · c

4 · b

Figure 1: An elementary 2-complex and its regular 4-subdivision.

4 Sperner Problems

We state now a very general form of Sperner’s Lemma due to Fan [13]. The exact formulation of the
statement we reproduce here was given by Taylor in [30].

Definition 12. Let K be a simplicial complex. A labelling of K is a mapping ` of the vertices of K into the
set {0, . . . , dim(K)}. If a simplex S of K is labelled with all possible labels, then we say that S is fully
labelled.

A labelling ` naturally maps every oriented d-simplex S = (v0, . . . , vd) to the equivalence class `(S) =
[(`(v0), . . . , `(vd))]≡d+1

.

Definition 13. Given a labelling ` of a simplicial complex K, and an integer 0 ≤ d ≤ dim(K), we define
the d-dimensional flow Nd[〈S〉] by

Nd[〈S〉] =





1 if `(S) = [(0, 1, 2 . . . , d)]≡d+1
,

−1 if `(S) = [(1, 0, 2, . . . , d)]≡d+1
,

0 otherwise,

and then extend it by linearity into a homomorphism Nd : Cd(K; R) → Z.

Theorem 1 (Sperner’s Lemma [28, 13, 30]). Let K be a simplicial complex of dimension d, let ` be a
labelling of K, and let R be a ring. For an element C of Cd(K; R), we have

Nd[C] = (−1)dNd−1[∂d C].

Using Fact 2, Theorem 1 can be translated in terms of pseudo-manifolds.

Theorem 2 (Sperner’s Lemma on pseudo-manifolds). Let d be an integer, let M be a pseudo d-manifold,
and let ` be a labelling of M. Then we have

Nd[M̂] = (−1)dNd−1[∂̂ M]

where

{
M̂ ∈ Cd(M, Z/(2)), ∂̂ M ∈ Cd−1(∂ M, Z/(2)), if M is not oriented,

M̂ ∈ Cd(M, Z), ∂̂ M ∈ Cd−1(∂ M, Z), if M is oriented.
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This version of Sperner’s lemma can be viewed, from a physicist’s point of view, as a result equivalent
to a global conservation law of a flow. If there is a source for the flow and the space is bounded then there
must be a sink for that flow. More concretely, the lines of flow can be drawn over d-simplices, that goes
from one d-simplex to another if they share a (d − 1)-face that has all possible labels in {0, . . . , d − 1}.
The sources and sinks of the flow are the fully labelled d-simplices. The lemma basically says that if the
amount of flow entering the manifold at the boundary is larger than the exiting flow, then there must exist
sinks inside.

The local conservation is stated by the fact that if there is an ingoing edge, there will not be two outgoing
edges, and conversely. Formally, we have the following.

Fact 4. Let (S, τS) be an oriented d-simplex. Then at most two of its oriented (d− 1)-faces have a non-zero
image by Nd−1. Moreover, if there are exactly two (d − 1)-faces (S ′, τS

S′) and (S′′, τS
S′′) that have non-zero

image by Nd−1, then Nd[〈(S, τS)〉] = 0 and Nd−1[〈(S′, τS
S′)〉] = −Nd−1[〈(S′′, τS

S′′)〉].
This gives a relation between the problem of finding fully labelled d-simplices and the natural complete

problems for the parity argument classes. We can consider an oriented d-simplex (S, τS) with Nd[〈(S, τS)〉] =
1 as a source for the flow, and (S ′, τS′) with Nd[〈(S′, τS′)〉] = −1 as a sink.

We now state the algorithmical Sperner problems we will consider, starting with the black-box problems.

Sperner on Pseudo d-Manifolds (d-SPM)
Input: a pseudo d-manifold M, and S ∈ Md.
Oracle input: a labelling ` : M0 → {0, 1, . . . , d}.
Promise: one of the two conditions holds:

a) Nd−1[∂̂ M] = 1 in Cd−1(∂ M, Z/(2)),
b) Nd−1[∂̂ M] = 0 in Cd−1(∂ M, Z/(2)) and Nd[〈S〉] = 1 in Cd(M, Z/(2)).

Output: S′ ∈ Md such that Nd[〈S′〉] = 1, and S 6= S ′ for the second condition.

We will deal in particular with the following important special case of 2-SPM. Let Vm = {(i, j) ∈ N2 | 0 ≤
i + j ≤ m}. Observe that |Vm| =

(
m+2

2

)

Regular Sperner (REGULAR 2-SPM)
Input: n =

(
m+2

2

)
for some integer m.

Oracle input: a labelling ` : Vm → {0, 1, 2}.
Promise: for 0 ≤ k ≤ m, we have `(0, k) 6= 1, `(k, 0) 6= 0, and `(k, m − k) 6= 2.
Output: p, p′ and p′′ ∈ V , such that p′ = p + (ε, 0), p′′ = p + (0, ε) for some ε ∈ {−1, 1},

and {`(p), `(p′), `(p′′)} = {0, 1, 2}.

In fact, REGULAR 2-SPM on input n =
(
m+2

2

)
is the instance of d-SPM on the regular m-subdivision of

an elementary 2-simplex.

Oriented Sperner on Pseudo d-Manifolds (d-OSPM)
Input: an oriented pseudo d-manifold M, and S ∈ Md.
Oracle input: a labelling ` : M0 → {0, 1, . . . , d}.
Promise: one of the two conditions holds:

a) (−1)dNd−1[∂̂ M] < 0 in Cd−1(∂ M, Z),
b) (−1)dNd−1[∂̂ M] = 0 in Cd−1(∂ M, Z) and Nd[〈S〉] = 1 in Cd(M, Z).

Output: S′ ∈ Md such that Nd[〈S′〉] = −1.

Theorem 2 states that each of the previous problems has always a solution. The solution is not necessarily
unique as it can be easily checked on simple instances. Thus the problems are not functional oracle problems.
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The NP-search problem for which we prove completeness in Section 7 is the following. The surface Sm

is the one given by Lemma 2. Its skeleton graph is Km. The surface S(4)
m is the regular 4-subdivision of Sm.

Oriented Sperner Problem for the Surface S (4)
m (OSPS)

Input: an integer m equal to 7 modulo 12, the description of a Turing machine M that on input

vertex v of S(4)
m outputs a label `(v) in {0, 1, 2} using time polynomial in log m, and an

oriented 2-simplex (T, τT ) of S(4)
m , such that N2[〈(T, τT )〉] = 1 in C2(S(4)

m , Z).

Output: (T ′, τT ′) of S(4)
m , with T ′ 6= T , such that N2[〈(T ′, τT ′)〉] 6= 0.

Again, Theorem 2 assures that there is always a solution. Observe that OSPS is in fact not a promise prob-
lem, since the input requirements can be syntactically enforced. To see this, we first provide a syntactical
way to force the Turing machine to always give a correct output. One can assume, for instance, that every
output value not in {0, 1, 2} is interpreted as 0. We ensure syntactically that N2[〈(T, τT )〉] = 1 with the

help of an arbitrary polynomial time computable total order < on the vertices of S (4)
m . Let s1 < s2 < s3 be

the 0-faces of T . The label of s3 is fixed to 2. The 0-face s1 will get label 0 and s2 label 1 if the orientation
specified by (s1, s2, s3) is the same as τT , and the labels are exchanged in the opposite case.

5 Black-box algorithms for pseudo d-manifolds

The purpose of this section is to give a black-box algorithm for d-SPM and d-OSPM. To solve these prob-
lems, we adopt a divide and conquer approach. This kind of approach was successfully used in [19, 18]
and [25], to study the query complexity of the oracle version of the Local Search problem.

In our algorithms the division of the pseudo d-manifold M will be done according to the combinatorial
properties of its skeleton graph. The particular parameter we will need is its iterated separation number that
we introduce now for general graphs.

Definition 14. Let G = (V, E) be a graph. If A and C are subsets of V such that V = A ∪ C, and that
there is no edge between A \C and C \A, then (A, C) is said to be a separation of the graph G, in notation
(A, C) ≺ G. The set A ∩ C is called a separator of the graph G.

The iterated separation number is defined by induction on the size of the graph G by

s(G) = min
(A,C)≺G

{|A ∩ C| + max(s(G[A \ C]), s(G[C \ A]))} .

A pair (A, C) ≺ G such that s(G) = |A∩C|+ max(s(G[A \C]), s(G[C \A])) is called a best separation
of G.

The iterated separation number of a graph is equal to the value of the separation game on the graph G,
which was introduced in [19]. In that article, that value was defined as the gain of a player in a certain game.
Notice, also, that the iterated separation number is at most log |V | times the separation number as defined
in [25].

Before giving the algorithms, and their analyzes, we still need a few observations.

Lemma 3. Let A and B be two pseudo d-manifolds, such that A ∪ B is also a pseudo d-manifold. Let ` be
a labelling of A ∪ B. If A and B have no d-simplex in their intersection, then

Nd[Â ∪ B] = Nd[Â] + Nd[B̂].
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Proof. By definition, we have Nd[Â ∪ B] =
∑

S∈(A∪B)d
Nd[〈S〉] =

∑
S∈Ad

Nd[〈S〉] +
∑

S∈Bd
Nd[〈S〉] =

Nd[Â] + Nd[B̂].

Lemma 4. Let M be a pseudo d-manifold, and M′ be a union of elementary d-complexes such that M′ ⊆
M. Then M′ is a pseudo d-manifold.

Proof. A (d − 1)-face of a d-simplex in M′ can not belong to more d-simplices in M′ than in M.

Theorem 3. Let M be a pseudo d-manifold, H a subset of M0, and ` be a labelling of the vertices of M.
Let (A, C) ≺ GM[M0 \ H], B = H ∪ (A ∩ C), and M ′ = A \ C and M ′′ = C \ A. Denote by B the set
of elementary d-complexes of M whose vertices are all in B, and by M′ (resp. M′′) the set of elementary
d-complexes of which at least one of the vertices belongs to M ′ (resp. M ′′). Denote also by B′ the set of
elementary (d − 1)-complexes of M whose vertices are all in B. Then,

(i) B, M′, M′′ and M′ ∪M′′ are pseudo d-manifolds,

(ii) if H 6= M0 then B, M′ and M′′ are proper subsets of M,

(iii) Nd[M̂] = Nd[B̂] + Nd[M̂′] + Nd[M̂′′],

(iv) the inclusions ∂ M′ ⊆ ∂ M∪B′ and ∂ M′′ ⊆ ∂ M∪B′ hold,

Proof. Clearly, the complexes B, M′, M′′ and M′∪M′′ are pseudo d-manifolds, according to the previous
lemma.

For (ii), assume H 6= M0. Let x be a vertex in A \ C and S be a d-simplex that contains it. By Fact 1,
all the points of S are neighbors of x in the skeleton graph. The neighbors of x are all in A, since there is no
edge between A \ C and C \ A. Therefore, S is in M′ but not in B ∪M′′. By symmetry of M′ and M′′,
there is also a d-simplex which is not in M′.

Let us now turn to prove (iii). Let S be an elementary d-complex in M. As B separates GM[M0 \ H]
into the two components M ′ and M ′′, it is not possible that S contains elements from both M ′ and from M ′′,
as from Fact 1 we know that GS is a complete graph. So, either all the vertices of S are in B, or in B ∪M ′,
or they are in B ∪ M ′′. This proves that S belongs to B ∪ M′ ∪ M′′. Therefore M ⊆ B ∪ M′ ∪ M′′.
The converse inclusion clearly holds, which implies that it is in fact an equality. Moreover, from their
definitions, the simplicial complexes B, M′ and M′′ have no d-simplex in common. Then using the first
point, two applications of Lemma 3 allow us to deduce the announced equality in (iii).

For (iv), let S be a (d− 1)-simplex in ∂ M′. It is not in ∂ M if and only if it belongs to two d-simplices
of M. We will prove that if S belongs to two d-simplices of M, then its 0-faces must all lie in B. Assume
that S is a (d − 1)-face common to two d-simplices T1 and T2. We can assume without loss of generality
that T1 belongs to M′. But T2 can not be in M′ as S is in the boundary of M′. So, either T2 is in B, or it is
in M′′. In the first case, it immediately follows that S has all its 0-faces in B, as it is a face of a d-simplex
whose 0-faces all lie in B. In the second case, again, the only possibility is that S has all its 0-faces in B, as
else a vertex in M ′ and a vertex in M ′′ would be neighbors. This proves the third point for ∂ M′. The proof
is the same for ∂ M′′.

We are now ready to state Algorithm 1 and Algorithm 2, which solve d-SPM and d-OSPM, when the
labels of the 0-faces of ∂M are also known. The final algorithms will first query these labels, and then call
these procedures.
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Algorithm 1 Main routine for solving d-SPM.

Input: A pseudo d-manifold M, S ∈ Md, a set H ⊇ (∂M)0 together with the labels of its elements.

Let (A, C) ≺ GM[M0 \ H] be a best separation, and B = H ∪ (A ∩ C).
Let the complexes B, M′ and M′′ be defined as in Theorem 3.
Query the labels of the vertices in A ∩ C.
if B contains a fully labelled elementary d-complex then

Return the corresponding oriented d-simplex.
end if
Evaluate Nd−1[∂̂ B], Nd−1[∂̂ M′] and Nd−1[∂̂ M′′].
if Nd−1[∂̂ K] = 1 for K ∈ {B,M′,M′′} then

Iterate the algorithm on K, any d-simplex S ∈ K, and B with the labels of its elements.
else

Iterate the algorithm on K ∈ {B,M′,M′′} containing S, S and B with the labels of its elements.
end if

Algorithm 2 Main routine for solving d-OSPM.

Input: A pseudo d-manifold M, S ∈ Md, a set H ⊇ (∂M)0 together with the labels of its elements.

Let (A, C) ≺ GM[M0 \ H] be a best separation, and B = H ∪ (A ∩ C).
Let the complexes B, M′ and M′′ be defined as in Theorem 3.
Query the labels of the vertices in A ∩ C.
if B contains a fully labelled elementary d-complex then

Return the corresponding oriented d-simplex.
end if
Evaluate Nd−1[∂̂ B], Nd−1[∂̂ M′] and Nd−1[∂̂ M′′].
if (−1)dNd−1[∂̂ K] < 0 on K ∈ {B,M′,M′′} then

Iterate the algorithm on K, any d-simplex S ∈ K, and B with the labels of its elements.
else

Iterate the algorithm on K ∈ {B,M′,M′′} containing S, S and B with the labels of its elements.
end if

We next give the result which states the correctness of our algorithms and specifies their complexities.

Lemma 5. If M and S satisfy the promises of the respective Sperner problems, then Algorithms 1 and 2
return a solution and use at most s(GM[M0 \ H]) queries.

Proof. We will prove the two claims for Algorithm 1 by induction, the proofs for Algorithm 2 are similar.
We start by proving the correctness. First observe that there is always enough information for the

evaluations of the flows. Indeed by (iv) of Theorem 3, all the 0-faces of ∂ B, ∂ M′ and ∂ M′′ are in
∂ M∪B. The labels of the 0-faces of M are given as an input, and the labels of B are queried right before
the flow evaluations.

Let us now consider an input that satisfies the promise of d-SPM, and where the number of d-simplices
in M is n. If n = 1, then M = B is an elementary d-complex, and by the promise, it is fully labelled.
Therefore, the output of the algorithm is correct. When n > 1, we will prove that the recursive call will
be made on an input which also satisfies the promise, and where the number of d-simplices in the pseudo
d-manifold is less than n.
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From Theorem 1 and (iii) of Theorem 3, we have Nd−1[∂̂ M] = Nd−1[∂̂ B]+Nd−1[∂̂ M′]+Nd−1[∂̂ M′′].
In case a) of the promise, this sum is equal to 1, and therefore there exists a K ∈ {B,M′,M′′} for
which Nd−1[∂̂ K] = 1. In case b) of the promise, either there exists a K ∈ {B,M′,M′′} for which
Nd−1[∂̂ K] = 1, or there exists a K ∈ {B,M′,M′′} for which Nd−1[∂̂ K] = 0 and S ∈ K. In both cases,
the number of d-simplices in K is less than the number of d-simplices of M because of (ii) of Theorem 3.

Let us now prove the bound on the complexity. For every pseudo d-manifold M, denote by T (M, H)
the number of queries made by the algorithm on M with the set H of labels. Each recursive call ends in
three possible ways:

1) it stops after the first test if M is a fully labelled elementary d-complex,
2) it iterates on B,
3) or it iterates on M′ or on M′′.

In the first case, no queries are made, as all vertices of M are on its boundary. In the second case,
|A ∩ C| queries are made, as in further iterations all labels will be known. In the third case, the num-
ber of queries is at most |A ∩ C| + max(T (M′, B), T (M′′, B)). Thus, we get T (M, H) ≤ |A ∩ C| +
max(T (M′, B), T (M′′, B)).

We now prove that T (M, H) ≤ s(GM[M0 \ H]) for every pseudo d-manifold M and set of vertices
H ⊆ M0. If M is an elementary d-complex, then the algorithm does not make any query, and therefore
T (M, H) = 0, and the statement is trivial.

Let now M be a pseudo d-manifold that is not an elementary d-complex. We have GM′ [M′
0 \ B] ⊆

GM[M ′] = GM[A \ C] and GM′′ [M′′
0 \ B] ⊆ GM[M ′′] = GM[C \ A], for a best separation (A, C) ≺

GM[M0 \ H]. Using the induction hypothesis, we get T (M′, B) ≤ s(GM′ [M′
0 \ B]) and T (M′′, B) ≤

s(GM′′ [M′′
0 \ B]). Since s(G′) ≤ s(G) if G′ is a subgraph of G, we get T (M′, B) ≤ s(GM[A \ C]) and

T (M′′, B) ≤ s(GM[C \ A]). As (A, C) is a best separation of GM[M0 \ H], this proves the inequality
T (M, H) ≤ s(GM[M0 \ H]).

Theorem 4. DQC(d-SPM) = O(s(GM[M0\(∂ M)0])+|(∂M)0|) and DQC(d-OSPM) = O(s(GM[M0\
(∂ M)0]) + |(∂M)0|).

Proof. The algorithms consist in querying the labels of the vertices of ∂M and then running respectively
Algorithm 1 or Algorithm 2 with the initial choice H = (∂ M)0.

To bound the complexity of our algorithms we need an upper-bound on the iterated separator number of
the skeleton graph. The following theorem gives, for any graph, an upper bound on the size of a balancing
separator, whose deletion leaves the graph with two roughly equal size components. The bound depends on
the genus and the number of vertices of the graph.

Theorem 5 (Gilbert, Hutchinson, Tarjan [14]). A graph of genus g with n vertices has a set of at most
6
√

g · n + 2
√

2n + 1 vertices whose removal leaves no component with more than 2n/3 vertices.

In [14], there is an algorithm to find a separator with the required properties which uses an embedding of
the graph in a surface of genus g. However, already finding the genus of a graph is an NP-complete problem.
Thus, this approach does not yield an effective way to generate a balanced separator. In a recent work,
Kelner [16] constructed an efficient algorithm to generate a balanced separator using a different approach.

For our purposes we can immediately derive an upper bound on the iterated separation number.

Corollary 1. For graphs G = (V, E) of size n and genus g we have s(G) ≤ λ(6
√

g · n+2
√

2n)+log3/2 n,

where λ is solution of λ = 1 + λ
√

2/3.
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Proof. Let us prove this fact by induction over n. It obviously holds for n = 1. Assume now that n > 1.
Theorem 5 shows that there exist three pairwise disjoint sets S1, S2 and S3 such that V = S1 ∪ S2 ∪ S3,
|S2| ≤ 6

√
g · n+2

√
2n+1 and |S1|, |S3| ≤ 2n/3. If we let A = S1∪S2 and C = S2∪S3, then (A, C) ≺ G

and A ∩ C = S2. The construction implies that |A \ C|, |C \ A| ≤ 2n/3. Using the induction hypothesis,
we get

s(G) ≤ |A ∩ C| + max(s(G[A \ C]), s(G[C \ A]))

≤ 6
√

g · n + 2
√

2n + 1 + λ(6
√

g · 2n/3 + 2
√

2 · 2n/3) + log3/2(2n/3)

≤ λ(6
√

g · n + 2
√

2n) + log3/2 n.

In general, there is no immediate relationship between the genus of a pseudo d-manifold and the genus
of its skeleton graph. However, if the pseudo d-manifold M is a triangulated oriented surface, then the
genus of the graph is equal to the genus of M.

Used in conjunction with Corollary 1, Theorem 4 gives an effective upper bound for pseudo d-manifolds.

Corollary 2. Let M be a pseudo d-manifold such that GM is of size n and of genus g. Then,

DQC(d-SPM) = O(
√

(g + 1)n + |(∂M)0|) and DQC(d-OSPM) = O(
√

(g + 1)n + |(∂M)0|).

Since the skeleton graph of the underlying pseudo 2-manifold of REGULAR 2-SPM is planar, it has
genus 0. Thus we get:

Theorem 6. DQC(REGULAR 2-SPM) = O(
√

n).

In the next section, we show nontrivial lower bounds on the randomized and the quantum query com-
plexity of the REGULAR 2-SPM problem. Observe that for some general instances of the 2-SPM over the
same pseudo 2-manifold we can easily derive exact lower bounds from the known complexity of Grover’s
search problem [7]. For example, if a labelling is 2 everywhere, except on two consecutive vertices on the
boundary where it takes respectively the values 0 and 1, then finding a fully labelled 2-simplex is of the
same complexity as finding a distinguished element on the boundary.

6 Lower bounds for REGULAR 2-SPM

We denote by UNIQUE-SPERNER all those instances of REGULAR 2-SPM for which there exists a
unique fully labelled triangle. There exist several equivalent adversary methods for proving quantum lower
bounds in the query model [29]. Here, we will use the weighted adversary method [2, 4, 17].

Theorem 7. Let Σ be a finite set, let n ≥ 1 be an integer, and let S ⊆ Σn and S′ be sets. Let f : S → S ′.
Let Γ be an arbitrary S×S nonnegative symmetric matrix that satisfies Γ[x, y] = 0 whenever f(x) = f(y).
For 1 ≤ k ≤ n, let Γk be the matrix

Γk[x, y] =

{
0 if xk = yk,

Γ[x, y] otherwise.
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Figure 2: In the coordinates system of the Figure, the point (0, 0) is the highest corner of the triangles, the
x coordinates increase by going down and left, and the y coordinates increase by going down and right. On
sub-figure (i), the labelling Cb corresponds to the binary sequence b = 0100110. On sub-figure (ii), the
labelling Ob corresponds to the same sequence b. The unmarked vertices are all labelled 0.

For all S × S matrix M and x ∈ S, let σ(M, x) =
∑

y∈S M [x, y]. Then

QQC(f) = Ω

(
min

Γ[x,y]6=0,xk 6=yk

√
σ(Γ, x)σ(Γ, y)

σ(Γk, x)σ(Γk, y)

)
,

RQC(f) = Ω

(
min

Γ[x,y]6=0,xk 6=yk

max

(
σ(Γ, x)

σ(Γk, x)
,

σ(Γ, y)

σ(Γk, y)

))
.

For the lower bound we will consider specific instances of REGULAR 2-SPM. For that, we need a few
definitions. For any binary sequence b, let |b| denote the length of the sequence b, and for i = 0, 1 let wi(b)
be the number of bits i in b. For 0 ≤ t ≤ |b|, let bt = b1 . . . bt denote the prefix of length t of b.

The instances of REGULAR 2-SPM we will consider are those whose oracle inputs Cb are induced by
binary sequences b = b1 . . . bm−2 of length m − 2 as follows:

Cb(i, j) =





1 if j = 0 and i 6= 0,

2 if i = 0 and j 6= m,

0 if i + j = m and j 6= 0,

1 if there exists 0 ≤ t ≤ m − 2 such that (i, j) = (w0(b
t) + 1, w1(b

t)),

2 if there exists 0 ≤ t ≤ m − 2 such that (i, j) = (w0(b
t), w1(b

t) + 1),

0 otherwise.

Notice that the first and fourth (resp. second and fifth) conditions can be simultaneously satisfied, but
the labelling definition is consistent. Also observe that, for any b, there is a unique fully labelled triangle,
whose coordinates are {(w0(b) + 1, w1(b)), (w0(b), w1(b) + 1), (w0(b) + 1, w1(b) + 1)}. Therefore Cb is
an instance of UNIQUE-SPERNER. We illustrate an instance of Cb in Figure 2.

It turns out that technically it will be easier to prove the lower bound for a problem which is closely
related to the above instances of REGULAR 2-SPM, that we call SNAKE. Recall that Vm = {(i, j) ∈
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N2 | 0 ≤ i+j ≤ m}. For every binary sequence b = b1 . . . bm−2, we denote by Ob the function Vm → {0, 1}
defined for p ∈ Vm by

Ob(p) =

{
1 if there exists 0 ≤ t ≤ m − 2 such that (i, j) = (w0(b

t) + 1, w1(b
t)),

0 otherwise.

See again Figure 2 for an example.

SNAKE
Input: n =

(
m
2

)
for some integer m.

Oracle input: a function f : Vm → {0, 1}.
Promise: there exists a binary sequence b = b1 . . . bm−2 such that f = Ob.
Output: (w0(b), w1(b)).

We recall here the definition of [25] of c-query reducibility between black-box problems, which we will
use to prove our lower bound.

Definition 15. For an integer c > 0, a functional oracle problem A : S1 → T1 with S1 ⊆ Σn
1 is c-query

reducible to a functional oracle problem B : S2 → T2 with S2 ⊆ Σn′

2 if the following two conditions hold:

(i) ∃α : S1 → S2, ∃β : T2 → T1, such that ∀x ∈ S1, A(x) = β(B(α(x))),

(ii) ∃γ1, . . . , γc : {1, . . . , n′} → {1, . . . , n} and γ : {1, . . . , n′} × Σc
1 → Σ2 such that ∀x ∈ S1, k ∈

{1, . . . , n′}, α(x)(k) = γ(k, xγ1(k), . . . , xγc(k)).

Lemma 6 ([25]). If A is c-query reducible to B then QQC(B) ≥ QQC(A)/2c, and RQC(B) ≥ RQC(A)/c.

Lemma 7. SNAKE is 3-query reducible to UNIQUE-SPERNER.

Proof. We define the oracle transformations as α(Ob) = Cb, and

β({(i1, j1), (i2, j2), (i3, j3)}) = (min{i1, i2, i3}, min{j1, j2, j3}).

Obviously, α and β satisfy the first condition of the definition.
We now turn to the simulation of an oracle for UNIQUE-SPERNER by an oracle for SNAKE. If the

query concerns a point (i, j) on the boundary, the answer is independent from the oracle, and is given
according to the definition of Cb, for any b. Otherwise, the simulator will query the point and its left and
right neighbors in the sense of the Figure 2, from which the value of Cb can be easily determined. Formally,
for such a point (i, j), let the functions γ, γ1, γ2 and γ3 be defined as

γ((i, j), a1, a2, a3) =





1 if (a1, a2, a3) = (0, 1, 0),

2 if (a1, a2, a3) = (1, 0, 0),

0 otherwise,

and γ1(i, j) = (i + 1, j − 1), γ2(i, j) = (i, j), γ3(i, j) = (i − 1, j + 1).

Lemma 8. The query complexity of SNAKE f satisfies

RQC(SNAKE) = Ω( 4
√

n),

QQC(SNAKE) = Ω( 8
√

n).
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Proof. We give now the definition of the adversary matrix Γ which will be a 2m−2 × 2m−2 symmetric
matrix, whose rows and columns will be indexed by the labellings Ob, when b ∈ {0, 1}m−2. For the sake of
simplicity, we will only use binary sequences to denote rows and columns, instead of the induced labellings.
For two binary sequences b and b′, we denote by b ∧ b′ their longest common prefix. Then let

Γ[b, b′] =

{
0 if w0(b) = w0(b

′),

2|b∧b′| otherwise.

For a given binary sequence b, there are 2m−2−(d+1) sequences that have longest common prefix of length
d with b. Out of them,

(
m−3−d

wbd+1
(b)−wbd+1

(bd)

)
will give the same output as b. Therefore,

σ(Γ, b) =

m−4∑

d=0

2d

[
2m−3−d −

(
m − 3 − d

wbd+1
(b) − wbd+1

(bd)

)]

≥ (m − 3)2m−3 −
m−4∑

d=0

2d

(
m − 3 − d

b(m − 3 − d)/2c

)

≥ (m − 3)2m−3 −
(

m−4∑

d=0

2m−3

√
m − 3 − d

)

≥ (m − 3)2m−3 − O(
√

m2m) = Ω(m2m).

We now turn to bound from above σ(Γp, b) and σ(Γp, b
′) when Γ[b, b′] 6= 0 and Ob(p) 6= Ob′(p). Let us

now fix a point p = (i, j) with 1 ≤ i + j ≤ m − 1, and two sequences b and b′, such that Ob(p) 6= Ob′(p).
We assume that Ob(p) = 0 and Ob′(p) = 1. We trivially upper bound σ(Γp, b

′) by σ(Γ, b′) = O(m2m).
We will now upper-bound σ(Γp, b). Set h = i + j. If a sequence b′′ is such that Ob′′(p) = 1, then

the length of its longest common prefix with b is at most h − 2. We regroup these sequences according
to the value |b ∧ b′′|. The number of sequences b′′ for which |b ∧ b′′| = d and Ob′′(p) = 1 is at most( h−1−(d+1)
bh−1−(d+1))/2c

)
2m−h−1. Therefore we can bound σ(Γp, b) as

σ(Γp, b) ≤
h−2∑

d=0

2d ·
(

h − d − 2

b(h − d − 2)/2c

)
2m−h−1

≤
h−2∑

d=0

[
2−(h−d−2) ·

(
h − d − 2

b(h − d − 2)/2c

)]
2m−3 = O(

√
m2m).

By Theorem 7 we conclude that

RQC(SNAKE) = Ω

(
max

(
m2m

m2m
,

m2m

√
m2m

))
= Ω( 4

√
n),

QQC(SNAKE) = Ω

(
m2m

√
m2m · √m2m

)
= Ω( 8

√
n).

Theorem 8. The query complexity of REGULAR 2-SPM satisfies

RQC(REGULAR 2-SPM) = Ω( 4
√

n),

QQC(REGULAR 2-SPM) = Ω( 8
√

n).
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Proof. By Lemma 6 and 7, the lower bounds of Lemma 8 for SNAKE also apply to REGULAR 2-SPM.

7 Completeness results

Let m be a positive integer equal to 7 modulo 12. We will work with the regular 4-subdivision S (4)
m of Sm.

Theorem 9. The problem OSPS is PPAD-complete.

Proof. To see membership in PPAD, we reduce OSPS to the natural complete problem for PPAD. Let V be
the set of oriented 2-simplices in S (4)

m , and E be the set

E = {((S, τS), (S′, τS′)) ∈ V 2 |S ∩ S′ is a 1-simplex in S(4)
m and N1[〈(S ∩ S′, τS

S∩S′)〉] > 0}.

We call the directed graph G = (V, E) the N1-flow-graph. The reduction follows the flow argument based
on Fact 4, of Section 4. All that we should provide is a polynomial time Turing machine that gives the
possible predecessor and successor of a vertex v in G. This can be done as follows.

Given the oriented 2-simplex v = (S, τS) in S(4)
m , the machine determines the 1-faces of v for which N1

is non-zero, with their induced orientations. A 1-face for which its value is 1 (resp. −1) is common with
only one other 2-simplex, which is its successor (resp. its predecessor). Given a 1-face, recovering the other
2-simplex (S ′, τS′) to which it belongs, can be done efficiently using the rotation system.

We turn to the proof of completeness. Let k be any positive integer. Let G = (V, E) be a graph which
is specified by an instance of the natural complete problem for PPAD (see Section 2). It is an oriented graph
over V = {0, 1}k, such that each vertex has indegree at most one, and outdegree at most one. Moreover,
0k is a source in G. Let us denote by M the polynomial time Turing machine that, given a vertex v ∈ V ,
outputs its predecessor and its successor, if they exist. From G we make an instance of OSPS such that a
solution can be efficiently turned into a source or a sink of the graph G different from 0k.

Let m be the smallest integer greater than 2k that is equal to 7 modulo 12. We assume that V is included
in the set of vertices of Sm. We denote by Π = {πv | v vertex of Sm} the rotation system for Sm.

Informally, we give a labelling such that the N1-flow-graph imitates the graph G as follows: if (a, b) is
an edge of G, then there will be a small path on the N1-flow-graph going along the edges near the (a, b)
side of the triangle “above” (a, b) (that is the triangle {a, b, π−1

a (b)}). If moreover (b, c) is an edge in G
then there will be a path around b in the direction given by the rotation system, leading to the triangle above
(b, c). To manage the latter, we need a tool for deciding whether, for a 0-simplex d 6∈ {a, b, c}, the 1-simplex
{b, d} is “between” {a, b} and {b, c} according to the rotation πb. This tool is provided by the function logπb

a

defined in Definition 10: the 1-simplex {b, d} is between {a, b} and {b, c} if 0 < logπb

a (d) < logπb

a (c). The
function logπb

a is efficiently computable by Lemma 2.

We design a Turing machine M ′ that for every vertex v in S(4)
m outputs a label `(v) in {0, 1, 2}, using

M as a subroutine. Let (a, b, c) = (S, τS) be an oriented 2-simplex in Sm, and let ia, ib and ic be three
non-negative integers such that ia + ib + ic = 4. Denote by σ the permutation

(
a,b,c
b,c,a

)
. Observe that the

definition of the rotation system implies that for every v ∈ {a, b, c} the equality πv(σ
−1(v)) = σ(v) holds.
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On input z = ia · a + ib · b + ic · c the Turing machine M ′ outputs

`(z) =





0 if ∃v, v′ ∈ S, iv + iv′ = 4, (v, v′) ∈ E, (1)

0 if ∃v ∈ S, iv = 4, ∃w 6∈ S, (v, w) ∈ E or (w, v) ∈ E, (2)

1 if ∃v ∈ S, (iv, iσ(v)) ∈ {(2, 1), (1, 2)}, (v, σ(v)) ∈ E, (3)

1 if ∃v ∈ S, ∃v′ ∈ {σ−1(v), σ(v)}, (iv, iv′) = (3, 1),

∃w, w′ ∈ V, (w, v), (v, w′) ∈ E and logπv

w (v′) < logπv

w (w′), (4)

2 otherwise. (5)

Finding the case in which z falls can be done in time polynomial in k, as the Turing machine M , on
input v ∈ {a, b, c}, outputs the neighbors of v, and the rotation system Π can be efficiently computed.

Using these rules, we describe (see Figure 3) the possible cases for an oriented 2-simplex (a, b, c) in
Sm (we assume that the rotation system is clockwise, and hence the orientation is counter-clockwise):

Case 1: (a, b), (b, c), (c, a) ∈ E.

Case 2: (a, b), (b, c) ∈ E, but (c, a) 6∈ E. The value of `(3 ·a+c) is 2 if a is a source in G, and 1 otherwise.
Similarly, the value of `(3 · c + a) is 2 if c is a sink in G, and 1 otherwise.

Case 3: (a, b) ∈ E, but (b, c) and (c, a) are not in E. The value of `(4 · c) is 2 if c is isolated in G, and
otherwise 0. The value of `(a + 3 · c) = `(b + 3 · c) is 1 if logπc

w (b) < logπc

w (a) < logπc

w (w′),
and otherwise 2. The value of `(3 · a + c) is 2 if a is a source in G, and 1 otherwise. The value of
`(3 · b + c) is 2 if b is a sink in G, and 1 otherwise.

Case 4: (a, b), (b, c) and (c, a) are not in E. Let v be in {a, b, c}. We do not enumerate all the possible
subcases, but only state the essential relations between the labels:

(i) `(3 · v + σ(v)) = 1 ⇐⇒ `(3 · v + σ−1(v)) = 1, as both 3 · v + σ−1(v) and 3 · v + σ(v)
simultaneously fall in one of the cases (1), (4) and (5) in the definition of `.

(ii) `(3 · v + σ(v)) = 0 ⇐⇒ `(2 · v + 2 · σ(v)) = 0, as if `(3 · v + σ(v)) = 0 or
`(2 · v + 2 · σ(v)) = 0 then case (1) in the definition of ` must apply,

(iii) `(3 ·v+σ−1(v)) = 0 ⇐⇒ `(2 ·v+2 ·σ−1(v)) = 0, for the same reasons as previously.

These are the only possible cases, up to renaming the vertices a, b and c, but preserving the orientation of
the 2-simplex (a, b, c).

We have to prove that this labelling scheme ` is correctly defined. It is easy to check that it is correctly
defined on 4 · v, where v is a vertex of V : if v is an isolated vertex in G, then in every face to which it
belongs only the case (5) in the definition of ` applies, and therefore `(4 · v) = 2. If v is not isolated, then
case (2) in the definition of ` applies, and therefore `(4 · v) = 0.

So, finally, proving that the labelling has been correctly defined amounts to proving that the label `(z)
of a vertex z = ia · a + ib · b, 0 < ia, ib < 4 with ia + ib = 4, that we have defined is the same for the two
oriented 2-simplices (a, b, π−1

a (b)) and (a, πa(b), b). We study the different cases:

• (ia, ib) = (3, 1) or (1, 3): if (a, b) or (b, a) is in E, then case (1) in the definition of ` applies to z, and
`(z) = 0. Otherwise, either case (4) applies and therefore `(z) = 1, or case (5) applies and therefore
`(z) = 2.
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a b
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0 0 0 0 0

0
1 1

0

0
1

0

0 0

0

a b

c

0 0 0 0 0

`(3 · a + c)
1 1

0

2
1

0

`(a + 3 · c) 0

0

Case 1 Case 2

a b

c

0 0 0 0 0

`(3 · a + c)
1 1

`(3 · b + c)

2
2

2

`(a + 3 · c) `(b + 3 · c)

`(4 · c)

a b

c

`(4 · a) `(3 · a + b)

`(2 · a + 2 · b)
`(a + 3 · b) `(4 · b)

`(3 · a + c)
2 2

`(3 · b + c)

`(2 · a + 2 · c) 2
`(2 · b + 2 · c)

`(a + 3 · c) `(b + 3 · c)

`(4 · c)

Case 3 Case 4

Figure 3: The different possible cases in the labelling of an oriented 2-simplex (a, b, c) of S (4)
m . The possibly

fully labelled 2-simplices are grayed.

• (ia, ib) = (2, 2): if (a, b) or (b, a) is in E, then case (1) in the definition of ` applies to z, and `(z) = 0.
Otherwise, case (5) applies.

Let (a′, b′, c′) be an oriented 2-simplex in the subdivision of an oriented 2-simplex (a, b, c) in Sm,
such that N2[〈(a′, b′, c′)〉] 6= 0. We prove that there exists a unique v = v(a′, b′, c′) ∈ {a, b, c} such that
(a′, b′, c′) = (3·v+σ(v), 2·v+σ−1(v)+σ(v), 3·v+σ−1(v)), and v is a source in G if N2[〈(a′, b′, c′)〉] = 1,
and a sink if N2[〈(a′, b′, c′)〉] = −1. Also, given (a′, b′, c′), one can efficiently retrieve v(a′, b′, c′). The
proof is done for the different cases of Figure 3.

In Case 1 there is no such simplex {a′, b′, c′}.
Let us examine Case 2. The possible values for `(3 · a + c) and `(a + 3 · c) are 1 and 2. Therefore,

the only possibilities for (a′, b′, c′) are (b + 3 · c, a + b + 2 · c, a + 3 · c) when `(a + 3 · c) = 2, and
(3 · a + c, 2 · a + b + c, 3 · a + b) when `(3 · a + c) = 2. These values correspond respectively to the case
when c is a sink and N2[〈(a′, b′, c′)〉] = −1, and to the case when a is a source and N2[〈(a′, b′, c′)〉] = 1.

Let us turn to Case 3. In this case, we always have `(a+3 ·c) = `(b+3 ·c). So, the only possibilities for
(a′, b′, c′) are (3 ·b+a, a+2 ·b+c, 3 ·b+c) when `(3 ·b+c) = 2, and (3 ·a+c, 2 ·a+b+c, 3 ·a+b) when
`(3·a+c) = 2. These values correspond respectively to the case when b is a sink and N2[〈(a′, b′, c′)〉] = −1,
and to the case when a is a source and N2[〈(a′, b′, c′)〉] = 1.

We finish the case study by proving that in Case 4, there can be no oriented 2-simplex (a′, b′, c′) such
that N2[〈(a′, b′, c′)〉] 6= 0. All the 2-simplices that have twice the label 2 can immediately be discarded.
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By symmetry between a, b and c, we can assume without loss of generality that a′, b′ and c′ should be in
{ia · a + ib · b + ic · c ∈ N4[{a, b, c}] | ia ≥ 2}. Assume that (a′, b′, c′) is a fully labelled triangle. The
possibilities are:

• (a′, b′, c′) = (3 · a + c, 4 · a, 3 · a + b): `(4 · a) ∈ {0, 2}, so `(3 · a + c) = 1 or `(3 · a + b) = 1, and
therefore relation (i) implies `(3 · a + c) = `(3 · a + b), which is impossible,

• (a′, b′, c′) = (3 · a + c, 3 · a + b, 2 · a + b + c): similar to the previous case,

• (a′, b′, c′) = (2 · a + 2 · c, 3 · a + 2 · c, 2 · a + b + c): `(2 · a + 2 · c) ∈ {0, 2} and `(2 · a + b + c) = 2,
so `(2 · a + 2 · c) = 0 and therefore relation (ii) implies `(3 · a + 2 · c) = 0, which is impossible,

• (a′, b′, c′) = (3 · a + b, 2 · a + 2 · b, 2 · a + b + c): similar to the previous case, using relation (iii).

Our next step is showing that the map (a′, b′, c′) 7→ v(a′, b′, c′) is a bijection between oriented 2-
simplices (a′, b′, c′) such that N2[〈(a′, b′, c′)〉] = 1 and sources of G. It is onto, as if v is a source in
G, v′ is the successor of v and v′′ = π−1

v (v′) then v = v(a′, b′, c′), where (a′, b′, c′) = (3 · v + v′′, 2 · v +

v′ + v′′, 3 · v + v′′). The case study also shows that if (a′, b′, c′) is an oriented 2-simplex of S(4)
m such that

N2[〈(a′, b′, c′)〉] = 1 and v = v(a′, b′, c′) then (a′, b′, c′) = (3 · v + v′′, 2 · v + v′ + v′′, 3 · v + v′′) as oriented
simplices, where v′ is the successor of v in G and v′′ = π−1

v (v′). Therefore the map is injective as well. A
similar bijection exists between oriented 2-simplices (a′, b′, c′) such that N2[〈(a′, b′, c′)〉] = −1 and sinks
of G.

Let (a0, b0, c0) = (0k, 1k, π−1
0k (1k)). The oriented 2-simplex (T, τT ), which is part of the input for

OSPS, is (3 · a0 + c, 2 · a0 + b0 + c0, 3 · a0 + b0). We conclude that if we can find an oriented 2-simplex
(a′, b′, c′) 6= (T, τT ) such that N2[〈(a′, b′, c′)〉] 6= 0 then we can efficiently retrieve a source or sink v of G
with v = v(a′, b′, c′) different from 0k.

An instance of the Strict Oriented Sperner Problem for the Surface S (4)
m (SOSPS) has the same input

as an instance of OSPS. The output is an oriented 2-simplex (T ′, τT ′) of S(4)
m such that N2[〈(T ′, τT ′)〉] =

−1. The argument of Theorem 9 immediately implies that SOSPS is PPADS-complete.

We can construct a non-orientable surface Nm from the regular 12-subdivision of S (12)
m of Sm by adding

some further topological constructions, namely adding so-called crosscaps. The Sperner Problem for the
Surface Nm (SPS) is the non-oriented analogue of OSPS. We can show that SPS is PPA-complete. The
proof goes along the lines of the proof of Theorem 9. As we have a bigger and more complicated surface,
the description of the labelling in the reduction is more complicated as well.
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