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Abstract. The scope of this paper is two fold. We first formulate upwind and symmetric
schemes for hyperbolic equations with non-conservative terms. Then we propose upwind nu-
merical schemes for conservative and non-conservative systems, based on a Riemann solver, the
initial conditions of which are evolved non-linearly in time, prior to a simple linearization that
leads to closed-form solutions. The Riemann solver is easily applied to complicated hyperbolic
systems. Finally, as an example, we formulate conservative schemes for the 3D Euler equations
for general compressible materials and give numerical results for a variety of test problems for
ideal gases in one and two space dimensions.
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1 Introduction

We are concerned with numerical methods for solving non-linear systems of hyperbolic equa-
tions. In particular we are interested in designing numerical schemes for problems that involve
non-conservative differential terms. In this paper we first formulate upwind and symmetric
schemes by extending the finite volume approach. For the upwind schemes one requires in-
tercell fluxes and intercell vector functions, the latter being associated with non-conservative
differential terms. To compute these intercell quantities we then propose a Riemann solver for
non-conservative systems. The Riemann solver consists of first evolving the initial conditions in
time using the full non-linear system and then performing a simple linearization of the Riemann
problem, for which a straightforward solution can be obtained. The scheme may be interpreted
in the framework of the MUSTA predictor-corrector approach [7], with the linearised Riemann
solver as the corrector. The resulting first-order Godunov schemes are extended to second-order
of accuracy in space and time under a TVD constraint to control spurious oscillations near
large gradients. The second-order schemes are then extended to non-Cartesian two-dimensional
geometries. The new Riemann solver is applied to the three-dimensional Euler equations with a
general equation of state. The explicit solution is given. The associated numerical methods are
partially validated by means of five test problems for which there are exact solutions, reference
solutions or experimental data. Preliminary numerical results show that the proposed schemes
are accurate, robust and efficient.

The rest of this paper is structured as follows. In section 2 we formulate numerical schemes
for hyperbolic equations that contain non-conservative differential terms. In section 3 we present
a new Riemann solver. In section 4 we apply the Riemann solver to the 3D Euler equations with
general equations of state and present the explicit solution of the Riemann problem; numerical



results for five test problems are presented. The main points of the paper are summarized in
section 5.

2 Numerical Schemes

There are applications in which the governing equations cannot be written strictly in conservation-
law form, or divergence form. Examples include models for compressible multi-phase flows. It
is therefore of interest to study numerical methods for hyperbolic equations expressed in quasi-
conservative form, namely

2,Q+ 9, F(Q) +9,G (Q) + 3. H(Q) + AJ,F (Q) + BJ,G (Q) + C.H(Q) =S(Q) . (1)

Here Q is the vector of unknowns, which for most problems of physical interest are the set of
physically conserved variables. F(Q), G(Q) and H(Q) may be interpreted as physical fluxes in
the z, y and z directions, respectively. The non-conservative terms involve coefficient matrices
A(Q), B(Q), C(Q) and partial derivatives of the vector functions F(Q), G(Q) and H(Q).
S(Q) is a vector of source or forcing terms and does not involve derivatives of the unknowns.

In this section we formulate numerical schemes for solving equations of the form (1).
2.1 Conservative Systems

We first consider the simpler case of an m X m system of hyperbolic conservation laws

9Q+0,F(Q)=85(Q) , (2)

for which the finite volume approach applied on a control volume [z; 1,z, 1] X [t", t"*1] yields
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with Az = 2,1 —x; 1 and At = t"! — " These finite volume relations are exact. A finite
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volume numerical method results once approximations to F, 1 and S; are provided, giving rise
2

to numerical fluxes and numerical sources respectively, denoted again by F, 1 and S;. Thus we
2
interpret (3) as a finite volume numerical method to solve (2).

The following discussion concerns the definition of intercell numerical fluxes, for which there
are two main approaches. Godunov’s upwind approach [3] defines the intercell numerical flux



Fz’+§ in terms of the similarity solution Qi+% (z/t) of the Riemann problem

9Q+0,F(Q) =0,

Qr  if 2<0, (5)
Q(z,0) =
Qr, if 2>0.

The solution in the half plane t > 0, —oo < z < 400 forms the so-called Riemann fan which

consists of m + 1 constant states separated by m wave families, each one associated with a real

eigenvalue A(¥). The Godunov intercell numerical flux is found by first evaluating Q; 1(z/t) at
2

x/t = 0, that is along the (local) t-axis, and then evaluating the physical flux vector F(Q) in
(2) at Q,,1(0), namely
2
Fit = F(Q,,(0). ©)

The exact solution will generally involve at least one iterative procedure and thus in practice,
whenever possible, one uses approximate Riemann solvers. For a review on Riemann solvers see,
for example, [8].

Non-upwind (or centred, or symmetric) schemes, on the other hand, do not explicitly uti-
lize wave propagation information and are thus simpler and more generally applicable. Two
symmetric fluxes are the two-step Lax-Wendroff flux [5]

1, ., n 1 At n n
FZLJFVE = F(QZLJFVE) ; QZLJFVE = §[Qz + Q4] — EE[F(QZ-I—I) - F(Q})] (7)

and the FORCE flux [9], [1]

1 Az
FIO = S [F(Q)) +2F(Q1Y) + F(QR) — & (Qh — Q)| - (8)

1
2

Another numerical flux [11] results from the weighted average

FCiF% = QFffg +(1- Q)FZO% , (9)

where L C
0C)=—2. 10
(C) 5 C (10)

C is a prescribed local Courant number coefficient, with 0 < C < 1. The flux Fgﬂ depends on
2

the data states Qj', Qj',; as well as on the local time step and the local mesh length, denoted

respectively by §t and dz. The local character of ¢ means that it is computed exclusively from

local wave speed information contained in the two data states Qj', Q7. We set dx = Az and

write

)

FfffE = QFQ/E( " QP 6z, 0t) + (1 — Q)Fff%( » QP 0z, ) (11)
It is easy to verify that for the model equation

Oq + A0, =0 (12)

the numerical flux FZC’;F1 reduces to that of the Godunov first-order upwind method.
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2.2 Quasi-Conservative Systems

We consider hyperbolic equations of the form

2,Q+ 4, F(Q) +A(QaF(Q) =S(Q) (13)

As done for the derivation of the conservative scheme (3), integration of equations (13) over a
control volume produces the following numerical scheme for the non-conservative system (13)

At At
~F, 1]

n+1 __
Q" =Qi - A’I'[ +3 3 Az

—AF F, 1]+ AtS;, (14)
2

its T
where Q7, F, 1 FZ. +1 and S; are approximations to the corresponding integral averages (4)
and the coefficient matrix A; is an approximation to a space-time integral of the matrix in
the considered control volume, analogous to the numerical source S; in (4). Upwind-based
approximations require the solution of the Riemann problem for the quasi-conservative system
(13) to find the appropriate intercell approximations in scheme (14). This is the subject of
section 3.

A symmetric scheme to solve (13) is the following predictor-corrector scheme, in which the
predictor step is

Q) = LQr, +Qp) - 1ALF(QD) - F(QL )]

2

(15)
~LALAT L[F(Q)) - F(QP )+ A8,
and
n+1/2 n n n n
QZ:%/ = 3(Q +Qpy) - 352 [F(QF) - F(QP) (16)
—SAATLF(QY,) — F(Q))] + 5018,
The corrector step gives the solution in cell 2 at the new time level n + 1 as
n n+1/2 n+1/2 n+1/2 n+1/2
Q= HQL + QL) - SRHFQI) - FQL)
(17)
n+1/2 ¢ n+1/2 - n+1/2 n+1/2
SSRRATTIRQLS) - B@TL) + parst
The coeflicient matrices are taken as
Alip = A (%( i1 +Q?)) ; )
AL, = A(HQr+QL)) (18)
l+1/2 2 +1 3
n+1/2 n+1/2 n+1/2
Ai+ - A (%(Qijl//Q + Qi++1//2 )) ’
while the numerical sources are
Si12 = S (%(anfl + Q?)) ) )
St = S(5Qr+Qn) (19)
i+1/2 2\%g i+1 )
n+1/2 n+1/2 n+1/2
Si = S (%(Qpl/z +Qz’+1/2)) )

Scheme (15)-(17) does not require upwind information or knowledge of the eigenstructure of the
system. In the next section we deal with upwind-based schemes of the type (14).



3 The Riemann Solver

Our aim is to solve, approximately, the Riemann problem
9Q +9:F (Q) + A(Q)&:F (Q) =0,

Q. if <0, (20)

Q(z,0) =
Qg if >0,

to obtain a similarity solution Qpg(z/t) to be used in the computation of intercell numerical
fluxes and intercell numerical functions in (14). We present a solution procedure based on three
main steps.

3.1 Choice of Variables and Quasilinear Form

We first select a suitable set of variables W = MQ that renders the equations and their eigen-
structure analysis as simple as possible. M is a suitable transformation matrix. The trivial choice
M =1 leaves the system is terms of the original, possibly conserved, variables. In terms of new
variables W the governing equations in (20) may be written in quasi-linear (non-conservative)
form as

O W + B(W)9,W =0, (21)

We assume that the system is hyperbolic, with real (possibly non-distinct) eigenvalues
AM(W) < Xa(W) <. < An(W) (22)

and a corresponding complete set of linearly independent right eigenvectors

RYwW), RO (w),... RM™(W). (23)

We assume also that the eigenvalues and right eigenvectors are known analytically or numerically.

3.2 Data Evolution

A crucial step of our solution procedure for (20) is the time evolution of the initial conditions
n (20), which has the effect of transforming large data to small data. There are two situations
to consider. For a strictly conservative system, A(Q) = 0 in (20), the initial data is evolved as
follows

QL=Qr— %[FLR ~F(QL)]., Qr=Qr- 5—[ F(Qr) —Firr] . (24)

Here Frr = Frr(Qr, Qr) is a numerical flux, dz is a given local mesh size and 6t is a local time
step determined from the data states Qp, Qg, the length dz and the local CFL coefficient C.
To compute Frr we use the numerical flux function FZG+F1 given by (11).
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For a quasi-conservative system, as in (20), we apply the procedure (15)-(17). The initial
conditions of (20) are evolved as follows

Q: = 5Qr + Q) LLIF(QYp) - F(Qu)] - LLAPR(Q)) - F(QL),
(25)
HQ +Qr) - FLF(QR) — F(Q)p)] — LLAY[EB(QR) - F(Q/)]

O
Y
I



where

e = 3Qu+Qr) - 3RFQu) - FQu] - 55 AalF(Qu) - F(Qu)], )
Arr = A(3(QL+Qn) .
(26)
A = a(dQu+ald)
Al? = A(L@QE+Qn) - |

3.3 Exact Solution of Linearized Riemann Problem

Finally, we perform a local linearization of system (21) based on the arithmetic mean matrix
1
Bir=B(5(Wr+Wg)), (27)

with W = MQL and Wp = MQR. Then we solve exactly the linearized Riemann problem

oW + B r0,W =0,

W, if <0, (28)
W (z,0) =
Wg if 2>0.

We denote the eigenvalues and eigenvectors of By r by
~ 1 N . 1
Ai:Ai(a(er—i_WR)) , RO = R® <§(WL+WR)> , fori=1,2,...,m . (29)

The similarity solution W,r(z/t) of (28) is obtained from standard theory of hyperbolic systems
with constant coefficients by projecting the jump A = Wi — W in the initial condition onto
the eigenvectors to find the wave strengths «;, ¢ = 1,2,...,m, by solving the linear algebraic
system

aRY + auR® + .+, RM™ = A . (30)

For some problems of practical interest, the closed-form solution of this linear algebraic system
can be easily obtained by hand. For more complicated systems we recommend the use of algebraic
manipulators. One may also find the solution numerically using any standard software for linear
algebraic systems.

Having found the wave strengths «;, one knows the solution everywhere in the half plane
t >0, 00 <z < oo. We are interested in the solution at the particular point 2/t = 0 to

determine the intercell fluxes F, 1 and intercell functions ]?‘Z- 41 in (14). We have
2 2

Wir(0) =Wi+ Y oRO (31)
5\1‘<U
or o
Wir(0) =Wgr— > ;RO (32)
5\i>0



or

1 1 & . .
Wir(0) =5 (WL +Wg) — 5 > sign(A) ey RO (33)
i=1

The sought intercell fluxes and intercell functions for use in (14) are

Fi 1 =F(Wir(0), F1=F(Wir(0). (34)

L
2

We summarize the solution procedure for the Riemann problem (20) as follows: first we
choose a convenient set of variables and express the governing equations in (20) in quasi-linear
form (21). Then we evolve the initial conditions in (20) as in (24) or (25), using the full non-
linear equations. Then we linearize the equations (21) and pose a, new, linearized Riemann
problem (28), which is solved as in (31)-(33) to produce numerical fluxes and functions (34)
at the cell interfaces for use in (14). Given that we EVolve the Initial conditions and then
LINearize the Riemann problem, we call the scheme the EVILIN Riemann solver.

In the next section we apply the EVILIN Riemann solver to the Kuler equations.

4 The Euler Equations for General Materials

The Riemann solver of this paper is most easily applied to any hyperbolic system for which the
eigenstructure is known, analytically or numerically. In this section we demonstrate the perfor-
mance of the schemes for a conservative system, namely the Euler equations for compressible
materials.

4.1 Governing Equations

The Euler equations in three space dimensions are

9 Q + 8xF(Q) + ayG(Q) + azH(Q) =0, (35)
with
P pU pv pw
pu pu2 +p puY pwu
Q= |, FQ=| pw |, GQ=| p’+p |, HQ=| puw
pw puw pLwW pr +p
E uw(E + p) v(E +p) w(E +p)
(36)

Here p is density; u, v and w are velocity components in the x, y and z directions respectively;
p is pressure and FE is total energy given by

E = pl=(u® +v* +w?) +¢], (37)

N[ —

with e being the specific internal energy.

To have a determined system one requires a closure condition. For general compressible
materials one uses a caloric equation of state relating the variables p, p and e. Often one uses
other variables, such as the specific volume 1/p and the entropy s. Here we consider two possible
functional relations for a general equilibrium equation of state in terms of the variables p, p and



e. These are given below, along with the corresponding expressions for the sound speed in the
considered material

P p e

p=pp,e) wa=/5pe+p,, e=elp,p) va=, |51, (38)
p ple, e
P P

where subscripts denote partial derivatives. We assume the standard convexity condition for
the equation of state. For the simple case of ideal gases one has the familiar equation of state
and corresponding sound speed

e=—L 4 4=/ , (39)

(y=Dp p

where vy is the ratio of specific heats. For air under most conditions one takes v = 1.4. General
background on thermodynamics and equations of state can be found, for example, in [6] and
references therein.

4.2 The EVILIN Riemann Solver

In the frame of finite volume schemes one requires a numerical flux in the direction normal to
each volume face, at each Gaussian point. Thus, without loss of generality, to find the intercell
flux we may consider the split augmented one dimensional problem in the z-direction. We choose
the physical or primitive variable vector W = [p, u, v, w, p]” to work with. Then

oW +B(W)o,W =0, (40)
with
P u p 0 0 O
u 0 uw 00 5
W=|v |, BW)=|0 0 «w 0 0 (41)
w 0 0 0 uwu 0
P 0 pa®? 0 0 w
The real eigenvalues are:
AM=u—a, a=A3=M=u, As=u+t+a, (42)

with corresponding right eigenvectors

—p/a 1 0 0 pla
AR : a
RO = 0 ., RO9=]0 |, RO=|1], RW=]0 |, RO = 0
0 0 0 1 0
—pa 0 0 0 pa
(43)
We solve the Riemann problem
OW +B(W)o,W =0,
W, =MQ; if 2<0, (44)

W(z,0) =
Wr=MQgr if >0,



where Q 1, and Q r are evolved initial conditions using the non-linear step (25).

The structure of the solution of the normal Riemann problem is depicted in Fig. 1. The
multiple eigenvalue A = wu is associated with a contact discontinuity, a shear wave in the y
direction and a shear wave in the z direction. There are four constant regions. The region of
unknowns is called the Star Region, which is divided by the contact wave into a Star Left and
a Star Right regions.

The linear algebraic system (30) has solution

1 Ap — Aupa

ar = ST
pa

Apa® — Ap

a =
a

as = Av, (45)
ay = Aw,

1 Ap + Aupa
ay = —————.

b 2 pal )

The linearization requires mean values ¢ for the components of the vector of unknowns W, for
which we take the simple arithmetic means § = %(QL +qr). The explicit solution in the unknown
Star Region is given by

pr= %(PL +pr) — %(UR —ug)Cp, )
w* = J(up+ur) —3(pr —p)/C1,
pr, = pr+(up —u*)Cy,
PR = pr+ (U —ug)Cy,
(46)
,U; = ,UL b)
,U;Z = UR,
wy = w,
W = WR, )
where
Ci=pa, Cy=pla. (47)

To completely determine the solution we also need to specify estimates for the partial derivatives
e, and e, in the general equation of state (38) in order to evaluate a . We suggest

- 1 ~ 1

€p = 5[(ep)L + (ep)r] s & = 5[(€p)L + (ep)r] (48)
where (e,)r, (ep)r. (ep)r, (ep)r are evaluated on the evolved states Wy, Wg respectively. For
the ideal gas case a = %ﬁ, as expected.



Remarks: The solution (46) is valid for any equation of state of the form (38), which enters the
solution via the data-evolution step and via the speed of sound in the constants C and Cy. The
approximate solution (46) of the Riemann problem is complete, in the sense that accounts for
all waves present in the structure of the exact solution of the non-linear Riemann problem. This
has a bearing on the resolution capability of the associated Godunov scheme, particularly for the
linearly degenerate fields. We note also that the given solution for density and shear waves, the
linearly degenerate fields, has the same structure as the exact solution, the only approximation
being that for the normal particle speed u*. The solution for these waves is exact if the initial
data is connected by a corresponding isolated wave.
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Figure 1: Structure of the solution of the split 3D Riemann problem normal to a cell interface
for the Euler equations for compressible materials with a general convex equation of state.

4.3 Sample Numerical Results

We illustrate the performance of the EVILIN Riemann solver proposed in this paper as applied
to the time-dependent Euler equations in one space dimension and in two space dimensions on
non-Cartesian geometries. We use the ideal gas equation of state with constant gamma v = 1.4.
We compare results with exact solutions and with reference solutions. We consider five test
problems, for all of which we use a CFL coefficient C.y = 0.9 for the computations.

4.3.1 Test 1: Stationary contact

We solve the equations in a domain [0, 1]. The initial condition consists of constant pressure
p = 1, constant velocity u = 1 and a discontinuous distribution of density: p = 1.4 in [0,1/2] and
p=1.01in (1/2,1]. We apply transmissive boundary condition at both ends. The purpose is to
assess the performance of EVILIN for resolving delicate features, such as contact discontinuities,
for which most numerical methods have large numerical dissipation, being the largest for the
case in which the wave is stationary.

In Fig. 2 we compare numerical results with the exact solution. As is illustrated by the
HLL [4] result (triangles), non-complete Riemann solvers have large numerical dissipation for
linearly degenerated fields. The proposed EVILIN Riemann solver reproduces the exact solution
(circles).
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4.3.2 Test 2: Shock tube problem with sonic flow

Here we assess EVILIN for a shock-tube problem with sonic flow. We solve the problem in
the domain [0, 1], subdivided into a left section [0,0.3] and a right section (0.3,1]. The initial
conditions assign data for density, velocity and pressure p;, = 1.0, u;, = 3/4, p;, = 1.0 in the
left section and pr = 1/8, ug = 0.0, pr = 0.1 in the right section. The solution includes a
right shock, a right contact discontinuity and a left transonic, or sonic rarefaction wave. We
remark that this is not the original Sod test problem but a modification of it so as to produce
a transonic rarefaction as part of the solution. The sonic point is known to cause difficulties
to numerical methods. Conventional linearized Riemann solvers give a large jump in all flow
variables, a rarefaction shock, unless explicit entropy fixes are enforced.

Figs. 3 shows numerical results for density as compared with the exact solution. The
numerical results from the Godunov method with the exact Riemann solver and those from
EVILIN are virtually indistinguishable, particularly for the shock and for the sonic point. It is
well known that the exact Riemann solver, although theoretically entropy satisfying, produces
a visible entropy glitch at the sonic point. Our Riemann solver also produces this glitch. The
size of this entropy jump is seen to tend to zero as the mesh is refined, for both EVILIN and for
the exact Riemann solver.

4.3.3 Test 3: Low-density flow

Here we assess EVILIN for a shock-tube problem with low-density flow. We solve a Riemann
problem in the domain [0, 1], subdivided into a left section [0,1/2] and a right section (1/2,1].
The initial conditions consists of constant density p = 1, constant pressure p = 0.4 and a
discontinuous distribution of velocity uy, = —2 in [0,1/2] and ug = 2 in (1/2,1.0]. The solution
consists of two strong symmetric rarefaction waves with stationary flow in the middle. This
is a difficult test for many numerical methods. In particular, it is known that conventional
linearized Riemann solvers [2] produce negative pressures and negative densities, leading the
codes to crush.

Figs. 4 and 5 compare numerical results against the exact solution, for density and velocity,
respectively. We remark that the region of stationary flow, see Fig. 5, is difficult to resolve, even
for well established complete Riemann solvers, such as HLLC [10]. EVILIN gives an accurate
solution there, particularly for the stationary region.

4.3.4 Test 4: Blast wave interaction

We solve the equations in a domain [0, 1]. The initial condition consists of constant density p = 1,
constant velocity v = 0 and a discontinuous distribution of pressure: p;, = 1000 in [0,1/10],
py = 0.01 in (1/10,9/10] and pr = 100 in (9/10,1]. For a detailed discussion on the solution
of this problem see [12]. The purpose of this test is to assess the robustness and accuracy of
the present Riemann solver for resolving very strong shock waves and multiple wave-wave and
wave-boundary interactions.

Figs. 6 and 7 compare numerical results for density from EVILIN with those from the Go-
dunov scheme with the exact Riemann solver for two output times. Fig. 6 shows the case just
before the collision of two very strong shock waves emerging from the discontinuous initial condi-
tions. The results from our Riemann solver and the exact Riemann solver are indistinguishable.
Fig. 7 shows the solution after multiple wave interaction. The result from EVILIN agrees well
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with that from the exact Riemann solver.

4.3.5 Test 5: Mach reflection in two space dimensions

This test consists of a shock reflection problem in a two-dimensional non-Cartesian domain as
depicted by the left-hand side sketch of Fig. 8. This is a double-wedge situation in which a plane
shock wave travels from left to right, reflects from the wedges placed at an angle of 25 degrees
to the initial shock direction, producing a symmetric Mach reflection pattern. The right-hand
side picture of Fig. 8 shows the experimental result for a single wedge, that is, the lower half of
the domain shown on the left-hand side. Clearly seen in the experiment are the incident shock,
the reflected shock, the Mach stem and the slip surface, all meeting at the triple point. The
experiment corresponds to an initial shock wave of shock Mach number 1.7. Numerical results
from a second-order TVD extension of EVILIN are given in Figs. 9 and 10, in which contours
are shown for 80 equally spaced levels.

Fig. 9 shows computed results at the output time ¢t = 1.0 ms using a mesh of M = 1000x 1000
cells. The qualitative agreement between the numerical solution and the experimental result of
Fig. 8 (right-hand side) is very satisfactory. All features seen in the experiment are reproduced
in the numerical solution. The numerical results have also preserved the expected symmetry
of the problem. Note also that our results do not escape the typical, so-called, start-up error,
which is clearly seen in the density plot. There are standard ways of eliminating this error.

The numerical resolution of all discontinuities is very satisfactory; discontinuities are sharp
and free from spurious oscillations. For modern numerical methods the resolution of shocks is
usually straightforward, but not so the resolution of linearly degenerate fields, for which one of
the problems to be encountered is excessive numerical diffusion. Our results also show a sharp
and oscillation-free resolution of the slip surface emanating from the triple point.

Finally, Fig. 10 shows the numerical solution at time £ = 1.1 ms. Note that the two reflected
shock waves have interacted producing two new, stronger reflected shocks waves. This compu-
tation is included to demonstrate the ability of the scheme to handle strong wave interaction in
multiple space dimensions.

5 Summary

We have formulated upwind and symmetric schemes for non-linear hyperbolic systems containing
non-conservative differential terms. The upwind schemes require the solution of the Riemann
problem, for which we have proposed a new scheme in which one first evolves in time the initial
conditions, non-linearly, and then performs a simple linearization of the Riemann problem, for
which a straightforward solution can be obtained.

For the conservative case we have illustrated the resulting upwind schemes for the 3D Euler
equations with general equation of state, have given the explicit solution of the Riemann problem
and have shown numerical results for ideal gases for one and two-dimensional problems, for first-
order and for second-order non-linear schemes in non-Cartesian geometries.
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Figure 2: Test 1: Stationary contact. EVILIN and HLL results (first-order) for density are
compared with the exact solution (full line) at time ¢ = 2.0 with M = 100 cells.
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Figure 3: Test 2: Shock-tube with sonic flow. EVILIN result (first-order) for density is
compared with the exact solution (full line) at time ¢ = 0.30 with M = 100 cells.
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Figure 4: Test 3: Low density flow. EVILIN result (first-order) for density is compared with
the exact solution (full line) at time ¢ = 0.15 with M = 100 cells.
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Figure 5: Test 3: Low density flow. EVILIN result (first-order) for velocity is compared with
the exact solution (full line) at time ¢ = 0.15 with M = 100 cells.
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Figure 6: Test 4: Blast wave problem. Results (first-order) from EVILIN and the Godunov
scheme with the exact Riemann solver (full line) at time ¢ = 0.027 with M = 3000 cells.
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Figure 7: Test 4: Blast wave problem. Results (first-order) from EVILIN and the Godunov
scheme with the exact Riemann solver (full line) at time ¢ = 0.038 with M = 3000 cells.
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Figure 8: Test 5: Mach reflection problem. Left-hanside sketch shows computational
domain and position of initial shock wave. Right-hand side picture shows the experimental
result for the lower half of the domain (Courtesy Prof. K Takayama, Japan).
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