
Riemann Solvers with Evolved Initial ConditionsE. F. ToroLaboratory of Applied MathematisDepartment of Civil and Environmental EngineeringUniversity of TrentoTrento, ItalyE-mail: toro�ing.unitn.itWebsite: http://www.ing.unitn.it/toroAbstrat. The sope of this paper is two fold. We �rst formulate upwind and symmetrishemes for hyperboli equations with non-onservative terms. Then we propose upwind nu-merial shemes for onservative and non-onservative systems, based on a Riemann solver, theinitial onditions of whih are evolved non-linearly in time, prior to a simple linearization thatleads to losed-form solutions. The Riemann solver is easily applied to ompliated hyperbolisystems. Finally, as an example, we formulate onservative shemes for the 3D Euler equationsfor general ompressible materials and give numerial results for a variety of test problems forideal gases in one and two spae dimensions.Key words: hyperboli systems, non-onservative terms, Riemann problem, evolution of data,linearized Riemann solver, Euler equations, general equation of state, numerial results.1 IntrodutionWe are onerned with numerial methods for solving non-linear systems of hyperboli equa-tions. In partiular we are interested in designing numerial shemes for problems that involvenon-onservative di�erential terms. In this paper we �rst formulate upwind and symmetrishemes by extending the �nite volume approah. For the upwind shemes one requires in-terell uxes and interell vetor funtions, the latter being assoiated with non-onservativedi�erential terms. To ompute these interell quantities we then propose a Riemann solver fornon-onservative systems. The Riemann solver onsists of �rst evolving the initial onditions intime using the full non-linear system and then performing a simple linearization of the Riemannproblem, for whih a straightforward solution an be obtained. The sheme may be interpretedin the framework of the MUSTA preditor-orretor approah [7℄, with the linearised Riemannsolver as the orretor. The resulting �rst-order Godunov shemes are extended to seond-orderof auray in spae and time under a TVD onstraint to ontrol spurious osillations nearlarge gradients. The seond-order shemes are then extended to non-Cartesian two-dimensionalgeometries. The new Riemann solver is applied to the three-dimensional Euler equations with ageneral equation of state. The expliit solution is given. The assoiated numerial methods arepartially validated by means of �ve test problems for whih there are exat solutions, referenesolutions or experimental data. Preliminary numerial results show that the proposed shemesare aurate, robust and eÆient.The rest of this paper is strutured as follows. In setion 2 we formulate numerial shemesfor hyperboli equations that ontain non-onservative di�erential terms. In setion 3 we presenta new Riemann solver. In setion 4 we apply the Riemann solver to the 3D Euler equations withgeneral equations of state and present the expliit solution of the Riemann problem; numerial1



results for �ve test problems are presented. The main points of the paper are summarized insetion 5.2 Numerial ShemesThere are appliations in whih the governing equations annot be written stritly in onservation-law form, or divergene form. Examples inlude models for ompressible multi-phase ows. Itis therefore of interest to study numerial methods for hyperboli equations expressed in quasi-onservative form, namely�tQ+ �xF (Q) + �yG (Q) + �zH (Q) +A�xF̂ (Q) +B�yĜ (Q) +C�zĤ (Q) = S (Q) : (1)Here Q is the vetor of unknowns, whih for most problems of physial interest are the set ofphysially onserved variables. F(Q), G(Q) and H(Q) may be interpreted as physial uxes inthe x, y and z diretions, respetively. The non-onservative terms involve oeÆient matriesA(Q), B(Q), C(Q) and partial derivatives of the vetor funtions F̂(Q), Ĝ(Q) and Ĥ(Q).S(Q) is a vetor of soure or foring terms and does not involve derivatives of the unknowns.In this setion we formulate numerial shemes for solving equations of the form (1).2.1 Conservative SystemsWe �rst onsider the simpler ase of an m�m system of hyperboli onservation laws�tQ+ �xF (Q) = S (Q) ; (2)for whih the �nite volume approah applied on a ontrol volume [xi� 12 ; xi+ 12 ℄� [tn; tn+1℄ yieldsQn+1i = Qni � �t�x [Fi+ 12 � Fi� 12 ℄ + �tSi ; (3)where Qni = 1�x Z xi+12xi� 12 Q(x; t)dx ;Fi+ 12 = 1�t Z tn+1tn F�Q(xi+ 12 ; t)� dt ;Si = 1�t 1�x Z tn+1tn Z xi+12xi� 12 S(x; t;Q(x; t))dxdt ;
9>>>>>>>>>>>>>=>>>>>>>>>>>>>; (4)

with �x = xi+ 12 � xi� 12 and �t = tn+1 � tn. These �nite volume relations are exat. A �nitevolume numerial method results one approximations to Fi+ 12 and Si are provided, giving riseto numerial uxes and numerial soures respetively, denoted again by Fi+ 12 and Si. Thus weinterpret (3) as a �nite volume numerial method to solve (2).The following disussion onerns the de�nition of interell numerial uxes, for whih thereare two main approahes. Godunov's upwind approah [3℄ de�nes the interell numerial ux2



Fi+ 12 in terms of the similarity solution Qi+ 12 (x=t) of the Riemann problem�tQ+ �xF(Q) = 0 ;Q(x; 0) = 8><>: Qni if x < 0 ;Qni+1 if x > 0 :
9>>>>>=>>>>>; (5)The solution in the half plane t > 0, �1 < x < +1 forms the so-alled Riemann fan whihonsists of m+ 1 onstant states separated by m wave families, eah one assoiated with a realeigenvalue �(k). The Godunov interell numerial ux is found by �rst evaluating Qi+ 12 (x=t) atx=t = 0, that is along the (loal) t-axis, and then evaluating the physial ux vetor F(Q) in(2) at Qi+ 12 (0), namely FGodi+ 12 = F(Qi+ 12 (0)) : (6)The exat solution will generally involve at least one iterative proedure and thus in pratie,whenever possible, one uses approximate Riemann solvers. For a review on Riemann solvers see,for example, [8℄.Non-upwind (or entred, or symmetri) shemes, on the other hand, do not expliitly uti-lize wave propagation information and are thus simpler and more generally appliable. Twosymmetri uxes are the two-step Lax-Wendro� ux [5℄FLWi+ 12 = F(QLWi+ 12 ) ; QLWi+ 12 = 12[Qni +Qni+1℄� 12 �t�x [F(Qni+1)� F(Qni )℄ (7)and the FORCE ux [9℄, [1℄FFOi+ 12 = 14 �F(Qni ) + 2F(QLWi+ 12 ) + F(Qni+1)� �x�t �Qni+1 �Qni �� : (8)Another numerial ux [11℄ results from the weighted averageFGFi+ 12 = 
FLWi+ 12 + (1� 
)FFOi+ 12 ; (9)where 
(C) = 1� C1 + C : (10)C is a presribed loal Courant number oeÆient, with 0 < C � 1. The ux FGFi+ 12 depends onthe data states Qni , Qni+1 as well as on the loal time step and the loal mesh length, denotedrespetively by Æt and Æx. The loal harater of Æt means that it is omputed exlusively fromloal wave speed information ontained in the two data states Qni , Qni+1. We set Æx = �x andwrite FGFi+ 12 = 
FLWi+ 12 (Qni ;Qni+1; Æx; Æt) + (1� 
)FFOi+ 12 (Qni ;Qni+1; Æx; Æt) : (11)It is easy to verify that for the model equation�tq + ��xq = 0 (12)the numerial ux FGFi+ 12 redues to that of the Godunov �rst-order upwind method.3



2.2 Quasi-Conservative SystemsWe onsider hyperboli equations of the form�tQ+ �xF (Q) +A(Q)�xF̂ (Q) = S (Q) : (13)As done for the derivation of the onservative sheme (3), integration of equations (13) over aontrol volume produes the following numerial sheme for the non-onservative system (13)Qn+1i = Qni � �t�x [Fi+ 12 � Fi� 12 ℄� �t�xAi[F̂i+ 12 � F̂i� 12 ℄ + �tSi ; (14)where Qni , Fi+ 12 , F̂i+ 12 and Si are approximations to the orresponding integral averages (4)and the oeÆient matrix Ai is an approximation to a spae-time integral of the matrix inthe onsidered ontrol volume, analogous to the numerial soure Si in (4). Upwind-basedapproximations require the solution of the Riemann problem for the quasi-onservative system(13) to �nd the appropriate interell approximations in sheme (14). This is the subjet ofsetion 3.A symmetri sheme to solve (13) is the following preditor-orretor sheme, in whih thepreditor step is Qn+1=2i� 12 = 12(Qni�1 +Qni )� 12 �t�x [F(Qni )� F(Qni�1)℄�12 �t�xAni� 12 [F̂(Qni )� F̂(Qni�1)℄ + 12�tSi� 12 9>>=>>; (15)and Qn+1=2i+ 12 = 12(Qni +Qni+1)� 12 �t�x [F(Qni+1)� F(Qni )℄�12 �t�xAni+ 12 [F̂(Qni+1)� F̂(Qni )℄ + 12�tSi+ 12 9=; (16)The orretor step gives the solution in ell i at the new time level n+ 1 asQn+1i = 12(Qn+1=2i�1=2 +Qn+1=2i+1=2 )� 12 �t�x [F(Qn+1=2i+1=2 )� F(Qn+1=2i�1=2 )℄�12 �t�xAn+1=2i [F̂(Qn+1=2i+1=2 )� F̂(Qn+1=2i�1=2 )℄ + 12�tSn+1=2i 9>>=>>; (17)The oeÆient matries are taken asAni�1=2 = A �12(Qni�1 +Qni )� ;Ani+1=2 = A �12(Qni +Qni+1)� ;An+1=2i = A �12(Qn+1=2i�1=2 +Qn+1=2i+1=2 )� ;
9>>>>>>>=>>>>>>>; (18)while the numerial soures areSni�1=2 = S �12(Qni�1 +Qni )� ;Sni+1=2 = S �12(Qni +Qni+1)� ;Sn+1=2i = S �12(Qn+1=2i�1=2 +Qn+1=2i+1=2 )� :
9>>>>>>>=>>>>>>>; (19)Sheme (15)-(17) does not require upwind information or knowledge of the eigenstruture of thesystem. In the next setion we deal with upwind-based shemes of the type (14).4



3 The Riemann SolverOur aim is to solve, approximately, the Riemann problem�tQ+ �xF (Q) +A(Q)�xF̂ (Q) = 0 ;Q(x; 0) = 8><>: QL if x < 0 ;QR if x > 0 ;
9>>>>>=>>>>>; (20)to obtain a similarity solution QLR(x=t) to be used in the omputation of interell numerialuxes and interell numerial funtions in (14). We present a solution proedure based on threemain steps.3.1 Choie of Variables and Quasilinear FormWe �rst selet a suitable set of variables W =MQ that renders the equations and their eigen-struture analysis as simple as possible. M is a suitable transformation matrix. The trivial hoieM = I leaves the system is terms of the original, possibly onserved, variables. In terms of newvariables W the governing equations in (20) may be written in quasi-linear (non-onservative)form as �tW+B(W)�xW = 0 ; (21)We assume that the system is hyperboli, with real (possibly non-distint) eigenvalues�1(W) � �2(W) � : : : � �m(W) (22)and a orresponding omplete set of linearly independent right eigenvetorsR(1)(W) ; R(2)(W) ; : : : ;R(m)(W) : (23)We assume also that the eigenvalues and right eigenvetors are known analytially or numerially.3.2 Data EvolutionA ruial step of our solution proedure for (20) is the time evolution of the initial onditionsin (20), whih has the e�et of transforming large data to small data. There are two situationsto onsider. For a stritly onservative system, A(Q) = 0 in (20), the initial data is evolved asfollows Q̂L = QL � ÆtÆx [FLR � F(QL)℄ ; Q̂R = QR � ÆtÆx [F(QR)� FLR℄ : (24)Here FLR = FLR(QL;QR) is a numerial ux, Æx is a given loal mesh size and Æt is a loal timestep determined from the data states QL;QR, the length Æx and the loal CFL oeÆient C.To ompute FLR we use the numerial ux funtion FGFi+ 12 given by (11).For a quasi-onservative system, as in (20), we apply the proedure (15)-(17). The initialonditions of (20) are evolved as followsQ̂L = 12(QL +Q1=2LR)� 12 ÆtÆx [F(Q1=2LR)� F(QL)℄� 12 ÆtÆxA1=2L [F̂(Q1=2LR)� F̂(QL)℄ ;Q̂R = 12 (Q1=2LR +QR)� 12 ÆtÆx [F(QR)� F(Q1=2LR)℄� 12 ÆtÆxA1=2R [F̂(QR)� F̂(Q1=2LR)℄ ; 9>=>; (25)5



whereQ1=2LR = 12(QL +QR)� 12 ÆtÆx [F(QR)� F(QL)℄� 12 ÆtÆxALR[F̂(QR)� F̂(QL)℄ ;ALR = A �12 (QL +QR)� ;A1=2L = A �12 (QL +Q1=2LR)� ;A1=2R = A �12 (Q1=2LR +QR)� :
9>>>>>>>>>>>>=>>>>>>>>>>>>; (26)

3.3 Exat Solution of Linearized Riemann ProblemFinally, we perform a loal linearization of system (21) based on the arithmeti mean matrixBLR = B�12(WL +WR)� ; (27)with WL =MQ̂L and WR =MQ̂R. Then we solve exatly the linearized Riemann problem�tW +BLR�xW = 0 ;W(x; 0) = 8><>: WL if x < 0 ;WR if x > 0 :
9>>>>>=>>>>>; (28)We denote the eigenvalues and eigenvetors of BLR by�̂i = �i(12 (WL +WR)) ; R̂(i) = R(i) �12(WL +WR)� ; for i = 1; 2; : : : ;m : (29)The similarity solutionWLR(x=t) of (28) is obtained from standard theory of hyperboli systemswith onstant oeÆients by projeting the jump � �WR �WL in the initial ondition ontothe eigenvetors to �nd the wave strengths �i, i = 1; 2; : : : ;m, by solving the linear algebraisystem �1R̂(1) + �2R̂(2) + : : : + �mR̂(m) =� : (30)For some problems of pratial interest, the losed-form solution of this linear algebrai systeman be easily obtained by hand. For more ompliated systems we reommend the use of algebraimanipulators. One may also �nd the solution numerially using any standard software for linearalgebrai systems.Having found the wave strengths �i, one knows the solution everywhere in the half planet > 0, �1 < x < 1. We are interested in the solution at the partiular point x=t = 0 todetermine the interell uxes Fi+ 12 and interell funtions F̂i+ 12 in (14). We haveWLR(0) =WL + X̂�i<0�iR̂(i) ; (31)or WLR(0) =WR � X̂�i>0�iR̂(i) ; (32)6



or WLR(0) = 12(WL +WR)� 12 mXi=1 sign(�̂i)�iR̂(i) : (33)The sought interell uxes and interell funtions for use in (14) areFi+ 12 = F(WLR(0)) ; F̂i+ 12 = F̂(WLR(0)) : (34)We summarize the solution proedure for the Riemann problem (20) as follows: �rst wehoose a onvenient set of variables and express the governing equations in (20) in quasi-linearform (21). Then we evolve the initial onditions in (20) as in (24) or (25), using the full non-linear equations. Then we linearize the equations (21) and pose a, new, linearized Riemannproblem (28), whih is solved as in (31)-(33) to produe numerial uxes and funtions (34)at the ell interfaes for use in (14). Given that we EVolve the Initial onditions and thenLINearize the Riemann problem, we all the sheme the EVILIN Riemann solver.In the next setion we apply the EVILIN Riemann solver to the Euler equations.4 The Euler Equations for General MaterialsThe Riemann solver of this paper is most easily applied to any hyperboli system for whih theeigenstruture is known, analytially or numerially. In this setion we demonstrate the perfor-mane of the shemes for a onservative system, namely the Euler equations for ompressiblematerials.4.1 Governing EquationsThe Euler equations in three spae dimensions are�tQ+ �xF(Q) + �yG(Q) + �zH(Q) = 0 ; (35)withQ = 2666664 ��u�v�wE
3777775 ; F(Q) = 2666664 �u�u2 + p�uv�uwu(E + p)

3777775 ; G(Q) = 2666664 �v�vu�v2 + p�vwv(E + p)
3777775 ; H(Q) = 2666664 �w�wu�wv�w2 + pw(E + p)

3777775 :(36)Here � is density; u, v and w are veloity omponents in the x, y and z diretions respetively;p is pressure and E is total energy given byE = �[12(u2 + v2 + w2) + e℄ ; (37)with e being the spei� internal energy.To have a determined system one requires a losure ondition. For general ompressiblematerials one uses a alori equation of state relating the variables �, p and e. Often one usesother variables, suh as the spei� volume 1=� and the entropy s. Here we onsider two possiblefuntional relations for a general equilibrium equation of state in terms of the variables �, p and7



e. These are given below, along with the orresponding expressions for the sound speed in theonsidered materialp = p(�; e) ! a = r p�2 pe + p� ; e = e(�; p) ! a = s p�2ep � e�ep ; (38)where subsripts denote partial derivatives. We assume the standard onvexity ondition forthe equation of state. For the simple ase of ideal gases one has the familiar equation of stateand orresponding sound speed e = p( � 1)� ! a = rp� ; (39)where  is the ratio of spei� heats. For air under most onditions one takes  = 1:4. Generalbakground on thermodynamis and equations of state an be found, for example, in [6℄ andreferenes therein.4.2 The EVILIN Riemann SolverIn the frame of �nite volume shemes one requires a numerial ux in the diretion normal toeah volume fae, at eah Gaussian point. Thus, without loss of generality, to �nd the interellux we may onsider the split augmented one dimensional problem in the x-diretion. We hoosethe physial or primitive variable vetor W = [�; u; v; w; p℄T to work with. Then�tW+B(W)�xW = 0 ; (40)with W = 2666664 �uvwp
3777775 ; B(W) = 2666664 u0000 �u00�a2 00u00 000u0 01�00u

3777775 : (41)The real eigenvalues are:�1 = u� a ; �2 = �3 = �4 = u ; �5 = u+ a ; (42)with orresponding right eigenvetorsR(1) = 2666664 ��=a100��a
3777775 ; R(2) = 2666664 10000

3777775 ; R(3) = 2666664 00100
3777775 ; R(4) = 2666664 00010

3777775 ; R(5) = 2666664 �=a100�a
3777775 :(43)We solve the Riemann problem�tW +B(W)�xW = 0 ;W(x; 0) = 8><>: WL �MQ̂L if x < 0 ;WR �MQ̂R if x > 0 ;

9>>>>>=>>>>>; (44)8



where Q̂L and Q̂R are evolved initial onditions using the non-linear step (25).The struture of the solution of the normal Riemann problem is depited in Fig. 1. Themultiple eigenvalue � = u is assoiated with a ontat disontinuity, a shear wave in the ydiretion and a shear wave in the z diretion. There are four onstant regions. The region ofunknowns is alled the Star Region, whih is divided by the ontat wave into a Star Left anda Star Right regions.The linear algebrai system (30) has solution�1 = 12 �p��u~�~a~�~a2 ;�2 = ��~a2 ��p~a2 ;�3 = �v ;�4 = �w ;�5 = 12 �p+�u~�~a~�~a2 :
9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;

(45)
The linearization requires mean values ~q for the omponents of the vetor of unknowns W, forwhih we take the simple arithmeti means ~q = 12(qL+qR). The expliit solution in the unknownStar Region is given by p� = 12(pL + pR)� 12(uR � uL)C1 ;u� = 12(uL + uR)� 12(pR � pL)=C1 ;��L = �L + (uL � u�)C2 ;��R = �R + (u� � uR)C2 ;v�L = vL ;v�R = vR ;w�L = wL ;w�R = wR ;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
(46)

where C1 = ~�~a ; C2 = ~�=~a : (47)To ompletely determine the solution we also need to speify estimates for the partial derivativese� and ep in the general equation of state (38) in order to evaluate ~a . We suggest~e� = 12[(e�)L + (e�)R℄ ; ~ep = 12[(ep)L + (ep)R℄ ; (48)where (e�)L, (e�)R, (ep)L, (ep)R are evaluated on the evolved states WL, WR respetively. Forthe ideal gas ase ~a = q~p~� , as expeted. 9



Remarks: The solution (46) is valid for any equation of state of the form (38), whih enters thesolution via the data-evolution step and via the speed of sound in the onstants C1 and C2. Theapproximate solution (46) of the Riemann problem is omplete, in the sense that aounts forall waves present in the struture of the exat solution of the non-linear Riemann problem. Thishas a bearing on the resolution apability of the assoiated Godunov sheme, partiularly for thelinearly degenerate �elds. We note also that the given solution for density and shear waves, thelinearly degenerate �elds, has the same struture as the exat solution, the only approximationbeing that for the normal partile speed u�. The solution for these waves is exat if the initialdata is onneted by a orresponding isolated wave.
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xFigure 1: Struture of the solution of the split 3D Riemann problem normal to a ell interfaefor the Euler equations for ompressible materials with a general onvex equation of state.4.3 Sample Numerial ResultsWe illustrate the performane of the EVILIN Riemann solver proposed in this paper as appliedto the time-dependent Euler equations in one spae dimension and in two spae dimensions onnon-Cartesian geometries. We use the ideal gas equation of state with onstant gamma  = 1:4.We ompare results with exat solutions and with referene solutions. We onsider �ve testproblems, for all of whih we use a CFL oeÆient Cfl = 0:9 for the omputations.4.3.1 Test 1: Stationary ontatWe solve the equations in a domain [0; 1℄. The initial ondition onsists of onstant pressurep = 1, onstant veloity u = 1 and a disontinuous distribution of density: � = 1:4 in [0; 1=2℄ and� = 1:0 in (1=2; 1℄. We apply transmissive boundary ondition at both ends. The purpose is toassess the performane of EVILIN for resolving deliate features, suh as ontat disontinuities,for whih most numerial methods have large numerial dissipation, being the largest for thease in whih the wave is stationary.In Fig. 2 we ompare numerial results with the exat solution. As is illustrated by theHLL [4℄ result (triangles), non-omplete Riemann solvers have large numerial dissipation forlinearly degenerated �elds. The proposed EVILIN Riemann solver reprodues the exat solution(irles). 10



4.3.2 Test 2: Shok tube problem with soni owHere we assess EVILIN for a shok-tube problem with soni ow. We solve the problem inthe domain [0; 1℄, subdivided into a left setion [0; 0:3℄ and a right setion (0:3; 1℄. The initialonditions assign data for density, veloity and pressure �L = 1:0, uL = 3=4, pL = 1:0 in theleft setion and �R = 1=8, uR = 0:0, pR = 0:1 in the right setion. The solution inludes aright shok, a right ontat disontinuity and a left transoni, or soni rarefation wave. Weremark that this is not the original Sod test problem but a modi�ation of it so as to produea transoni rarefation as part of the solution. The soni point is known to ause diÆultiesto numerial methods. Conventional linearized Riemann solvers give a large jump in all owvariables, a rarefation shok, unless expliit entropy �xes are enfored.Figs. 3 shows numerial results for density as ompared with the exat solution. Thenumerial results from the Godunov method with the exat Riemann solver and those fromEVILIN are virtually indistinguishable, partiularly for the shok and for the soni point. It iswell known that the exat Riemann solver, although theoretially entropy satisfying, produesa visible entropy glith at the soni point. Our Riemann solver also produes this glith. Thesize of this entropy jump is seen to tend to zero as the mesh is re�ned, for both EVILIN and forthe exat Riemann solver.4.3.3 Test 3: Low-density owHere we assess EVILIN for a shok-tube problem with low-density ow. We solve a Riemannproblem in the domain [0; 1℄, subdivided into a left setion [0; 1=2℄ and a right setion (1=2; 1℄.The initial onditions onsists of onstant density � = 1, onstant pressure p = 0:4 and adisontinuous distribution of veloity uL = �2 in [0; 1=2℄ and uR = 2 in (1=2; 1:0℄. The solutiononsists of two strong symmetri rarefation waves with stationary ow in the middle. Thisis a diÆult test for many numerial methods. In partiular, it is known that onventionallinearized Riemann solvers [2℄ produe negative pressures and negative densities, leading theodes to rush.Figs. 4 and 5 ompare numerial results against the exat solution, for density and veloity,respetively. We remark that the region of stationary ow, see Fig. 5, is diÆult to resolve, evenfor well established omplete Riemann solvers, suh as HLLC [10℄. EVILIN gives an auratesolution there, partiularly for the stationary region.4.3.4 Test 4: Blast wave interationWe solve the equations in a domain [0; 1℄. The initial ondition onsists of onstant density � = 1,onstant veloity u = 0 and a disontinuous distribution of pressure: pL = 1000 in [0; 1=10℄,pM = 0:01 in (1=10; 9=10℄ and pR = 100 in (9=10; 1℄. For a detailed disussion on the solutionof this problem see [12℄. The purpose of this test is to assess the robustness and auray ofthe present Riemann solver for resolving very strong shok waves and multiple wave-wave andwave-boundary interations.Figs. 6 and 7 ompare numerial results for density from EVILIN with those from the Go-dunov sheme with the exat Riemann solver for two output times. Fig. 6 shows the ase justbefore the ollision of two very strong shok waves emerging from the disontinuous initial ondi-tions. The results from our Riemann solver and the exat Riemann solver are indistinguishable.Fig. 7 shows the solution after multiple wave interation. The result from EVILIN agrees well11



with that from the exat Riemann solver.4.3.5 Test 5: Mah reetion in two spae dimensionsThis test onsists of a shok reetion problem in a two-dimensional non-Cartesian domain asdepited by the left-hand side sketh of Fig. 8. This is a double-wedge situation in whih a planeshok wave travels from left to right, reets from the wedges plaed at an angle of 25 degreesto the initial shok diretion, produing a symmetri Mah reetion pattern. The right-handside piture of Fig. 8 shows the experimental result for a single wedge, that is, the lower half ofthe domain shown on the left-hand side. Clearly seen in the experiment are the inident shok,the reeted shok, the Mah stem and the slip surfae, all meeting at the triple point. Theexperiment orresponds to an initial shok wave of shok Mah number 1:7. Numerial resultsfrom a seond-order TVD extension of EVILIN are given in Figs. 9 and 10, in whih ontoursare shown for 80 equally spaed levels.Fig. 9 shows omputed results at the output time t = 1:0 ms using a mesh ofM = 1000�1000ells. The qualitative agreement between the numerial solution and the experimental result ofFig. 8 (right-hand side) is very satisfatory. All features seen in the experiment are reproduedin the numerial solution. The numerial results have also preserved the expeted symmetryof the problem. Note also that our results do not esape the typial, so-alled, start-up error,whih is learly seen in the density plot. There are standard ways of eliminating this error.The numerial resolution of all disontinuities is very satisfatory; disontinuities are sharpand free from spurious osillations. For modern numerial methods the resolution of shoks isusually straightforward, but not so the resolution of linearly degenerate �elds, for whih one ofthe problems to be enountered is exessive numerial di�usion. Our results also show a sharpand osillation-free resolution of the slip surfae emanating from the triple point.Finally, Fig. 10 shows the numerial solution at time t = 1:1 ms. Note that the two reetedshok waves have interated produing two new, stronger reeted shoks waves. This ompu-tation is inluded to demonstrate the ability of the sheme to handle strong wave interation inmultiple spae dimensions.5 SummaryWe have formulated upwind and symmetri shemes for non-linear hyperboli systems ontainingnon-onservative di�erential terms. The upwind shemes require the solution of the Riemannproblem, for whih we have proposed a new sheme in whih one �rst evolves in time the initialonditions, non-linearly, and then performs a simple linearization of the Riemann problem, forwhih a straightforward solution an be obtained.For the onservative ase we have illustrated the resulting upwind shemes for the 3D Eulerequations with general equation of state, have given the expliit solution of the Riemann problemand have shown numerial results for ideal gases for one and two-dimensional problems, for �rst-order and for seond-order non-linear shemes in non-Cartesian geometries.Aknowledgments. The initial part of this work was arried out while the author wasan EPSRC senior visiting fellow (Grant GR N09276) at the Isaa Newton Institute for Math-ematial Sienes, University of Cambridge, UK, as joint organizer (with P. G. LeFloh and12
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Figure 2: Test 1: Stationary ontat. EVILIN and HLL results (�rst-order) for density areompared with the exat solution (full line) at time t = 2:0 with M = 100 ells.
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Figure 3: Test 2: Shok-tube with soni ow. EVILIN result (�rst-order) for density isompared with the exat solution (full line) at time t = 0:30 with M = 100 ells.14



Position

D
en

si
ty

0 0.25 0.5 0.75 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1 Exact solution
EVILIN

Figure 4: Test 3: Low density ow. EVILIN result (�rst-order) for density is ompared withthe exat solution (full line) at time t = 0:15 with M = 100 ells.
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Figure 6: Test 4: Blast wave problem. Results (�rst-order) from EVILIN and the Godunovsheme with the exat Riemann solver (full line) at time t = 0:027 with M = 3000 ells.
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Figure 7: Test 4: Blast wave problem. Results (�rst-order) from EVILIN and the Godunovsheme with the exat Riemann solver (full line) at time t = 0:038 with M = 3000 ells.16
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Figure 8: Test 5: Mah reetion problem. Left-hanside sketh shows omputationaldomain and position of initial shok wave. Right-hand side piture shows the experimentalresult for the lower half of the domain (Courtesy Prof. K Takayama, Japan).

17



Pressure u-velocity

v-velocity Density

Figure 9: Test 5: Mah reetion problem. Numerial results (seond-order) at timet = 1:0ms for a mesh of 1000 � 1000 ells.
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Figure 10: Test 5: Mah reetion problem. Numerial results (seond-order) at timet = 1:1ms for a mesh of 1000 � 1000 ells.
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