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t. The s
ope of this paper is two fold. We �rst formulate upwind and symmetri
s
hemes for hyperboli
 equations with non-
onservative terms. Then we propose upwind nu-meri
al s
hemes for 
onservative and non-
onservative systems, based on a Riemann solver, theinitial 
onditions of whi
h are evolved non-linearly in time, prior to a simple linearization thatleads to 
losed-form solutions. The Riemann solver is easily applied to 
ompli
ated hyperboli
systems. Finally, as an example, we formulate 
onservative s
hemes for the 3D Euler equationsfor general 
ompressible materials and give numeri
al results for a variety of test problems forideal gases in one and two spa
e dimensions.Key words: hyperboli
 systems, non-
onservative terms, Riemann problem, evolution of data,linearized Riemann solver, Euler equations, general equation of state, numeri
al results.1 Introdu
tionWe are 
on
erned with numeri
al methods for solving non-linear systems of hyperboli
 equa-tions. In parti
ular we are interested in designing numeri
al s
hemes for problems that involvenon-
onservative di�erential terms. In this paper we �rst formulate upwind and symmetri
s
hemes by extending the �nite volume approa
h. For the upwind s
hemes one requires in-ter
ell 
uxes and inter
ell ve
tor fun
tions, the latter being asso
iated with non-
onservativedi�erential terms. To 
ompute these inter
ell quantities we then propose a Riemann solver fornon-
onservative systems. The Riemann solver 
onsists of �rst evolving the initial 
onditions intime using the full non-linear system and then performing a simple linearization of the Riemannproblem, for whi
h a straightforward solution 
an be obtained. The s
heme may be interpretedin the framework of the MUSTA predi
tor-
orre
tor approa
h [7℄, with the linearised Riemannsolver as the 
orre
tor. The resulting �rst-order Godunov s
hemes are extended to se
ond-orderof a

ura
y in spa
e and time under a TVD 
onstraint to 
ontrol spurious os
illations nearlarge gradients. The se
ond-order s
hemes are then extended to non-Cartesian two-dimensionalgeometries. The new Riemann solver is applied to the three-dimensional Euler equations with ageneral equation of state. The expli
it solution is given. The asso
iated numeri
al methods arepartially validated by means of �ve test problems for whi
h there are exa
t solutions, referen
esolutions or experimental data. Preliminary numeri
al results show that the proposed s
hemesare a

urate, robust and eÆ
ient.The rest of this paper is stru
tured as follows. In se
tion 2 we formulate numeri
al s
hemesfor hyperboli
 equations that 
ontain non-
onservative di�erential terms. In se
tion 3 we presenta new Riemann solver. In se
tion 4 we apply the Riemann solver to the 3D Euler equations withgeneral equations of state and present the expli
it solution of the Riemann problem; numeri
al1



results for �ve test problems are presented. The main points of the paper are summarized inse
tion 5.2 Numeri
al S
hemesThere are appli
ations in whi
h the governing equations 
annot be written stri
tly in 
onservation-law form, or divergen
e form. Examples in
lude models for 
ompressible multi-phase 
ows. Itis therefore of interest to study numeri
al methods for hyperboli
 equations expressed in quasi-
onservative form, namely�tQ+ �xF (Q) + �yG (Q) + �zH (Q) +A�xF̂ (Q) +B�yĜ (Q) +C�zĤ (Q) = S (Q) : (1)Here Q is the ve
tor of unknowns, whi
h for most problems of physi
al interest are the set ofphysi
ally 
onserved variables. F(Q), G(Q) and H(Q) may be interpreted as physi
al 
uxes inthe x, y and z dire
tions, respe
tively. The non-
onservative terms involve 
oeÆ
ient matri
esA(Q), B(Q), C(Q) and partial derivatives of the ve
tor fun
tions F̂(Q), Ĝ(Q) and Ĥ(Q).S(Q) is a ve
tor of sour
e or for
ing terms and does not involve derivatives of the unknowns.In this se
tion we formulate numeri
al s
hemes for solving equations of the form (1).2.1 Conservative SystemsWe �rst 
onsider the simpler 
ase of an m�m system of hyperboli
 
onservation laws�tQ+ �xF (Q) = S (Q) ; (2)for whi
h the �nite volume approa
h applied on a 
ontrol volume [xi� 12 ; xi+ 12 ℄� [tn; tn+1℄ yieldsQn+1i = Qni � �t�x [Fi+ 12 � Fi� 12 ℄ + �tSi ; (3)where Qni = 1�x Z xi+12xi� 12 Q(x; t)dx ;Fi+ 12 = 1�t Z tn+1tn F�Q(xi+ 12 ; t)� dt ;Si = 1�t 1�x Z tn+1tn Z xi+12xi� 12 S(x; t;Q(x; t))dxdt ;
9>>>>>>>>>>>>>=>>>>>>>>>>>>>; (4)

with �x = xi+ 12 � xi� 12 and �t = tn+1 � tn. These �nite volume relations are exa
t. A �nitevolume numeri
al method results on
e approximations to Fi+ 12 and Si are provided, giving riseto numeri
al 
uxes and numeri
al sour
es respe
tively, denoted again by Fi+ 12 and Si. Thus weinterpret (3) as a �nite volume numeri
al method to solve (2).The following dis
ussion 
on
erns the de�nition of inter
ell numeri
al 
uxes, for whi
h thereare two main approa
hes. Godunov's upwind approa
h [3℄ de�nes the inter
ell numeri
al 
ux2



Fi+ 12 in terms of the similarity solution Qi+ 12 (x=t) of the Riemann problem�tQ+ �xF(Q) = 0 ;Q(x; 0) = 8><>: Qni if x < 0 ;Qni+1 if x > 0 :
9>>>>>=>>>>>; (5)The solution in the half plane t > 0, �1 < x < +1 forms the so-
alled Riemann fan whi
h
onsists of m+ 1 
onstant states separated by m wave families, ea
h one asso
iated with a realeigenvalue �(k). The Godunov inter
ell numeri
al 
ux is found by �rst evaluating Qi+ 12 (x=t) atx=t = 0, that is along the (lo
al) t-axis, and then evaluating the physi
al 
ux ve
tor F(Q) in(2) at Qi+ 12 (0), namely FGodi+ 12 = F(Qi+ 12 (0)) : (6)The exa
t solution will generally involve at least one iterative pro
edure and thus in pra
ti
e,whenever possible, one uses approximate Riemann solvers. For a review on Riemann solvers see,for example, [8℄.Non-upwind (or 
entred, or symmetri
) s
hemes, on the other hand, do not expli
itly uti-lize wave propagation information and are thus simpler and more generally appli
able. Twosymmetri
 
uxes are the two-step Lax-Wendro� 
ux [5℄FLWi+ 12 = F(QLWi+ 12 ) ; QLWi+ 12 = 12[Qni +Qni+1℄� 12 �t�x [F(Qni+1)� F(Qni )℄ (7)and the FORCE 
ux [9℄, [1℄FFOi+ 12 = 14 �F(Qni ) + 2F(QLWi+ 12 ) + F(Qni+1)� �x�t �Qni+1 �Qni �� : (8)Another numeri
al 
ux [11℄ results from the weighted averageFGFi+ 12 = 
FLWi+ 12 + (1� 
)FFOi+ 12 ; (9)where 
(C) = 1� C1 + C : (10)C is a pres
ribed lo
al Courant number 
oeÆ
ient, with 0 < C � 1. The 
ux FGFi+ 12 depends onthe data states Qni , Qni+1 as well as on the lo
al time step and the lo
al mesh length, denotedrespe
tively by Æt and Æx. The lo
al 
hara
ter of Æt means that it is 
omputed ex
lusively fromlo
al wave speed information 
ontained in the two data states Qni , Qni+1. We set Æx = �x andwrite FGFi+ 12 = 
FLWi+ 12 (Qni ;Qni+1; Æx; Æt) + (1� 
)FFOi+ 12 (Qni ;Qni+1; Æx; Æt) : (11)It is easy to verify that for the model equation�tq + ��xq = 0 (12)the numeri
al 
ux FGFi+ 12 redu
es to that of the Godunov �rst-order upwind method.3



2.2 Quasi-Conservative SystemsWe 
onsider hyperboli
 equations of the form�tQ+ �xF (Q) +A(Q)�xF̂ (Q) = S (Q) : (13)As done for the derivation of the 
onservative s
heme (3), integration of equations (13) over a
ontrol volume produ
es the following numeri
al s
heme for the non-
onservative system (13)Qn+1i = Qni � �t�x [Fi+ 12 � Fi� 12 ℄� �t�xAi[F̂i+ 12 � F̂i� 12 ℄ + �tSi ; (14)where Qni , Fi+ 12 , F̂i+ 12 and Si are approximations to the 
orresponding integral averages (4)and the 
oeÆ
ient matrix Ai is an approximation to a spa
e-time integral of the matrix inthe 
onsidered 
ontrol volume, analogous to the numeri
al sour
e Si in (4). Upwind-basedapproximations require the solution of the Riemann problem for the quasi-
onservative system(13) to �nd the appropriate inter
ell approximations in s
heme (14). This is the subje
t ofse
tion 3.A symmetri
 s
heme to solve (13) is the following predi
tor-
orre
tor s
heme, in whi
h thepredi
tor step is Qn+1=2i� 12 = 12(Qni�1 +Qni )� 12 �t�x [F(Qni )� F(Qni�1)℄�12 �t�xAni� 12 [F̂(Qni )� F̂(Qni�1)℄ + 12�tSi� 12 9>>=>>; (15)and Qn+1=2i+ 12 = 12(Qni +Qni+1)� 12 �t�x [F(Qni+1)� F(Qni )℄�12 �t�xAni+ 12 [F̂(Qni+1)� F̂(Qni )℄ + 12�tSi+ 12 9=; (16)The 
orre
tor step gives the solution in 
ell i at the new time level n+ 1 asQn+1i = 12(Qn+1=2i�1=2 +Qn+1=2i+1=2 )� 12 �t�x [F(Qn+1=2i+1=2 )� F(Qn+1=2i�1=2 )℄�12 �t�xAn+1=2i [F̂(Qn+1=2i+1=2 )� F̂(Qn+1=2i�1=2 )℄ + 12�tSn+1=2i 9>>=>>; (17)The 
oeÆ
ient matri
es are taken asAni�1=2 = A �12(Qni�1 +Qni )� ;Ani+1=2 = A �12(Qni +Qni+1)� ;An+1=2i = A �12(Qn+1=2i�1=2 +Qn+1=2i+1=2 )� ;
9>>>>>>>=>>>>>>>; (18)while the numeri
al sour
es areSni�1=2 = S �12(Qni�1 +Qni )� ;Sni+1=2 = S �12(Qni +Qni+1)� ;Sn+1=2i = S �12(Qn+1=2i�1=2 +Qn+1=2i+1=2 )� :
9>>>>>>>=>>>>>>>; (19)S
heme (15)-(17) does not require upwind information or knowledge of the eigenstru
ture of thesystem. In the next se
tion we deal with upwind-based s
hemes of the type (14).4



3 The Riemann SolverOur aim is to solve, approximately, the Riemann problem�tQ+ �xF (Q) +A(Q)�xF̂ (Q) = 0 ;Q(x; 0) = 8><>: QL if x < 0 ;QR if x > 0 ;
9>>>>>=>>>>>; (20)to obtain a similarity solution QLR(x=t) to be used in the 
omputation of inter
ell numeri
al
uxes and inter
ell numeri
al fun
tions in (14). We present a solution pro
edure based on threemain steps.3.1 Choi
e of Variables and Quasilinear FormWe �rst sele
t a suitable set of variables W =MQ that renders the equations and their eigen-stru
ture analysis as simple as possible. M is a suitable transformation matrix. The trivial 
hoi
eM = I leaves the system is terms of the original, possibly 
onserved, variables. In terms of newvariables W the governing equations in (20) may be written in quasi-linear (non-
onservative)form as �tW+B(W)�xW = 0 ; (21)We assume that the system is hyperboli
, with real (possibly non-distin
t) eigenvalues�1(W) � �2(W) � : : : � �m(W) (22)and a 
orresponding 
omplete set of linearly independent right eigenve
torsR(1)(W) ; R(2)(W) ; : : : ;R(m)(W) : (23)We assume also that the eigenvalues and right eigenve
tors are known analyti
ally or numeri
ally.3.2 Data EvolutionA 
ru
ial step of our solution pro
edure for (20) is the time evolution of the initial 
onditionsin (20), whi
h has the e�e
t of transforming large data to small data. There are two situationsto 
onsider. For a stri
tly 
onservative system, A(Q) = 0 in (20), the initial data is evolved asfollows Q̂L = QL � ÆtÆx [FLR � F(QL)℄ ; Q̂R = QR � ÆtÆx [F(QR)� FLR℄ : (24)Here FLR = FLR(QL;QR) is a numeri
al 
ux, Æx is a given lo
al mesh size and Æt is a lo
al timestep determined from the data states QL;QR, the length Æx and the lo
al CFL 
oeÆ
ient C.To 
ompute FLR we use the numeri
al 
ux fun
tion FGFi+ 12 given by (11).For a quasi-
onservative system, as in (20), we apply the pro
edure (15)-(17). The initial
onditions of (20) are evolved as followsQ̂L = 12(QL +Q1=2LR)� 12 ÆtÆx [F(Q1=2LR)� F(QL)℄� 12 ÆtÆxA1=2L [F̂(Q1=2LR)� F̂(QL)℄ ;Q̂R = 12 (Q1=2LR +QR)� 12 ÆtÆx [F(QR)� F(Q1=2LR)℄� 12 ÆtÆxA1=2R [F̂(QR)� F̂(Q1=2LR)℄ ; 9>=>; (25)5



whereQ1=2LR = 12(QL +QR)� 12 ÆtÆx [F(QR)� F(QL)℄� 12 ÆtÆxALR[F̂(QR)� F̂(QL)℄ ;ALR = A �12 (QL +QR)� ;A1=2L = A �12 (QL +Q1=2LR)� ;A1=2R = A �12 (Q1=2LR +QR)� :
9>>>>>>>>>>>>=>>>>>>>>>>>>; (26)

3.3 Exa
t Solution of Linearized Riemann ProblemFinally, we perform a lo
al linearization of system (21) based on the arithmeti
 mean matrixBLR = B�12(WL +WR)� ; (27)with WL =MQ̂L and WR =MQ̂R. Then we solve exa
tly the linearized Riemann problem�tW +BLR�xW = 0 ;W(x; 0) = 8><>: WL if x < 0 ;WR if x > 0 :
9>>>>>=>>>>>; (28)We denote the eigenvalues and eigenve
tors of BLR by�̂i = �i(12 (WL +WR)) ; R̂(i) = R(i) �12(WL +WR)� ; for i = 1; 2; : : : ;m : (29)The similarity solutionWLR(x=t) of (28) is obtained from standard theory of hyperboli
 systemswith 
onstant 
oeÆ
ients by proje
ting the jump � �WR �WL in the initial 
ondition ontothe eigenve
tors to �nd the wave strengths �i, i = 1; 2; : : : ;m, by solving the linear algebrai
system �1R̂(1) + �2R̂(2) + : : : + �mR̂(m) =� : (30)For some problems of pra
ti
al interest, the 
losed-form solution of this linear algebrai
 system
an be easily obtained by hand. For more 
ompli
ated systems we re
ommend the use of algebrai
manipulators. One may also �nd the solution numeri
ally using any standard software for linearalgebrai
 systems.Having found the wave strengths �i, one knows the solution everywhere in the half planet > 0, �1 < x < 1. We are interested in the solution at the parti
ular point x=t = 0 todetermine the inter
ell 
uxes Fi+ 12 and inter
ell fun
tions F̂i+ 12 in (14). We haveWLR(0) =WL + X̂�i<0�iR̂(i) ; (31)or WLR(0) =WR � X̂�i>0�iR̂(i) ; (32)6



or WLR(0) = 12(WL +WR)� 12 mXi=1 sign(�̂i)�iR̂(i) : (33)The sought inter
ell 
uxes and inter
ell fun
tions for use in (14) areFi+ 12 = F(WLR(0)) ; F̂i+ 12 = F̂(WLR(0)) : (34)We summarize the solution pro
edure for the Riemann problem (20) as follows: �rst we
hoose a 
onvenient set of variables and express the governing equations in (20) in quasi-linearform (21). Then we evolve the initial 
onditions in (20) as in (24) or (25), using the full non-linear equations. Then we linearize the equations (21) and pose a, new, linearized Riemannproblem (28), whi
h is solved as in (31)-(33) to produ
e numeri
al 
uxes and fun
tions (34)at the 
ell interfa
es for use in (14). Given that we EVolve the Initial 
onditions and thenLINearize the Riemann problem, we 
all the s
heme the EVILIN Riemann solver.In the next se
tion we apply the EVILIN Riemann solver to the Euler equations.4 The Euler Equations for General MaterialsThe Riemann solver of this paper is most easily applied to any hyperboli
 system for whi
h theeigenstru
ture is known, analyti
ally or numeri
ally. In this se
tion we demonstrate the perfor-man
e of the s
hemes for a 
onservative system, namely the Euler equations for 
ompressiblematerials.4.1 Governing EquationsThe Euler equations in three spa
e dimensions are�tQ+ �xF(Q) + �yG(Q) + �zH(Q) = 0 ; (35)withQ = 2666664 ��u�v�wE
3777775 ; F(Q) = 2666664 �u�u2 + p�uv�uwu(E + p)

3777775 ; G(Q) = 2666664 �v�vu�v2 + p�vwv(E + p)
3777775 ; H(Q) = 2666664 �w�wu�wv�w2 + pw(E + p)

3777775 :(36)Here � is density; u, v and w are velo
ity 
omponents in the x, y and z dire
tions respe
tively;p is pressure and E is total energy given byE = �[12(u2 + v2 + w2) + e℄ ; (37)with e being the spe
i�
 internal energy.To have a determined system one requires a 
losure 
ondition. For general 
ompressiblematerials one uses a 
alori
 equation of state relating the variables �, p and e. Often one usesother variables, su
h as the spe
i�
 volume 1=� and the entropy s. Here we 
onsider two possiblefun
tional relations for a general equilibrium equation of state in terms of the variables �, p and7



e. These are given below, along with the 
orresponding expressions for the sound speed in the
onsidered materialp = p(�; e) ! a = r p�2 pe + p� ; e = e(�; p) ! a = s p�2ep � e�ep ; (38)where subs
ripts denote partial derivatives. We assume the standard 
onvexity 
ondition forthe equation of state. For the simple 
ase of ideal gases one has the familiar equation of stateand 
orresponding sound speed e = p(
 � 1)� ! a = r
p� ; (39)where 
 is the ratio of spe
i�
 heats. For air under most 
onditions one takes 
 = 1:4. Generalba
kground on thermodynami
s and equations of state 
an be found, for example, in [6℄ andreferen
es therein.4.2 The EVILIN Riemann SolverIn the frame of �nite volume s
hemes one requires a numeri
al 
ux in the dire
tion normal toea
h volume fa
e, at ea
h Gaussian point. Thus, without loss of generality, to �nd the inter
ell
ux we may 
onsider the split augmented one dimensional problem in the x-dire
tion. We 
hoosethe physi
al or primitive variable ve
tor W = [�; u; v; w; p℄T to work with. Then�tW+B(W)�xW = 0 ; (40)with W = 2666664 �uvwp
3777775 ; B(W) = 2666664 u0000 �u00�a2 00u00 000u0 01�00u

3777775 : (41)The real eigenvalues are:�1 = u� a ; �2 = �3 = �4 = u ; �5 = u+ a ; (42)with 
orresponding right eigenve
torsR(1) = 2666664 ��=a100��a
3777775 ; R(2) = 2666664 10000

3777775 ; R(3) = 2666664 00100
3777775 ; R(4) = 2666664 00010

3777775 ; R(5) = 2666664 �=a100�a
3777775 :(43)We solve the Riemann problem�tW +B(W)�xW = 0 ;W(x; 0) = 8><>: WL �MQ̂L if x < 0 ;WR �MQ̂R if x > 0 ;

9>>>>>=>>>>>; (44)8



where Q̂L and Q̂R are evolved initial 
onditions using the non-linear step (25).The stru
ture of the solution of the normal Riemann problem is depi
ted in Fig. 1. Themultiple eigenvalue � = u is asso
iated with a 
onta
t dis
ontinuity, a shear wave in the ydire
tion and a shear wave in the z dire
tion. There are four 
onstant regions. The region ofunknowns is 
alled the Star Region, whi
h is divided by the 
onta
t wave into a Star Left anda Star Right regions.The linear algebrai
 system (30) has solution�1 = 12 �p��u~�~a~�~a2 ;�2 = ��~a2 ��p~a2 ;�3 = �v ;�4 = �w ;�5 = 12 �p+�u~�~a~�~a2 :
9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;

(45)
The linearization requires mean values ~q for the 
omponents of the ve
tor of unknowns W, forwhi
h we take the simple arithmeti
 means ~q = 12(qL+qR). The expli
it solution in the unknownStar Region is given by p� = 12(pL + pR)� 12(uR � uL)C1 ;u� = 12(uL + uR)� 12(pR � pL)=C1 ;��L = �L + (uL � u�)C2 ;��R = �R + (u� � uR)C2 ;v�L = vL ;v�R = vR ;w�L = wL ;w�R = wR ;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
(46)

where C1 = ~�~a ; C2 = ~�=~a : (47)To 
ompletely determine the solution we also need to spe
ify estimates for the partial derivativese� and ep in the general equation of state (38) in order to evaluate ~a . We suggest~e� = 12[(e�)L + (e�)R℄ ; ~ep = 12[(ep)L + (ep)R℄ ; (48)where (e�)L, (e�)R, (ep)L, (ep)R are evaluated on the evolved states WL, WR respe
tively. Forthe ideal gas 
ase ~a = q
~p~� , as expe
ted. 9



Remarks: The solution (46) is valid for any equation of state of the form (38), whi
h enters thesolution via the data-evolution step and via the speed of sound in the 
onstants C1 and C2. Theapproximate solution (46) of the Riemann problem is 
omplete, in the sense that a

ounts forall waves present in the stru
ture of the exa
t solution of the non-linear Riemann problem. Thishas a bearing on the resolution 
apability of the asso
iated Godunov s
heme, parti
ularly for thelinearly degenerate �elds. We note also that the given solution for density and shear waves, thelinearly degenerate �elds, has the same stru
ture as the exa
t solution, the only approximationbeing that for the normal parti
le speed u�. The solution for these waves is exa
t if the initialdata is 
onne
ted by a 
orresponding isolated wave.
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ture of the solution of the split 3D Riemann problem normal to a 
ell interfa
efor the Euler equations for 
ompressible materials with a general 
onvex equation of state.4.3 Sample Numeri
al ResultsWe illustrate the performan
e of the EVILIN Riemann solver proposed in this paper as appliedto the time-dependent Euler equations in one spa
e dimension and in two spa
e dimensions onnon-Cartesian geometries. We use the ideal gas equation of state with 
onstant gamma 
 = 1:4.We 
ompare results with exa
t solutions and with referen
e solutions. We 
onsider �ve testproblems, for all of whi
h we use a CFL 
oeÆ
ient C
fl = 0:9 for the 
omputations.4.3.1 Test 1: Stationary 
onta
tWe solve the equations in a domain [0; 1℄. The initial 
ondition 
onsists of 
onstant pressurep = 1, 
onstant velo
ity u = 1 and a dis
ontinuous distribution of density: � = 1:4 in [0; 1=2℄ and� = 1:0 in (1=2; 1℄. We apply transmissive boundary 
ondition at both ends. The purpose is toassess the performan
e of EVILIN for resolving deli
ate features, su
h as 
onta
t dis
ontinuities,for whi
h most numeri
al methods have large numeri
al dissipation, being the largest for the
ase in whi
h the wave is stationary.In Fig. 2 we 
ompare numeri
al results with the exa
t solution. As is illustrated by theHLL [4℄ result (triangles), non-
omplete Riemann solvers have large numeri
al dissipation forlinearly degenerated �elds. The proposed EVILIN Riemann solver reprodu
es the exa
t solution(
ir
les). 10



4.3.2 Test 2: Sho
k tube problem with soni
 
owHere we assess EVILIN for a sho
k-tube problem with soni
 
ow. We solve the problem inthe domain [0; 1℄, subdivided into a left se
tion [0; 0:3℄ and a right se
tion (0:3; 1℄. The initial
onditions assign data for density, velo
ity and pressure �L = 1:0, uL = 3=4, pL = 1:0 in theleft se
tion and �R = 1=8, uR = 0:0, pR = 0:1 in the right se
tion. The solution in
ludes aright sho
k, a right 
onta
t dis
ontinuity and a left transoni
, or soni
 rarefa
tion wave. Weremark that this is not the original Sod test problem but a modi�
ation of it so as to produ
ea transoni
 rarefa
tion as part of the solution. The soni
 point is known to 
ause diÆ
ultiesto numeri
al methods. Conventional linearized Riemann solvers give a large jump in all 
owvariables, a rarefa
tion sho
k, unless expli
it entropy �xes are enfor
ed.Figs. 3 shows numeri
al results for density as 
ompared with the exa
t solution. Thenumeri
al results from the Godunov method with the exa
t Riemann solver and those fromEVILIN are virtually indistinguishable, parti
ularly for the sho
k and for the soni
 point. It iswell known that the exa
t Riemann solver, although theoreti
ally entropy satisfying, produ
esa visible entropy glit
h at the soni
 point. Our Riemann solver also produ
es this glit
h. Thesize of this entropy jump is seen to tend to zero as the mesh is re�ned, for both EVILIN and forthe exa
t Riemann solver.4.3.3 Test 3: Low-density 
owHere we assess EVILIN for a sho
k-tube problem with low-density 
ow. We solve a Riemannproblem in the domain [0; 1℄, subdivided into a left se
tion [0; 1=2℄ and a right se
tion (1=2; 1℄.The initial 
onditions 
onsists of 
onstant density � = 1, 
onstant pressure p = 0:4 and adis
ontinuous distribution of velo
ity uL = �2 in [0; 1=2℄ and uR = 2 in (1=2; 1:0℄. The solution
onsists of two strong symmetri
 rarefa
tion waves with stationary 
ow in the middle. Thisis a diÆ
ult test for many numeri
al methods. In parti
ular, it is known that 
onventionallinearized Riemann solvers [2℄ produ
e negative pressures and negative densities, leading the
odes to 
rush.Figs. 4 and 5 
ompare numeri
al results against the exa
t solution, for density and velo
ity,respe
tively. We remark that the region of stationary 
ow, see Fig. 5, is diÆ
ult to resolve, evenfor well established 
omplete Riemann solvers, su
h as HLLC [10℄. EVILIN gives an a

uratesolution there, parti
ularly for the stationary region.4.3.4 Test 4: Blast wave intera
tionWe solve the equations in a domain [0; 1℄. The initial 
ondition 
onsists of 
onstant density � = 1,
onstant velo
ity u = 0 and a dis
ontinuous distribution of pressure: pL = 1000 in [0; 1=10℄,pM = 0:01 in (1=10; 9=10℄ and pR = 100 in (9=10; 1℄. For a detailed dis
ussion on the solutionof this problem see [12℄. The purpose of this test is to assess the robustness and a

ura
y ofthe present Riemann solver for resolving very strong sho
k waves and multiple wave-wave andwave-boundary intera
tions.Figs. 6 and 7 
ompare numeri
al results for density from EVILIN with those from the Go-dunov s
heme with the exa
t Riemann solver for two output times. Fig. 6 shows the 
ase justbefore the 
ollision of two very strong sho
k waves emerging from the dis
ontinuous initial 
ondi-tions. The results from our Riemann solver and the exa
t Riemann solver are indistinguishable.Fig. 7 shows the solution after multiple wave intera
tion. The result from EVILIN agrees well11



with that from the exa
t Riemann solver.4.3.5 Test 5: Ma
h re
e
tion in two spa
e dimensionsThis test 
onsists of a sho
k re
e
tion problem in a two-dimensional non-Cartesian domain asdepi
ted by the left-hand side sket
h of Fig. 8. This is a double-wedge situation in whi
h a planesho
k wave travels from left to right, re
e
ts from the wedges pla
ed at an angle of 25 degreesto the initial sho
k dire
tion, produ
ing a symmetri
 Ma
h re
e
tion pattern. The right-handside pi
ture of Fig. 8 shows the experimental result for a single wedge, that is, the lower half ofthe domain shown on the left-hand side. Clearly seen in the experiment are the in
ident sho
k,the re
e
ted sho
k, the Ma
h stem and the slip surfa
e, all meeting at the triple point. Theexperiment 
orresponds to an initial sho
k wave of sho
k Ma
h number 1:7. Numeri
al resultsfrom a se
ond-order TVD extension of EVILIN are given in Figs. 9 and 10, in whi
h 
ontoursare shown for 80 equally spa
ed levels.Fig. 9 shows 
omputed results at the output time t = 1:0 ms using a mesh ofM = 1000�1000
ells. The qualitative agreement between the numeri
al solution and the experimental result ofFig. 8 (right-hand side) is very satisfa
tory. All features seen in the experiment are reprodu
edin the numeri
al solution. The numeri
al results have also preserved the expe
ted symmetryof the problem. Note also that our results do not es
ape the typi
al, so-
alled, start-up error,whi
h is 
learly seen in the density plot. There are standard ways of eliminating this error.The numeri
al resolution of all dis
ontinuities is very satisfa
tory; dis
ontinuities are sharpand free from spurious os
illations. For modern numeri
al methods the resolution of sho
ks isusually straightforward, but not so the resolution of linearly degenerate �elds, for whi
h one ofthe problems to be en
ountered is ex
essive numeri
al di�usion. Our results also show a sharpand os
illation-free resolution of the slip surfa
e emanating from the triple point.Finally, Fig. 10 shows the numeri
al solution at time t = 1:1 ms. Note that the two re
e
tedsho
k waves have intera
ted produ
ing two new, stronger re
e
ted sho
ks waves. This 
ompu-tation is in
luded to demonstrate the ability of the s
heme to handle strong wave intera
tion inmultiple spa
e dimensions.5 SummaryWe have formulated upwind and symmetri
 s
hemes for non-linear hyperboli
 systems 
ontainingnon-
onservative di�erential terms. The upwind s
hemes require the solution of the Riemannproblem, for whi
h we have proposed a new s
heme in whi
h one �rst evolves in time the initial
onditions, non-linearly, and then performs a simple linearization of the Riemann problem, forwhi
h a straightforward solution 
an be obtained.For the 
onservative 
ase we have illustrated the resulting upwind s
hemes for the 3D Eulerequations with general equation of state, have given the expli
it solution of the Riemann problemand have shown numeri
al results for ideal gases for one and two-dimensional problems, for �rst-order and for se
ond-order non-linear s
hemes in non-Cartesian geometries.A
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Figure 2: Test 1: Stationary 
onta
t. EVILIN and HLL results (�rst-order) for density are
ompared with the exa
t solution (full line) at time t = 2:0 with M = 100 
ells.
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Figure 3: Test 2: Sho
k-tube with soni
 
ow. EVILIN result (�rst-order) for density is
ompared with the exa
t solution (full line) at time t = 0:30 with M = 100 
ells.14
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Figure 6: Test 4: Blast wave problem. Results (�rst-order) from EVILIN and the Godunovs
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t Riemann solver (full line) at time t = 0:027 with M = 3000 
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Figure 7: Test 4: Blast wave problem. Results (�rst-order) from EVILIN and the Godunovs
heme with the exa
t Riemann solver (full line) at time t = 0:038 with M = 3000 
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Figure 8: Test 5: Ma
h re
e
tion problem. Left-hanside sket
h shows 
omputationaldomain and position of initial sho
k wave. Right-hand side pi
ture shows the experimentalresult for the lower half of the domain (Courtesy Prof. K Takayama, Japan).
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Figure 9: Test 5: Ma
h re
e
tion problem. Numeri
al results (se
ond-order) at timet = 1:0ms for a mesh of 1000 � 1000 
ells.
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Figure 10: Test 5: Ma
h re
e
tion problem. Numeri
al results (se
ond-order) at timet = 1:1ms for a mesh of 1000 � 1000 
ells.
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