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Abstract

In this paper we first briefly review the semi-analytical method [20] for solving the

Derivative Riemann Problem for systems of hyperbolic conservation laws with source

terms. Next, we generalize it to hyperbolic systems for which the Riemann problem

solution is not available. As an application example we implement the new derivative

Riemann solver in the high-order finite-volume ADER advection schemes. We provide

numerical examples for the compressible Euler equations in two space dimensions which

illustrate robustness and high accuracy of the resulting schemes.

1 Introduction

Conventionally, the Riemann problem for a system of conservation laws is defined as the

Cauchy problem with initial conditions consisting of two constant states separated by a

discontinuity at the origin. As is well known, the solution of such problem can then be used

locally to construct upwind finite volume numerical methods [5]. The required intercell

numerical flux is obtained by a time-integral average of the solution of the Riemann prob-

lem at the interface of a volume or element. In this manner, the conventional piece-wise
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constant data Riemann problem can be associated with a first-order numerical method, a

Godunov method [5]. A generalization of this approach results in second-order methods

[1, 8], whereby a piece-wise linear data Riemann problem is posed and solved. This Rie-

mann problem has become to be known as the Generalized Riemann problem. A further

generalization is to consider the Riemann problem for a system of equations with source

terms and arbitrary piece-wise smooth initial data [20]. In particular, the initial conditions

may consist of polynomials of arbitrary degree. Here we call such Riemann problem, the

Derivative Riemann Problem, or DRP for short. The numerical fluxes resulting from the

DRP give rise to the high-order ADER-type schemes, e.g. [18, 14, 13, 10, 22, 15, 4].

The solution procedure for the DRP reported in [20] provides an approximation to

the state variable along the t-axis in the form of a Taylor time expansion. To build

up this expansion, the original DRP is reduced to a sequence of conventional Riemann

problems for homogeneous advection equations. The leading term of the expansion is

computed as the Godunov state of the conventional nonlinear Riemann problem, whereas

the evaluation of higher-order terms involves the solution of linearized Riemann problems

for spatial derivatives. Therefore, availability of an approximate-state Riemann solver

for the non-linear conventional Riemann problem system is crucial for building up the

approximate solution to the DRP. Although exact or approximate-state Riemann solvers

are available for a large variety of hyperbolic systems of conservation laws [16, 7], for

complex nonlinear systems they may become very complicated or simply unavailable. It

is therefore desirable to have a simple procedure for calculating the leading term of the

state expansion which would not necessarily require a detailed knowledge of the Riemann

problem solution.

The aim of the present paper is twofold. Firstly, we present a new method to compute

the leading term of the Taylor time expansion which does not require a Riemann solver for

the nonlinear system to be solved. This method proceeds first to a non-linear evolution of

the initial condition of a conventional Riemann problem, followed by a simple linearization

of the Riemann problem, which leads to closed-form solutions. We illustrate the method

by solving the DRP for the inviscid Burgers’ equation with a source term. Secondly,

we incorporate the new variant of the DRP solver into high order finite volume ADER

methods for hyperbolic systems. We assess the performance of the resulting schemes for

a number of test problems for the Euler equations and compare them with the existing

ADER [15] and WENO [11] schemes.

The rest of the paper is organized as follows. In Section 2 we review the current DRP

solver. In Section 3 we present a new procedure to compute the leading term and provide

a numerical example to illustrate its accuracy. In Section 4 we describe the application

to the ADER approach. Numerical examples for the two-dimensional compressible Euler

equations are given in Section 5 and conclusions are drawn in Section 6.
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2 The Derivative Riemann Problem

2.1 The Problem

The Derivative Riemann Problem or DRP for a hyperbolic system is the initial-value

problem

∂tQ + ∂xF(Q) = S(x, t,Q) ,

Q(x, 0) =





QL(x) if x < 0 ,

QR(x) if x > 0 .





(1)

where the initial states QL(x), QR(x) are two vectors, the components of which are

smooth functions of distance x. We introduce the notation DRPK to mean the Derivative

Riemann Problem in which K represents the number of non-trivial spatial derivatives of

the initial condition, K = max{KL, KR}, where KL and KR are such that

∂(k)
x QL(x) ≡ 0 ∀k > KL , ∀x < 0 and ∂(k)

x QR(x) ≡ 0 ∀k > KR , ∀x > 0 .

DRP0 means that all first (k = 1) and higher-order spatial derivatives of the initial

condition for the DRP away from the origin vanish identically; this case corresponds to

the conventional piece-wise constant data Riemann problem.

2.2 Solution Methodology

Recall that the two initial states QL(x) and QR(x) are assumed to be smooth functions,

for example K−th order polynomials, defined respectively for x < 0 and for x > 0, with a

discontinuity at x = 0. Away from x = 0 we could use the Cauchy-Kowalewski method to

construct a solution Q(x, t) to (1), provided that all the smoothness assumptions of the

Cauchy-Kowalewski theorem were met. Here we are interested in the solution of DRPK ,

right at x = 0, where in fact the initial data may be discontinuous.

Fig. 1 illustrates the initial conditions of the DRPK and the information available at

t = 0 at the origin x = 0. The initial data is, in general, discontinuous at x = 0. Away

from x = 0 the initial data is smooth, with all spatial derivatives well defined and readily

computed. At x = 0 we can define one-sided spatial derivatives, so that at the interface

x = 0 we have jumps in spatial derivatives. These jumps will form the initial data for

new (conventional) Riemann problems, as we shall explain below.

We seek a power series solution at x = 0 as a function QLR(t) of time t only. Formally,

we write the sought solution as

QLR(τ) = Q(0, 0+) +
K∑

k=1

[
∂

(k)
t Q(0, 0+)

] τ k

k!
, (2)

where 0+ ≡ lim
t→0+

t. The solution contains a leading term Q(0, 0+) and higher-order
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Figure 1: Information available in the DRPK for a scalar problem. The data states qL(x)

and qR(x) are smooth functions away from x = 0 and have one-sided spatial derivatives

at x = 0.

terms with coefficients determined by ∂
(k)
t Q(0, 0+). In what follows we describe a method

to compute each of the terms of the series expansion.

2.2.1 The leading term

The leading term Q(0, 0+) in the expansion accounts for the first-instant interaction of the

initial data via the governing PDEs, which is realized solely by the boundary extrapolated

values QL(0) and QR(0) in (1). Therefore, the leading term Q(0, 0+) is found from the

similarity solution of the following DRP0

∂tQ + ∂xF(Q) = 0 ,

Q(x, 0) =





QL(0) ≡ limx→0− QL(x) if x < 0 ,

QR(0) ≡ limx→0+ QR(x) if x > 0 .





(3)

Here, the influence of the source term can be neglected. Denoting the similarity solution

by D(0)(x/t), the sought leading term is given by evaluating this solution along the t-axis,

that is along x/t = 0, namely

Q(0, 0+) = D(0)(0) . (4)

The value D(0)(0) is commonly known as the Godunov state, as it corresponds to the

numerical flux associated with the first-order upwind scheme of Godunov [5]. In what

follows we shall extend the use of this terminology to mean the solution of conventional

Riemann problems for spatial derivatives evaluated at x/t = 0. In practice, a conventional

Riemann solver, possibly approximate, is needed here to determine the leading term.
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2.2.2 Higher-order terms

To compute the higher-order terms in (2) we need to compute the coefficients, that is

the partial derivatives ∂
(k)
t Q(x, t) at x = 0, t = 0+. If these were available on both

sides of the initial discontinuity at x = 0, then one could implement a fairly direct

approach to the evaluation of the higher order terms. The method presented below relies

on the availability of all spatial derivatives rather than temporal derivatives away from

the interface, see Fig. 1.

In order to express all time derivatives as functions of space derivatives we apply

the Cauchy-Kowalewski method and use the fact that both the physical flux and source

term are the functions of the vector of conservative variables. This yields the following

expressions for time derivatives:

∂
(k)
t Q(x, t) = P(k)(∂(0)

x Q, ∂(1)
x Q, . . . , ∂(k)

x Q) . (5)

These time-partial detivatives at x = 0 for t > 0 have a meaning if the spatial derivatives

∂(0)
x Q, ∂(1)

x Q, . . . , ∂(k)
x Q can be given a meaning at x = 0 for t > 0. For x < 0 and for

x > 0 all spatial derivatives

∂(k)
x QL(x) , ∂(k)

x QR(x) , k = 1, 2, . . . , K

are defined and readily computed. At x = 0, however, we have the one-sided derivatives

∂(k)
x QL(0) = limx→0− ∂(k)

x QL(x)

∂(k)
x QR(0) = limx→0+ ∂(k)

x QR(x)





k = 1, 2, . . . , K .

See Fig. 1. We thus have a set of K pairs (∂(k)
x QL(0), ∂(k)

x QR(0)) of constant vectors

that could be used as the initial condition for K conventional Riemann problems, if in

addition we had a set of corresponding evolution equations for the quantities ∂(k)
x Q(x, t).

The sought evolution equations can be easily constructed. It can be verified that the

quantity ∂(k)
x Q(x, t) obeys the following system of non-linear inhomogeneous evolution

equations

∂t(∂
(k)
x Q(x, t)) + A(Q)∂x(∂

(k)
x Q(x, t)) = Hk . (6)

where the coefficient matrix A(Q) is precisely the Jacobian matrix of system (1). Equa-

tions (6) are obtained by manipulating derivatives of (1). The source term Hk on the

right hand side of (6)

Hk = Hk(∂(0)
x Q(x, t), ∂(1)

x Q(x, t), . . . , ∂(k)
x Q(x, t))

is a function of the spatial derivatives ∂(k)
x Q(x, t), for k = 0, 1, . . . , k, and vanishes when

the Jacobian matrix A is constant and S ≡ 0, that is, when the original system in (1) is

linear and homogeneous with constant coefficients. In order to easily solve these evolution
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equations we perform two simplifications, namely, we first neglect the source terms Hk

and then we linearize the resulting homogeneous equations.

Neglecting the effect of the source terms Hk is justified, as we only need ∂(k)
x Q(x, t)

at the first-instant interaction of left and right states. We thus have homogeneous non-

linear systems for spatial derivatives. Then we perform a linearization of the homogeneous

systems about the leading term of the power series expansion (2), that is the coefficient

matrix is taken as the constant matrix

A
(0)
LR = A(Q(0, 0+)) .

Thus, in order to find the spatial derivatives at x = 0, t = 0+ we solve the following

homogeneous, linearized conventional Riemann problems

∂t(∂
(k)
x Q(x, t)) + A

(0)
LR∂x(∂

(k)
x Q(x, t)) = 0 ,

∂(k)
x Q(x, 0) =





∂(k)
x QL(0) , x < 0 ,

∂(k)
x QR(0) , x > 0 .





(7)

Note that the (constant) Jacobian matrix A
(0)
LR is the same coefficient matrix for all

∂(k)
x Q(x, t)) and is evaluated only once, using the leading term of the expansion.

We denote the similarity solution of (7) by D(k)(x/t). In the computation of all

higher order terms, the solutions of the associated Riemann problems are analytic and

the question of choosing a Riemann solver does not arise. The relevant value at the

interface is obtained by evaluating this vector at x/t = 0, namely

∂(k)
x Q(0, 0+)) = D(k)(0) .

We call this value the Godunov state, in analogy to the interface state (4) associated with

the leading term.

Having evolved all space derivatives at the interface x = 0 we form the time derivatives

and finally define the solution of the DRPK as the power series expansion

QLR(τ) = C0 + C1τ + C2τ
2 + . . . + CKτK . (8)

where the coefficients are given by

Ck =
∂

(k)
t Q(0, 0+))

k!
. (9)

2.2.3 Summary of the method

The solution of the Derivative Riemann Problem has the following steps:
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• Step (I): The leading term

To compute the leading term one solves exactly or approximately the conventional

Riemann problem (3) to obtain the similariry solution D(0)(x/t). The leading term

in then given by the Godunov state Q(0, 0+)) = D(0)(0).

• Step (II): Higher order terms

1. Time derivatives in terms of spatial derivatives

Use the Cauchy-Kowalewski method to express time derivatives ∂
(k)
t Q(x, t) in

terms of functions of space derivatives as in (5)

2. Evolution equations for derivatives

Construct evolution equations for spatial derivatives (6).

3. Riemann problems for spatial derivatives

Simplify (6) by neglecting source terms and linearizing the evolution equations.

Then pose conventional, homogeneous linearized Riemann problems for spatial

derivatives (7).

Solve analytically these Riemann problems to obtain similarity solutions D(k)(x/τ)

and set ∂(k)
x Q(0, 0+)) = D(k)(0).

• Step (III): Form the solution as the power series expansion (8) with the coeffi-

cients (9).

3 Riemann Solvers for the Leading Term of DRP

Recall that the leading term of the Taylor series expansion (2), the Godunov state, will

be the solution of a non-linear problem, found by a non-linear Riemann solver, exact

or approximate. As has already been mentioned, for complex nonlinear systems such

solvers are very complicated or simply unavailable. It is therefore desirable from the

practical point of view to have a simple procedure for calculating the leading term of the

state expansion which would not require a detailed knowledge of the Riemann problem

solution.

3.1 EVILIN Riemann Solver

Here, we suggest that the recently-proposed EVILIN Riemann solver [17] be used to

obtain the Godunov state of the nonlinear Riemann problem (2). The computation

of the Godunov state by the EVILIN Riemann solver consists of two main steps. The

first step is to open the Riemann fan by using the generalized Multi-Stage (GMUSTA)

Riemann solver [21]. The GMUSTA Riemann solver solves the local Riemann problem
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(3) numerically rather than analytically by means of a simple first-order scheme applying

transmissive boundary conditions at each local time step. This is equivalent to evolving

in time the initial data QL(0), QR(0) via the governing equations. In the second step

one applies a linearized Riemann solver on the evolved initial data obtained from the

GMUSTA procedure giving a close-form expression for the Godunov state.

Below we briefly outline the GMUSTA and EVILIN Riemann solvers. Assume that

at initial time t = 0 we know the left and right initial data values QL(0), QR(0) of the

Riemann problem (3). We introduce a local spatial domain and the corresponding mesh

with 2M cells: −M + 1 ≤ m ≤ M and cell size ∆x. The boundary between cells m = 0

and m = 1 corresponds to the interface position x = 0 in (3). Transmissive boundary

conditions are applied at numerical boundaries x±M+1/2 on the grounds that the Riemann

- like data extends to ±∞. We now want to solve this Riemann problem numerically on

a given local mesh and construct a sequence of evolved data states Q(l)
m , 0 ≤ l ≤ k in

such a way, that the final values adjacent to the origin Q
(k)
0 , Q

(k)
1 are close to the sought

Godunov state. Here k is the total number of local time steps, or stages of the algorithm.

In short, the GMUSTA local time marching for m = −M + 1, . . . M is organized as

follows:

Q(l+1)
m = Q(l)

m − ∆tloc

∆x

(
F

(l)
m+1/2 − F

(l)
m−1/2

)
, F

(l)
m+1/2 = FGF (Q(l)

m ,Q
(l)
m+1). (10)

Here FGF is the monotone first order GFORCE numerical flux [21] which is the upwind

generalization of the centred FORCE flux [16] and is given by:

FGF = ΩlocF
LW + (1− Ωloc)F

LF , Ωloc =
1

1 + Cloc

, (11)

where FLW and FLF are the centred Lax-Wendroff and Lax-Friedrichs fluxes, respectively.

The local time step ∆tloc is computed from the local Courant number coefficient 0 < Cloc <

1 and then is used in the time update and for evaluation FLW and FLF .

We remark that although expression (11) involves centred fluxes, the resulting GFORCE

flux is upwind due to the the fact that the nonlinear weight Ωloc in (11) depends on the

local wave speed. We remark that in the special case of the linear constant coefficient

equation the GFORCE flux is identical to the Godunov upwind flux.

The time marching procedure is stopped when the desired number of stages k is

reached. At the final stage we have a pair of values adjacent to the interface position.

For the construction of Godunov-type advection schemes one needs a numerical flux at

the origin, which for the outlined procedure is given by

FGM
i+1/2 = F

(k)
m+1/2 = FGF (Q(k)

m ,Q
(k)
m+1). (12)

For the purpose of solving the derivative Riemann problem, however, we need the Godunov

state as well. In general, the states adjacent to the origin, namely Q
(k)
0 ,Q

(k)
1 are different.
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We now use a linearized Riemann solver to resolve the discontinuity in Q at the origin

resulting in the EVILIN Riemann solver [17]. To this end we solve exactly the following

linearized Riemann problem:

∂tQ + A1/2∂xQ = 0, A1/2 = A(1
2
(Q

(k)
0 + Q

(k)
1 ))

Q(x, 0) =





Q
(k))
0 if x < 0 ,

Q
(k))
1 if x > 0 .

(13)

We remark that conventional linearized Riemann solvers have two major deficiencies.

Firstly, they give a large unphysical jump in all flow variables near sonic points, a rarefac-

tion shock, unless explicit entropy fixes are enforced. This is due to the fact that linearized

Riemann solvers do not open the Riemann fan when the solution contains a sonic point

and produce instead a rarefaction shock. Secondly, they cannot handle the situation when

the Riemann problem solution contains very strong rarefaction waves. These problems

do not occur for the EVILIN Riemann solver, which is essentially due to the fact that we

apply the linearized Riemann solver to evolved values rather than to the initial data. See

[17] for more details and numerical examples.

It can be shown numerically [21] that when the number of cells 2M and number of

stages k are large, the GMUSTA flux converges to the Godunov flux with the exact Rie-

mann solver. Correspondingly, the approximate Godunov state produced by the EVILIN

solver (13) converges to the exact Godunov state, even for nonlinear systems with a com-

plex wave pattern. For the linear constant coefficient equations this property is exact,

whereas for nonlinear systems it can be verified by numerical experiments.

We note that since the solution of the piece-wise constant Riemann problem (3) is self-

similar, the value of the cell size ∆x used in the local time marching does not influence the

resulting GMUSTA and EVILIN solutions. For a given CFL number Cloc these solutions

depend only on the number of stages k and domain size 2M . Moreover, when M > k the

transmissive boundary conditions do not affect the numerical solution of (3) which in this

case depends only on k and Cloc.

3.2 Numerical example

As an example here we solve the following derivative Riemann problem for the inviscid

inhomogeneous Burgers’ equation:

∂tq + ∂x(
1
2
q2) = e−q

q(x, 0) =





qL(x) = e−2(x− 1
5
)2 if x < 0

qR(x) = 1
4
e−2(x+ 1

5
)2 if x > 0





(14)

Fig. 2 shows the global solution of (14) in the x − t plane. This solution was obtained

9



Figure 2: Numerical solution of DRP problem (14)

numerically using a high-order non-oscillatory numerical method on a very fine mesh.

The dominant feature of the solution is an accelerating shock wave that emerges from the

initial discontinuity in the initial condition at x = 0. We regard this as the exact solution

and define an error by taking the difference between the accurate numerical solution and

our semi-analytical DRP solution (2).

Table 1 shows the variation of the error as function of the order of accuracy of the

Taylor time expansion for different times τ using the exact Riemann solver for the leading

term of the time expansion. As expected, for sufficiently small output times the error

rapidly decreases when the number of terms in the expansion increases. For the last

output time τ = 0.2 the solution appears to be too far away from the initial time and

therefore the Taylor time expansion (2) is not accurate anymore.

Tables 2–3 show the convergence study for the case when the EVILIN Riemann solver

is used for the leading term of the time expansion. These tables illustrate the influence of

the number of cells 2M and stages k in the local time marching (10) on the accuracy of the

resulting Taylor time expansion (2). As expected, the size of the error is defined by the

accuracy of the leading term. That is the error committed in computing the leading term

of the state expansion (2) by using the EVILIN approximation (13) cannot be recovered

by high order terms. From the tables it is clear that this error crucially depends on the

number of stages k and cells 2M in the GMUSTA time marching (10). As M and k grow,

the leading term obtained by EVILIN approximation approaches the exact one and the
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EVILIN solution converges to the one obtained by using the exact Riemann solver, see

Table 3.

4 Use of the DRP in the ADER approach

The DRP Riemann solver described in the previous sections can be used to construct very

high-order numerical ADER-type fluxes to be used in ADER and ADER-DG schemes.

For simplicity, in this section we review the use of the DRP solver for the construction

of ADER schemes as applied to the one-dimensional homogeneous systems only [14].

Extension to multiple space dimensions and source terms is straightforward and can be

found in [22, 15].

Consider a hyperbolic system in conservation form given by

∂tQ + ∂xF(Q) = 0 (15)

along with initial and boundary conditions. Here Q is the vector of unknown conservative

variables and F(Q) is the physical flux vector. Integrating (15) over a space-time control

volume in x − t space [xi−1/2, xi+1/2] × [tn, tn+1] of dimensions ∆x = xi+1/2 − xi−1/2,

∆t = tn+1 − tn, we obtain the following one-step finite-volume scheme:

Qn+1
i = Qn

i +
∆t

∆x

(
Fi−1/2 − Fi+1/2

)
. (16)

Here Qn
i is the cell average of the solution at time level tn and Fi+1/2 is the time average

of the physical flux at cell interface xi+1/2 term:

Qn
i =

1

∆x

xi+1/2∫

xi−1/2

Q(x, tn) dx, Fi+1/2 =
1

∆t

tn+1∫

tn

F(Q(xi+1/2, t)) dt. (17)

The first step in the ADER algorithm is the reconstruction of point-wise values of

the solution from cell averages at t = tn via high-order polynomials. To circumvent the

Godunov theorem [5] and design non-oscillatory schemes we use the nonlinear (solution-

adaptive) weighted essentially non-oscillatory (WENO) reconstruction, see [2, 11] and

references therein. After the reconstruction step the conservative variables in each cell

are represented by vectors pi(x) of polynomials. Then at each cell interface we can pose

the following derivative Riemann problem:

∂tQ + ∂xF(Q) = 0,

Q(x, 0) =





QL(x) = pi(x), x < xi+1/2,

QR(x) = pi+1(x), x > xi+1/2.

(18)

Obviously, the initial-boundary problem (18) is exactly the Derivatie Riemann prob-

lem (1). Therefore, in order to obtain an approximate solution for the interface state
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Table 1: Convergence study for the Derivative Riemann problem (14) for different output

times τ and different orders of accuracy. The exact Riemann solver is used.

Order t = 0.01 t = 0.05 t = 0.1 t = 0.2

1 0.2918× 10−2 0.1573× 10−1 0.1573× 10−1 0.6580× 10−1

2 0.7381× 10−4 0.1513× 10−2 0.1512× 10−2 0.8916× 10−2

3 0.3479× 10−5 0.4197× 10−3 0.4197× 10−3 0.2200× 10−1

4 0.2452× 10−7 0.1830× 10−4 0.1830× 10−4 0.6032× 10−2

5 0.1389× 10−8 0.3843× 10−5 0.3843× 10−5 0.2331× 10−2

6 0.3771× 10−10 0.6143× 10−6 0.6143× 10−6 0.2234× 10−2

Table 2: Convergence study for the Derivative Riemann problem (14) for different output

times τ and different orders of accuracy. The EVILIN Riemann solver with M = 1 and

k = 2 is used for the leading term.

Order t = 0.01 t = 0.05 t = 0.1 t = 0.2

1 0.3097× 10−2 0.9719× 10−2 0.2699× 10−1 0.5979× 10−1

2 0.5873× 10−2 0.4161× 10−2 0.7710× 10−3 0.4269× 10−2

3 0.5949× 10−2 0.6063× 10−2 0.8381× 10−2 0.2617× 10−1

4 0.5946× 10−2 0.5633× 10−2 0.4936× 10−2 0.1385× 10−2

5 0.5947× 10−2 0.5647× 10−2 0.5165× 10−2 0.2269× 10−2

6 0.5946× 10−2 0.5651× 10−2 0.5303× 10−2 0.6708× 10−2

Table 3: Convergence study for the Derivative Riemann problem (14) for different output

times τ and different order of accuracy. The EVILIN Riemann solver with M = 3 and

k = 12 is used for the leading term.

Order t = 0.01 t = 0.05 t = 0.1 t = 0.2

1 0.2918× 10−2 0.1573× 10−1 0.3300× 10−1 0.6580× 10−1

2 0.7381× 10−4 0.1512× 10−2 0.4560× 10−2 0.8916× 10−2

3 0.3479× 10−5 0.4197× 10−3 0.3168× 10−2 0.2200× 10−1

4 0.2452× 10−7 0.1830× 10−4 0.3356× 10−3 0.6032× 10−2

5 0.1389× 10−8 0.3843× 10−5 0.1042× 10−3 0.2331× 10−2

6 0.3783× 10−10 0.6143× 10−6 0.3840× 10−4 0.2234× 10−2
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Q(xi+1/2, τ), where τ is local time τ = t − tn, we apply the solution procedure outlined

above and obtain the solution in the form of the temporal polynomial (2).

Two options now exist to evaluate the numerical flux depending on the way we evaluate

the Godunov state of (3). If a conventional approximate-state Riemann solver for the

Riemann problem (3) is available we use the state-expansion ADER [14]. We insert the

approximate state Q(τ)) into the definition of the numerical flux (17) and then use an

appropriate rth-order accurate quadrature for time integration:

Fi+1/2 =
Kl∑

l=0

F(Q(xi+1/2, αl∆t))ωl. (19)

Here αl and ωl are properly scaled nodes and weights of the rule and Kl is the number of

nodes.

When a conventional approximate-state Riemann solver is not available, we use the

EVILIN Riemann solver to obtain the leading term of the state expansion (2). Numerical

experiments show that in this case the best results are obtained when the so-called flux-

expansion ADER [15] is used. The main difference from the state-expansion ADER is

that we now seek a truncated Taylor time expansion of the physical flux at xi+1/2:

F(xi+1/2, τ) = F(xi+1/2, 0+) +
r−1∑

k=1

[
∂k

∂tk
F(xi+1/2, 0+)

]
τ k

k!
. (20)

From (17) and (20) the numerical flux is now given by

Fi+1/2 = F(xi+1/2, 0+) +
r−1∑

k=1

[
∂k

∂tk
F(xi+1/2, 0+)

]
∆tk

(k + 1)!
. (21)

The leading term F(xi+1/2, 0+) accounts for the first interaction of left and right boundary

extrapolated values and is the GMUSTA flux (12). Other options include the use of con-

ventional upwind fluxes, see [15] for details. The remaining higher order time derivatives

of the flux in (21) are expressed via time derivatives of the intercell state Q(xi+1/2, 0+),

which are known from (1). The leading term Q(0+, 0) is now given by the EVILIN Rie-

mann solver (13). No numerical quadrature is then required to compute the numerical

flux.

An important issue is the choice of parameters M and k in the local GMUSTA time

marching (10). In general, we observe that convergence of the EVILIN state to the exact

Godunov state is obtained only when M, k → ∞. However, practical experience suggest

that for designing numerical methods in most of the cases the choice M = 1 and k = 2

in the GMUSTA time marching (10) gives numerical results that are comparable with

those from the most accurate of fluxes, namely, the first-order Godunov upwind flux used

in conjunction with the exact Riemann solver. See [21] for a more detailed discussion of

the choice of M and k. Therefore, for the rest of the paper we use these values in ADER

schemes.
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The solution is advanced in time by updating the cell averages according to the one-

step formula (16).

5 Application to the Euler Equations

In this section we show some results of the ADER schemes with the new EVILIN-based

variant of the DRP solver. We denote the corresponding schemes as ADER-GM schemes.

We compare the performance of the new ADER-GM schemes with that of the exist-

ing state-expansion ADER-AD schemes from [15] and the state-of-the art finite-volume

WENO schemes [11]. For brevity, we consider only schemes with piece-wise parabolic

(r = 3) polynomials. The resulting schemes (ADER-AD, ADER-GM, WENO) are of

fifth order spatial accuracy and third order temporal accuracy. Since the reconstruction

step is essentially the same for all methods, the difference in accuracy can result only from

the temporal discretization and the numerical fluxes. The ADER schemes use the DRP

solver to obtain the numerical flux, whereas the WENO scheme uses the Rusanov-type

numerical flux [9] as the building block and third-order TVD RK method [12] for the

temporal update.

In all numerical examples we solve the two-dimensional compressible Euler equations

of the form
∂

∂t
Q +

∂

∂x
F(Q) +

∂

∂y
G(Q) = 0

with

Q =




ρ

ρu

ρv

E




, F = Qu +




0

p

0

pu




, G = Qv +




0

0

p

pv




(22)

p = (γ − 1)(E − 1

2
ρ(u2 + v2)).

Here ρ, u, v, p and E are density, components of velocity in the x and y coordinate

directions, pressure and total energy, respectively; γ is the ratio of specific heats. We use

γ = 1.4 throughout.

5.1 Two-dimensional vortex evolution problem

We solve the two-dimensional Euler equations in the square domain [−5 : 5] × [−5 : 5]

with periodic boundary conditions. The initial condition corresponds to a smooth vortex

placed at the origin and is defined as the following isentropic perturbation to the uniform
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flow of unit values of primitive variables [11]:

u = 1− ε

2π
e

1
2
(1−r2) y, v = 1 +

ε

2π
e

1
2
(1−r2) x,

T = 1− (γ − 1)ε2

8γπ2
e(1−r2),

p

ργ
= 1,

(23)

where r2 = x2 + y2 and the vortex strength is ε = 5. The exact solution is a vortex

movement with a constant velocity at 45o to the Cartesian mesh lines. We compute the

numerical solution at the output time t = 20 for which the vortex returns to the initial

position. We use Ccfl = 0.45 for all runs.

Table 4: Density convergence study for the vortex evolution problem (23) at the output

time t = 20. Ccfl = 0.45 is used for all schemes.

Method Mesh L∞ error L∞ order L1 error L1 order

ADER3-AD [15] 25× 25 9.71× 10−2 5.92× 10−1

50× 50 1.30× 10−2 2.90 3.94× 10−2 3.91

100× 100 4.14× 10−4 4.97 1.54× 10−3 4.68

200× 200 9.77× 10−6 5.41 5.23× 10−5 4.88

ADER3-GM, 25× 25 1.01× 10−1 6.29× 10−1

present paper 50× 50 1.42× 10−2 2.83 4.20× 10−2 3.91

100× 100 4.58× 10−4 4.96 1.63× 10−3 4.69

200× 200 9.97× 10−6 5.52 5.15× 10−5 4.98

WENO [11] 25× 25 1.78× 10−1 1.12

50× 50 2.05× 10−2 3.11 8.17× 10−2 3.78

100× 100 7.01× 10−4 4.87 4.44× 10−3 4.20

200× 200 3.17× 10−5 4.47 1.78× 10−4 4.64

Table 4 shows the convergence study for all schemes. We present errors and conver-

gence rates in L∞ and L1 norms for cell averages of density. Firstly, we observe that

both ADER schemes achieve approximately fifth order of accuracy. The new ADER-GM

scheme is only slightly less accurate than the ADER-AD scheme. Secondly, we see that

both ADER schemes are more accurate than the WENO scheme by a factor between two

and three. The observed difference in accuracy between ADER and WENO schemes can

be related to the more accurate time evolution method of the ADER approach as com-

pared to the combination of the Rusanov flux and the TVD RK method in the WENO

scheme.
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Figure 3: Density convergence study for the double Mach reflection problem. Meshes:

240 × 60 cells (top) , 480 × 120 cells (middle) and 960 × 240 cells (bottom). 30 contour

lines from 2 to 22.
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Figure 4: Density convergence study for the double Mach reflection problem. Zoomed

area of Fig. 3
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5.2 Double Mach reflection of a strong shock

The double Mach reflection problem [23] is a standard test problem for testing robustness

and accuracy of advection schemes. The setup of the problem, initial conditions and

description of the flow physics can be found in [23]. The problem has been studied

intensively in recent years, see e.g. [3, 11] and references therein. The results of the

conventional flux-expansion ADER schemes with the exact Riemann solver, HLL [6] and

HLLC [19] Riemann solvers can be found in [15] for a sequence of meshes and are not

shown here. Figs. 3–4 show numerical results of the new ADER3-GM scheme for three

meshes: 240 × 60, 480 × 120 and 960 × 240. We see that the scheme produces the flow

pattern generally accepted in the existing literature as correct. All discontinuities are well

resolved and correctly positioned. The overall accuracy of our new ADER3-GM scheme

compares well with that of the WENO scheme [11] and conventional state-expansion

ADER schemes [15].

We remark that the resolution of delicate flow features, such as slip surfaces and the

jet can be directly related to the accuracy of the Riemann solver used in the scheme. In

particular, complete Riemann solvers with all waves in the Riemann problem solution,

e.g. exact and HLLC Riemann solvers, give results superior to those of the incomplete

ones, such as HLL and Rusanov solvers. Comparing our results with those reported in

[11, 15], we observe that the accuracy of our new ADER-GM scheme is comparable with

that of the ADER-HLLC scheme and superior to the ADER3-HLL and WENO schemes.

6 Concluding Remarks

In this paper we have presented a modification of the solution procedure for the derivative

Riemann problem which does not require an approximate-state Riemann solver. Our

new DRP solver extends very high order upwind schemes to a large class of hyperbolic

systems of conservation laws for which the Riemann problem solution is not available. We

implemented the new Derivative Riemann solver in the framework of finite-volume ADER

schemes in multiple space dimensions and applied the new schemes to the compressible

Euler equations of gas dynamics. The presented numerical results illustrate the very high

order of accuracy as well as the essentially non-oscillatory property of the ADER schemes

based on the new DRP solver.
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