CONVERGENCE OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR
A DEGENERATE PARABOLIC SYSTEM MODELLING NEMATIC LIQUID
CRYSTALS WITH VARIABLE DEGREE OF ORIENTATION *

JOHN W. BARRETT!, XIAOBING FENG? AND ANDREAS PROHL?

Abstract. We consider a degenerate parabolic system which models the evolution of nematic liquid
crystal with variable degree of orientation. The system is a slight modification to that proposed in [2],
which is a special case of Ericksen’s general continuum model in [5]. We prove the global existence
of weak solutions by passing to the limit in a regularized system. Moreover, we propose a practical
fully discrete finite element method for this regularized system, and we establish the (subsequence)
convergence of this finite element approximation to the solution of the regularized system as the mesh
parameters tend to zero; and to a solution of the original degenerate parabolic system when the the
mesh and regularization parameters all approach zero. Finally, numerical experiments are included
which show the formation, annihilation and evolution of line singularities/defects in such models.
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1. INTRODUCTION

Let Q be a bounded domain in R%, d < 3. In this paper we consider, for any given constants k; > 0, § > 0
and p > d, the degenerate parabolic system:
(Ps) Find {s, ¢} such that

Ors = kydiv([1 + §|Vs[P72]Vs) — ka|[Vp|?’s — W'(s)  in Qp:=Qx(0,T), 0<T < oo, (1.1a)
$20,p = kgdiv(s2Vga) in Qr (1.1b)

subject to appropriate initial and boundary conditions. The system (Ps) models the evolution of uniaxial
nematic liquid crystals with variable degree of orientation in the absence of both flow and electromagnetic
fields. The model (Py); that is, (Ps) with § = 0; was derived by Calderer, Golovaty, Lin and Liu in [2] and is
a special case of Ericksen’s general continuum theory for nematic polymers with variable degree of orientation,
which was proposed in [5]. A typical nematic liquid crystal consists of rigid, rodlike molecules with one molecular
axis being much longer than the other two. Hence there is a high probability that the axes of any two neighboring
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molecules point in a similar direction. The local molecular orientation of a uniaxial nematic liquid crystal can
be specified by a unit vector n(x,t), called the director, and a scalar s(z,t), called an order parameter. In this
continuum model, s(x,t) is the averaged local orientation of molecules compared to n(z,t). It can be shown that
s(z,t) € [—3,1]; where s(z,t) = 1 (—3) corresponds to all molecules being locally aligned (perpendicular) to
n(z,t); see [5] for details. The special case of s(z,t) = 0 corresponds to the isotropic state in which the director
n(z,t) is meaningless. Obviously, setting s = 1 in the Ericksen model corresponds to the Leslie-Ericksen model,
where the configuration is determined solely by n(x,t). This simplified model has been successful in describing
low molar-mass nematics. However, it only gives rise to point singularities in n(z,t), whereas line and surface
singularities are observed in laboratory experiments. Hence, Ericksen [5] introduced the extra scalar parameter
s, which allows for variable degree of orientation, in order to overcome the deficiencies in singularity formation
of the Leslie-Ericksen model for general uniaxial nematics.

The bounded domain Q C R?, for d < 3, is the region occupied by the liquid crystal material in the model
(Ps). Whereas only planar director configurations n = (cos ¢, sin ¢, 0) are allowed, where ¢ is the associated
angle. The positive constants ki, ko and k3 depend on material properties. Finally, W’(s) denotes the derivative
of a smooth double well potential such that W’(—3) < 0 and W’(1) > 0. This ensures that the perfect alignments
s = —% and s = 1 are excluded from being equilibrium states, which is physically reasonable; see [5, p109].

In order to overcome the degeneracy in (1.1b) at s = 0, Calderer, Golovaty, Lin and Liu [2] considered a
regularization (P .) of (Py). Here we extend this regularization to (Ps), and consider for any given constant
e € (0,1]:

(Ps,¢) Find {s., ¢.} such that

Ors. = kydiv([1 + 8|Vs.[P2]Vs.) — ka|Vee|?s. — W/ (s.)  in Qr, (1.2a)
(2 + %) Oppe = kadiv((s? + ) Vi) in Qp (1.2b)

subject to the same initial and boundary conditions as (Pjs). Calderer, Golovaty, Lin and Liu [2] showed that as
for the original system (Py), the regularized system (P .) also satisfies a dissipative energy law, which in turn
implies some uniform (in ¢) estimates for {s., p.}. Based on these uniform estimates, they then showed global
existence of weak solutions to the original system (Py), for a smooth domain , using compactness arguments.
However, there are a number of gaps in the proof given there for passing to the limit ¢ — 0 in the term |V, |?s.
on the right hand side of (1.2a). Although we are able to fill most of these gaps, we are only able to fill all the
gaps for (Pg) when d = 1, and for the modified degenerate system (Ps), with 6 > 0 and p > d, when d > 2.
We note that (Ps) with § > 0 is still a degenerate system and satisfies a similar dissipative energy law to (Pg).
Whereas for (Pg ) when d > 2, we can only establish the strong convergence of a subsequence s. to s in L?(2r)
for any ¢ € [1,00); for (Ps.) with 6 > 0 and p > d we can establish this convergence in L*>°(Qr). This plays a
crucial role in the final step of passing to the limit € — 0 in (Ps.). This is the only reason for this p-Laplacian
modification of (Pg) in the case d > 2.

The first goal of this paper is to develop a practical fully discrete finite element method, (Pf{’; ), for approxi-
mating the solution to the regularized system (Ps ) for 6 > 0 and p > d, and to show (subsequence) convergence
of this finite element approximation to the solution of (P .) as the mesh size h and the time step 7 tend to zero.
To prove this convergence, the main step is to establish a discrete dissipative energy law for this finite element
approximation. The second goal is to establish (subsequence) convergence of the finite element approximation
to a global weak solution of the original system (Ps) as the mesh size, time step and the regularization parameter
¢ all go to zero. To this end, we re-examine the regularized system (Ps.) and provide a detailed proof of the
compactness arguments for passing to the limit, as € — 0, to establish existence of weak solutions of (Ps); which
is far from being straightforward because of the strong coupling of the nonlinearities in the system. It is at the
final stage of this process that we have to make the restrictions of § > 0 and p > d when d > 2.

The paper is organized as follows. In Section 2, we first study the regularized system (P;.) and establish
well-posedness for any given § > 0 and p > d. We then prove the existence of global weak solutions for the
degenerate systems (Py) when d = 1, and (Ps) with 6 > 0 and p > d when d > 1 by passing to the limit
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as € — 0 in the regularized system. In Section 3, we propose and analyze our fully discrete finite element
method, (PZ”;), for approximating solutions of both the regularized system (P;.) and the degenerate system
(Ps). The (subsequence) convergence of this finite element approximation is first proved for fixed 6 > 0, p > d
and € € (0,1] as h and 7 go to zero; and then for a fixed (a) § =0ifd=1and (b) 6 >0andp > difd > 1, as h,
7 and € go to zero. Finally, in Section 4, we present some numerical experiments to demonstrate the efficiency
of the finite element method (Pg:g )-

2. EXISTENCE OF GLOBAL WEAK SOLUTIONS TO THE DEGENERATE SYSTEM (Pyj)

Global existence of weak solutions to the system (Po) was considered in Theorem 4.3 of [2]. However, there
are a number of gaps in the proof given there for passing to the limit ¢ — 0 in the term |V, |?s. on the right
hand side of (1.2a). In this section, we will revisit the problem and present a complete proof of the existence
theorem for (a) (Pg) if d =1, and (b) (Ps) with 6 >0 andp >d ifd > 1.

Both the system (Ps), for 6 > 0, and its regularized version (Ps.) must be supplemented by initial and
boundary conditions in order to be a closed system. As in [2], the following initial and boundary conditions will
be considered in this paper

(CL) S(I7O) = SE(I»O) = g(.’E), (b) QD(I,O) = (ps(I,O) = ¢(I)7 z € (), (21)
(a‘) S(x7t) = Ss(x?t) = g(x), (b) QO(:L‘,t) = @E(x?t) = ¢(x)v (xat) € 0Qr;

where 0Qr := 9Q x (0,T). Throughout the paper, we adopt the standard notation for Sobolev spaces and their
associated norms. For notational convenience, we drop the domain from the norm and semi-norm subscript, if
the domain is 2; e.g. norm || - [[ym.r := || - [[wm.r(q) and semi-norm | - [ym.» := | - [pym.r(q). We introduce also

ng’p* (Q):={v e W' (Q) : v = g on AN}, Hi(Q) :={nec H(Q):n=¢ on 0Q}; (2.3)

where p* := 2if § = 0 and p* := max{p,2} if § > 0. Finally, throughout (-,-) denotes the standard inner
product over L?().

2.1. Well-posedness of the regularized system (P;.)

In this subsection, we consider and analyze the regularized system (Ps.) with 6 > 0 and p > d subject to
the initial and boundary conditions (2.1) and (2.2) for a fixed € € (0,1]. We begin with definitions of weak and
strong solutions of (Ps.).

Definition 2.1. Let 2 C R?, d < 3, be a bounded domain with a Lipschitz boundary 92, k; € R* and W (-)
be a smooth double well potential . Assume that g € W'P" (Q) N L>®°(Q) with g(z) € [g_, g.] for a.e. z € Q,
with g_ <0, g4 >0, W(g_) <0 and W/(g4) > 0; and that ¢ € H*(Q) N L*°(Q) with ¢(x) € [¢_, ¢4 ] for a.e.
z € Q. Then a pair of functions {sc, .} is said to be a weak solution to (Ps.), with § > 0, p > d and € € (0, 1],
subject to (2.1) and (2.2) if {s, ¢} satisfies

(i) se € H'((0,7); L*()) N L>((0,T); Wy *" () and . € H'((0,T); L*(2)) N L=((0,T); HY (%)),

(ii) se(z,t) € [9—,9+] and @ (z,t) € [¢_, ¢4] for a.e. (z,t) € Qr,

(iii) (2.1)(a) in Y7, where Wl’i"*(Q) < Y7, and (2.1)(b) in Ya, where H(Q) S Ys,eg V=Y, = L2(Q),

(iv) the following identities

/ {8ts€ v+ ki[L + 6| Vs P2 Vs. - Vv + ko| Voo |?sc v + W (s.) v} dedt=0
Qr

Yo € L2((0,T); Wi (Q) N L®(Q)), (2.4a)
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/ {(sg + ) n + k3 (s? + £2) V. - vn} dz dt = 0 Vi € L2((0,T); HL (). (2.4b)
Qr

Remark 2.2. In the above definition, for the sake of mathematical generality, we have relaxed the physically
realistic condition that g_ and g, satisfy, in addition, [g—,g4+] C (=3, 1).

Definition 2.3. A weak solution {s., .} is called a strong solution to (Ps.) subject to (2.1) and (2.2) if
{se, 2} € L2((0,T), H*(Q)).

Firstly in the theorem below, we prove the existence of weak solutions. In order to motivate the convergence
proofs for our fully discrete finite element approximation of (Ps.) in Section 3, we consider a discrete in
time/continuous in space approximation of (P;.) here. Moreover, the desired L*°(2r) bounds on {s., .} are
far easier to establish using this approach.

Forany T > 0,let 0 =1ty <t; < ... <tpy-1 <ty =T be a partitioning of [0,T] into possibly variable time
steps T = tm —tm—1, m=1,2,--- M. We set 7 := max,,—1,2,...;s Tm. In addition, we split the smooth double
well potential W into its convex and concave parts, by writing it as

W(s) = Wi(s) —W_(s), where W, and W_ are convex functions. (2.5)

Furthermore, for the convenience of the analysis, we introduce VIN/(S) = I/IN/+(3) — W_(s), where

N Wie)(9-) + (s —g-)W(y(9-)  s<g-
Wity(s) == W(s) s€lg-,9+] - (2.6)
Wiy (g+) + (s =94 )W( ) (94) s> 94

Here and throughout -(,) denotes an expression with or without the subscript x, similarly with superscripts.
For given § > 0, p > d and ¢ € (0, 1], we now consider the following approximation of (Ps):

(PF.) Let {s%,¢%} = {g,¢}; then for m = 1,2,--- M, find s™ € V (o 1) = {v € ng’p* (Q) : vV e

[L2(Q)]?} and @™ € H(52) such that

(des?'sv) + ki ([1L+ 8| VsZ P2V ST, Vo) + (ka| Vol P + Wi (s7),0) = (W (sT71),0) Yo € Vol ™),
(2.7a)
([(s7)* + el depl ) + ks ([(s2)* + "] Vl", Vi) =0 ¥ € Ho(9); (2.7b)

where d;v™ = (Um _ 'Um_l)/Tm.

Theorem 2.4. For any fized 6 > 0, p > d and € € (0,1], the system (Ps.) subject to (2.1) and (2.2) has a weak
solution for all T > 0. Moreover, its corresponding norms in (i) of Definition 2.1 are bounded independently of
e. Furthermore, it satisfies the following dissipative energy law for a.a. t € (0,T)

{(@rse)? + 22 1 2)(Ope)? ot < B9, 6) < . (2.82)

E.(se,02)(T) + / e

Q

where C' is independent of € and
A 1 2 d P ko 2 2 2
E-(se,0.)(t) := {k1[§\vsg(a¢,t>| o Vselw O]+ 5 (52 0) + ) Ve, ) + W(sa(x,t))} dz. (2.8b)
Q

Proof. For m = 1,2,--- M, it is easily deduced that V, (¢ ~!) is a closed convex set of the reflexive Banach
space W1P"(Q) and (2.7a) is the Euler-Lagrange equation associated with the minimization over V, (o™~ 1) of
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the convex, coercive and differentiable functional

1 1 é —~ 1 —~
Iw) = [ {0+ bl ol + 21VoP) + B G 0 4 W (0) — [ W2} d (29)
Q m p T

m

Hence there exists a unique solution to (2.7a). Similarly, there exists a unique solution to (2.7b). Assuming
s 1 € [g_,g+], and choosing v = [s™ — g1 ]+ € Vo(p™ 1) in (2.7a) yields, on noting the convexity of W and
our assumptions on g, that

1 m m m m m—
— N2 = g1l llzz + kalllVIT = g1l lZa + lIVIsZ = gul L] + Fallls? — g4 ]4 Voo 7172
+ (WL(s2) = Wilge), [s2 = g+l+)
1

= (7[5?_1 — 4] = ko[ V" T P, [s — gily) + (WL ™Y = Wh(gs)] = W'(g4), [s2 — g+]+) <05
(2.10)
and hence that s™ < g,. Similarly, choosing v = [s™ — g_]_ € Vo(¢™ 1) in (2.7a) yields that s™ > g_.
Similarly, assuming that ¢! € [¢_, ¢4] and choosing n = [p™ — ¢ ]+, [T — ¢_]- € HE(Q) in (2.7b) yields
that o™ € [p—, d4]. As {s2, 0} = {g @}, it follows by induction for m =1,2,--- M that
s (x) € [g-,9+] and @' (x) € [p_,¢4] forae. z €. (2.11)

Moreover, on choosing v = d;s”* in (2.7a) and n = %dtgo;" in (2.7b), and adding yields that

k k 1
s 3+ G [l Vo2 [+ | 2 [ | + b8V P29, T dis) ) + 2222 + €3 di 3
k
g (V002 da(s2)? + T () ) + (5202 + €2, daf Vol 2+ Tl de Vo2 2) | 4+ (W (52), dis)

= (WL(sT71), dysT"). (2.12)

The convexity of |V - |P for p > 1 and W, imply that

1
Ton| VO™ [P72V0™ .V (dgo™) > 5[|V'v P — Vo™ 1P, (2.13a)
W (0™) dpo™ > dW (™) > Wi (0™ 1) dpo™. (2.13b)
Also, a direct calculation yields that

VR R A0+ [0 + € d T = (07 + 2] [9). (214)

Applying the operator Efn:l Tm, t0 (2.12) and noting (2.13a,b) and (2.14), yields for £ =1,2,--- M that
1 1 N
S{RITSL I+ kal(207 + 202 Pt} + 0wt g, + [ (st

£
£ 20 i ldas? I + 21T + ) el 22 + 5 7ol 4V [

m=1

ko m 1 m
2 7 [ (@) Vel [+ (520 4+ €)% iVl |}
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1 2 2 2\ 2 2 k‘15 p e
< {mIVol3e +hall* + ) F VOIE | + Vgl + [ W<, (215)

where C' is independent of 7 and €.

Let
Ser(t) 1= =l g1 () 4 Lm=t g1 () L€ [ty 1, tn] M= 1,2, M, (2.16a)
st (ot) = sT(), s (5t) i=sT7N() tE (tmotstm] m=1,2,---M. (2.16b)

Using the above notation, and introducing analogous notation for ¢, and noting (2.11) and (2.6), (P} _) can be
restated as: Find {s -, pc -} € L(0,T; W™ (Q))x L>=(0,T; H}(R)) such that s} Vo, € L>(0,T; [L*(Q)]4),
36,7’('70) = g(')a (pa,T('yo) = ¢() and

{Oser v+ ka[l+6|Vs [PVl Vo + ko|Vo_  Pst v+ [Wi(st,) = W (s;,)]v} dedt =0
Qr
Vv e L*(0,T; WOI’P* () NL®(Q), (2.17a)
/ [(s2,)? + €% {Ovpe,rm + ksVl, . Vn} dudt =0 v € L*(0,T; Hy (). (2.17b)
Qr

Moreover, the bounds (2.15) and a Poincaré inequality immediately yield that

s € Lo((0,T); Wh' (), 773 (st, —s2,) € L*(0,T; HY (),  ser € H'((0,T); L*(Q2)),
(53,2 +€2)2VpE, € L=((0,T); [LX(Q)]Y), 7 2((s5,)? + %)V (pl, — vz,) € L*(0,T; [L*(Q)]%),
(

TTE |V (s, —st.) € LA(Qr),  ((s2,)? + >@%Teﬁmw, (2.18)

)

and their respective norms are independent of 7 and ¢. In addition (2.11) implies that

s (1) €lgo,g1), oH(@,t)€lp, ] forae. (a,t) € Q. (2.19)

The uniform estimates (2.18) and (2.19), a generalised Lebesgue dominated convergence theorem and the

compact embedding WP (Q) < C(Q) for p > d immediately imply that there exist {sg, e } satisfying (1)—(iii)

of Definition 2.1 and the following convergence results for a subsequence of {sgji), gag b }T>0 as 7 — 0:

OtSe,r —> Opse  weakly in LQ(Q ),
sgﬁ) — S weak* in L= (0, T; WP (Q)), strongly in L9 (Qr),
Orpe,r —> Oppe  weakly in L*(Q7),
<p£ Y. weak* in L®(0,T; HY(Q)), strongly in L% (Qr), (2.20)
where g; € [1,00), but if either (a) d =1 or (b) § > 0 then ¢; € [1,00]; and hence
(55,02 + €)0per — (52 + 2)up.  weakly in L2(Qr),
((52})2 + 52)V<p;7 — (82 +e*)Vy. weak* in L>=(0,T; [L2(Q)]d),
st Ve, — 5.V, wealk* in L°°(0, T; [L*(Q)]%); (2.21)

where for brevity we adopt the same notation for the subsequence.
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It follows from (2.21), that we can pass to the limit 7 — 0 for the subsequence of (2.17b) to obtain (2.4Db).
In order to pass to the corresponding limit in (2.17a), we require some stronger convergence for the third term.
From (2.17b) with n = ¢ — ¢, (2.20), (2.21) and (2.4b) with = ¢. — ¢ we obtain that

timsup [ ((s5,)7 + )Vl [ dodt = limsup [ (520242 [Vl V6~ by Oupr (o1, — 0)] duds
QT QT

7—0 T—0

_ / (52 +€2) [Vop. - Vo — k3 L0vpe (2 — )] dadt
Qrp

:/ (82 + &%)V |? da dt . (2.22)

T

It follows from (2.20), (2.21) and (2.22) that

limsup/ [((s3,)2 +€2)2Vpl, — (s + )2 V.| de dt
Qr

T—0

—timsup [ ({630 + VLI~ 2A(6E + (2 + PNV, - Ve + (5F 4 Ve o

T7—0

= limsup/Q {((52})2 + 82)|V<p;r7.,_‘2 — (s34 52)\V905\2} dx dt = 0. (2.23)
T

T—0

Combining (2.23) and (2.18) we obtain that
((s3.)2 +e2)FVpE, — (s2 +e%)5 V. strongly in L2(0,T; [L*(Q)]?) as 7 — 0. (2.24)

Therefore we obtain from (2.24) and (2.20) on extracting a further subsequence and applying a generalised
Lebesgue dominated convergence theorem that

sT.Ver, — s.Vp. strongly in L*(0,T;[L*(Q)]?) as 7 — 0. (2.25)

If § = 0, it follows from (2.20), (2.25), (2.19) that we can pass to the limit 7 — 0 for a subsequence of (2.17a)
to obtain (2.4a) with 6 = 0. In order to achieve the corresponding limit in the case § > 0, we have to exploit
“the decisive monotonicity trick”, see [12, 474]. It follows from the monotonicity of |a|P~2a, a € R?, and (2.17a)
that for all A € R and for all v € L2((0,T); Wi*" (Q) N L*(Q2))

0<k {[1 46|V (se + M)[P72V(se + M) — [L+6|VsT P2 VsE } - V[s. + M — sT | dwdt
Qr
—hy / (14 69 (50 + A0) P2V (52 + M) - Vse + Ao — s2.] da dt
Qr
+ / [Oi5e,r + ko |Vopo |Pst .+ Wi(st,) = W.(s2)](se + M — sf ) dwdt. (2.26)
Qr

On noting (2.20), (2.25) and (2.19), we now pass to the limit 7 — 0 in a subsequence of (2.26) yielding for all
A € R and for all v € L2((0,T); Wy? () N L°(Q)) that

0< A/ {Ek1[1+ 6|V (se + )P 2V (52 + M) - Vo + [05e + kase |V |* + W (s:)v} dudt. (2.27)
Qr

Considering the cases of A > 0 and A < 0 separately, we divide (2.27) by A and then pass to the limit A — 0
to obtain the desired result (2.4a). Therefore we have proved global existence of a weak solution to (Ps.) for
fixed § > 0, p > d and € € (0, 1], subject to (2.1) and (2.2).
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Finally, it follows from (2.8b), (2.15), (2.20), (2.21), (2.13a), (2.19) and (2.6) that for a.a. £ € (0,T)

Eg(sg,%)(fw/ {(atsgf+@(s§+52>(at<pa)2}dmdt

Q; ks
o - k
< lim inf E. (st 0l )®) +/ {(@5877)2 + kﬁ((s;y + 52)(@%,7)2} dedt| < E.(g,9), (2.28)
T Q; 3
and hence the desired dissipative energy law (2.8a). (]

In the Theorem below, we show uniqueness of weak solutions to (Ps.) in the case d = 1. However, for d = 2
or 3 we require slightly stronger regularity.

Theorem 2.5. For any fized 6 > 0, p > d and € € (0,1], the system (Ps.) subject to (2.1) and (2.2) possesses
at most one weak solution {s.,p.} in the function class [L*((0,T); W124(Q)) N HL((0,T); L4(Q))]2.

Proof. Suppose {s, o} € [LA((0,T); Wh24(Q)) N H((0,T); L4(0))]?, j = 1 and 2, are two weak solutions
corresponding to the same initial and boundary data. Obviously, this not a constraint if d = 1. Let 5. :=

sgl) — sg) and @, 1= gpgl) — <p§2). It suffices to show that s. =0 and ¢. = 0 a.e. in Qrp.

It is easy to check that {s.,@.} satisfies 5.(x,0) = @.(x,0) = 0 for a.e. x € Q, 3.(z,t) = @(z,t) = 0 for
a.e. (z,t) € 0Qr, and the following “error” equations for all £ € (0,7)

/ {@55 v+ k1 [V5. + 6(|[VsD P2Vst) — Vs P27 . Vo + ko VP[5, v
Q._

t

+ ko[ |V 2 — V@ 25 v + W (€)3. v} dedt=0  Yoe L*0,4, WP () N L™(R)), (2.29a)

/ {15092 + 205+ [s0) + 52 ]5.000 1 + ks[(sL0)? + 2]V e - Vi
Q

3

+ k3 [ s + 52 ]5. V@ . vn} dedt=0  Vne L*0,f, HY(Q)); (2.29b)

where £(z,t) lies between sgl)(x, t) and s (z,t). Choosing v = 5. in (2.29a) and 7 = @, in (2.29b), and noting

the monotonicity of |a|P~2a, a € RY, yields that

1 B t
plseCo I+ [ {kal Vo + kol 5962 [}
0

< */Q {k‘2[|vwgl)|2f |V¢g2)|2]821) §e+WH(£)|§5‘2}d:Edt, (230&)

1 ~ ~ t
L R e o N T R
0

= [ {160 - GO (@) + kTl T2 — a0 i (2:300)
Qf

where we have applied the initial and boundary data. On noting (ii) of Definition 2.1 and that

0 ifd=1,
2 <l Vil vn e HY(Q), wh{d s

7] (2.31)
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the right hand sides of (2.30a,b) can be bounded as follows

[ {90 = 0l 05+ w5

t
_ _ _ 1 _
< O | {Rall Vel + o) el Ve 1 115 2 | Ve 2% + 152 1
t

k B k _ _
< [NV s + N5 B+ O T1+ IV + ) a5 I f - (2320

[ {1607 — (P + kaV e - V50) = 001y da

i

t
< = — - 1
<€ [ {102 a0 015 12195 Iz 1 2 52 19 1521

+ 1 Ve Nlg2a | Ve Iz (I3 N2 11 V5 llz2]% + 1| 8 llpa |l @ N2 | Ve ||L2}dt

t 2
(> k:g _ kl — — %)
< /0 {TH Ve |72 + 3” Ve |32 + Ce N[N0 120 + 1|00 (124 ]| @< 113

+CE D [10® 120+ V6P 42152 132 } (2.32b)

where C(a) denotes a generic positive constant which depends on the parameter a. Combining (2.30a,b) and
(2.32a,b), applying Gronwall’s inequality and noting the assumed regularity yields the desired result. O

Corollary 2.6. For any fited 6 > 0, p > d and € € (0,1] and , the system (Ps.) subject to (2.1) and (2.2)
possesses at most one strong solution if d = 2.

Proof. The result follows immediately from Theorem 2.5, Definition 2.3 and the embedding L°°(0,T; H'(Q)) N
L2(0,T; H*(Q)) — L*(0,T; WH*(Q)) as d = 2. O

We now show that (P ) subject to (2.1) and (2.2) has a strong solution for sufficiently smooth data if d = 2.

Theorem 2.7. In addition to the assumptions of Definition 2.1, we assume that d = 2, g,¢ € H?(Q2), and that
Q is either a convex polygonal domain or N € C?. Then for any fized € > 0, the system (Po.) subject to (2.1)
and (2.2) has a unique strong solution for all T > 0.

Proof. Let {s¢,p} be a weak solution of (Pg ), whose existence was established by Theorem 2.4, we want to
show that {s., .} actually belong to [L2((0,T); H*(2))]?. To this end, it suffices to derive a priori estimates
for s. and ¢, in the L?((0,T); H*>(Q)) norm. Obviously, one can make the argument below fully rigorous by
deriving the desired bounds for the approximation (Pf ) and then passing to the limit 7 — 0. Firstly, one can
rewrite (2.4b) as

A;ﬁa%Aa@%@}m%”v%.v%m+kﬁwgvﬂdmﬁ:o‘meL%meHammem»
’ (2.33)

Using Caldrerén-Zygmund and Gagliardo-Nirenberg inequalities (cf. [1]) we obtain from (2.4a) and (2.33), on
noting the uniform bounds in (i) of Definition 2.1 and the assumptions on g, ¢ and €2, that

T T T
/ | se |72 dt < C/ (L4 0¢se 172 + || Vepe [|74) dt < C(T) + c/ | Voo || 34 dt, (2.34a)
0 0 0
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T T
[ Neclde <0 [ @100+ 72 95, 3. Ve [2) at
0 0 .
<O+ ) [ 1Vse e e s | Vo [
0T
< C(T) +CeY) /0 V. |4, dt. (2.34b)

The desired result follows immediately from (2.34a,b) if we can show that

a
2

T T
[ 1V lbede < 0 D] [ e i at) (235)
0 0
for some q < 2. Let G : L*(Q) — H(2) N H?(Q) be the inverse Laplacian satisfying

(V(Gf), V) =(f,n)  Vne Hj(Q). (2.36)

Then by Meyers theorem, [8], see also [4] for a similar application; we have from (2.4b) that there exists an
r(g) > 2 such that for a.a. t € (0,7)

IV, t) o < Ce™HL+ [ (VGI(sZ + %) Depe) (1) [12r]
< CEL+ 1(VGIS +)dpe) (1) 1 | (G52 + £2)Dpe)) (1) g | (2.37)

where we have applied a Gagliardo-Nirenberg inequality to obtain the last bound. From (2.4b), (2.36), (2.8a,b)
and (ii) of Definition 2.1 it follows that

1(VGI(s2 +€*)8epe]) (1) Iz < 1 [(s2 +€*) Vel (1) [l 22 < C. (2.38)

Integrating (2.37) in time, applying a Calderén-Zygmund inequality, and noting (2.38) and (i) of Definition 2.1,
yields that

T o T
[ Ve i at < ce T+ [ 162 + o3 de] < O (2:39)
0 0

We assume that r € (2,4), otherwise the desired L?(0,T; H%(2)) bounds follow immediately from (2.34a,b) and
(2.39). From a Gagliardo-Nirenberg inequality and (2.39) we obtain that

T 4 T 4 T or r;? T ) 4;7-
[ rvectiteaes [ 1ol timae < { [ 1905ty T e e it}
T 4;7‘
<o [ e lmat} T (2.40)
0
and hence (2.35) with ¢ =4 — r < 2. Therefore the proof is complete. O

2.2. Passing to the limit as ¢ = 0

In this subsection we will establish the existence of weak solutions to the system (Ps), with either (a) 6 =0
ifd=1or (b) d >0and p>difd>1, subject to (2.1) and (2.2) by passing to the limit as ¢ — 0 in (Ps.).
We present a detailed proof here, since there are a number gaps in the proof given in [2] for § = 0. As we have
stated previously, we are unable to fill all these gaps for (Pg). Hence the introduction of the p-Laplacian term
in (Pys) for d > 2.
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Our main idea, in order to fill these gaps, is to show strong convergence of a subsequence of {s.Vp.} to
sV in L2(Q7) by adapting techniques from [11]. This can be achieved for § > 0. However, one needs also to
establish either the weak convergence of a subsequence of {sV.} to sV in L2(2r) or a related result. This
unfortunately gives rise to the restriction 6 > 0 and p > d if d > 2.

We begin with the definition of a weak solution to (Ps), for given 6 > 0 and p > d, subject to (2.1) and (2.2).

Definition 2.8. Under the assumptions of Definition 2.1, a pair of functions {s, ¢} is said to be a weak solution
to (Ps), with § > 0 and p > d, subject to (2.1) and (2.2) if {s, ¢} satisfies

(i) s € H'((0,T); L*(2)) N L=((0,T); W, *" () and sp € H'((0,T); L*(€2)) N L=((0,T); H' (),

(i) 5(2,1) € [g- 9+] and p(z,) € [p-, 6] for acc. (,) € O,

(iii) (2.1)(a) in Y3, where W1HP"(Q) < Y7, and (s¢)(-,0) = (9¢)(-) in Yz, where HY(Q) <% Y3, e.g. Y1 = Yy =

L),
(iv) s@ = g in L=(0,T; H%(9Q)),
(v) the following identities

/ {at(s2) v+ ky[1+ 8| Vs[P~2] [V(s2) - Vv + 2|Vs|?0] + 2sW'(s) v} dz dt + 2k» / $2|Vp|2vdz dt = 0
Qrp {s#£0}

Yo € L2((0,T); WiP (Q) N L®(Q),  (2.41a)

/ {328t90n + k3s*Vep - vn} dzdt =0 v € L*((0,T); H3 (). (2.41Db)
Qr

Theorem 2.9. The degenerate system (Ps), with either (a) 6 =0 ifd =1 or (b)) § >0 andp > d ifd > 1,

subject to (2.1) and (2.2) has a weak solution for all T > 0. Moreover, the weak solution satisfies the following
dissipative energy law for a.a. t € (0,T)

E(s,)(t) + L~{(8t5)2 + %82(8,5(,0)2} dz dt < E(g, ), (2.42a)
where
E(s,0)(t) := /Q{kl[%‘vs(”’ )+ g|Vs(a:,t)|p] + W (s(z, t))} dx+ % o) s2(z,t)|V(x,t)| do. (2.42b)

Proof. The proof is based on the uniform estimates (in ¢) from the energy law (2.8a,b) for the regularized
problem and compactness arguments. The main difficulty comes from passing to the limit in the nonlinear
gradient term of (2.4a). Since the proof is long, we divide it into four steps.

Step 1: Extracting convergent subsequences. From (ii) of Definition 2.1, we have that

se(z,t) € [9-,94], we(x,t) € [p_,p+] forae. (z,t) € Q. (2.43)
From (2.8a,b) and (2.43), we immediately deduce that

s. € L=((0,T); WhP' (Q)) N HY((0,T); L*(Q)),  see € L((0,T); H(Q)) N H*((0,T); L*(2)),
(s2 4+ £%)2Vp, € L®((0,T); [L2(N)]Y), (s* +£2)20,0. € L2 (1), (2.44)

and their respective norms are independent of . Similarly to (2.20) and (2.21), the uniform estimates (2.43) and
(2.44) immediately imply that there exist {s, ¢} satisfying (i), (ii) and (iii) of Definition 2.8 and the following
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convergence results for a subsequence of {s., p.}es0 ase —0:

08 — 04 weakly in L? (Q7),
Se — § weak* in L°(0,T; WP (), strongly in L% (Qr),
Se — 8, @ — @ weak® in L*(Qp),
Ot(scpe) — Oe(sp) weakly in L? (QT)
Sepe —> S weak* in L>°(0,T; H'(Q)), strongly in L%(Qr),
e20;p. — 0, strongly in L*(Q )
e2Vp. — 0 strongly in L>(0,T;[L?(Q)]%),
$c0ppe —> P weakly in L?(Qr),
$eVipe — X weak* in L°°(0, T; [L*()]9) (2.45)

for some 1 € L?(Q7) and x € L°°((0,T); [L?(2)]?); where g; € [1,00), but if either (a) d =1 or (b) § > 0 then
q1 € [1,00]. Once again, for brevity, in the above we adopt the same notation for the subsequence.

Step 2: Identifying x and ¢, and passing to the limit in (2.4b). We now show that

st = 520 and sx = s°Vo a.e. in Qp
= Y = sOp and X =sVp a.e. in {s # 0} := {(,t) € Qp : s(x,t) # 0}. (2.46)

This will be achieved by using the definition, and uniqueness, of weak derivatives. For any w € [C}(Q27)]¢,
integration by parts yields that

—/ s2p. divwdrdt = V(s2p.) - wdzdt = / (285(p5v-35 + S?V(pg) -wdz dt.
QT QT

Qr

Letting € — 0 and noting (2.45), we obtain that

f/ s> divw dzx dt :/ (QS@VS + sx) -wdx dt.
QT QT

Hence we have that
V(s*p) = oV (s*) +sx or sy = V(s*p) — pV(s?) = s>V, (2.47)
which implies the desired result on x in (2.46). Similarly, to the above we can show the desired result on

n (2.46). Noting (2.45) and (2.46), we can now pass to the limit ¢ — 0 in a subsequence of (2.4b) to obtain
(2.41b).

Step 3: Strong convergence of s.V.. Similarly to (2.22), we choose n = . — ¢ € L%(0,T; H*(£2)) in (2.4b)
and obtain from (2.45) and (2.46) that

limsup/ ((s:)? +€¥)| Ve |* dz dt = limsup/ ((s:)? 4 €?) [chg Vo — k:gl@tcpg (pe — qﬁ)] dx dt
QT QT

e—0 e—0

= / s° [V Vo — k3 o (¢ — )] dadt. (2.48)
{s#0}

Once again similarly to (2.22), we would like to choose n = ¢ — ¢ in (2.41b) to obtain the desired result.
Unfortunately, this choice is not justified as ¢ ¢ L?(0,T; H'(2)). However, this problem can be overcome by
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applying the following technique adapted from [11]. Firstly, we note that

1 o
/ ¢ ldg=00 = VYo >0, 3aunique u(o) € (0,0) s.t. / ¢ ldg=1. (2.49)
0 Iz

Let f,.,o be defined by

1 if |r| > o, 0 if |r| >0,
fuo(r):==q [y a7 dg i |rl€lpo], = fL.(r)=qr" if |r|€ (n0),. (2.50)
0 if |r|<p 0 if |r] <p

As sV € [L%(s # 0)]9, recall (2.45) and (2.46)), it is easily established for all ¢ > 0 that n = f, ,(s) (¢ — ¢) €
L?(0,T; H}(Q)). Choosing such an 1 in (2.41b) and recalling (2.50), we obtain that

/ s° [k:;lat@(ﬁﬂ — @)+ Ve Vip—9¢)| dedt
{50}

= lim 5% fro(s) [k3 ' 0up(p — ¢) + Ve - V(p — )] da dt
o—0 {5750}
= —lim sV -Vs(p—¢)dedt=0. (2.51)

770 J{u<s|<oIn{s#0}
Noting (2.45), and combining (2.48) and (2.51) yields that
/ |x|? dz dt < limsup/ ((s0)® + &) Ve |* dxdt = / sV ? dz dt. (2.52)
or =0 Jar {s#0}

Similarly to (2.23), we obtain from (2.45), (2.46) and (2.52) that

limsup/ |s: V. — x|? dzdt < / 52|V<,0\2d:cdt—/ |x|? dz dt = 0. (2.53)
e—0 Qr {s#0} Qr
Combining (2.53), (2.46) and (2.52) it follows that

5:Vip. — x = { (S)VSD z i 8 strongly in L%(0,T;[L*()]¢) as € — 0. (2.54)

Step 4: Passing to the limit in (2.4a) with v replaced by scv. Since (2.41b) has already been verified, it
remains to show {s, ¢} also satisfies (2.41a). To this end, for any o > 0 let b,, w, € C*(R) be defined as

0 if r € [0, 0],
bo(r) =1 o [5 (z=2)* -3 (%)?’] if r € [0, 20], and  by(—1) = —by(r) Vr>0;  (2.55a)
r ifr> 20
0 if |r| <o,
walr) =9 o [3(559)* —2(=52)"] it il € [o,20], (2.55b)
1 if |r| > 20

We note that

0<b,(r)<r<by(r)+20 ¥r>0,Vo>0 and forr#0 b (r)—1 as o—0. (2.56)
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If either (a) 6 >0 and p >1if d=1or (b) § > 0 and p > d if d > 2, then we have from (2.45) and (2.54) that
ase —0

se —» s strongly in L*(Qr) = V. — Vo strongly in [L*({|s| > ¢})]? for any o > 0. (2.57)

We now pass to the limit e — 0 in (2.4a) with v replaced by s.v by adapting the approach in (2.26) and (2.27).
Firstly we have for all ¢ > 0, A € R and for all v € L2((0,T); Wy? () N L>°()) that

0<k /Q wg (s) {[1+0|V(s+ Abo (8)0)[P 2]V (s + by (s)v) — [1 4 8| Vse[P72] Vs } - Vs + by (s)v — s.] da dt.
(2.58)

Next from (2.4a) and (2.55a,b) we note for all o > 0, A € R and for all v € L%((0,T); Wol’p* (@) N L*>®(Q)) that
— k1 /Q we(s)[1+ 8| Vs |P2]Vse - V[s + \by(s)v — s.| dx dt
T
=—k /Q [1+6|Vs.|P~2]Vs. - {VIwsg (s)(s 4+ Abo (s)v — s¢)] = [(s + Abg(s)v — 5.)Vws (s)]} dzdt
T
_ /Q W (5)[Orse + kol Vipe 22 + W (52))(5 + Aby (8)v — s2) da dt
T
-k /Q (14 6|Vs|P~2]Vs. - [(s — se)Vwg (s)] dz dt. (2.59)

On noting (2.45), (2.54), (2.55a,b) and (2.57), we now pass to the limit ¢ — 0 in (2.58) and (2.59), and on
combining yields for all ¢ > 0, A € R and for all v € L2((0,T); Wg* () N L°°(Q)) that

0 <My / [1+ 8|V (s 4+ Ay (8)0) [P 2]V (5 + Aby(5)v) - V(by(s)v) dz dt
Qr
+ )\/ [0rs + kax - Vo + W' (s)]bs(s)vdzdt.  (2.60)
Qr

On noting (2.56), |[Vs| = 0 if s = 0, and a generalised Lebesgue dominated convergence theorem, we now pass
to the limit o — 0 in (2.60), which yields for all A € R and for all v € L2((0,T); Wy () N L>()) that

0< A [/ {k1[L+ 8|V (s + Asv)[P7?]V (s + Asv) - V(sv) dz dt + [s0;s + ko|x|* + sW'(s)|v} dzdt| . (2.61)
Qr

Considering the cases of A > 0 and A < 0 separately, we divide (2.61) by A and then pass to the limit A — 0 to
obtain the desired result (2.41a) on noting (2.54).
Finally, similarly to (2.28), it follows from (2.8a,b), (2.42b), (2.45), (2.54) and (2.13a) that for a.a. € (0,7)

E(s,)(t) + /Q.{(('?ts)2 + :—Z(satga)2} dz dt

B(see) D+ [

< liminf
0 o

E—

{(@us)? + ’;—juss)? +&%)(9ipe)? } da dt} < lim B.(g,6) = E(9, ), (2.62)

and hence the desired dissipative energy law (2.42a).
O
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We conclude this section by the following remark.

Remark 2.10. For d > 2 and § = 0, we are only able to establish that a subsequence s. — s strongly in
L9 (Qr) with ¢ € [1,00), recall (2.45). In order to pass to the limit ¢ — 0 on the term involving |V, |? in
(2.4a) with v replaced by s.v, we require s. — s strongly in L>°(Q2r), recall (2.57). This is the only reason
for our p-Laplacian modification, (Ps), of (Pg). In addition, it should be noted that the results, and proofs, of
Theorems 2.4, 2.5 and Corollary 2.6 remain valid when the restriction p > d is weakened to p > 1.

3. CONVERGENCE OF THE FINITE ELEMENT APPROXIMATION

In this section, we present a practical fully discrete finite element method for approximating the regularized
problem (P;s.), (2.4a,b), and the degenerate problem (Pjs), (2.41a,b). Establishing subsequence convergence of
the approximation to (i) (Ps.), with 6 > 0, p > d and ¢ € (0, 1], as both the spatial mesh size parameter, h,
and the time step parameter, 7, tend to zero with fixed ¢ € (0,1]; and (ii) (Ps), with either (a) 6 =0if d =1
or (b)§ >0and p>difd>1, as h, 7 and ¢ all tend to zero. The key elements for the convergence are to
establish a discrete energy law and a discrete maximum principle which mimic the energy law (2.8a,b) and the
maximum principle, (ii) of Definition 2.1, for (Ps.).

3.1. Fully discrete finite element method

For ease of exposition, we will assume that €2 is polygonal if d = 2 and polyhedral if d = 3. Let {7"} be a
regular family of partitionings of  into disjoint open simplices K with hg := diam(K) and h := maxgcgr by,
so that Q = Ug e+ K. In addition, it is assumed that 7" is a (weakly) acute partitioning; that is for (a) d = 2,
for any pair of adjacent triangles the sum of opposite angles relative to the common side does not exceed ; (b)
d = 3, the angle between any faces of the same tetrahedron does not exceed 7.

Let V" denote the finite element space of continuous, piecewise linear functions associated with 77; that is,

V= {v"eC'Q); vk e P, VK eT"}  and V3 :=V"nHJ(Q),

where P is the set of linear polynomials in d variables. Let J be the set of nodes of 7" and {p;};c; the
coordinates of these nodes. Let {x;} ;e be the standard basis functions for V"; that is x; € V" and x;(p;) = &;;
for all 4,7 € J. We introduce 7" : C(Q) — V", the interpolation operator, such that (7"n)(p;) = n(p;) for all
j € J. A discrete semi-inner product on C(Q) is then defined by

(m1,m2)" ::/ﬂﬂ”[m(fc)nz(x)} dr. = wmi(p;)n2(p)), where  wj := (1, x;) > 0. (3.1)
jeJ

For convenience, we will assume that g, ¢ € Wb~ (Q), where r* := max{r, p*} for some r > d, so that one can
set

Vgh = {o" e VI ol —7hg e V) and Vqﬁl ={ntevh.ph —zh¢ c VY. (3.2)

Adopting the same notation as used in ( 5,5)7 (2.7a,b); our fully discrete finite element approximation of
(Ps,e) is then:
(PZ’ET) Let {S2,®%} = {x"g, n"¢}, then for m = 1,2,--- M, find S € V' and ®7" € V¢h such that
m h m|p— m m— m w m
(dtSs ’vh) + kl([l + 5|VS5 ‘p 2]VSs 7vvh) + kQ(‘v(I)s 1|2,7Th[55 vh]) + (W—IQ—(SE )’Uh)h
= (Wi(S;"‘l),vh)h Vol € Vi, (3.3a)
([(S™)% + 2] dy®T, )" + ks (" [(ST)? + €2 V@™, Vi) = 0 vt e V. (3.3b)
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The above finite element method is a semi-implicit scheme. For m = 1, 2,--- M, given S™~! € Vgh and
o1 ¢ V(f one first solves the resulting semi-linear system, (3.3a), with a diagonal monotonically increasing
nonlinearity, for SI*; then the linear system (3.3b) for ®7*. Adopting similar notation to that used in (2.17a,b),
(Pg”g) can be restated as: Find {S.,®.} € C([0,T}; V") x C([0, T}; V(;L) such that S.(-,0) = (7"g)(-), ®-(-,0) =
(x")(-) and

T
/ {06, ™" + k1 ([L + 8| VST P2IVST, Vol) + ko (IVE, |2, 7" [SF "))
0
+(WL(SH) = W/(S), o)} dt =0 Yo € L2(0,T; V), (3.4a)

/T {([(SH)? + €40, @e ™) + ks (n"[(ST)? + 2 VRS, Vi) } dt =0 v € L0, T; V). (3.4b)
0

We end this subsection by recalling some well-known results concerning V". For any K € T", v", n* € V",
and m € {0, 1}:

Jim [|(7 — ™) n|lwie =0 vn e WhT(Q), r > d; (3.5)
—
/ P < [ A ds < @+2) [ 0P (3.6)
K K
‘/ o'y de| < (1 - 7Th)<vh77h)”L1(K) < Chigm‘vﬂHl(K)|77h‘H1*m(K); (3.7)
(L =" " 0" llwmor () < CREE™ MM oo () 1V | ) r € [1,00]. (3.8)

We note that the (weak) acuteness assumption on 7" yields that
/ Vxi-Vx;jde <0 i#j, VKcT" (3.9)
K

Finally let f € C%!(R) be monotone with Lipschitz constant Ly, then it follows from (3.9) and the inequality

(f(a) = f(b))* < Lg(f(a) = f(b)(a—b)  Va,beR

that for all v € V!

/|w |2dx<Lf/ Vol Vrt[f(uM)de VK e T (3.10)

3.2. Convergence of (Pg;) for fixed e >0 as h, 7 — 0

In this subsection, we study the limiting behaviour of the finite element solution {S., ®.} of (Pg,’g Yash, 7 —0
for a fixed € > 0. We having the following analogue of Theorem 2.4.

Theorem 3.1. For any fized 6 > 0, p > d and € € (0,1] , there exits a unique solution {Se, ®.} to the system
(P¥7). In addition, it follows that

Se(i) € [gfvgﬁL] and @gi) € [¢*a¢+]' (311)
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Furthermore, it satisfies the following dissipative energy law for all t € (0,T]

N k k
E?(Sj@:)(m/ T{;|V(atss)l2+;
Q

3

(7"[(8:S:)?] V@2 |2+ 7"[(S)* + EQ]V(atch)?)} dz dt

+/ " [(8,555)2 + %((53)2 +€2)(0,®.)?| dxdt < E:(Whg,ﬂh¢) <O, (3.12a)
Q 3

£

where C is independent of h, 7 and €, T(t) := Ty, if t € (tm—1,tm], m=1,2,--- M, and

1 9o 0 o1, k2 2, 2 2
B8 20(0) = [ {MGIVS.0. 0 + 295,00, 0] + 202 4 10 00l O + 7 W (S 0,1)

2
(3.12b)
Moreover, there exists a subsequence {Sgi), c1>2i)}h77>0 such that as h, 7 — 0

01S. — Ogs.  weakly in L*(Qr), S s, weak* in L0, T; WHP'(Q)),  strongly in L% (Qr),
0y ®. — Orp.  weakly in L*(Q7), dF) — o, weak* in L=(0,T; HY(Q)), strongly in L% (Qp);
(3.13)

where {s¢, v} is a weak solution to (Pse) and ¢; € [1,00), but if either (a) d=1 or (b) § > 0 then ¢1 € [1,00].

Proof. The proof is similar to that of Theorem 2.4. We just stress the main differences. It is easily established
that there exists a unique solution {S7*, &7}, m =1,2,--- M, to (3.3a,b). Hence there exists a unique solution
{Sc, ®.} to (ng) Assuming St € [g_,g4], @771 € [¢_, ¢4 ], noting that it is true for m = 1, and choosing
v =7l [S™ — g ]y, Th[S™ —g_]_ € V" in (3.3a), 0 = 7@ — ¢4 ], T [E™ — ¢_]_ € V* in (3.3b) with the
obvious adaptation of the argument in (2.10), on noting (3.10), yields the desired result (3.11). On choosing
v = dyS™ in (3.3a) and n" = Z—idtégn in (3.3b), and adding yields, similarly to (2.15), the desired result
(3.12a,b), on noting (3.5).

Similarly to (2.20), the energy law (3.12a,b) yields, on noting a Poincaré inequality, and (3.6), the subsequence
convergence results (3.13). Once again for brevity, we adopt the same notation for the subsequence throughout.
Obviously, we still need to establish that the limit {s., ¢.} is a weak solution of (Ps.). Clearly, (3.11), (3.13)
and (3.5) yield that (i)—(iv) of Definition 2.1 hold. We now need to show that {sc, ¢} satisfy (2.4a,b).

Similarly to (2.21), it follows from (3.13), (3.11), (3.8), (3.7) and (3.12a,b) on extracting a further subsequence
that as h, 7 — 0

"[((SF)? 4 £2)0,®.] — (s* 4 €%)0yp. weakly in L?(Qr),
T (SH)? + 2|VeT — (s2 + 3V, weak* in L>(0,T;[L*(Q)]%). (3.14)

For any n € L2(0,T;C§°(Q2)), we choose " = 75 in (3.4b). On noting (3.14), (3.1), (3.7) and (3.5), we can
pass to the limit h, 7 — 0 in (3.4b) for the subsequence of (3.14) to obtain (2.4b) for any n € L?(0,T; C§°(Q)).
The desired result (2.4b) for any n € L2(0,T; H}(Q)), then follows from the denseness of C§°(Q) in H} ().

In order to pass to the corresponding limit in (3.4a), we require some stronger convergence for the third term.
Similarly to (2.22), we obtain from (3.6), (3.4b) with n* = &} — 7"¢, (3.13), (3.14), (3.1), (3.7) and (2.4b) with
n = e — ¢ that

limsup/ [(s;)2+g2]|vq>j\2dxdtgnmsup/ wh[(S;’)2+52]|V<I>2'|2dxdt:/ (2 + %)V | dar dt
h,7—0 JQp h,7—0 JQr Qr

(3.15)
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Similarly to (2.23)—(2.25), it follows from (3.13), (3.14), (3.15) and (3.12a,b) that on extracting a further
subsequence that

SHVeE — 5.V, strongly in L2(0,T;[L*(Q)]%) as h, 7 — 0. (3.16)

Let v € L%(0,T;C5°(Q)). If § = 0, we choose v" = 7/v in (3.4a). It follows from (2.6), (3.11), (3.13), (3.16),

(3.1), (3.7), (3.8) and (3.5) that we can pass to the limit h, 7 — 0 for a subsequence of (3.4a) to obtain (2.4a)
with § = 0 for any v € L?(0,T; C§°(2)).

In order to achieve the corresponding limit in the case & > 0, we have to once again exploit “the decisive

monotonicity trick”. It follows from the monotonicity of |a|P~2a, a € R?, (3.4a), (2.6), (3.11) and s. €

L>(0,T; WHP(Q)) with p > d that for all A € R and for all v € L?((0,T); C§°(Q))

0<k {[1+6]V(se + )P 2]V (se + Av) — [1 + 6| VST P 2IVSE} - Vs + Ao — 5] dzdt
Qr

=k / [1+ 6|V (se + M) P2V (s + M) - V[s. + v — ST dx dt
Qr

g

T
+ / {ka(|Veor [, 7" [ST (sc + M — SD)]) + (84Se + W (SF) = WL(S2), m"[se + Av] — S)"} at
0

e / 1+ 8]VSHP2VSE - V[(T = 7)(s. + Av)] da dt. (3.17)
Qr
It follows from (3.8), (3.11) and an inverse inequality that
T u T
U= S (st o] = S e < CH2OD [Vt - St (319
0 0

On noting (3.13) with ¢1 € [1,00], (3.1), (3.7), (3.5), (3.11), (3.16), (3.18) and as p > d, we now pass to the
limit A, 7 — 0 in a subsequence of (3.17) yielding for all A € R and for all v € L?((0,7); C§°(Q2)) that

0< )\/ {1 [1 48|V (52 + M) [P2]V (52 + M) - VU + [0pse + kose [V |> + W (se)|v} dzdt. (3.19)
Qr

Considering the cases of A > 0 and A < 0 separately, we divide (3.19) by A and then pass to the limit
A — 0 to obtain, on combining with the previously derived § = 0 case, the desired result (2.4a) for any
v e L2((0,T); C5 ().

The desired result (2.4a) with § > 0 for any v € L?(0, T Wol’p* (Q) N L>(R)) then follows from noting that
C§°(Q) is dense in Wol’p* (Q)NL>(£), with the strong topology on Wol’p* (Q) and the weak* topology on L>(Q),
e.g. adapt the proof of Lemma 2.5 [6, p119]. O

3.3. Convergence of (Pg;) as h, 7,¢ =0

Theorem 3.2. Let either (a) § =01ifd=1 or (b) § >0 and p > d if d > 1. Then there exists a subsequence
{Se, ®:}hre>0 such that as h, 7,6 — 0

Se — s strongly in L (Qr), S:®. — sp  strongly in LI (Qr); (3.20)

where {s,¢} is a weak solution to (Ps) and g1 € [1,00], q2 € [1,00).

Proof. Combining Theorem 2.9, Theorem 3.1 and (2.45) yields the desired result. O
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4. NUMERICAL EXPERIMENTS

In this final section we present several numerical experiments in two space dimensions to gauge the fully
discrete finite element method, (Pg”z ), developed in the previous section. In addition, our numerical results
reveal some interesting features, such as existence, formation and annihilation of line singularities (defects),
of the Ericksen model (Py), (1.1a,b). In all the numerical experiments below, unless mentioned otherwise, we
choose Q = [0,1]%, 6 = 0, ky = ko = k3 = 1, and W (s) = 5(s* — 1), cf. [2]. Throughout, we use a uniform
isosceles right-angled triangulation of Q with h = /2 h and a uniform time step T .

We start with an academic test example to highlight the numerical difficulties arising from the degeneracy
of the problem (Py).

Test 1: Let {F(x1,x2,t),G(x1,22,t)} be chosen such that

2
s(z1,xa,t) :4(x1(1—:v1)x2(1—xg)(1+t2) -0.1), o(z1, T2,t) = %(1—1—152) (4.1)

solve the problem
s — As+ | Vo |*’s +W'(s) = F, s°0wp —div(s’Ve)=G  in Q. (4.2)

We remark that in order to approximate the solution of (4.2), the nonhomogeneous terms {F,G} have to be
added to the right-hand sides of the fully discrete scheme (3.3a,b), and of the course the initial and boundary
conditions need to be modified. Obviously these modifications destroy the dissipative energy structure and the
maximum,/minimum principles for (Py), (Po) and (Pg;) We note that {(z,t) € Qr : s(z,t) = 0} is not empty

for t > \/g and hence the degeneracy in the system plays a crucial role.

We computed the unique numerical solution {Sc,®.} to the modified scheme (Pg:g ), (3.3a,b), with fixed

h = 0.02 and T = 0.0025 with two different choices of e: 0.01 and 0.11. The first two rows of Figure 1 show
the computed solution {®.(-,t),S:(-,t)} with e = 1072 at ¢t = 0.75, 1.125 and 1.5625. A significant error in
(-, t) is clearly visible where {z € Q : S.(x,t) = 0} # 0. However, this error is significantly reduced when
the regularization parameter, ¢, is increased to 0.11. This can be seen from the bottom row of Figure 1, where
®.(-,t) with e = 0.11 is plotted at ¢ = 1.125, 1.5 and 1.5625. The above observation suggests that the mesh
sizes h and 7 should be reduced in line with the regularization parameter €, otherwise, the accuracy of the
approximation {S.,®.} is not guaranteed. For this problem we observed also (slow) strong convergence of S,
to s in L>°(0,T; L?(£2)), but no strong convergence of ®. to ¢ in L>°(0,T; L*(Q2)) as h, 7, ¢ — 0. This supports
our convergence results in Subsection 3.3.

The system (Pg), (1.1a,b), is driven solely by the initial and boundary conditions on s and ¢. For the
analysis in the previous sections, we chose the compatible initial/boundary data (2.1,b). In order to illustrate
the formation, annihilation and evolution of line singularities/defects in such a model, it is convenient to choose,
in some cases, incompatible data.

Test 2: Throughout these experiments, we take

T for 1 > 0.5,

p(z1,2) = { 0 otherwise. -

With this choice, the director field n := (cos(¢), sin(p)) initially has a line singularity at x; = 0.5. Firstly, we
take the following incompatible initial/boundary data for s

s(x1,x2,0) = max{z; — 0.5,0} Vz € Q, s(x1,x2,t) =21 — 0.5 Vo€ o, t>0. (4.4)

We computed the unique numerical solution {S;, ®.} to the modified scheme (Pg:g ) with 7 = 0.04, 7 = 0.001 and
e = 0.07. The first two rows of Figure 2 show the computed director field N.(+,t) := (cos(P.(+, 1)), sin(P. (-, ?)))
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Our last test studies the generation of line singularities in N, in particular, for large times. We
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s(z,y,t)
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