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Abstract. We formulate a version of the o-minimal group con-
jectures from [11], which is appropriate for groups G definable in
a (saturated) p-adically closed field K, We discuss the conjectures
in two cases, when G is defined over Qp and when G is of the form
E(K) for E an elliptic curve over K.

1. Introduction

In [11] questions were raised concerning recovering a compact Lie
group from a definable group G in saturated o-minimal structures,
by quotienting by a type-definable subgroup of G of bounded index.
Related work was done in [1], [2] and [9]. As Gregory Cherlin suggested
to us, it is rather natural to consider p-adic analogues of the questions.
This is what we discuss in the present paper. The right level of model-
theoretic generality is probably that of so-called P -minimal expansions
of p-adically closed fields. However we restrict ourselves here to p-
adically closed fields. In fact for notational convenience, we look at
groups definable in a saturated elementary extension (K, +, ·) of the p-
adic field Qp. So one could view this as the study of uniformly definable
families of groups in Qp.

Before stating the conjectures and results of this paper, we give some
definitions, state some elementary facts, and recall some facts about
p-adic analytic groups. We refer to [5] for background on compact
groups and profinite groups, and to [4] for background on p-adic ana-
lytic groups.

To begin with let M̄ be a saturated model (of cardinality κ > |T | say
where κ is inaccessible) of an arbitrary complete theory T in a language
L, and let G be a group definable in M̄ . Let FG denote the family of
definable subgroups of G of finite index.

Definition 1.1. (i) Suppose that the family FG of definable subgroups
of G of finite index has cardinality < κ. Then we define G0 to be ∩F ,
and we also say that “G0 exists”.
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(ii) Suppose that there is a smallest type-definable subgroup of G of
bounded index. Them we call this group G00 and we say G00 exists.

Lemma 1.2. (i) If G0, G00 respectively, exists, then it is a normal
subgroup of G which is definable, respectively type-definable, over the
same set of parameters G is. If G00 exists then so does G0 and G00 is
a subgroup of G0.
(ii) G0 exists if and only if for each L-formula φ(x, y) and n < ω there
are only finitely many subgroups of G of index n defined by φ(x, b) for
some b. In this case F has cardinality ≤ |T |. The group G/G0 then
has cardinality ≤ 2|T |.
(iii) Likewise, if G00 exists then G/G00 has cardinality at most 2|T |.

Recall the logic topology on quotients of type-definable sets by type-
definable equivalence relations of bounded index: If X is a type-definable
set and E a type-definable equivalence relation on X with boundedly
many classes, then we call Z ⊆ X/E closed if π−1(Z) ⊆ X is type-
definable, this is a topology on X/E, and under this topology X/E is
a compact (Hausdorff) space.

Remark 1.3. (i) If G0 exists, then G/G0 with the logic topology is a
compact totally disconnected (namely profinite) topological group.
(ii) If G00 exists then G/G00 with the logic topology is a compact topo-
logical group and G/G0 is its maximal profinite quotient.

Supposing that G0 exists we shall, for obvious reasons, call G/G0

the definable profinite completion of G.

Lemma 1.4. Suppose that T does not have the independence property.
Then for any definable group G in M̄ , G0 exists.

Proof. Let φ(x, y) ∈ L and n < ω. Suppose for a contradiction that
there are infinitely many distinct subgroups of G of index n defined by
φ(x, b) for some b. So there is an indiscernible sequence (bi : i < ω)
such that each φ(x, bi) defines a subgroup of G of index n, and the
φ(x, bi) are pairwise inequivalent. For J a finite subset of ω let HJ be
defined by ∧i∈Jφ(x, bi). Let m denote the subset {0, ..,m − 1} of ω.
By our assumption that T does not have the independence property
and [14] there is k < ω such that for each m ≥ k, Hm = HJ for some
J ⊆ m of cardinality k. Note that Hk is a proper subgroup of Hk+1.
But the latter equals HJ for some J ⊂ (k + 1) of cardinality k and
by indiscernibility Hk and HJ have the same (finite) index in G, a
contradiction.

Question Assume T does not have the independence property and G is
a group definable in M̄ . Does G00 exist?
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We now recall some facts about p-adic analytic groups ([4]). We assume
familiarity with the topology on the p-adic field Qp, and the notion of
a a (p-adic) analytic function. A p-adic analytic group (or p-adic Lie
group) G is a p-adic analytic manifold with a group operation which is
p-adic analytic. As such G is also a topological group. Any p-adic Lie
group has an open subgroup which is compact. Moreover any compact
p-adic Lie group G has an open subgroup H (of finite index) such that
H, as a topological group, is pro-p, namely H has a collection of open
normal subgroups {Hi : i ∈ I} such that ∩i∈IHi = {1} and each H/Hi

has order a power of p.
However not every pro-p group is (the underlying topological group

of) a compact p-adic Lie group. Necessary and sufficient conditions for
a topological group G to be a compact p-adic Lie group are: (a) G is
profinite and finitely generated and (b) G has a open pro-p subgroup
H such that H/H

p
is commutative. (Here H

p
denotes the closure of

the subgroup of H generated by pth powers.)

As our general conjectures are related to finding an “intrinsic” stan-
dard part map, it is worth saying a few words about the standard part
map from nonstandard analysis. Let X be an arbitrary compact Haus-
dorff space. Let V be the universe of sets. Let ∗V be an elementary
extension, and ∗X the nonstandard extension of X in ∗V . For any x ∈
∗X there is a unique y ∈ X such that x ∈ ∗U for every open subset
of X containing y. We write y = st(x), and call st:∗X → X the stan-
dard part map. If G is a compact group, ∗G has a group structure and
st:∗G → G is a (surjective) homomorphism, whose kernel is the group
of “infinitesimals” of ∗G.

The general point of the conjectures from [11] and in the present pa-
per is that for suitable groups G definable in suitable saturated struc-
tures M̄ , the map G → G/G00 identifies with the standard part map
∗(G/G00) → G/G00 where G/G00 is equipped with the logic topology.

Finally we discuss (the model theory of) p-adically closed fields and
groups definable therein. Possible references are [15] and [3]. We view
Qp as a structure in the language of rings Lr. The valuation ring Zp

is definable in Qp. Hence the the value group (Z, +, <), residue field
(Fp, +, .), as well as the valuation v : Qp → Z ∪ {∞} and residue map
from Zp to Fp are interpretable. By a p-adically closed field we mean a
model of Th(Qp) If K is such we let R denote the valuation ring, and
Γ the value group. The residue field is of course still Fp. A p-adically
closed field is then precisely a Henselian valued field, whose residue
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field is Fp and whose value group is a model of Pressburger arithmetic,
namely Th(Z, +, <). Macintyre’s quantifier-elimination theorem states
that Th(Qp) (in the ring language) eliminates quantifiers after adjoin-
ing predicates Pn for the nth powers of the multiplicative group for all
n. Qp is a locally compact topological field, with basis given by the sets
v(x − a) ≥ n for a ∈ Qp and n ∈ Z, the value group. Zp is compact.
Note the topology is “uniformly first order definable” that is one can
quantify over open neighborhoods. All of this remains true for K an
arbitrary p-adically closed field, except the topology is longer locally
compact. Any definable subset of Kn has a well-defined dimension:
the algebraic-geometric dimension of its Zariski closure. Equivalently,
as model-theoretic algebraic closure coincides with field-theoretic alge-
braic closure, algebraic closure gives a pregeometry on K and dimension
can be calculated from this is the usual way. Definable subsets of Kn

will also be called semialgebraic sets.
From now on K denotes a p-adically closed field, R its valuation

ring and Γ its value group. In analogy with the o-minimal context we
have the notion of an n-dimensional definable manifold over K (or a
semialgebraic manifold over K). Such an object is a topological space
X with a covering by finitely many open subsets U1, .., Um, and home-
omorphisms of Ui with some definable open Vi ⊂ Kn for i = 1, ..,m,
such that the transition maps are definable (and of course continu-
ous). If the transition maps are Ck we call X a definable Ck manifold
over K (of dimension n). A definable manifold over K is clearly then
something interpretable in K.

By a definable (or semialgebraic) group over K we mean a group
whose universe is a definable subset of some Kn and whose group op-
eration is definable. The methods of [13] together with the structure of
definable functions show that any definable group G can be equipped
(uniquely) with the structure of a definable manifold over K such that
the group operation is continuous (in fact C∞). Any definable group
will be always considered with the topology coming from this definable
group manifold topology.

In the special case that K = Qp, then G is definably equipped with
the structure of a p-adic Lie group. We will call the latter a semialge-
braic p-adic Lie group. Note:

Remark 1.5. Any open compact subgroup of semialgebraic p-adic Lie
group is semialgebraic.

The following was asked in [12]
Problem. Is any open (not necessarily compact) subgroup of a semial-
gebraic p-adic Lie group semialgebraic?
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This problem was answered in [8] for SL2(Qp), and it was pointed out
that results of Prasad yield it for arbitrary semisimple groups in place
of SL2. The understanding of imaginaries in the p-adics ([6]) probably
makes the problem currently accessible.

Following [10] in the o-minimal case, for X a definable manifold over
K, we say that X is definably compact, if for any definable continuous
function f : R \ {0} → X, limx→0f(x) exists in X. We leave it to
the reader to check (i) if K = Qp definable compactness agrees with
compactness, and (ii) for X a definable subset of Kn with the induced
topology, X is definably compact if and only if X is closed and bounded.

Let us note by Lemma 1.4 that for G definable in K, G0 exists.
In general the “interesting” examples of definable groups in a p-

adically closed field K will be groups of the form G = H(K) where H
is an algebraic group defined over K. Among definably compact groups
are A(K) for A any abelian variety over K, and GLn(R).

We can now state some p-adic versions of the questions from [11]

Naive conjecture.
Let G be a definably compact group definable in a saturated p-adically
closed field K. Then
(i) G00 exists and equals G0.
(ii) G/G0 (with the logic topology, namely as a profinite group) is a
compact p-adic Lie group of dimension equal to dim(G).

In section 2 we observe that the naive conjecture holds in the case that
G is defined over Qp. We will also give a theory of “generic” sets in this
case. However in section 3 we will see by considering suitable elliptic
curves that both (i) and (ii) fail in general. So we make the following
modified) conjecture, which now concerns all definable groups not just
definably compact ones.

Refined conjecture.
Let G be a group definable in a saturated p-adically closed field. Then
G has an open definable subgroup H such that
(i) H00 exists and equals H0,
(ii) H/H0 is a compact p-adic Lie group of dimension equal to dim(H) =
dim(G).

In section 3 we observe that (ii) of the refined conjecture holds for
G of the form E(K) where E is an elliptic curve defined over K. It
would be even better to include in the refined conjecture an intrinsic
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characterization of H. Note that the refined conjecture will be true for
G defined over Qp.

Thanks to Tom Scanlon for some helpful comments.

2. The tautological case

We work in the saturated p-adically closed field K, an elementary
extension of Qp and follow earlier notation (Γ for the value group etc.).

We will call elements of K that have valuation larger than all el-
ements of Z infinitesimals and and those that have valuation smaller
than all elements in Z transfinite.

If a ∈ K is not transfinite (there is some m ∈ N such that v(a) ≥ n)
by completeness of Qp there is some ȧ ∈ Qp such that a− ȧ is infinites-
imal. We will call ȧ the standard part of a. Given a polynomial p(x)
with none of its coefficients transfinite ṗ(x) ∈ Qp be the polynomial we
get by changing all the coefficients of p for their standard part.

Lemma 2.1. Given any polynomial p(x) with n variables and any Qp-
definable n-ball U , there is a Qp-definable n-ball U0 ⊂ U where v(p(x))
is constant. If none of the coefficients of p(x) is transfinite, then we
can choose U0 such that v(p(x)) = k ∈ Z for all x in U0.

Proof. Let aI be the coefficient of p(x) with smallest valuation. Let
p(x) = aIq(x) where all the coefficients of q(x) have positive valuation
and one of them is equal to 1. So q̇(x) exists and is different from 0.
Let a be any tuple in Qp which is not a root of q̇ and let v(q̇(a)) = m.

By continuity of q̇ in Qp there is some open n-ball U0 ⊂ U centered
around a such that v(q̇(y)) = m for all y ∈ U0(Qp) and by elemen-
tary embeddedness v(q̇(y)) = m for all y ∈ U0. We may assume that
U0 has no elements with transfinite coordinates: U0 is a product of
balls centered around a = 〈a1, . . . , an〉 ∈ Qp; we can even assume that
v(yi) = v(ai) for all y〈y1, . . . , yn〉 ∈ U0.

Claim. v(q(y)) = m for all y ∈ U0.
Proof of claim. Suppose not so v(q(b)) 6= v(q̇(b)) = m for some b ∈ U0

and v((q− q̇)(b)) ≤ m. All the coefficients in q− q̇ are infinitesimal and
none of the bi’s are transfinite (by assumption on U0) so the valuation
of each of the monomials in (q − q̇)(b) is bigger than all integers. The
claim follows.

By the claim, v(p(y)) = v(aI) + v(q(y)) = v(aI) + m for all y ∈ U0,
which completes the proof of the lemma.
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Proposition 2.2. Let X ⊆ Kn be open, definable and defined over Qp.
Let X = Y1 ∪ Y2, where the Yi are definable in K. Then one of the Yi

contains an open Qp-definable subset.

Proof. By quantifier elimination, (see [7]) any definable set in a p-
adically closed field is a Boolean combination of sets of the following
form:

(1) Graphs of polynomials.

(2) h−1(R) ∩ {x|g2(x) 6= 0} where h(x) = g1(x)
g2(x)

and g1, g2 are poly-

nomials.
(3) h−1(Pm) where h(x) = g1(x)

g2(x)
, m ∈ Z and g1, g2 are polynomials.

We may assume that X is a Qp-definable n-ball X = B1 × · · · × Bn

and by quantifier elimination it is enough to show the proposition when
Y1 is a definable set satisfying one of the above descriptions.
Case 1: Let

Y1 = {(x̄, y) | p (x̄) = y} .

Let B = B1 × · · · × Bn−1 and X = B × Bn. By Lemma 2.1 there is
some B0 ⊂ B such that v(p(x̄)) = γ for all x̄ in B0 and some γ ∈ Γ.
Let mZ such that m 6= γ and let m and a be such that the ball B=m(a)
of radius m around a is contained in Bn. Then B0×B=m(a) is a subset
of X containing no point in Y1, so it is contained in Y2.

Case 2:
Let Y1 be a set of type 2 in B,

Y1 := {x | v (g1(x))− v (g2(x)) ≥ 0} ,

= {x | v (g1(x)) ≥ v (g2(x))} .

Using Lemma 2.1 twice, we can find some Qp definable n-ball U0 ⊂ X
where both v(g1) and v(g2) are constant with values γ1 and γ2 respec-
tively. If γ1 ≥ γ2 then U0 is contained in Y1. Otherwise, U0 ∩ Y1 = ∅
and U0 ⊂ Y2.

Case 3: Since there are finitely many residues in the multiplicative
group modulo powers of n, it is enough to prove the case where

Y1 := {x | p(x) ∈ Pm}
for any polynomial p(x).

Also, we can always find powers of m of any valuation as small as we
want. In particular if aI is the coefficient of p(x) of smallest valuation,
we can find some b ∈ Pm(F ) such that

0 ≤ v(aI)− v(b) ≤ m;
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by taking p′(x) = 1
b
p(x) we may assume that all the coefficients in p(x)

have positive valuation and that at least one of them is non infinitesi-
mal.

Let U0 ⊂ X be such that v(x) = k ∈ Z for any x ∈ U0 and by
Hensel-Rychlik Y1 ∩U0 are finite unions of Qp-definable balls of radius
2v(m) + 2k.

As usual a definable subset X of a definable group G (in some structure)
is said to be left generic if finitely many left translates of X cover G.

Now let G be a definably compact group definable in K, and defined
with parameters from Qp. So in particular G(Qp) is a compact p-adic
Lie group.

Corollary 2.3. Let X ⊆ G be K-definable. Then
(i) X is left generic if and only if X contains a translate of a definable
subgroup of finite index if and only if X is right generic.
(ii) If X = X1 ∪ X2 with Xi definable, and X is generic then one of
the Xi is generic.
(iii) Any generic definable subset of G has a point in G(Qp)

Proof. (i) Suppose finitely many left translates of X cover G. By
Proposition 2.2, one of them, say a ·X contains an open Qp-definable
subset U of G. So U(Qp) is open in G(Qp) and so as the latter is
profinite, contains a translate b · H of an open subgroup H of G(Qp)
of finite index. H is definable in Qp, so let H(K) be its interpretation
in K. Then X contains a−1 · b ·H(K). It follows that X is also right
generic.
(ii) By (i) let U be an open (in G) Qp-definable subset of X. Then
U = (U ∩X1) ∪ (U ∩X2). By Proposition 2.2, one of U ∩X1, U ∩X2

contains an open Qp-definable subset of G and hence a translate of an
open subgroup of finite index. Hence one of X1, X2 is generic.
(iii) follows from (i), as every coset of a finite index definable subgroup
of G is defined over Qp (by 1.4).

Corollary 2.4. (The naive conjecture holds.) G00 exists and equals
G0. So G/G00 is G(Qp).

Proof. Let H be any type-definable subgroup of G of bounded index.
Let (Xi : i ∈ I) be a (small) family of definable subsets of G such that
H = ∩i∈IXi. As H has bounded index in G it follows that each Xi

is generic. As H is a group, we may choose the Xi such that also
H = ∩i∈IXi · X−1

i . By Corollary 2.3 (i) each Xi · X−1
i contains a

definable subgroup Hi of finite index in G. Thus G0 ⊆ ∩i∈IHi ⊆ H.
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We have shown that G0 is the smallest type-definable subgroup of G
of bounded index. But G0 is clearly the group of infinitesimals of G,
hence is the kernel of the standard part map from G onto G(Qp).

Corollary 2.5. Let G be a any group definable in K, and defined over
Qp. Then the refined conjecture holds.

Proof. G(Qp) is a semialgebraic p-adic Lie group. It has an open
compact subgroup which will be semialgebraic and thus of the form
H(Qp) for a Qp- definable subgroup H of G. Corollary 2.4 then applies
to H.

3. Elliptic curves over p-adically closed fields

We start by recalling from [16] some facts concerning elliptic curves,
their isomorphisms, and their points over p-adic fields. We may at
some point assume p 6= 2 for simplicity.

K will for now be an arbitrary perfect field. An elliptic curve E over
K is a smooth projective curve over K equipped with a distinguished
K-rational point 0 say. E then has a unique structure of an algebraic
group over K with identity 0. We will say that E is in Weierstrass form
(over K) if it is given by a smooth cubic in P2 with affine equation
(*) y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6,
where ai ∈ K. The identity element of the elliptic curve is the point at
infinity, namely the point in P2 with homogeneous coordinates [0, 1, 0].
Moreover any such smooth cubic over K gives an elliptic curve over K,

Fact 3.1. ([16], III.3.1)
(i) Any elliptic curve over K is isomorphic over K to an elliptic curve
in Weierstrass form.
(ii) If E, E ′ are elliptic curves over K in Weierstrass form, and E is
isomorphic over K to E ′ then such an isomorphism can be given by
some change of variables x = u2x′ + r, y = u3y′ + su2x′ + t, with
u, r, s, t ∈ K and u 6= 0. Conversely any such isomorphism preserves
Weierstrass form.

Given an elliptic curve E over K, we will in general say that (*) is a
Weierstrass equation for E over K if the ai ∈ K and E is isomorphic
over K to the curve given by (*).

To a given Weierstrass equation for an elliptic curve over K is asso-
ciated its discriminant ∆ a certain polynomial function of the ai.

We now specialize to the case where K = Qp (in fact more generally
a local field which is complete with respect to a discrete valuation).
If an elliptic curve E is defined by an equation with coefficients in Zp

then we can apply the reduction map to these coefficients to obtain a
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(possibly) singular curve Ẽ over Fp. As we can choose homogeneous
coordinates for any point P ∈ E(Qp) we can also form a reduction map

from E(Qp) to E(Zp) which takes P to P̃ .
By a minimal Weierstrass equation for an elliptic curve over Qp, we

mean a Weierstrass equation (*) over Qp for E, such that the ai ∈
Zp, and v(∆) (which will be a positive integer) is minimized. The
definitions of good, (split) multiplicative, and additive reduction of E
can be given as a function of a minimal Weierstrass equation for E.
But for now we just recall some canonical subgroups of E(Qp):
Fix a minimal Weierstrass equation for an elliptic curve E over Qp.

Let E0(Qp) be the set of points P ∈ E(Qp) such that P̃ is in Ẽns(Fp)

(where Ẽns is the set of nonsingular points of Ẽ). Let E1(Qp) be the

set of P ∈ E(Qp) such that P̃ = 0̃ (where 0 is the identity element of
E). Clearly E1 is a subset of E0. With this notation:

Fact 3.2. (i) E0(Qp) and E1(Qp) are subgroups of E(Qp),
(ii) E(Qp)/E0(Qp) is either a group of order at most 4, or a cyclic
group of order v(∆) = −v(j) (where j is the j-invariant of E).
(iii) E0(Qp)/E1(Qp) is isomorphic (via the reduction map) to the group

Ẽns(Fp).
(iv) E1(Qp) is isomorphic (via the p-adic logarithm map) to the additive
group Zp.

The second possibility in 3.2(ii) above corresponds to when E has
“split multiplicative reduction”, and the order of the cyclic group can
be anything one wants. These are the so-called Tate curves discussed
in Appendix C, section 14, of [16], and in more detail in Chapter V of
[17]. More precisely for every q ∈ Qp with v(q) > 0, we can consider
the p-adic analytic group Qp

∗/ < q > (where < q > denotes the cyclic
subgroup of the multiplicative group generated by q) and find a p-adic
analytic isomorphism of it with an elliptic curve Eq given by y2 +xy =
x3 + a4x + a6 where a4 and a6 are given by certain power series in
q. This is already a minimal Weierstrass equation for Eq. Under this
isomorphism Zp

∗ goes to (Eq)0(Qp), so this induces an isomorphism
fq of Eq(Qp)/(Eq)0(Qp) with Z/v(q)Z (a quotient of the value group
Z). Although each subgroup nZ is definable, the subgroups are not
uniformly definable as n varies. On the other hand we can also view
Z/nZ as the the interval [0, n) in Z with addition mod n, and these
groups ARE now uniformly definable as n varies. Note also that the
subgroups (Eq)0(Qp) of Eq(Qp) are uniformly definable as q varies. We
will point out that the isomorphisms fq are uniformly definable in the
field structure on Qp. This easily follows from the analysis in [17].
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Let us recall first the isomorphism from Qp/ < q > to Eq(Qp): So
q ∈ Qp

∗ and v(q) > 0. Let X(u, q) and Y (u, q) be the following power
series:

(1) X(u, q) = 1
u+u−1−2

+
∑

n≥1(
qnu

1−qnu)2
+ qnu−1

1−qnu−1)2
− 2 qn

(1−qn)2
)

(2) Y (u, q) = u2

(1−u)3
+

∑
n≥1(

(qnu)2

(1−qnu)3
− qnu−1

(1−qnu−1)3
+ qn

(1−qn)2
)

Fact 3.3. ([17], V.3 and 4)
(i) The series X(u, q), Y (u, q) converge for u ∈ Qp

∗\ < q >, and the
map φq taking u ∈ Qp

∗ to (X(u, q), Y (u, q)) and < q > to the identity
is a surjective homomorphism with kernel < q > from Qp

∗ to Eq(Qp).
(ii) The image of Zp under φq is precisely (Eq)0(Qp).
(iii) For each nonzero coset C of (Eq)0(Qp) in Eq)(Qp) exactly one of
the following occurs:
(a) 0 < v(x) = v(y) < v(q)/2, for all (x, y) ∈ C
(b) 0 < v(x) < v(q)/2 and v(x) < v(y), for all (x, y) ∈ C.
(c) v(x) = v(x + y) = v(q)/2 for all (x, y) ∈ C

Lemma 3.4. Let u ∈ Qp with 0 < v(u) < v(q). Then
v(X(u, q)) ≥ min(v(u), v(q)−v(u)) with equality if v(u) 6= v(q)−v(u),
and
v(Y (u, q)) ≥ min(2v(u), v(q) − v(u)) with equality if 2v(u) 6= v(q) −
v(u).

Proof. This is immediate from the expressions above for X(u, q) and
Y (u, q).

Corollary 3.5. The map fq which takes elements of (Eq)0(Qp) to 0 and
elements of Eq(Qp)\(Eq)0(Qp) to v(x) if v(x) < v(y) and to v(q)−v(x)
if v(x) = v(y), is a surjective homomorphism from Eq(Qp) to the group
([0, v(q)), +(modv(q)), with kernel (Eq)0(Qp).

Note that v(q) is definable uniformly from the coefficients of Eq (as
v(q) = v(∆)). So clearly by the Corollary we have established that the
maps fq : Eq(Qp) → [0, v(q)) ⊂ Z are uniformly definable as Eq varies.

Consideration of “nonstandard” Tate curves will show the naive con-
jecture from section 1 to be false, as we now point out.

Let K now be a saturated elementary extension of the field Qp.

Definition 3.6. By a nonstandard Tate curve we mean an elliptic
curve over K which is a “nonprincipal ultraproduct” of Tate curves
(Eqi

: i < ω) with v(qi) < v(qj) for i < j. Namely E is defined by
an equation y2 + xy = x3 + b4x + b6 where tp(b4, b6) is a limit point of
tp(ai

4, a
i
6) with (ai

4, a
i
6) the appropriate coefficients of Eqi

.
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Let E and {qi : i < ω} be as in the definition above. Then by uniform
definability of the maps fq there is a definable homomorphism from
E(K) onto a group of the form ([0, a), +(moda)) where a ∈ Γ realizes
the corresponding limit of {tp(v(qi) : i ∈ ω}. In particular a ≥ n for all
n ∈ Z. It is now routine to construct the correct infinitesimal subgroup
of ([0, a), +(moda)): for each n > 0 let bn ∈ Γ be such that nbn is
congruent to a modulo some element of Z. Then {x ∈ Γ : 0 ≤ x < bn for
all n > 0} is a type-definable subgroup of ([0, a), +(moda)) of bounded
index which is not the intersection of definable subgroups. It’s preimage
in E(K) has the same property. Hence we have:

Proposition 3.7. For every nonstandard Tate curve E over K, E(K)
has a type-definable subgroup of bounded index which is not the inter-
section of definable subgroups. So E(K)0 6= E(K)00.

On the other hand, fix a prime l different from p and let qi be such
that v(qi) = li. Let E be a nonprincipal ultraproduct of the Eqi

.
By Corollary 3.5, each Eqi

(Qp) has a definable quotient isomorphic to
the cyclic group of order li. Hence for each n, E(K) has a definable
subgroup of index li. So E(K)/E(K)0 could not have a subgroup of
finite index which is pro-p. Namely:

Proposition 3.8. There is a nonstandard Tate curve E over K such
that E(K)/E(K)0 (the definable porofinite completion of E(K)) is not
a compact p-adic Lie group.

The next result shows that refined conjecture from section 1 to be true
for elliptic curves.

Proposition 3.9. For any elliptic curve E over K, E(K) has a de-
finable open subgroup H such that H/H0 is isomorphic (as a profinite
group) to Zp.

Proof. By Fact 3.1 we may assume that E is given in Weierstrass
form. As any definable subset of Γ≥0 has a least element, and as the
transformations preserving Weierstrass form are uniformly definable,
we find a “minimal Weierstrass equation”
y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6

for E. Let E1(K) be the set of points P of E(K) such that P̃ = 0̃.
Now in Qp, whenever E ′ is an elliptic curve in minimal Weierstrass form
then E ′

1(Qp) is isomorphic to Zp. It follows by transfer that E1(K) is
(as an abelian group) a saturated model of Th(Zp).
Claim. E1(K)0 = ∩np

nE1(K).
Proof. By E1(K)0 we mean of course in the sense of the the p-adically
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closed field K, not just the abelian group E1(K). However note that
∩np

nE1(K) is torsion-free and divisible, hence has NO subgroups of
finite index. This gives the claim.
It now follows, as (E1(K), +) is a model of Th(Zp) that E1(K)/E1(K)0)
is precisely Zp and we finish.

Finally we observe that our analysis yields:

Remark 3.10. (i) For E an elliptic curve over K, the definable profi-
nite completion of E(K) itself is a compact p-adic Lie group of dimen-
sion 1, as long as E is not a nonstandard Tate curve.
(ii) Let E be any elliptic curve over K. Then E(K) is not definably
connected-by-finite. Namely E(K)/E(K)0 is infinite.
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