
A remark on Zilber’s pseudoexponentiation∗

David Marker
University of Illinois at Chicago

marker@math.uic.edu

February 24, 2005

1 Introduction

When studying the model theory of

Cexp = (C,+, ·, exp, 0, 1)

the first observation is that the integers can be defined as

{x : ∀y exp(y) = 1→ exp(xy) = 1}.

Since Cexp is subject to all of Gödel’s phenomena, this is often also the last
observation. After Wilkie proved that Rexp is model complete, one could ask
the same question for Cexp, but the answer is negative.

Proposition 1.1 Cexp is not model complete

Proof If Cexp is model complete, then every definable set is a projection
of a closed set. Since C is locally compact, every definable set is Fσ. The
same is true for the complement, so every definable set is also Gδ. But Q is
definable and a standard corollary of the Baire Category Theorem tells us
that Q is not Gδ.

∗Partially supported by NSF grant DMS-0200393. This work was completed while I
was a member of the Isaac Newton Institute for the Mathematical Sciences and I am
grateful for their support.
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Still, there are several interesting open questions about Cexp.

• Is R definable in Cexp?

• (quasiminimality) Is every definable set countable or co-countable?
(Note that this is true in the structure (C,Z,+, ·) where we add a predi-
cate for Z).

• (Mycielski) Is there an automorphism of Cexp other than the identity
and complex conjugation?1

A positive answer to the first question would tell us that Cexp is essentially
second order arithmetic, while a positive answer to the second would say that
integers are really the only obstruction to a reasonable theory of definable
sets.

A fascinating, novel approach to Cexp is provided by Zilber’s [6] pseu-
doexponentiation. Let L be the language {+, ·, E, 0, 1}. Zilber shows that
there is an Lω1,ω(Q)-sentence Φ, where Q is the quantifier “exists uncount-
ably many”, about algebraically closed exponential fields such that Φ has a
unique model of power κ for each uncountable cardinal κ.

We briefly describe Φ. If (K,+, ·, E) |= Φ, then:

• K is an algebraically closed field of characteristic 0;

• E is a homomorphism from (K,+) onto (K×, ·) and there is ν ∈ K
transcendental over Q such that the kernel of E is Zν;

• (Schanuel’s Conjecture) if z1, . . . , zn ∈ K are linearly independent over
Q, then the transcendence degree of Q(z1, . . . , zn, E(z1), . . . , E(zn)) over Q
is at least n.

The next axioms are an attempt to make the model as existentially
closed as possible. Given V ⊆ K2n we might want to find z1, . . . , zn with
(z1, . . . , zn, E(z1), . . . , E(zn)) ∈ V . The problem is that Schanuel’s Conjec-
ture restrains us from putting points on small varieties.

Let Gn(K) = Kn× (K×)n. If A = (mi,j) is a k×n matrix of integers, we
let [A] : Gn(K) → Gk(K) be the function [A](x, y) = (u1, . . . , uk, v1, . . . , vk)
where

ui =
n∑
j=1

mi,jxj and vi =
n∏
j=1

y
mi,j
j .

1Mycielski has also asked a less central but delightfully intriguing question. What is
the definable closure of ∅ in Cexp? Note, for example, π and

√
2 are ∅-definable.
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Definition 1.2 V ⊆ Gn(K) is normal if dim[A]V ≥ k for any k× n matrix
A of rank k where 1 ≤ k ≤ n.

In particular dimV ≥ n.

Definition 1.3 V ⊆ Gn(K) is free if we can not find m1, . . . ,mn ∈ Z and
b ∈ K such that V is contained in either the variety

{(x, y) : m1x1 + . . .+mnxn = b}

or
{(x, y) : ym1

1 · · · ymnn = b}.

We can now state the last two axioms.

• (Strong Exponential Closure) For all finite A if V ⊆ Gn(K) is irre-
ducible, free and normal there is (x,E(x)) ∈ V a generic point of V over
A.

• (Countable Closures) For all finite A, if V ⊆ Gn(K) is irreducible, free
and normal with dimV = n and defined over the definable closure of A, then
{(z, E(z)) ∈ V : generic over A} is countable.

The countable closure axiom has a natural model theoretic restatement
in terms of Hrushovski-style dimension functions.

Definition 1.4 Let X ⊆ K be finite. We define a predimension

δ(X) = td (X ∪ E(span(X))− ld(X)

where span(X) is the Q-span and ld(X) is the linear dimension of span(X).
We also define a dimension

∂(X) = sup{δ(Y ) : X ⊆ Y is finite }

and a closure operator

cl(X) = {a : ∂(X) = ∂(Xa)}.

In the presence of the other axioms the countable closure axiom is equiv-
alent to the assertion that closures of finite sets are countable.

There is an Lω1,ω(Q) sentence Φ formalising these axioms.
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Theorem 1.5 (Zilber) For all uncountable cardinals κ there is a unique
model of Φ of cardinality κ. If (K,+, ·, E) |= Φ, then every definable subset
of K is countable or co-countable. If A ⊆ K is finite and a, b 6∈ cl(A) there
is an automorphism of K taking a to b.

This raises the tantalising question is Cexp the unique model of Φ of
cardinality 2ℵ0? Zilber gives an argument that the countable closure axiom
is true using Ax’s work on Schanuel’s Conjecture for differential fields. In
this paper we investigate the simplest case of the Strong Exponential Closure
axiom.

Suppose p(X,Y ) ∈ C[X,Y ] is nonconstant and C ⊆ C×C× is the curve
p(X, Y ) = 0. It is easy to see that C is normal and in this case C is free as
long as both X and Y occur in p. We would like to find an infinite set of
algebraically independent zeros of f(z) = p(z, ez). We will prove this in a
special case under strong assumptions.

Theorem 1.6 Assume Schanuel’s Conjecture. Suppose p ∈ Q[X, Y ] is irre-
ducible and depends on X and Y . Then there are infinitely many algebraically
independent zeros of f(z) = p(z, ez).

I am grateful to Angus Macintyre and Alex Wilkie for several helpful
discussions of this work.

2 Infinitely Many Zeros

Let f : C→ C be an entire function.

Definition 2.1 We say that f has order at most ρ if for every ε > 0, there
is a constant C such that for all sufficiently large R, if ||z|| ≤ R, then

||f(z)|| ≤ CRρ+ε .

If p(X, Y ) ∈ C[X, Y ] \ C[X], then f(z) = p(z, ez) has order 1. We need
one basic result from complex analysis (see [4] XIII 3.5).
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Theorem 2.2 (Hadamard Factorization) Suppose f is an entire func-
tion of order 1, let z1, z2, . . . are the nonzero zeros of f (listed with multiplic-
ities). Then there are a and b such that

f(z) = eaz+bzm
∞∏
n=1

((
1− z

zn

)
ez/zn

)
,

where m is the order f at zero,
In particular, if f has order 1 and only finitely many zeros, then there

are a, b ∈ C and q(X) ∈ C[X] such that

f(z) = eaz+bq(z).

Let C[X1, . . . , Xn]E be the E-ring of exponential terms over C. View-
ing each term as a function on C

n gives a natural homomorphism from
C[X1, . . . , Xn]E to the ring of entire functions on Cn. The following result
was proved independently by van den Dries [2] and Henson and Rubel [3].
We will use only the n = 1 case which was an earlier unpublished result of
Wilkie.

Theorem 2.3 The natural homomorphism from C[X1, . . . , Xn]E to the ring
of holomorphic functions on Cn is injective.

Corollary 2.4 If p ∈ C[X, Y ] is irreducible and depends on X and Y then
f(z) = p(z, ez) has infinitely many zeros.

Proof Suppose p(X,Y ) ∈ C[X,Y ] irreducible depending on both X and Y .
Let f(z) = p(z, ez). If f has only finitely many zeros, then by Hadamard
Factorization

f(z) = eazq(z)

for some a ∈ C and q(X) ∈ C[X].
By Theorem 2.3

p(z, ez)− eazq(z) = 0

is a term identity. This is only possible if a ∈ N and p(X, Y ) = Y aq(X).
This violates our assumptions on p.

Similar arguments can be used to show that terms of the form p(z, ez, . . . , ez
n
)

usually have infinitely many zeros.
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3 Algebraic Independence

We would like to go one step further and claim that f(z) = 0 has infinitely
many algebraically independent zeros. We will only prove this only in case
p ∈ Qalg[X, Y ].

Assumption For the remainder of the paper we assume that p ∈ Qalg[X,Y ]
is irreducible and both X and Y occur in p.

Let f(z) = p(z, ez). We let degXp and degY p denote the degree of p
when viewed as a polynomial in C[Y ][X] and C[X][Y ], respectively.

Note that if p(z, ez) = 0 and z 6= 0, then z is transcendental over Q,
as otherwise z, ez are both algebraic over Q contradicting the Lindemann-
Weierstrass Theorem.

For the remainder of the paper we will also assume Schanuel’s Conjecture.

Schanuel’s Conjecture If z1, . . . , zn ∈ C are linearly independent over Q,
then td Q(z1, . . . , zn, e

z1 , . . . , ezn/Q) ≥ n.

Two Independent Solutions

We begin by considering distinct nonzero z, w with f(z) = f(w) = 0. We
would like to claim that z and w are algebraically independent. Unfortu-
nately, this is not always true. For example, let

p(X, Y ) = 1 +X2Y + Y 2.

If p(z, ez) = 0, then p(−z, e−z) = 0 as well. We will prove that this is the
only possible algebraic dependence.

Theorem 3.1 Assume Schanuel’s Conjecture. Suppose z, w 6= 0, f(z) =
f(w) = 0 and z 6= ±w. Then z and w are algebraically independent.

Proof Since z, w 6= 0, they are transcendental over Q. Thus (z, ez) and
(w, ew) are generic points of the curve C ⊂ C× C× given by p(X, Y ) = 0.

For purposes of contradiction, assume z and w are algebraically depen-
dent. Then

td (Q(z, w, ez, ew)/Q) = 1

and, by Schanuel’s Conjecture, there are relatively prime integers m,n such
that mz = nw. We may assume n > 0.
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Let v = z/n. Then ez = (ev)n and ew = (ev)m. Let Ci ⊆ C× C× be the
(possibly reducible) curve p(iX, Y i) = 0. Note that if i = −j < 0, then Ci
is the zero set of the polynomial Y j degY pp(iX, Y i). Since v is interalgebraic
with z, (v, ev) is a generic point of the curves Cn and Cm. This is only
possible if Cn and Cm have a common irreducible component.

The map φi : Ci → C given by φi(x, y) = (ix, yi) is finite-to-one. Thus
each irreducible component of Ci projects generically onto C.

If (x, y) is a generic point of an irreducible component V of Cn, and ω is
an nth-root of unity, then (x, ωy) is also the generic point of an irreducible
component W . It follows that (u, ωv) ∈ W for all (u, v) ∈ V . Moreover if
V1 and V2 are irreducible components of Cn and x ∈ C is generic, then there
is y ∈ C and ω an nth-root of unity such that (x, y) ∈ V and (x, ωy) ∈ W .
Thus the nth-roots of unity act transitively on the irreducible components of
Cn.

Factor

p(nX, Y n) =
l∏

i=1

qi(X, Y )si

where q1, . . . , qn are irreducible and relatively prime. Since the nth-roots of
unity act on the irreducible components of Cn, each qi(X, Y ) is of the form
q1(X,ωY ) for some nth-root of unity ω. Thus s1 = . . . = sl. Let s be the
common value of s1, . . . , sn. Examining the degrees of the polynomials we
see that

degXp = ls degXq1

n degY p = ls degY q1

Suppose Cn and Cm have a common irreducible component given by
q(X,Y ) = 0 where q is irreducible. If m > 0, factor

p(mX,Y m) =
k∏
i=1

ri(X, Y )t

where each ri is irreducible. We may assume that r1 = q1 = q. The same
analysis shows that

ls degXq = degXp = kt degXq.

Since degXp 6= 0, ls = kt 6= 0. Thus

n degY p = ls degY q = kt degY q = m degY (p).
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But degY p 6= 0. Thus n = m, a contradiction.

The analysis is similar if m < 0. Rather than looking at p(mX,Y m) we
consider

g(X,Y ) = Y −m degY pp(mX,Y m).

Since p is irreducible,

degXg = degXp and degY g = −m degY p.

The same argument now works to conclude that n = −m. Thus n = 1 and
m = −1, a contradiction.

The Primitive Case

A key step in our proof is to reduce to a case where we do not worry about
reducibility of the curve Cm given by p(mX,Y m) = 0.

Definition 3.2 We say that p(X, Y ) is primitive if it is irreducible, depends
on both variables and Cm is irreducible for each nonzero m ∈ Z.

Theorem 3.3 Assume Schanuel’s Conjecture. If p is primitive and z1, . . . , zn
are nonzero zeros of f(z) = p(z, ez) with zi 6= ±zj for i < j, then z1, . . . , zn
are algebraically independent.

Proof Suppose not. Let n be minimal such that there are algebraically
dependent z1, . . . , zn+1 nonzero zeros of f with zi 6= ±zj for i < j. Then

td (Q(z1, . . . , zn+1, e
z1 , . . . , ezn+1)/Q) < n+ 1

and, by Schanuel’s Conjecture, there are integers m1, . . . ,mn,m with no com-
mon factor such that

n∑
i=1

mizi = mzn+1.

By Theorem 3.1, n ≥ 2. By the minimality of n we may assume that all
of the mi,m 6= 0, and z1, . . . , zn are algebraically independent. Let vi =
zi/m. Let C be the curve p(X, Y ) = 0 and Ĉ ⊆ C × C× be the curve

p(mX,Y m) = 0. Since p is primitive, Ĉ is irreducible. By the minimality of

n, (v1, e
v1), . . . , (vn, e

vn) are independent generic points on Ĉ. It follows that
the function

(x1, y1, . . . , xn, yn) 7→
(∑

mixi,
∏

ymii

)
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maps Ĉn to C.
Suppose w1, . . . , wn are any zeros of f . Then (wi/m, e

wi/m) is in Ĉ. Thus∑
mi
m
zi is also a zero of f . In particular,

w =
(m1 +m2)

m
z1 +

m3

m
z3 + . . .+

mn

m
zn

is also a zero of f . If n > 2, we may without loss of generality, assume that
m1m2 > 0, so this reduces the problem one level. Thus, by the minimality
of n, this is only possible if n = 2. In this case we have that mz3 = (m1 +
m2)z1, where z1 6= 0. By our analysis in Theorem 3.1, this is only possible if
m1 +m2 = 0,±m.

If m1 +m2 = 0, then 0 is a zero of f and if z is a zero of f so is mi
m
z. This

is only possible if m1 = −m2 = ±m. Without loss of generality, we have
z1− z2 = z3. But then z1 = z3 + z2, so changing the roles of the variables we
get a contradiction as above.

Suppose m1 +m2 = −m, let r = m1

m
, then

z3 = rz1 − (1 + r)z2

and
w = rz3 − (1 + r)z2

is also a zero of f . But

w = r2z1 − (1 + r)2z2

and, by our early analysis we must have

−1− 2r = r2 − (1 + r)2 = 0,±1.

If −1− 2r = −1, then we have a contradiction since r 6= 0. If −1− 2r = 1,
then r = −1 and z3 = −z1, a contradiction. If −1− 2r = 0, then we have

w = r2z1 − (1 + r)2z2

and r2 − (1 + r)2 = 0, we are back in the case m1 + m2 = 0 and obtain a
contradiction as above.

We are left with the case where m1z1 + m2z2 = mz3 and m1 + m2 = m.
Permuting z1, z2, z3 and multiplying by −1 if necessary, we may assume that
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|m| ≥ |m1|, |m2| and m,m1 > 0. Indeed, since each mi 6= 0, we will have
|m| > |m1|, |m2| > 0,

Let

zk+1 =
m1

m
zk +

m2

m
z2

=
(m1

m

)k
z1 +

[
1−

(m1

m

)k]
z2.

Let M = max ||z1||, ||z2|| Then

||zk+1|| ≤
∣∣∣∣∣∣∣∣(m1

m

)k∣∣∣∣∣∣∣∣M +

∣∣∣∣∣∣∣∣1− (m1

m

)k∣∣∣∣∣∣∣∣M ≤ 2M.

Thus the zeros of f are not discrete, a contradiction.

The General Case

We now prove Theorem 1.6.
We argue by induction on degXp. If p is primitive, this follows from

Theorem 3.3.
Suppose p is not primitive. Let C be the curve p(X, Y ) = 0. Suppose

p(nX, Y n) is reducible and let Ĉ be an irreducible component. Suppose q is

irreducible and q(X, Y ) = 0 defines Ĉ. Arguing as above degXq < degXp.
In particular, if degXp = 1, then p is primitive. If degXp > 1 and

p is not primitive, let n and Ĉ be as above, then, by induction, there are
z1, z2, . . . algebraically independent with (zi, e

zi) ∈ Ĉ. But then nz1, nz2, . . .
are algebraically independent zeros of f .

There are a number of ways to strengthen the result, even for curves.

• Can we eliminate the assumption that p is defined over a number field?

• In the imprimitive case can we strengthen the conclusion to that of the
primitive case? Theorem 3.1 has a much easier proof in the primitive case.
We include the full argument in hopes that it might be a first step towards
a stronger result.

Of course, a more ambitious project is eliminating Schnanuel’s conjecture
entirely.
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