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ABSTRACT
We continue our attempt to connect observational data on current helicity in solar
active regions with solar dynamo models. In addition to our previous results about
temporal and latitudinal distributions of current helicity (Kleeorin et al. 2003), we
argue that some information concerning the radial profile of the current helicity av-
eraged over time and latitude can be extracted from the available observations. The
main feature of this distribution can be presented as follows. Both shallow and deep
active regions demonstrate a clear dominance of one sign of current helicity in a given
hemisphere during the whole cycle. Broadly speaking, current helicity has opposite
polarities in the Northern and Southern hemispheres, although there are some active
regions that violate this polarity rule. The relative number of active regions violating
the polarity rule is significantly higher for deeper active regions. A separation of active
regions into ‘shallow’, ‘middle’ and ‘deep’ is made by comparing their rotation rate
and the helioseismic rotation law. We use a version of Parker’s dynamo model in two
spatial dimensions, that employs a nonlinearity based on magnetic helicity conserva-
tion arguments. The predictions of this model about the radial distribution of solar
current helicity appear to be in remarkable agreement with the available observational
data; in particular the relative volume occupied by the current helicity of ”wrong” sign
grows significantly with the depth.
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1 INTRODUCTION

The solar 22-year activity cycle is thought to be a manifes-
tation of dynamo action somewhere inside the solar convec-
tive zone or even in the overshoot layer. The solar differen-
tial rotation acts as a driver of the solar dynamo, generat-
ing a toroidal magnetic field from an existing poloidal mag-
netic field. The other dynamo driver, required to transform
toroidal magnetic field into poloidal and so to close the chain
of self-excitation, is thought to be what is commonly known
as the α-effect, i.e. a specific feature of convective flows in
a rotating body. It was E. Parker who suggested as early
as 1955 that cyclonic motions in the solar convective zone
produce a mean (large-scale) poloidal magnetic field from
a mean toroidal magnetic field. Ten years later, Steenbeck,
Krause & Rädler developed a theory of this process, calling
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it the α-effect (see Krause & Rädler 1980). A physical feature
of the α-effect in the form discussed at this stage is that the
action of the Coriolis force on the convective vortices results
in a domination of right-handed vortices in the Northern so-
lar hemisphere and, correspondingly, left-handed vortices in
the Southern. A non-vanishing difference between vortices
with right and left helicities in a given hemisphere provides
the required conversion of toroidal magnetic field to poloidal.

Parker (1955) demonstrated that the scheme briefly dis-
cussed above leads to the self-excitation of a wave of mag-
netic field (the so-called dynamo wave). A suitable choice
of the differential rotation shear and mean helicity of so-
lar convection in, say, the Northern hemisphere leads to a
dynamo wave whose shape mimics remarkably that of the
solar butterfly diagram. The simplest order of magnitude
estimates for the dynamo governing parameters results in
an estimate for the cycle length which is about 10 times
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shorter then the real solar cycle – this seems reasonable for
this obviously oversimplified model.

Until now the above scheme for the solar dynamo,
known as the Parker migratory dynamo, has remained the
basis of most dynamo models for solar and stellar dynamo
activity. Of course, present day solar dynamo models include
achievements of helioseismology, effects of meridional circu-
lations and various other features of solar MHD. As a result,
these dynamo models are much richer and, in principle at
least, closer to the real Sun then the simple Parker model.
Nevertheless, although these more sophisticated models can
reproduce many specific details, some points remain as ob-
scure now as in 1955 (for recent reviews, see Ossendrijver
2003; Brandenburg & Subramanian 2004).

Note that the α-effect remained for several decades a
theoretical concept only. It is deeply associated with the
helicity of rotating turbulence and arises from averaging
Maxwell’s equations over the ensemble of rotating vortices.
For a long time, there was no evidence available to support
the α-effect from either astronomical observations or from
laboratory MHD experiments. Obviously, such a situation
makes the basis of solar dynamo theory rather unsatisfac-
tory and even shaky.

In the last decade, some basic progress here has been
made and the first observational data of physical quantities
associated with the α-effect are now available. The funda-
mental point is that the α-effect includes two contributions
(Pouquet et al. 1976), an hydrodynamical contribution as
discussed above (αv) associated with helicity of convective
vortices, and also a contribution from the helicity of the
magnetic field itself (αm). The hydrodynamic helicity is de-
termined by a correlation between the convective velocity ~u
and its vorticity, i.e. 〈~u · (~∇ × ~u)〉, and so its observational
determination requires knowledge of all three components of
velocity while the Doppler effect gives a line-of-sight velocity
component only. The magnetic part of the α-effect, αm, can
be related to what has become known as the current helicity,
proportional to 〈~b · (~∇×~b)〉, where ~b is the small-scale mag-
netic field. Because Zeeman splitting provides information
concerning all 3 components of ~b, αm appears to be more
accessible for observational determination than αv (Seehafer
1990). As a result, the first observations to be made relate
to the current helicity in active regions on the solar sur-
face (Pevtsov et al. 1994, 1995; Zhang & Bao 1998, 1999;
Longcope et al. 1998).

Such observational findings about the current helicity
on the solar surface can be related to theoretical results in
dynamo theory, where the concept of the magnetic part of α-
effect has been developed into a theory of dynamo saturation
through αm. Kleeorin & Ruzmaikin (1982) and Kleeorin &
Rogachevskii (1999) suggested a governing equation for αm

which describes the time evolution of the α-effect. Together
with the mean-field dynamo equations, this equation has
solutions in the form of a propagating dynamo wave which
amplitude is steady in time (Kleeorin et al. 1995; Covas et
al. 1998; Blackman & Brandenburg 2002).

Kleeorin et al. (2003) discussed a link between the ob-
servational and theoretical findings outlined above. They
concluded that the accumulated observational knowledge is
sufficient to follow the temporal evolution during one solar
cycle of current helicity averaged over a given hemisphere or
the latitudinal distribution of current helicity averaged over

one solar cycle. Existing ideas concerning the nonlinear solar
dynamo saturated by the magnetic part of the α-effect pro-
vide a theoretical prediction of the corresponding quantities.
These demonstrate a general agreement with observations
and provide a possibility of fitting the governing parameters
of the solar dynamo by observational data.

Here we present an extension of the approach of the
paper of Kleeorin et al. (2003). First of all, we discuss the
extent to which the solar helicity data can be used to under-
stand the radial dependence of solar magnetic helicity and
the corresponding dynamo activity. An initial step in this di-
rection was made by Kuzanyan et al. (2003) who separated
the database of active regions for which the helicity data
are available into subsets corresponding to shallow, middle
and deep active regions, according to their rotation rate. Of
course, a substantial part of the data cannot be so classified.
After averaging magnetic helicity data over the subsets, we
obtain quantities which can be compared with the theoreti-
cal data averaged over the three radial ranges.

This approach is to some extent similar to the studies of
the solar rotation curve using the sunspot data associated
with various types of sunspots. Following the remarkable
advances in helioseismology such reconstructions now look
rather archaic (this is why we refer here only to the sin-
gle paper, Collin et al. (1995), in which one of the authors
participated). However, at this preliminary stage of solar he-
licity studies, a similar approach appears to be reasonable.

The other topic to be addressed here is a plausible im-
provement of the governing equation for the magnetic helic-
ity. The point is that the dynamo saturation by a magnetic
contribution to the α-effect is necessarily combined with a
modification of the turbulent diffusivity and other transport
coefficients. For the sake of simplicity, these effects were ig-
nored in our first paper (Kleeorin et al. 2003). Now we re-
store these terms in order to investigate their possible con-
tribution, and to produce a more fully self-consistent model.

Obviously, our model is still simplified and does not in-
clude many important features of solar activity. In particular
we do not address the problem of the storage of magnetic
fields and the formation of flux tubes in the overshoot layer
near the bottom of the convective zone (see, e.g., Spiegel
& Weiss 1980; Tobias et al. 2001; Tobias & Hughes 2004;
Brandenburg 2005, and references therein).

2 DATA ON CURRENT HELICITY
OBTAINED AT THE HUAIROU SOLAR
OBSERVATORY STATION

Our research is based on the data on current helicity ac-
cumulated during 10 successive years (1988-97) of observa-
tions at the Huairou Solar Observatory Station of the Na-
tional Astronomical Observatories of China (Bao and Zhang
1998), which were further processed by Zhang et al. (2002).
The description of the observational procedure and the ba-
sic ideas of data processing can be found in Kleeorin et al.
(2003) and references therein. The total available sampling
that we used contains data of 410 active regions.

Following Kuzanyan et al. (2003) we divide the active
region into 4 groups, i.e. shallow, middle and deep active
regions, as well as a group for which the depth cannot be es-
timated satisfactorily (Table 1). The separation of the active
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regions into three groups is based on the result of helioseis-
mology (Schou et al. 1998) that the angular rotation rate
growth monotonically with radius at least for the domain
between fractional radii 0.65 and 0.95 and latitudes below
30-35◦ (for details see Kuzanyan et al. 2003).

The Solar Geophysical Data records, which can be ob-
tained from the NOAA (USAF-MWL) database, provide us
with several tens of longitudinal locations (in terms of the
Carrington coordinate system) for each active region under
investigation, for several consequent days. Therefore, we at-
tempt to calculate partial, or “individual”, angular rotation
rates with respect to the Carrington rotation. For some ac-
tive regions we can find a certain trend in the evolution of
their Carrington coordinates with time. From the complete
sampling of the data, which contain 410 active regions, we
select subsamples for which this trend in Carrington longi-
tude versus time has significant correlation. We determined
the subsamples for which the correlation coefficient σ is
greater than 0.5 and 0.6 respectively. These samples con-
tain 178 and 134 active regions (or 43% and 33% of the
available data), respectively.

Given an “individual” angular rotation rate for each
active region we can identify them with certain effective
depths. Using a particular analytical approximation of the
solar rotation curve (see Kuzanyan et al. 2003), the active
regions with known individual angular rotation were sep-
arated into three groups. The individual rotation rates in
the first group fall into the range covered by the analytical
approximation for the radial range r 6 0.76, for the sec-
ond group the bound is 0.76 6 r 6 0.84, and r > 0.84 for
the third group. These groups were labelled as deep, mid-
dle and shallow. Notice, that the internal rotation of the
solar convective zone above approximately fractional radius
0.94 is slower than in the zone below, and so we disregarded
this sub-surface layer. We stress that the above bounds were
chosen rather arbitrarily and the details of trends in the
current helicity properties with respect to depth can hardly
be considered quantitatively. The active regions appear to
be distributed between the upper and lower layers approxi-
mately equally, while very few occur within the middle layer
(Kuzanyan et al. 2003). We will consider separately the up-
per and lower layers and compare the results of statistical
analysis of the data in each of them.

Because the current helicity is expected to be of oppo-
site sign in Northern and Southern hemispheres, we subdi-
vide these groups between the two hemispheres and average
the data in each group over all latitudes as well as cycle
phases. The result of averaging Hc is given in Table 1 for
active regions with identified depth. Here d is a depth iden-
tifier, with ”s” meaning shallow, ”m” middle and ”d” deep
active regions. Because the number of active areas of inter-
mediate depth appears to be quite low, and insufficient to
estimate the sign of helicity, we combine quite arbitrarily
the data for the middle and deep active regions into a sin-
gle group, i.e. ”d+m”. N is the number of active regions
included in each group. For Table 1, we use the threshold
σ = 0.5. To demonstrate the stability of the selection proce-
dure to the threshold value, we give in Table 2 similar results
for the threshold value σ = 0.6.

In agreement with theoretical expectations, the data
for Hc are remarkably antisymmetric in respect to the solar
equator. Note that the same kind of antisymmetry was rec-

Table 1
Current helicity Hc for active regions

binned by depth, threshold σ = 0.5 Here and
below Hc is measured in in units of 10−3G2m−1

d N N∗ Hc N∗/N

North

s 47 1 −0.6± 0.2 0.02± 0.04

m 5 1 −0.2± 0.7 0.20± 0.35

d 34 8 −1.0± 0.7 0.24± 0.14

d+m 39 9 −0.9± 0.6 0.23± 0.13

South

s 41 5 0.5± 0.6 0.12± 0.10

m 6 2 0.3± 1.5 0.33± 0.38

d 38 11 0.6± 0.4 0.29± 0.14

d+m 44 13 0.6± 0.4 0.3± 0.13

Table 2
Current helicity for active regions
binned by depth, threshold σ = 0.6

North

d N N∗ Hc N∗/N

s 33 1 −0.6± 0.3 0.03± 0.06

m 2 1 −0.3± 9.4 0.5± 0.69

d 28 7 −1.0± 0.8 0.25± 0.16

d+m 30 8 −1.0± 0.8 0.27± 0.16

South

s 33 4 0.6± 0.7 0.12± 0.11

m 3 2 −0.2± 4.8 0.7± 0.53

d 29 9 0.4± 0.4 0.31± 0.17

d+m 32 11 0.4± 0.4 0.34± 0.16

ognized in the averaging over latitude or time undertaken
in Kleeorin et al. (2003). We note however that there are a
significant number of active regions that violate this polarity
law. The number of such active regions are given in Tables 1
and 2 as N∗.

We present in Table 3 the averaged values of the helici-
ties of for all 410 active regions for which the observations of
helicity are available. These active regions follow the same
polarity rule as the active regions with known depth, and
again some active regions violate this rule. Their number is
given as N∗.

The number of active regions with current helicity that
violate the polarity rule can be calculated for both hemi-
spheres (Table 4). Note that it is not appropriate to aver-
age the current helicity over both hemispheres because the
data in the Northern and Southern hemisphere cancel. We
conclude from Table 4 that the deep (and middle) active
regions contain several times more cases of parity rule vi-
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Table 3
Current helicity for all 410 active regions

hemisphere N N∗ Hc N∗/N

North 193 30 −0.8± 0.2 0.16± 0.05

South 217 47 0.6± 0.2 0.22± 0.05

Table 4
Number of active region with current
helicity violating the polarity rule,
binned by depth, threshold σ = 0.5.

depth N N∗ N∗/N

s 88 6 0.07± 0.05

d+m 83 22 0.27± 0.09

olations than the shallow active regions, and even slightly
more then the active regions without definite estimation of
depth.

We were unable to recognize any clear trend in the num-
ber of active regions violating the polarity rule selected ac-
cording to latitude or the cycle phase. However we present
the relevant data below (Tables 5 and 6).

3 THE DYNAMO MODEL

We use here a dynamo model which is basically an exten-
sion of the simplified model of Kleeorin et al. (2003). In
particular, the present model includes an explicit radial co-
ordinate and takes into account the curvature of the convec-
tive shell, and also quenching of turbulent magnetic diffusiv-
ity. We start from the general mean-field dynamo equations
(see e.g. Moffatt 1978, Krause & Rädler 1980). Using spheri-
cal coordinates r, θ, φ we describe an axisymmetric magnetic
field by the azimuthal component of magnetic field B, and
the component A of the magnetic potential corresponding
to the poloidal field. Following Parker (1955) we consider
dynamo action in a convective shell. However we retain a
radial dependence of A and B in the dynamo equations and
we do not neglect the curvature of the shell. The equations
for Ã = r sin θA and B̃ = r sin θ B read

∂Ã

∂t
+

V A
θ

r

∂Ã

∂θ
+ V A

r
∂Ã

∂r
= Cα α B̃ + ηA

[
∂2Ã

∂r2

Table 5
Number of active region with current

helicity violating the polarity rule
ordered by date, threshold σ = 0.5.

years N N∗ N∗/N

1988-89 87 23 0.26± 0.09

1990-91 126 20 0.16± 0.06

1992-93 121 18 0.15± 0.06

1994-96 69 13 0.18± 0.09

Table 6
Number of active region with current
helicity violating the polarity rule,

ordered by latitude Θ, threshold σ = 0.5.

latitude (degrees) N N∗ N∗/N

24 6 Θ 6 32 18 4 0.22± 0.19

16 6 Θ 6 24 53 10 0.19± 0.11

12 6 Θ 6 16 36 5 0.14± 0.11

8 6 Θ 6 12 48 8 0.17± 0.11

−8 6 Θ 6 8 65 6 0.08± 0.06

−12 6 Θ 6 −8 58 12 0.21± 0.10

−16 6 Θ 6 −12 46 8 0.17± 0.11

−24 6 Θ 6 −16 67 19 0.28± 0.11

−32 6 Θ 6 −24 12 3 0.25± 0.25

+
sin θ

r2

∂

∂θ

(
1

sin θ

∂Ã

∂θ

)]
, (1)

∂B̃

∂t
+

sin θ

r

∂

∂θ

(
V B

θ B̃

sin θ

)
+

∂(V B
r B̃)

∂r
= sin θ

(
Gr

∂

∂θ

−Gθ
∂

∂r

)
Ã +

sin θ

r2

∂

∂θ

(
ηB

sin θ

∂B̃

∂θ

)
+

∂

∂r

(
ηB

∂B̃

∂r

)
,

(2)

where

Gr =
∂Ω

∂r
, Gθ =

∂Ω

∂θ
.

Here we measure lengths in units of the solar radius R¯ and
time in units of a diffusion time based on the solar radius and
the turbulent magnetic diffusivity ηT0 . When estimating this
timescale we use the ‘basic’ (assumed uniform) value of the
turbulent magnetic diffusivity, unmodified by the magnetic
field.

We consider the fractional radial range 0.64 < r < 1,
where r = 0.64 corresponds to the bottom of the convective
zone and r = 1 corresponds to the solar surface. The ‘con-
vection zone’ proper can be thought of as occupying 0.7 6
r 6 1.0, with 0.64 6 r 6 0.7 being a tachocline/overshoot
region. The rotation law includes radial shear (proportional
to Gr) and a latitudinal dependence (proportional to Gθ).

At the surface r = 1 we use vacuum boundary con-
ditions on the field, i.e. B = 0 and the poloidal field fits
smoothly onto a potential external field. At the lower bound-
ary, r = r0 = 0.64, B = Br = 0. At both r = r0 and r = 1,
∂χc/∂r = 0, where χc is the current helicity (see Eq. (3)).

Of course these equations, although more elaborate
than those often used to study the solar cycle, are still over-
simplified. However they appear adequate to reproduce the
basic qualitative features of solar (and stellar) activity. Tak-
ing into account the exploratory nature of the approach, we
use the simplest profiles of dynamo generators compatible
with symmetry requirements and with producing a mag-
netic butterfly diagram that is concentrated towards low
latitudes (see also Rüdiger & Brandenburg 1995; Moss &
Brooke 2000). Thus the unquenched hydrodynamical part
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of the α-effect, αv(B = 0) = χv = sin2 θ cos θ and Cα < 0
(this determines the sign value of the hydrodynamic α ef-
fect, see below in Sect. 4). The points θ = 0 and θ = 180◦

correspond to the North and South poles respectively. See
Kleeorin et al. (2003) for further discussion of this approach.

As a new feature of Eqs. (1) and (2), compared with
the dynamo model exploited by Kleeorin et al. (2003), we
retain here the possibility of including a contribution from
the dynamo generated magnetic field in the turbulent diffu-
sion coefficients (ηA and ηB ), and the meridional circulation
(V A

θ , V A
r , V B

θ and V B
r ). However we do not consider fully

here the role of meridional circulation.
The magnetic field is measured in units of the equipar-

tition field Beq = u
√

4πρ∗, and the vector potential of the
poloidal field A is measured in units of R¯Beq. The density
ρ is normalized with respect to its value ρ∗ at the bottom of
the convective zone, and the basic scales of the turbulent mo-
tions l and turbulent velocity u at the scale l are measured
in units of their maximum values through the convective
zone. Because turbulent diffusivity and α-effect depend on
the magnetic field, we use their initial values in the limit of
very small mean magnetic field to obtain the dimensionless
form of the equations. To emphasize this, we do not intro-
duce the dynamo number in an explicit form here however
use it below when convenient.

4 THE NONLINEARITIES

We present below a model for the nonlinear dynamo satu-
ration. The model is based as far as possible on first prin-
ciples, and is similar to that used in the derivation of the
equations of mean-field electrodynamics by Krause & Rädler
(1980). As an important technical point, we used a quasi-
Lagrangian approach in the framework of Wiener path inte-
grals to derive the dynamical equation for the evolution of
the magnetic helicity including magnetic helicity flux (see
Kleeorin & Rogachevskii 1999). We also used the spectral
τ -approximation (Orszag’s third-order closure procedure) to
determine the nonlinear mean electromotive force (see Ro-
gachevskii & Kleeorin 2000, 2004). Here we note some im-
portant features of the model only.

A key assumption of the model under discussion is the
concept of the locally isotropic and weakly inhomogeneous
nature of the background MHD turbulence (with a zero
mean magnetic field). Because we include large-scale phe-
nomena such as helicity advection, the accuracy of the ap-
proximation is limited. In particular, a completely rigorous
evaluation of the turbulent diffusion of magnetic helicity is
beyond the scope of our model and we allow this quantity to
be transported by the turbulent diffusion in the same way
as a scalar admixture, i.e. the turbulent diffusion coefficient
is determined by the velocity field correlation tensor. In con-
trast, the nonlinear coefficients of the large-scale magnetic
field defining the nonlinear mean electromotive force are de-
termined by the cross-helicity of magnetic (bi) and veloc-
ity (ui) fields, i.e. by 〈biui〉. The different scalings for these
quantities presented below are connected with this fact.

Note that a deeper investigation of the turbulent diffu-
sion of magnetic helicity, as well as of the non-diffusive fluxes
of magnetic helicity, looks possible in principle. It would re-
quire at least the application of Orszag’s fourth-order closure

procedure to derive the magnetic helicity fluxes. However,
this generalization would require a much more extended cal-
culation than required to obtain the model considered here.
As a substantial body of calculations already have been nec-
essary, it seems very reasonable to clarify the astrophysical
consequences of the model now available, before attempting
to move on further.

We stress again that the model analyzed is derived, as
far as possible, from first principles. The scope of the model
is however obviously limited and does not include all possi-
ble physical mechanisms which could in principle contribute
to dynamo saturation. In particular, we do not include the
buoyancy of the magnetic field. Some other limitations are
mentioned below. Bearing in mind the natural limitations
of the model, we introduce several numerical coefficients
C1, C2, C3 multiplying the magnetic helicity fluxes, which
we consider to be free parameters of order unity (see Eq. (5)
below).

4.1 The α-effect

The key idea of the dynamo saturation scenario exploited be-
low (as well as by Kleeorin et al. 2003) is the splitting of the
total α-effect into its hydrodynamic and magnetic parts, αv

and αm respectively. The calculation of the magnetic part of
the α-effect is based on the idea of magnetic helicity conser-
vation and the link between current and magnetic helicities,
and gives (see Kleeorin et al. 2000, 2003)

α = αv + αm = χvφv +
φm

ρ(z)
χc . (3)

Here χv and χc are proportional to the hydrodynamic and
current helicities respectively and φv and φm are quenching
functions. The analytical form of the quenching functions
φv(B) and φm(B) is given in Appendix A. In contrast to
Kleeorin et al. (2003), we consider here the radial helicity
profiles in an explicit form and so we keep in Eq. (3) the
radial profile of density ρ(z) normalized by the density ρ∗
at the bottom of the convective zone. This factor appears
as χc = (τ/12πρ∗)〈~b · (~∇ ×~b)〉 (for details, see Kleeorin et
al. 2003). Based on Baker & Temesvary (1966) and Spruit
(1974), we choose for ρ(z) the analytical approximation

ρ(z) = exp[−a tan(0.45π z)] , (4)

where z = 1−µ(1−r) and µ = (1−R0/R¯)−1. Here a ≈ 0.3
corresponds to a tenfold change of the density in the solar
convective zone, a ≈ 1 by a factor of about 103, etc. However
in the majority of our investigations we took ρ = const., but
we did also consider cases with a = 0.3.

The equation for χ̃c = r2 sin2 θ χc is

∂χ̃c

∂t
+

χ̃c

T
=

(
2R¯

l

)2
{

1

Cα

[
ηB

r2

∂Ã

∂θ

∂B̃

∂θ
+ ηB

∂Ã

∂r

∂B̃

∂r

−ηA B̃
sin θ

r2

∂

∂θ

(
1

sin θ

∂Ã

∂θ

)
− ηA B̃

∂2Ã

∂r2

+(V A
r − V B

r ) B̃
∂Ã

∂r
+ (V A

θ − V B
θ )

B̃

r

∂Ã

∂θ

]
− αB̃2

}

−∂F̃r

∂r
− sin θ

r

∂

∂θ

(
F̃θ

sin θ

)
, (5)
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where ~̃F = r2 sin2 θ ~F , and the flux of the magnetic helicity
is chosen in the form

~F = ηA(B) B2 {C1
~∇[χv φv(B)] + C2 χv φv(B) ~Λρ}

−C3 κ ~∇χc , (6)

with ~Λρ = −~∇ρ/ρ. Here R¯/l is the ratio of the solar radius
to the basic scale of solar convection, T = (1/3)Rm (l/R¯)2

is the dimensionless relaxation time of the magnetic helicity,
Rm = lu/η0 is the magnetic Reynolds number, with η0 the
‘basic’ magnetic diffusion due to the electrical conductivity
of the fluid. Equation (5) is a generalization of Eq. (A.3)
of Kleeorin et al. (2003) to the case considered here. The
fluxes of magnetic helicity (6) were derived using Eqs. (9)
and (13) of Kleeorin & Rogachevskii (1999). Equation (6)
is in agreement with the results of Vishniac & Cho (2001)
and Subramanian & Brandenburg (2004).

Let us estimate the values of the governing parameters
for different depths of the convective zone. We stress that
all physical ingredients of the model vary strongly with the
depth h∗ below the solar surface. We use mainly estimates of
governing parameters taken from models of the solar convec-
tive zone, e.g. Spruit (1974) and Baker & Temesvary (1966)
– more modern treatments make little difference to these
estimates. In the upper part of the convective zone, say at
depth h∗ ∼ 2×107 cm (measured from the top), the param-
eters are Rm ∼ 105, u ∼ 9.4 × 104 cm s−1, l ∼ 2.6 × 107

cm, ρ ∼ 4.5×10−7 g cm−3, ηT (the turbulent diffusivity) ∼
0.8× 1012 cm2 s−1; the equipartition mean magnetic field is
Beq ∼ 220 G and T ∼ 5×10−3. At depth h∗ ∼ 109 cm these
values are Rm ∼ 3×107, u ∼ 104 cm s−1, l ∼ 2.8×108 cm,
ρ ∼ 5×10−4 g cm−3, ηT ∼ 0.9×1012 cm2 s−1; the equiparti-
tion mean magnetic field is Beq ∼ 800 G and T ∼ 150. At the
bottom of the convective zone, say at depth h∗ ∼ 2 × 1010

cm, Rm ∼ 2 × 109, u ∼ 2 × 103 cm s−1, l ∼ 8 × 109

cm, ρ ∼ 2 × 10−1 g cm−3, ηT ∼ 5.3 × 1012 cm2s−1. Here
the equipartition mean magnetic field Beq = 3000 G and
T ∼ 107. We appreciate that various estimates for the mag-
netic Reynolds number and the parameter T for the solar
convective zone have been suggested and so we investigate
below the robustness of our results with respect to T . Note
also that if we average the parameter T over the depth of
the convective zone, we obtain T ∼ 5 (see Kleeorin et al.
2003).

4.2 The turbulent diffusivity

The simplest order-of-magnitude estimates for magnetic
field turbulent diffusion suggest that it affects all magnetic
field components similarly. Of course, this does not pre-
clude that a more detailed parameterization of the turbulent
transport coefficients could result in different estimates for
the turbulent diffusion ηB of toroidal and ηA of poloidal
magnetic field components, and Rogachevskii & Kleeorin
(2004) provide the following estimates for the coefficients ηB

and ηA for the cases of the weak and strong magnetic fields
(remember that we measure magnetic field strength in units
of the equipartition value Beq, and that for the Parker mi-
gratory dynamo the toroidal magnetic field is much stronger
than the poloidal). For the case of weak magnetic field the
turbulent diffusion coefficients are (in units of the reference
value ηT0)

ηA = 1− 96

5
B2 , ηB = 1− 32B2, (7)

while for strong magnetic fields the scaling is

ηA =
1

8B2
, ηB =

1

3
√

2B
. (8)

The transition from one asymptotic form to the other can
be thought of as occurring in the vicinity of B ∼ Beq/4.

Unsurprisingly, the coefficient of turbulent diffusion of
magnetic helicity κ also has a dependence on B, namely
κ(B) = 1− 24B2/5 for weak magnetic field and

κ(B) =
1

2

(
1 +

3π

40B

)
(9)

in the strong field limit. The theory gives more general for-
mulae for these asymptotical expressions (see Rogachevskii
& Kleeorin 2004 and Appendix A).

We note that the turbulent diffusion estimates depend
on the details of magnetic field evolution during which the
magnetic helicity accumulated. In particular, the initial ra-
tio between magnetic and kinetic energy appears in the com-
plete equations of Rogachevskii & Kleeorin (2004). We ap-
preciate the importance of this factor which is almost unad-
dressed in existing papers in dynamo theory. However, tak-
ing into account the scope of this paper, we accept (rather
arbitrarily) that dynamo action starts in an (almost) non-
magnetized medium. Also, we neglect effects of possible in-
homogeneities in the background turbulence.

4.3 Nonlinear advection

Our model contains a inhomogeneous nonlinear suppression
of turbulent magnetic diffusion, which causes turbulent dia-
magnetic (or paramagnetic) effects, i.e. a nonlinear advec-
tion of magnetic field which is not the same for the toroidal
and poloidal parts of the magnetic field. The corresponding
velocities were calculated by Rogachevskii & Kleeorin (2004)
yielding

~V A =
32

5
B2

[
~ΛB + 3~Λρ − ~er + cot θ ~eθ

r

]
,

~V B =
32

5
B2

[
3~Λρ − ~er + cot θ ~eθ

r

]

for a weak magnetic field, and

~V A = − 1

3
√

8B

[
~ΛB + 2

~er + cot θ ~eθ

r

]
+

5

16B2
~Λρ ,

~V B =
4

3
√

8B

~er + cot θ ~eθ

r
+

5

16B2
~Λρ

for strong fields. Here ~ΛB = (~∇ ~B2)/ ~B2, ~er and ~eθ are unit
vectors in the r and θ directions of spherical polar coordi-
nates, [~Λρ]r = −d ln ρ/dr, and [~ΛB ]r = d ln B2/dr.

4.4 The rotation law

In the region 0.7 6 r 6 1 we used an interpolation on the
rotation law derived from helioseismic inversions. This was
extended to include a tachocline region by interpolating be-
tween the helioseismic form at r = 0.7 and solid body rota-
tion at r = r0 (see also Moss & Brooke 2000). Our choice
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Figure 1. Isocontours of the rotation law used in the numerical
simulations.

r0 = 0.64 gives a rather broad tachocline, but simplifies the
numerics. Fig. 1 shows contours Ω = constant.

5 RESULTS

5.1 Numerical implementation

We simulated the model described above in a meridional
cross-section of a spherical shell with 0 6 θ 6 180◦ and
0.64 6 r 6 1.

The region was divided (rather arbitrarily) into 3 do-
mains, namely 0.64 6 r < 0.7, 0.7 6 r 6 0.8 and 0.8 6 r 6 1
and these were identified with the domains of the deep, mid-
dle and shallow active regions of Sect. 2. We attempt to
identify the relative volume occupied by current helicity of
‘improper’ sign with N∗/N .

5.2 A nonlinear solution

Our simulations show that the dynamo model leads to a
steadily oscillating magnetic configuration for a quite sub-
stantial domain in the parameter space. These parame-
ters seem acceptable when compared with current ideas
in solar physics. We present here as a typical model with
steady oscillations the case Cα = −5, Cω = 6 × 104 (i.e.
D = −3 × 105), C1 = C2 = 1, C3 = 0.5, T = 5 and
(2R/l)2 = 300. (With this value of Cω, marginal excitation
occurs when Cα ≈ −4.) Of course, we are far from under-
standing helicity transport inside the Sun well enough to
determine the numerical value of these parameters. The pa-
rameter set chosen gives a realistic time scale for the cycle
period (about 10 years), but with a rather small nominal
value of the turbulent diffusivity coefficient ηT0 , i.e. this is
how we choose to resolve the well-known problem with the
length of solar cycle in the context of mean field dynamo
models. The value |Cα| (and |D|) chosen is perhaps larger
then expected because we use the profile χv = sin2 θ cos θ,
which significantly reduces the mean value of χv over the
domain compared to that with the ‘standard’ χv = cos θ.

We demonstrated robustness with respect to the value
of the parameter T , which is associated with the magnetic
Reynolds number: a uniform increase by two orders of mag-
nitude makes quite small changes to our results, as does
allowing a tenfold increase from top to bottom of the con-
vection zone. When T = 0.5 (i.e. smaller by a factor of 10
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Figure 2. The near-surface (r = 0.94) butterfly diagram of the
mean magnetic field. Contours are equally spaced, solid represent
positive values, broken negative, and the zero contour is shown
as dotted.

than in the basic run described above) we still obtain regular
oscillations and the magnetic energy increases by a factor of
2 or 3 only. However, when T is significantly smaller than
0.5, the solution becomes irregular. For T = 5 we also veri-
fied that the differences between density parameter [Eq. (4)]
a = 0 (i.e. uniform density) and a = 0.3 were small, and that
allowing a radial dependence of χv also caused only small
changes.

For this typical solution, the magnetic energy Em mea-
sured in the units of its equipartition value oscillates near
the level Em ≈ 0.12, and the amplitude of the oscillations
is about 0.035. This means that the averaged magnetic field
strength is about 40% of the equipartition value. The mag-
netic configuration can be described as a system of activity
waves which can be presented in the corresponding butterfly
diagrams. In Fig. 2 we show the near-surface butterfly dia-
gram (at r = 0.94). Here, a pair of activity waves migrate
from the middle latitudes towards the solar equator, while
another pair migrates from the middle latitudes towards the
poles. We present in Fig. 3 butterfly diagrams for the region
just above the interface (at r = 0.70). Here, both pairs of ac-
tivity waves are much less pronounced in comparison to the
structure shown in Fig. 2. However the equatorward branch
now dominates the poleward. From these synthetic plots, it
seems plausible that the observed butterfly diagram can be
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Figure 3. The butterfly diagram of the mean magnetic field for
the region just above the interface (r = 0.70).Contours are equally
spaced, solid represent positive values, broken negative, and the
zero contour is shown as dotted.
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Figure 4. The toroidal magnetic field distribution at an instant
just after the minimum of magnetic activity. Contours are equally
spaced, solid represent positive values, broken negative, and the
zero contour is shown as dotted.

mimicked adequately. The magnetic field structure found in
the simulations is also quite consistent with expectations.

As a typical example, we give in Fig. 4 the toroidal mag-
netic field distribution for an instant soon after the minimum
of magnetic energy. The current helicity distribution at the
same time is given in Fig. 5. Here the dotted line indicates
the zero contour of current helicity. The helicity distribution
is antisymmetric with respect to the solar equator, but there
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Figure 5. The current helicity distribution. The dotted line here
indicates the zero level of current helicity. Contours are equally
spaced, solid represent positive values, broken negative, and the
zero contour is shown as dotted.
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Figure 6. The butterfly diagram for the current helicity for the
region just above the interface (r = 0.70). Contours are equally
spaced, solid represent positive values, broken negative.

are sign changes inside each hemisphere. If the helicity is ba-
sically positive in a given hemisphere (e.g. the southern), a
region of negative helicity can be isolated near to the equator
at the base of convective zone. The other region of opposite
polarity in the helicity distribution is located near to the
poles. Near the bottom of the convection zone, the helicity
pattern migrates in a similar way to the toroidal field, and
the corresponding butterfly diagram is given in Fig. 6. Quite
unexpectedly, the helicity pattern near the surface does not
demonstrate any pronounced migration (see Fig. 7).
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Figure 7. The near-surface (r = 0.94) butterfly diagram for the
current helicity. Contours are equally spaced, solid represent pos-
itive values, broken negative.

Figure 8. The normalized local nonlinear dynamo number at all
grid points, as a function of the mean magnetic field.

Of course, we cannot claim a steady oscillating solu-
tion obtained for a rather arbitrary set of parameters should
be directly confronted with proxies of solar activity (see
Obridko & Shelting 2003). We note however that the so-
lution obtained reproduces remarkably well some features
of the solar cycle expected from dynamo theory and the
observational data. Apart from a conventional equatorward

migration, it demonstrates that the activity cycle is a com-
plicated phenomenon which involves the Sun as a whole.
We see an poleward migration at higher latitudes which is
known from the polar faculae data (Makarov et al. 2001 and
references therein, which give a modern viewpoint of the
long-term research in this area) and from simple illustrative
dynamo models (Kuzanyan & Sokoloff 1995, 1997). Such a
pattern is also seen in the torsional oscillations, both as ob-
served and as modelled by Covas, Moss & Tavakol (2004)
– these are very plausibly intimately linked to the mag-
netic field variations. The magnetic field configuration looks
quite simple and smooth for the surface butterfly diagram
of toroidal magnetic field only. We see various magnetic field
reversals inside the Sun. Such reversals have been suggested
by many experts in solar activity whose analysis was not
restricted to sunspot data (e.g. Benevolenskaya et al. 2002).
The dynamo wave at the base of convective zone is much
sharper and and localized (Fig. 3) than that nearer the sur-
face (Fig. 2) – the latter appears closer to the current under-
standing of the solar cycle. Of course, it is at present unclear
just what is the relation between the sites of field produc-
tion by the dynamo and the manifestation of sunspots at
the surface. The current helicity distribution is more com-
plicated at the base of convective zone compared to that
near the solar surface. This is in general agreement with the
observational information concerning the radial distribution
of solar helicity (Sect. 2).

The normalized local nonlinear dynamo number DN =
α(B)/[ηA(B)ηB (B)] is shown in Fig. 8 at every point of the
computational grid, as a function of mean magnetic field.
Here α(B) is normalized by the local value of α(B = 0).
The nonlinear dynamo number decreases with increase of
the mean magnetic field. The latter dependence implies the
saturation of the growth of the mean magnetic field in the
nonlinear mean field dynamo. Note that the dynamo number
which is based on the hydrodynamic part αv of the α-effect
increases with the mean magnetic field. This shows the very
important role of the magnetic part αm of the α-effect, which
causes the saturation of the growth of the mean magnetic
field.

5.3 The helicity distribution

We need to reduce the numerical data from our modelling
to a form comparable with the observations available. The
important point is that the resolution of the helicity obser-
vations is very substantially lower than that of the sunspot
data, not to mention that of the dynamo simulations. The
following procedure is applied to reduce the resolution of the
numerical data, and so allow a meaningful comparison with
the observations.

We isolate a region 60◦ < θ < 120◦, i.e. a 60◦–belt
centered on the equator, because helicity data are available
for this equatorial domain only. We separate this region into
a deep part, 0.64 6 r 6 0.8, and a shallow part with r > 0.8,
and consider one hemisphere only, say the Northern (the
simulated data are strictly antisymmetric with respect to the
solar equator). Let D+ and D− be the volumes inside each
region where χ has a positive and negative sign respectively.
We calculate the values I+ =

∫
Tc

∫
D+

χcdV dt and I− =
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∫
Tc

∫
D−

χc dV dt, where Tc is the half length of the activity

cycle (note that I− is negative).
From our basic run, we obtain the following values of

the helicity integrals. For the ‘deep’ region (0.64 6 r 6 0.8),
we obtain I− = −5.4× 10−5 and I+ = 2.1× 10−5, while for
the ‘shallow’ region 0.8 6 r 6 1.0 we obtained I− = −2.2×
10−4 and I+ = 0. The clear difference in helicity distribution
between deep and shallow regions remains robust when the
density parameter a is reduced to 0.3 [see Eq. (4)]. For the
deep region (0.64 6 r 6 0.8), we then obtain I+ = −I− =
4.4 × 10−5 (of course, the equality is a pure coincidence)
while for 0.8 6 r 6 1 we obtained I− = −2.3 × 10−4 and
I+ = 0.

We conclude that the available observational data con-
cerning the radial distribution of current helicity seems to
be consistent with the corresponding differences in numer-
ical model. We consider the observed radial dependence of
the current helicity as an observational manifestation of a
structure similar to that presented in the numerical models.

Note that the choice of the latitudinal and radial belts in
which the helicity integrals are calculated does affect signifi-
cantly the numbers above. For our basic run, calculating the
helicity integrals for the whole northern hemisphere we ob-
tain I− = −2.7×10−3 and I+ = 7.2×10−4 for 0.7 6 r 6 0.8,
I− = −5.9 × 10−3 and I+ = 3.6 × 10−4 for 0.8 6 r 6 0.9
and I− = −6.1 × 10−3, I+ = 3.5 × 10−4 for 0.8 6 r 6 1.0.
Obviously, these values of helicity integrals calculated for
these more arbitrarily chosen belts are less impressive than
the previous, where the belts were isolated on the basis of
snapshots of the helicity distribution. The important thing
is that a link between helicity integrals and depth is still
visible here.

We stress that the available observational data, as well
as the nature of the dynamo model, do not allow any quan-
titative description of the radial helicity distribution. The
best that we can hope to do is to isolate some link between
these quantities. The important result is that such a link
appears to exist, without reference to a particular choice
of boundaries. We stress this fact and do not take exactly
the same boundaries in for shallow, middle and deep regions
throughout the whole paper.

6 DISCUSSION

In this paper we have demonstrated that the available ob-
servational data concerning solar current helicity give some
hints concerning its radial distribution. The active regions
clearly associated with the upper layers of solar convective
zone demonstrate a significantly more homogeneous distri-
bution of the current helicity than the deeper regions. We
interpret this as an observational indication that the struc-
ture of the solar activity wave deep inside the Sun is substan-
tially more complicated than near its surface. In contrast to
a rather smooth structure of the surface activity wave with
the dominant pattern propagating from the middle latitudes
to the equator, we expect a more complicated structure of
activity waves deep inside the Sun. In particular, the waves
with ”wrong” polarity deep inside the Sun are expected to
be more important compared to the main wave than nearer
the surface.

We have demonstrated that the scenario of solar dy-

namo based on magnetic helicity conservation arguments
can be extended to include radial dependence. This scenario
leads to a steady oscillatory solution in a substantial domain
of the parametric space, of a form that is at least consistent
with our basic understanding of internal solar structure. If
we choose a more extreme parameter set, it is natural that
we will need to include more effects (say, buoyancy) into the
dynamo saturation mechanisms.

Slightly unexpectedly, we note that the results of dy-
namo simulations are remarkably close to the available mag-
netic helicity observations. The structure of dynamo waves
deep inside the convective zone is much sharper and more
complicated than the smooth surface structure. The waves of
”wrong” polarity of helicity are pronounced in deeper layers
and almost undetectable at the surface. We hope that this
is an indication that our theoretical understanding of the
solar dynamo has some observational support from helicity
data. Of course, we stress that the very preliminary nature
both of the topic and of our model prevents any strong con-
clusion, and that more observational and theoretical efforts
are required to support our inferences. However, in any case
the result obtained is perhaps as good as could be expected
at the moment.

We emphasize that the ability of the observations to
support (or reject) theoretical ideas concerning the radial
properties of the solar activity wave is highly nontrivial.
In contrast, we can neither support nor reject a scenario
suggested by Choudhuri et al. (2004) who believe that the
number of active regions violating the polarity law should
be significantly larger at the beginning of the cycle rather
in the later phases. Some tendency of this kind is visible in
Tables 5 and 6, but the data are insufficient to support any
firm statement. Further studies of a larger sample of active
regions (cf. Bao et al. 2000, 2002) may help to address this
point.

Note that the helicity distribution presented in Fig. 5
could be represented as a propagation of the activity wave
from one hemisphere to the other. Suppose that a wave of
negative helicity penetrates from northern hemisphere into
the southern, where positive helicity dominates. Such a pen-
etration of an activity wave into a ”wrong” hemisphere was
investigated for Parker migratory dynamo by Galitski et al.
(2005). They estimated the scale of penetration as about a
dozen degrees in latitude, which seems broadly consistent
with Fig. 5.

In our basic numerical model, the helicity close to the
surface does not exhibit any migration. This perhaps seems
quite unexpected, but does not directly contradict any ob-
servational or theoretical knowledge. Note that the butterfly
diagrams for the mean surface poloidal magnetic field ex-
hibit standing, rather than propagating, waves (Obridko &
Shelting 2003).
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APPENDIX A: QUENCHING FUNCTIONS

The quenching functions φv(B) and φm(B) appearing in the
nonlinear α effect are given by

φv(B) =
1

7
[4φm(B) + 3L(

√
8B)] , (A1)

φm(B) =
3

8B2

[
1− arctan(

√
8B)√

8B

]
(A2)

(see Rogachevskii & Kleeorin 2000), where L(y) = 1−2y2 +
2y4 ln(1 + y−2).

The nonlinear turbulent magnetic diffusion coefficients
for the mean poloidal and toroidal magnetic fields, ηA(B)
and ηB (B), and the nonlinear drift velocities of poloidal and

toroidal mean magnetic fields, ~V A(B) and ~V B(B), are given
in dimensionless form by

ηA(B) = A1(4B) + A2(4B) , (A3)

ηB (B) = A1(4B) +
3

2
[2A2(4B)−A3(4B)] , (A4)

~V A(B) = V1(B)
~ΛB

2
+

V2(B)

r
(~er + cot θ ~eθ) + ~Vρ(B) ,

(A5)

~V B(B) =
V3(B)

r
(~er + cot θ ~eθ) + ~Vρ(B) , (A6)

where

V1(B) =
3

2
A3(4B)− 2A2(4B) ,

V2(B) =
1

2
A2(4B) ,

V3(B) =
3

2
[A2(4B)−A3(4B)] ,

~Vρ(B) =
1

2
~Λρ[−5A2(4B) + 3A3(4B)],

(Rogachevskii & Kleeorin 2004).
The functions Ak(y) are

A1(y) =
6

5

[
arctan y

y

(
1 +

5

7y2

)
+

1

14
L(y)− 5

7y2

]
,

A2(y) = −6

5

[
arctan y

y

(
1 +

15

7y2

)
− 2

7
L(y)− 15

7y2

]
,

A3(y) = − 2

y2

[
arctan y

y
(y2 + 3)− 3

]
.

The nonlinear quenching of the turbulent magnetic dif-

fusion of the magnetic helicity is given by

κ(B) =
1

2

[
1 + A1(4B) +

1

2
A2(4B)

]
. (A7)
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