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Abstract

The minimal entropy and minimal martingale measures are shown to be related
by an Esscher transform, involving the mean-variance trade-off, in an incomplete
diffusion model containing a traded stock and a correlated non-traded stochastic
factor. The coefficients of the diffusions are measurable with respect to the Brownian
motion driving the non-traded factor, as is typical in stochastic volatility models.
The result is motivated by an analysis of exponential indifference prices, and made
rigorous by appealing to a representation equation for the q-optimal measure due
to Hobson [14]. The result yields a new representation for the marginal price of a
claim on the non-traded factor.

1 Introduction

In this note we relate the minimal martingale measure QM and the minimal entropy
martingale measure QE in an incomplete Markovian model, using an Esscher transform
[7]. The result is first motivated by a formal analysis of exponential indifference prices of
a claim on the non-traded factor Y . The rigorous proof is obtained from a representation
equation of Hobson [14] for the q-optimal measure Q(q), related to QM , QE by QM =
Q(0), QE = Q(1) [15].

The model comprises a stock S whose logarithmic return is a diffusion with coeffi-
cients dependent on a correlated non-traded stochastic factor Y , as in Zariphopoulou
[27]. Denote by W the Brownian motion driving Y , and let G := (Gt)0≤t≤T denote the
filtration generated by W . Let B denote the Brownian motion driving the traded asset
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S, and let ρ ∈ [−1, 1] denote the correlation between B and W . The crucial feature of
the model from our point of view is the following.

Property 1 The correlation ρ is constant and the processes logS, Y are diffusions with
coefficients adapted to G.

In particular, this implies that the so-called mean-variance trade-off process [18], K, is
G-adapted.

Let Q̂E , Q̂M denote the projections of QE , QM onto GT . The main result (Theorem
1) is a characterization of the density of Q̂E with respect to Q̂M as an Esscher trans-
form involving the mean-variance trade-off process K and a constant depending on the
correlation ρ.

Zariphopoulou [27] has analyzed optimal investment under power utility in the model
studied here, and Henderson [13] and Zariphopoulou and co-authors [16, 24, 25] have
analyzed exponential valuation of claims in similar models. Monoyios [15] analyzes the
dual to a primal portfolio problem across different preferences in the diffusion model
studied here, yielding representations for the dual optimizer Q∗ (which is the q-optimal
measure Q(q) for q ∈ R depending on the utility function).

The dynamic programming solution of utility maximization problems in such models
follows a technique called distortion. The Hamilton-Jacobi-Bellman (HJB) equation for
the value function is solved by separating out dependence on initial wealth x and then
applying a power transformation to the remaining function. For power or exponential
utility the value function u(x) has the form

u(x) = U(x)F δ,

where U is the utility function and F is a function of time and the initial value of Y .
The value of the distortion power δ can be chosen to obtain a linear PDE for F and,
by the Feynman-Kac Theorem, an expectation representation for F . With exponential
utility, this expectation is taken with respect to Q̂M .

Tehranchi [26] has extended the distortion solution to a non-Markovian scenario
when the factors follow correlated Itô processes. This suggests that the results here may
extend to that scenario, and this a topic for future research.

We use the distortion method under exponential utility, and with a random terminal
endowment involving European claims on Y , to formally obtain a formula for Davis’ [3]
marginal indifference price p̂ for the claim. This heuristic argument is given in Section 3.
Theorem 1 is motivated by equating this representation with the classical representation
for p̂ as the expectation of the payoff under the optimal dual martingale measure Q∗. As
is well-known, for exponential utility Q∗ = QE (see Delbaen et al [5], for example, and
Becherer [1] for properties of exponential indifference prices in a general semimartingale
setting).

For q ≥ 1 Hobson [14] has derived a martingale representation identity for the q-
optimal measure in (not necessarily Markovian) models similar to ours, extending a
result of Rheinländer for the case q = 1, and Monoyios [15] extends this result to
q < 1. We use Hobson’s result to rigorously prove Theorem 1. Under the hypothesis
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of Property 1, the Hobson representation equation is a relation between GT -measurable
random variables. Property 1 is restrictive, but there are still many interesting financial
applications that fit into this framework, and understanding the relationship between
martingale measures is a fruitful exercise, yielding an interpretation of the distortion
solution a a by-product.

The rest of the paper is as follows. Section 2 describes the model and gives the
main result. Using exponential utility, Section 3 states the distortion solution for the
primal optimization problem of an agent with random endowment of claims on Y , and
gives a heuristic derivation of a formula for the marginal price p̂ of the claim. Section
4 gives a rigorous proof of Theorem 1, based on the particular form of Hobson’s [14]
representation equation in this model, and rigorously obtains the formula of Section
3 for p̂, valid for any GT -measurable claim, as an immediate consequence. Section 5
concludes.

2 A Markov model with unhedgeable risk

A traded asset S := (St)0≤t≤T and a non-traded stochastic factor Y := (Yt)0≤t≤T follow

dSt = σ(t, Yt)St (λ(t, Yt)dt+ dBt) , (1)
dYt = a(t, Yt)dt+ b(t, Yt)dWt, (2)

subject to initial conditions, under the physical measure P . The Brownian motions B
and W have constant correlation ρ ∈ [−1, 1]. We write

Wt = ρBt + ρ̄Zt,

with ρ̄ =
√

1− ρ2, and (B,Z) := (Bt, Zt)0≤t≤T a two-dimensional Brownian motion
on a complete filtered probability space (Ω,F ,F := (Ft)0≤t≤T , P ), with F generated by
(B,Z). Denote by G := (Gt)0≤t≤T the filtration generated by W .

The parameter functions λ, σ, a, b are such that unique strong solutions to the stochas-
tic differential equations (1,2) exist. We make the following assumption throughout.

Assumption 1 The coefficients λ, a, b are C1,2([0, T ] × R) functions satisfying, uni-
formly in t, |f(t, y)| ≤ C(1 + |y|) for f = λ, a, b and a positive constant C. The
volatility coefficient σ(t, y) satisfies σ(y) ≥ ` > 0 for some positive constant ` and
(t, y) ∈ ([0, T ] × R. The diffusion coefficient b is uniformly elliptic: ∃ε > 0 : b2(t, y) ≥
εy2,∀y ∈ R, t ∈ [0, T ].

The interest rate is zero, or equivalently S represents a discounted price. This entails
no loss of generality if the interest rate is deterministic or depends only on Y and on
time. The crucial feature of (1,2) for our purposes is that λ, a, b are progressively G-
measurable. In principle, therefore, one could allow σ to be F-adapted.

The classM of equivalent local martingale measures consists of measures Q ∼ P on
FT with densities given by

dQ

dP
= E (−λ ·B − ψ · Z)T ,
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where E is the Doléans exponential and ψ := (ψt)0≤t≤T is an F-adapted process satisfying∫ T
0 ψ2

t dt <∞ a.s. The so-called mean-variance trade-off process is the increasing process
K := (Kt)0≤t≤T given by Kt :=

∫ t
0 λ

2(u, Yu)du <∞, P -a.s., with the finiteness property
true by assumption. We assume E(dQ/dP ) = 1 so that Q is a probability measure
equivalent to P on FT . A sufficient condition for this to be true is the Novikov condition

E exp
(

1
2

(
KT +

∫ T

0
ψ2
t dt

))
<∞.

Under Q ∈M, dSt = σ(t, Yt)StdB
Q
t and Y satisfies

dYt = [a(t, Yt)− b(t, Yt)(ρλ(t, Yt) + ρ̄ψt)] dt+ b(t, Yt)dW
Q
t ,

where WQ
t = ρBQ

t + ρ̄ZQt and (BQ, ZQ) := (BQ
t , Z

Q
t )0≤t≤T is a two-dimensional Q-

Brownian motion defined by BQ
t := Bt +

∫ t
0 λ(u, Yu)du and

ZQt := Zt +
∫ t

0
ψudu. (3)

Naturally, the traded asset S is a local Q-martingale, while the Q-drift of Y is arbitrary
and parametrized by the integrand ψ in (3). The space M is in one-to-one correspon-
dence with the set of integrands ψ provided E(dQ/dP ) = 1, and we write Q = Qψ

whenever we need to emphasize dependence on ψ.
The minimal martingale measure is QM = Q0 corresponding to ψt = 0, 0 ≤ t ≤ T

in (3). Originally defined by Föllmer and Schweizer [8] in a quadratic hedging context,
QM has subsequently appeared naturally in many other situations; see Schweizer [23] for
more details. For models with continuous price trajectories, the most general characteri-
zation of QM is due to Schweizer [22], who shows that QM minimizes the reverse relative
entropy H(P,Q) over all Q ∈ M, which means that QM is the q-optimal measure for
q = 0 [15].

The relative entropy H(Q,P ) of Q ∈M with respect to P is

H(Q,P ) :=

{
E
(
dQ
dP log dQ

dP

)
, if Q� P on FT ,

+∞, otherwise.

The minimal entropy martingale measure QE is defined by

QE := arg min
Q∈M

H(Q,P ).

There are close links between relative entropy and hedging under exponential utility,
as espoused in [5, 9, 19, 20] for example, and QE is the q-optimal measure for q = 1
[11, 14, 15].

Let Q̂E , Q̂M denote the projections of QE , QM onto the sigma-algebra GT :

dQ̂E

dP
:= E

[
dQE

dP

∣∣∣∣GT] ,
dQ̂M

dP
:= E

[
dQM

dP

∣∣∣∣GT] ,
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satisfying, for i = E,M , Q̂i(A) = Qi(A),∀A ∈ GT , implying EQ̂
i
G = EQ

i
G for any

GT -measurable random variable G for which the expectations exist.
Our main result is an Esscher transform relation [7] between Q̂E and Q̂M , involving

the mean-variance trade-off process K and a constant depending on the correlation ρ.
The proof is deferred to Section 4.

Theorem 1 In the model described by (1,2) the projections Q̂E , Q̂M of the minimal
entropy measure QE and the minimal martingale measure QM onto GT are related by
the Esscher transform

dQ̂E

dQ̂M
=

exp(θKT )

EQ̂M exp(θKT )
,

where
θ = −1

2
(
1− ρ2

)
,

and KT is the mean-variance trade-off at T .

Esscher transforms have a long history in actuarial pricing, and have been used by some
authors to define a possible pricing measure in incomplete markets. See, for example
[2, 10, 6].

3 Exponential indifference pricing

We give a heuristic derivation of a formula for the marginal price of a claim on Y ,
motivating the result in Theorem 1.

Suppose a European option on asset Y pays h(YT ). An agent trades a self-financing
portfolio involving the traded asset S. The portfolio wealth process X satisfies

dXt = σ(t, Yt)πt(λ(t, Yt)dt+ dBt),

where πt is the wealth invested in the traded asset S at time t ∈ [0, T ]. The agent has
preferences described by the exponential utility function

U(x) = − exp(−γx), x ∈ R, γ > 0. (4)

The objective is to maximize expected utility of terminal wealth at time T , with an
additional random endowment of n units of the claim payoff:

J(t, x, y;π) = E[U(XT + nh(YT ))|Xt = x, Yt = y],

where we assume nh(YT ) is bounded below. The agent’s primal value function is

u(t, x, y) := sup
π∈A

J(t, x, y;π), (5)

with u(T, x, y) = U(x + nh(y)). We write u(n)(t, x, y) ≡ u(t, x, y) when we need to
emphasize dependence on n. We denote the set of admissible trading strategies by A. A
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trading strategy is an adapted process π := (πt)0≤t≤T satisfying
∫ T

0 σ2(t, Yt)π2
t dt < ∞

almost surely. When wealth can become negative the definition of admissibility is subtle,
as discussed by Schachermayer [21]. We make the following definitions, along the lines
of [4, 21, 17].

Ab = {π ∈ A0 : Xt ≥ a ∈ R a.s. ∀t ∈ [0, T ]} ,
Ub =

{
Γ ∈ L0(Ω,FT , P ) : Γ ≤ XT + nh(YT ) for π ∈ Ab and E|U(Γ)| <∞

}
U = {U(Γ) : Γ ∈ Ub}c
A = {π ∈ A0 : U(XT ) ∈ U} ,

where {. . .} denotes the closure in L1(Ω,FT , P ). The point is that we first bound the
portfolio wealth from below, to eliminate doubling strategies [12], but the resulting class
Ab is not big enough to guarantee finding the optimal strategy by searching only within
it, so this class is suitably enlarged. See Schachermayer [21] or Owen [17] for more
details. This subtlety will not overly concern us here, as our goal is to formally use the
solution to the optimization problem to heuristically motivate subsequent results.

The indifference price p(t, x, y) ≡ p(n)(t, x, y) per claim, for a random endowment of
n claims, is defined by

u(n)(t, x− np(n)(t, x, y), y) = u(0)(t, x, y). (6)

The marginal price p̂(t, x, y) of the claim corresponds to a price which essentially solves
(6) as n → 0. The original definition of Davis [3] used a “zero marginal rate of substi-
tution” argument and subsequent papers, for example [1], have shown that it arises as
the n→ 0 limit (alternatively, the γ → 0 limit) of p(n):

p̂(t, x, y) = lim
n→0

p(n)(t, x, y). (7)

With exponential utility, provided the payoff satisfies suitable integrability conditions,
p̂ is also given by the QE-expectation of the payoff:

p̂ = EQ
E
h(YT ). (8)

Conditions on h(YT ) for validity of (8) are discussed by Becherer [1], and amount to the
payoff having an exponential moment. For exponential utility, it is well known that p(n)

and p̂ do not depend on x.

3.1 Distortion power solution

Using the well-known distortion method [27, 25, 13, 26] we obtain a closed form expec-
tation representation for the value function u(n)(t, x, y). We merely state the result, as
the distortion method is well established. Our goal in this section is to use the solu-
tion to heuristically derive a representation for the marginal price of the claim on Y .
This will be equated with the well-known representation for p̂ as the QE-expectation
of the payoff h(YT ). A rigorous analysis verifying the regularity and optimality of the
distortion solution follows the same lines as [24, 25, 27].

6



Proposition 1 (Distortion power solution) With exponential utility (4), the value
function u ≡ u(n) in (5) is given by

u(t, x, y) = U(x) (F (t, y))1/(1−ρ2) , (9)

where the function F ≡ F (n) : [0, T ]× R→ R
+ has the stochastic representation

F (n)(t, y) = EQ̂
M

[
exp

(
−(1− ρ2)

(
1
2

∫ T

t
λ2(u, Yu)du+ γnh(YT )

))∣∣∣∣Yt = y

]
. (10)

Remark 1 The expectation in (10) is taken with respect to the projection of the minimal
measure QM onto GT . We can replace Q̂M by QM in (10), since these measures give
the same moments for GT -measurable random variables.

3.2 Indifference price formulae

Using Proposition 1 and the definition (6) of the indifference price per claim gives the
following formula for p(n):

p(n)(t, y) = − 1
γ(1− ρ2)n

log

(
F (n)(t, y)
F (0)(t, y)

)
, (11)

with F (n)(t, y) given by (10).
We use a formal perturbative analysis of the formula for p(n) ≡ p(n)(0, y) to obtain

a formula for the marginal price p̂ ≡ p̂(0, y). Using (10) at t = 0 along with a formal
Taylor series expansion applied to the exponential in (10) and the logarithm in (11)
gives the indifference price p(n) as

p(n) =
EQ̂

M
[exp(θKT )h(YT )]

EQ̂M exp(θKT )
+O(n),

where O(n) denotes terms involving n and higher powers of n. Using (7) the marginal
price p̂ is obtained on taking the limit n→ 0, as

p̂ =
EQ̂

M
[exp(θKT )h(YT )]

EQ̂M exp(θKT )
. (12)

The derivation of (12) is purely formal, and will be made rigorous by other methods in
the next section. Its value to us is that when equated with the classical representation
(8) for p̂, it motivates a relation between QM and QE (or, more precisely, between their
projections onto the sigma field generated by YT ). Equating (12) with (8) gives the
statement of Theorem 1 for the projections of QE , QM onto the sigma field generated
by YT .
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4 Proofs

We prove Theorem 1 from the representation equation of Hobson [14] for the q-optimal
measure Q(q). For q ∈ R \ {0, 1}, Q(q) minimizes (maximizes, for 0 < q < 1) the Lq

norm E[(dQ/dP )q] over Q ∈M. For q = 1, Q(1) = QE , minimizing the relative entropy
H(Q,P ) between Q and P , and for q = 0, Q(0) = QM , minimizing the reverse relative
entropy H(P,Q) (see [15] for instance). We need a couple of lemmas specifying the
solution to Hobson’s representation equation in our model. Write

dQ(q)

dP
= E(−λ ·B − ψ∗ · Z)T , (13)

for some optimal dual process ψ∗, in general F-adapted.
In the Markovian model of this paper, it turns out that ψ∗ is given by a G-adapted

process related to the distortion function F (0)(t, Yt) in (10) for n = 0. The following
lemma is proved in [15] for general q (we give the version for q = 1), from an analysis
of the HJB equation for the dual problem, and may also be derived from the results in
[14].

Lemma 1 Under the conditions of Assumption 1, the process ψ∗ in (13) is given by

ψ∗t = −b(t, Yt)
ρ̄

∂

∂y
logF (0)(t, Yt), t ∈ [0, T ], (14)

where F (0)(t, y) is the function (10) in the distortion solution (9) for n = 0.

For q = 1, and in the Markovian model (1,2), Hobson’s representation equation is
as follows.

Lemma 2 Define processes (N,L) = (Nt, Lt)0≤t≤T by

Nt :=
∫ t

0

(
ρ

ρ̄

)
ψ∗u(dBu + λ(u, Yu)du),

Lt :=
∫ t

0
ψ∗udZu,

with ψ∗ given by (14). Then NT , LT satisfy

1
2
KT = NT + LT +

1
2

[L]T −
1
ρ̄2

logF (0), (15)

where F (0) ≡ F (0)(0, y) is defined in (10).

Proof This is proved in Monoyios [15]. It follows from substituting (14) in (15) and
using the PDE for F (0)(t, y), obtained from (10) and the Feynman-Kac Theorem, to
show that (15) is satisfied.

�
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Proof of Theorem 1 Define a Brownian motion W⊥ independent of the G-adapted
Brownian motion W , via

W := ρB + ρ̄Z,

W⊥ := ρ̄B − ρZ.

Re-write (13) for q = 1 in terms of W,W⊥, to obtain

dQE

dP
= E

[
− ((ρλ+ ρ̄ψ∗) ·W )−

(
(ρ̄λ− ρψ∗) ·W⊥

)]
T
.

The processes in the stochastic exponential are G-adapted, except for the Brownian
motion W⊥, which is independent of G. We condition on GT to obtain

dQ̂E

dP
= exp

{
− ((ρλ+ ρ̄ψ∗) ·W )T −

1
2

∫ T

0
(ρλt + ρ̄ψ∗t )

2 dt

}
. (16)

Similarly, from
dQM

dP
= E [−(λ ·B)]T ,

we obtain
dQ̂M

dP
= exp

(
−ρ(λ ·W )T −

1
2
ρ2KT

)
,

which is (16) with ψ∗ set to zero. Combining these results we obtain

dQ̂E

dQ̂M
= exp

{
− ((ρλ+ ρ̄ψ∗) ·W )T −

1
2
ρ̄

∫ T

0
(ρ̄ψ∗t + 2ρλ(t, Yt))dt

}
. (17)

Now write the representation equation (15) in terms of (W,W⊥) to obtain

(ψ∗ ·W )T =
1
2

(∫ T

0
ψ∗t (ρ̄ψ

∗
t − 2ρλ(t, Yt))dt− ρ̄KT

)
− 1
ρ̄

logF (0).

Note that this contains only GT -measurable terms. Use this equation to eliminate the
integral (ψ∗ ·W )T from (17), and the result follows on recalling that, from (10), F (0) =
EQ̂

M
exp(θKT ).

�

Property 1 means that the relevant connection between the measures QE , QM is
expressed in terms of their projections onto the sigma-algebra GT . The result may be
recast into the equivalent form

EQ
M

[
dQE

dQM

∣∣∣∣GT] =
exp(θKT )

EQM exp(θKT )
.

An immediate corollary of Theorem 1 is the following representation for the marginal
price of a European claim on Y .

Corollary 1 The marginal price of a GT -measurable claim G has the representation

p̂ =
EQ̂

M
[exp(θKT )G]

EQ̂M [exp(θKT )]
.
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Proof The result is immediate on writing p̂ = EQ
E
G = EQ̂

E
G and using Theorem 1

to express the price as a Q̂M - expectation.

�

Naturally, the expectations in Corollary 1 may also be written with respect to QM .

5 Conclusion

The crucial feature of the model studied here is the fact that the mean-variance trade-
off K and the non-traded factor Y are progressively measurable with respect to G, the
sigma-field generated by the Brownian motion W driving Y . This has enabled us to
derive an Esscher transform relation between the projections of QE , QM onto GT . The
result is obtained from the Hobson-Rheinländer representation equation (15) for the
q-optimal measure, along with the fact that in the Markovian scenario studied here, the
process ψ∗ solving (15) is expressed in terms of the distortion function F (t, y), so that
ψ∗ is progressively G-measurable. The PDE satisfied by F plays a role in showing that
(15) is indeed solved by ψ∗ given in (14). It may be possible to relax the Markovian
assumption, and recent work by Tehranchi [26] showing that the distortion solution is
valid in a non-Markovian setup, lends weight to this conjecture. This would require
probabilistic methods.

A further obvious question that arises is whether similar results extend to the q-
optimal measure for q 6= 1. Using similar methods to those for q = 1, we have been able
to obtain the following result for general q. Let Q(q) denote the q-optimal measure, with
QM = Q(0). Then we have:{

EP
M

[(
dQ(q)

dQ(0)

)q∣∣∣∣∣GT
]}∆

=
exp(θKT )

EPM exp(θKT )
,

where θ = −1
2q(1 − qρ

2) and ∆ = (1 − qρ2)/qρ̄2. This result reduces to Theorem 1 for
q = 1, but is clearly not as sharp as the main theorem.
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