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Abstract

Uncertainty on the choice of an option pricing model can lead to
“model risk” in the valuation of portfolios of options. After discussing
some properties which a quantitative measure of model uncertainty should
verify in order to be useful and relevant in the context of risk management
of derivative instruments, we introduce a quantitative framework for mea-
suring model uncertainty in the context of derivative pricing. Two meth-
ods are proposed: the first method is based on a coherent risk measure
compatible with market prices of derivatives, while the second method is
based on a convex risk measure. Our measures of model risk lead to a pre-
mium for model uncertainty which is comparable to other risk measures
and compatible with observations of market prices of a set of benchmark
derivatives. Finally, we discuss some implications for the management of
“model risk”.
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1 Introduction

In March 1997, Bank of Tokyo/Mitsubishi announced that its New York-based
derivatives unit had suffered a $ 83 million loss because their internal pricing
model overvalued a portfolio of swaps and options on U.S. interest rates. A few
weeks later, NatWest Capital Markets announced a £50 million loss because of a
mispriced portfolio of German and U.K. interest rate options and swaptions run
by a single derivatives trader in London. According to observers having followed
these events, many “of the situations [..] that led to (recent) derivatives losses
were attributable to model risk” [Elliott (1997)].

With the dissemination of quantitative methods in risk management and ad-
vent of complex derivative products, mathematical models have come to play an
increasingly important role in financial decision making, especially in the con-
text of pricing and hedging of derivative instruments. While the use of models
has undeniably led to a better understanding of market risks, it has in turn given
rise to a new type of risk, known as “model risk” or “model uncertainty”, linked
to the uncertainty on the choice of the model itself. According to a recent report
[Williams (1999)], $ 5 billion in derivatives losses in 1999 were attributable to
“model risk”.

Uncertainty on the choice of the pricing model can lead to the mispricing
of derivative products. While model uncertainty is acknowledged by most op-
erators who make use of quantitative models, most of the discussion on this
subject has stayed at a qualitative level and a quantitative framework for mea-
suring model uncertainty is still lacking. As noted by [Williams (1999)], “there
are no packaged, off-the-shelf systems for model risk management”. Some ques-
tions for which one would like quantitative answers are:

• How sensitive is the value of a given derivative to the choice of the pricing
model?

• Are some instruments more model-sensitive than others?

• How large is the model uncertainty of a portfolio compared with its market
risk?

• Can one provision for “model risk” in the same way as one provisions for
market risk and credit risk?

One could wonder whether model uncertainty deserves a separate treatment
from other sources of uncertainty in financial markets. Indeed, the classical
approach to decision under uncertainty [Savage] does not distinguish between
different sources of risk: “model uncertainty” should be indistinguishable from
market risk, credit risk,...which would imply that ”model uncertainty” simply
amounts to weighting various models with probabilities and representing all
sources of uncertainty using a probability distribution on the enlarged space
comprising “models” + scenarios. Indeed, such “model averaging” approaches
have been proposed in the Bayesian literature [Hoeting et al.] (see Section 2).
However, this approach is in strong contrast with the current practices in risk
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management: as noted by [Routledge & Zin (2001)], market participants typi-
cally use different criteria to measure “market risk” and “model risk”, the for-
mer being valued by using a probabilistic model while the latter is approached
through a worst case approach, for instance by stress testing of portfolios.

This had led to the distinction between risk -uncertainty on outcomes for
which the probabilities are known- and ambiguity or model uncertainty-when
several specifications are possible for such probabilities [Knight]. [Ellsberg]
has shown that aversion to ambiguity clearly plays a role in decision mak-
ing. A growing body of literature has explored decision under ambiguity, its
axiomatic foundations [Gilboa & Schmeidler, Epstein] and implications for the
behavior of security prices [Epstein & Wang, Routledge & Zin (2001)]. Some of
these ideas have resurfaced in the recent literature on coherent risk measures
[Artzner et al(1999)] and their extensions [Föllmer & Schied (2002)].

Although general in nature, these approaches do not take into account some
specific features of the use of probabilistic models in the pricing of derivatives.
The notion of coherent risk measure does not distinguish hedgeable and non-
hedgeable risks, nor does it differentiate between market risk and model un-
certainty. And, although coherent measures of risk are expressed in monetary
units, when applied to traded options they may lead to numbers which are not
necessarily comparable to the mark-to-market value of these options. Also, in
the context of derivative pricing, models are often specified not in terms of ob-
jective probabilities but “risk-neutral” probabilities so, in incomplete markets,
ambiguity can prevail on pricing criteria even when there is no ambiguity on
the underlying price process itself. These remarks show that model uncertainty
in option pricing cannot be reduced to the classical setting of decision under
ambiguity and merits a specific treatment.

We attempt to address these issues by defining a framework for quantify-
ing model uncertainty in option pricing models. We first discuss, at an intuitive
level, some properties which a quantitative measure of model uncertainty should
possess in order to qualify as a measure of model uncertainty in the context of
risk measurement and management. We then propose two methods for mea-
suring model uncertainty which verify these properties and are compatible with
observations of market prices of a set of benchmark derivatives: our first method
is based on a set of pricing models calibrated to the benchmark options, while
the second method relaxes the calibration requirement. Both methods lead to
a decomposition of risk measures into a market value and a premium for model
uncertainty.

The paper is structured as follows. We start by discussing some existing
approaches to decision-making in presence of multiple probability measures in
Section 2. Some specific features of the use of models in the valuation of deriva-
tive instruments are not taken into account in these general frameworks; these
issues are discussed in Section 3, where we give an intuitive definition of model
uncertainty in the context of derivative markets and enumerate some properties
a measure of model uncertainty must have in order to be meaningful for risk
management of derivative instruments. In Section 4 we formulate these require-
ments in mathematical terms and present a methodology for measuring model
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uncertainty which verifies these requirements. This method requires to specify
a set of pricing models and calibrate them to a set of market option prices;
this requirement is relaxed in Section 5, where a more general approach based
on convex risk measures is proposed. Section 6 concludes by summarizing our
main contributions, discussing some open questions and pointing out possible
implications of our work for the measurement and management of “model risk”.
We have attempted to motivate the mathematical notions introduced through
examples which illustrate their relevance.

2 Risk, uncertainty and ambiguity

The starting point in option pricing theory is usually the specification of a
stochastic model: a set of future scenarios (Ω,F) and a probability measure P

on these outcomes. However there are many circumstances in financial decision
making where the decision maker or risk manager is not able to attribute a pre-
cise probability to future outcomes. This situation has been called “uncertainty”
by [Knight], by contrast with “risk”, when we are able to specify a unique prob-
ability measure on future outcomes.1 More precisely, we speak of ambiguity
when we are facing several possible specifications P1, P2, .. for probabilities on
future outcomes [Epstein].

In his 1961 thesis, [Ellsberg] established a distinction between aversion to
risk–related to lack of knowledge of future outcomes– and aversion to ambi-
guity2, related to the lack of knowledge of their probabilities, and showed
that aversion to ambiguity can strongly affect decision makers behavior and
resolve some paradoxes of classical decision theory. More recently, ambigu-
ity aversion has shown to have important consequences in macroeconomics
[Hansen et al., 1999, Hansen et al.] and for price behavior in capital markets
[Chen & Epstein, Epstein & Wang, Routledge & Zin (2001)].

Two different paradigms have been proposed for evaluating uncertain out-
comes in presence of ambiguity. The first one, which consists of averaging over
possible models, has been used in the statistical literature [Raftery, Hoeting et al.].
The other one is based on worst-case or “maxmin” approach and has been ax-
iomatized by [Gilboa & Schmeidler] and studied in the context of asset pric-
ing by [Epstein & Wang, Routledge & Zin (2001)] and others. Related to this
worst-case approach is the recent literature on coherent measures of risk [Artzner et al(1999)].
We review in this section these approaches and their possible implications and
shortcomings for quantifying model uncertainty for portfolios of derivatives.

1This distinction appeared in [Knight], hence the term “Knightian uncertainty” sometimes
used to designate the situation where probabilities are unknown. We remark here that the
term “model risk” sometimes used in the financial literature is somewhat confusing in this
respect and the term “model uncertainty” should be preferred.

2We use here the terminology of [Epstein].
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2.1 Bayesian model averaging

A lot of attention has been devoted to model uncertainty in the context of sta-
tistical estimation, using a Bayesian approach. [Hoeting et al.] note that “data
analysts typically select a model from some class of models and then proceed
as if the selected model had generated the data. This approach ignores the un-
certainty in model selection, leading to over-confident inferences and decisions
that are more risky than one thinks they are”. Bayesian model averaging is one
way to incorporate model uncertainty into estimation procedures.

Let M = {M1, ...,MJ} be a family a of candidate models whose parameters
(not necessarily in the same sets) are denoted by θ1 ∈ E1, ..., θJ ∈ EJ . Consider
a Bayesian observer with two levels of prior beliefs:

• Priors on model parameters: p(θj |Mj) is a prior density (on Ej) that
summarizes our views about the unknown parameters of model j, given
that Mj holds.

• Prior “model weights”: P(Mj), j = 1..J , the prior probability that Mj is
the “true” model.

Given a set of observations y, the posterior probability for model Mj is

P(Mj |y) =
p(y|Mj)P(Mj)∑J

k=1 p(y|Mk)P(Mk)
(2.1)

where p(y|Mj) is the integrated likelihood of the data under model Mj :

p(y|Mj) =
∫

Ek

P(y|θj ,Mj)p(θj |Mj) dθj (2.2)

Suppose we want to compute a model dependent quantity, given by the expec-
tation of a random variable X: we only have the observations y but we are
uncertain about the model to use. The Bayesian model averaging approach
suggests to compute this quantity in each model and average over the models,
weighting each model by its posterior probability given the observations:

Ê[X|y] =
m∑

j=1

E[X|y,Mj ] P(Mj |y) (2.3)

If Mj are alternative option pricing models, this would amount to computing
option prices in each model and taking a weighted average across models. Sim-
ilarly one can use the following quantity to measure dispersion across models:

D̂[X|y] =
m∑

j=1

{E[X|y,Mj ] − Ê[X|y]}2 P(Mj |y) (2.4)

Averaging across models, whether or not it is done in a Bayesian way, provides
a higher stability of the estimates obtained. However, several obstacles appear
when trying to apply this approach in the framework of option pricing.
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First, this method not only requires specifying –as in any Bayesian method–
a prior p(θj |Mj) on parameters of each model, but also a prior probability P(Mj)
on possible models, which is more delicate. How does one weigh a stochastic
volatility model with respect to a jump-diffusion model? How should prior
weights vary with the number of factors in interest rate models? While such
questions might be ultimately reasonable to ask, not much experience is available
in assigning such prior weights.3 In other words, this approach requires too much
probabilistic sophistication on the part of the end user.

The second obstacle is computational: the posterior distributions involved
in the formulas above are not explicit and sampling from them requires the
use of Markov Chain Monte Carlo algorithms, which are computationally inten-
sive. Such an approach has been attempted in the case of Black-Scholes model
[Jacquier & Jarrow (2000)] but seems less feasible as soon as we move to more
complex models. It should also be noted that, because of these computational
difficulties, the Bayesian model averaging literature deals with relatively simple
model structures (linear and regression-type models).

Overall, the main justification for averaging over models is that it improves
predictive ability [Hoeting et al.] of some target quantity (say, an option price).
However, the main concern of risk management is not to predict prices but to
quantify the risk associated with them so model averaging seems less relevant
in this context.

2.2 Worst case approaches

The model averaging procedure described above, whether or not it is done in a
Bayesian way, is in fact consistent with the classical approach to decision under
uncertainty [Savage], which does not distinguish between different sources of
risk: in this approach, “model uncertainty” should be indistinguishable from
market risk, credit risk,...“Model uncertainty” then simply amounts to weighting
various models with probabilities and representing all sources of uncertainty
using a probability distribution on the enlarged space comprising “models” +
scenarios. However, this approach is in strong contrast with the current practices
in risk management: market participants do not specify probabilistic beliefs
over models and, as noted by [Routledge & Zin (2001)], typically use different
criteria to measure “market risk” and “model risk”, the former being valued by
risk neutral pricing (averaging across scenarios) while the latter is approached
through a worst case approach, for instance by stress testing of portfolios.

Aside from being observed in the practice of risk managers, the worst-case
approach also has a firm axiomatic foundation: [Gilboa & Schmeidler] propose
a system of axioms under which an agent facing ambiguity chooses among a set
A of feasible alternatives by maximizing a “robust” version of expected utility
(also called “maxmin” expected utility), obtained by taking the worst case over
all models:

max
X∈A

min
P∈P

EP[U(X)] (2.5)

3In the statistical literature, uniform priors on models are often used.
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Here the risk aversion of the decision maker is captured by the utility function
U , while the aversion to ambiguity (model uncertainty) is captured by taking
the infimum over all models in P. The worst case approach clearly distinguishes
model uncertainty from risk: the latter is treated by averaging over scenarios
with a given model while the former is treated by taking the supremum over
models. With respect to model averaging procedures described in Section 2.1,
worst case approaches are more conservative, more robust and require less so-
phisticated inputs on the part of the user. Thus, they are more amenable to the
design of a robust, systematic approach for measuring model uncertainty.

2.3 Risk measures

Related to the worst case approach described above is the notion of coherent risk
measure. A risk measurement methodology is a way of associating a number
(“risk measure”) ρ(X) with a random variable X, representing the payoff of
an option, a structured product or a portfolio. More precisely, if we define a
payoff as a (bounded measurable) function X : Ω → R defined on the set Ω
of market scenarios and denote the set of payoffs as E, then a risk measure is
a map ρ : E → R. [Artzner et al(1999)] enumerate a set of properties that ρ
needs to possess in order to be useful as a measure of risk in a risk management
context:

1. Monotonicity: if a portfolio X dominates another portfolio Y in terms of
payoffs then it should be less risky: X ≥ Y ⇒ ρ(X) ≤ ρ(Y ).

2. Risk is measured in monetary units: adding to a portfolio X a sum a in
numeraire reduces the risk by a: ρ(X + a) = ρ(X) − a .

3. Sub-additivity: this is the mathematical counterpart of the idea that di-
versification reduces risk.

ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (2.6)

4. Positive homogeneity : the risk of a position is proportional to its size.

∀λ > 0, ρ(λX) = λρ(X) (2.7)

A risk measure ρ : E → R verifying these properties is called a coherent risk
measure. [Artzner et al(1999)] show that any coherent measure of risk can be
represented as the highest expected payoff in a family P of models:

ρ(X) = sup
P∈P

EP[−X] (2.8)

Interestingly, this representation is a result of the “axioms” of risk measures:
it shows that any coherent risk measure is representable as a worst case ex-
pected utility with a zero “risk aversion” (i.e. a linear “utility”). It remains
to specify the family P and different choices will yield different measures of
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risk. Many familiar examples of risk measures can be represented in this form
[Artzner et al(1999), Föllmer & Schied (2002b)].

Coherent risk measures were generalized in [Föllmer & Schied (2002)] by
relaxing the positive homogeneity hypothesis: if conditions (3) and (4) above
are replaced by

∀λ ∈ [0, 1], ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) (2.9)

then ρ is called a convex risk measure. Under an additional continuity condition,
a convex risk measure can be represented as

ρ(X) = sup
P∈P

{EP[−X] − α(P)} (2.10)

where α : P �→ R is a “penalty” function. Allowing α to take the value +∞, one
can always extend P to the set of all probability measures on (Ω,F). A coherent
risk measure as defined above then corresponds to the special case where α only
takes the values 0 or ∞.

Several remarks can be made at this stage on the possible use of this approach
for derivatives. First, since ρ(X) is specified in monetary units, one can attempt
to compare it to the market price of X if it is traded in the market. For example,
−ρ(X) and ρ(−X) (risk of a short position in X) could be used to derive a price
interval and be compared to the market bid-ask spread for the derivative. In
fact some authors have used the term “risk-adjusted value” for −ρ(X). However
there is no ingredient in the axioms above guaranteeing that such a comparison
will be meaningful. Indeed, the elements P ∈ P represent alternative choices for
the “objective” evolution of the market: they are not risk-neutral measures and
the quantities EP[X] can not be interpreted as “prices”. For example the “risk-
adjusted value” of a forward contract on USD/EUR, which has a unique model-
free valuation compatible with arbitrage constraints, is not equal in general to
this arbitrage value. What is lacking is a normalization of the family P which
brings the risk measures on the same scale as prices. In the case of convex
risk measures, [Föllmer & Schied (2002)] propose an additive normalization for
a convex risk measure ρ by setting ρ(0) = 0.

Second, a coherent risk measure ρ(.) does not distinguish in general between
hedgeable and unhedgeable risks. For example, ρ(X) may be the same for a
position in futures or for a path-dependent option whereas the risks involved
in the case of the call option are of different nature: in one case they can be
replicated in a model-free way by taking positions in the underlying whereas in
the other case hedging requires assumptions on the future stochastic behavior
of the underlying and is model-dependent. A related problem is that coherent
and convex risk measures do not distinguish between traded and non-traded
securities, which are very different from the perspective of model risk.

In order to better situate these issues, we will now discuss some requirements
one would like to impose on a measure of model uncertainty in the context of
derivative pricing (Section 3) and then proceed to formalize them in mathemat-
ical terms (Section 4). The relation with coherent and convex measures of risk
will then become clear.
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3 Model uncertainty in the context of derivative
valuation

Stochastic models of financial markets usually represent the evolution of the
price of a financial asset as a stochastic process (St)t∈[0,T ] defined on some
probability space (Ω,F , P). An option on S with maturity T then corresponds
to a random variable HT , whose value is revealed at T and depends on the
behavior of the underlying asset S between 0 and T . The main focus of option
pricing theory has been to define a notion of value for such options and compute
this value.

In an arbitrage-free market, the assumption of linearity of prices leads to the
existence of a probability measure Q equivalent to P such that the value Vt(H)
of an option with payoff H is given by:

Vt(H) = B(t, T )EQ[H|Ft] (3.1)

where B(t, T ) is a discount factor. In particular the discounted asset price is a
martingale under Q. Here the probability measure Q does not describe “objec-
tive probabilities”: for an event A ∈ F , while P(A) represents its probability of
occurrence, Q(A) represents the value of an option with terminal payoff equal
to 1/B(t, T ) if A occurs and zero otherwise. A pricing model, specified by such
a “risk-neutral” probability measure Q, therefore encodes market consensus on
values of derivative instruments rather than any “objective” description of mar-
ket evolution: it should be seen as a market-implied model.

3.1 Statistical uncertainty vs uncertainty on pricing rules

When speaking of stochastic models and model uncertainty, one should therefore
distinguish econometric models, where one specifies a probability measure P in
an attempt to model the historical evolution of market prices, from pricing
models where a risk-neutral probability measure Q is used to specify a pricing
rule whose role is to relate prices of various instruments in an arbitrage free
manner.

If P corresponds to a complete market model (for example, a one dimen-
sional diffusion model for a single asset) then the pricing rule Q is uniquely
defined by P. Uncertainty on Q can then only result from uncertainty on P-
which results from the lack of identification of P from historical data- so we
are in the classical case of ambiguity or Knightian uncertainty described in
[Knight, Ellsberg, Epstein, Routledge & Zin (2001)]. However if P corresponds
to the more realistic case of an incomplete market model (for example, a jump-
diffusion or stochastic volatility models for a single asset or a multifactor diffu-
sion model with more factors than tradable assets) then the knowledge of P does
not determine the pricing rule Q in a unique way. Therefore, even if P is known
with certainty we still face uncertainty in the choice of the pricing model Q.
Thus, the notion of model uncertainty in the context of option pricing extends
beyond the traditional framework of statistical uncertainty on the evolution of
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the underlying. While the literature mentioned in Section 2 has focused on
“statistical uncertainty”, we will focus here on uncertainty on pricing rules.

We also note that in existing works on model uncertainty [Chen & Epstein,
Epstein & Wang, Gundel, Karatzas & Zamfirescu] all probability measures P ∈
P are assumed to be equivalent to a reference probability P0.4 This “technical”
hypothesis is actually quite restrictive: it means that all models agree on the
universe of possible scenarios and only differ on their probabilities. For example,
if P0 defines a complete market model, this hypothesis entails that there is
no uncertainty on option prices! A fundamental example such as a diffusion
model with uncertain volatility [Avellaneda et al, Lyons] does not verify this
hypothesis. We will not assume this hypothesis in the sequel.

3.2 Benchmark instruments vs illiquid products

When discussing the role of mathematical models in derivative markets, one
should also distinguish between liquidly traded options, for which a market price
is available, and exotic or illiquid options, which are issued over-the-counter and
for which a market price is often unavailable. For the former, which includes call
and put options on major indices, exchange rates and major stocks, the price is
determined by supply and demand on the market. Pricing models are therefore
not used to price such options; their market prices are rather used as inputs
in order to “calibrate” (mark-to-market) option pricing models. For exotic,
over–the–counter or illiquid options, the value of the option is computed using
a pricing model. In order to guarantee coherence (in the sense of absence of
arbitrage) between these two categories of instruments, the pricing rule chosen
should be consistent with the observed market prices of the traded options.
Thus a pricing model acts as an arbitrage-free ”extrapolation” rule, extending
the price system from market-quoted instruments to non-quoted ones.

3.3 Requirements for a measure of model uncertainty

We now translate the above remarks into a set of requirements that any measure
of model uncertainty in derivative valuation should take into account. Hereafter
by a “model” we mean an arbitrage-free option pricing rule, represented by a
(risk-neutral) probability measure Q on (Ω,F) such that (St)t∈[0,T ] is a martin-
gale under Q.

Consider now a ( model-dependent ) value V (Q), a typical example of which
is the value at t = 0 of a random terminal payoff X: V (Q) = B(0, T )EQ[X].
Other examples are provided by values of options with early exercise features,
such as an American put V (Q) = supτ EQ[B(0, τ)(K − Sτ )+] where the supre-
mum is taken over all non-anticipating (random) exercise times 0 ≤ τ ≤ T .
Since these quantities depend on the choice of the pricing rule Q, it is natural
to ask what the impact of this choice on their value is. The “model uncertainty”
of V (.) is defined as the uncertainty on the value of V (Q) resulting from the

4With the notable exceptions of [Avellaneda et al],[Lyons] and [Schied].
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uncertainty in the specification of Q. Based on the above discussion, here are
some natural requirements that a measure of model uncertainty should verify:

1. For liquidly traded options, the price is determined by the market within
a bid-ask spread: there is no model uncertainty on the value of a liquid
option.

2. Any measure of model uncertainty must take into account the possibility
of setting up (total or partial) hedging strategies in a model-free way. If an
instrument can be replicated in a model-free way, then its value involves
no model uncertainty. If it can be partially hedged in a model-free way,
this should also reduce the model uncertainty on its value.

3. When some options (typically, call or put options for a short maturities
and strikes near the money) are available as liquid instruments on the mar-
ket, they can be used as hedging instruments for more complex derivatives.
A typical example of a model-free hedge using options is of course a static
hedge using liquid options, a common approach for hedging exotic options.

4. If one intends to compare model uncertainty with other, more common,
measures of (market) risk of a portfolio, the model uncertainty on the
value of a portfolio should be expressed in monetary units and normalized
to make it comparable to the market value of the portfolio.

5. As the set of liquid instruments becomes larger, the possibility of setting
up static hedges increases which, in turn, should lead to a decrease in
model uncertainty on the value of a typical portfolio.

In order to take the above points into account, we therefore need to specify
not only the class of (alternative) models considered but also the set of hedging
instruments. It is common market practice to use static or semi-static positions
in call and put (“vanilla”) options to hedge exotic options [Allen & Padovani],
so we will also include this possibility.

4 A quantitative framework for measuring model
uncertainty

Let us now define a quantitative setting taking into account the above remarks.
Consider a set of market scenarios (Ω,F). We stress that there is no reference
probability measure defined on Ω. The underlying asset is represented by a mea-
surable mapping: S. : Ω �→ D([0, T ]) where D([0, T ]) denotes the space of right
continuous functions with left limit (this allows for jumps in prices) and S.(ω)
denotes the trajectory of the price in the market scenario ω ∈ Ω. A contingent
claim will be identified with the terminal value at T of its payoff, represented
by a random variable H revealed at T . In order to simplify notations, we will
omit discount factors: all payoffs and asset values are assumed to be discounted
values.
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4.1 An axiomatic setting for model uncertainty

In order to define a meaningful methodology for measuring model uncertainty
we need the following ingredients:

1. Benchmark instruments: these are options written on S whose prices are
observed on the market. Denote their payoffs as (Hi)i∈I and their observed
market prices by (C∗

i )i∈I . In most cases a unique price is not available;
instead, we have a range of prices C∗

i ∈ [Cbid
i , Cask

i ].

2. A set of arbitrage-free pricing models Q consistent with the market prices
of the benchmark instruments: the (discounted) asset price (St)t∈[0,T ] is
a martingale under each Q ∈ Q with respect to its own history Ft and

∀Q ∈ Q,∀i ∈ I, EQ[ |Hi| ] < ∞ EQ[Hi] = C∗
i (4.1)

In a realistic setting the market price C∗
i is only defined up to the bid-ask

spread so one may relax the consistency constraint (4.1) to:

∀Q ∈ Q,∀ i ∈ I, EQ[ |Hi| ] < ∞ EQ[Hi] ∈ [Cbid
i , Cask

i ] (4.2)

Remark 4.1 (Parameter uncertainty vs uncertainty on model type) Some
authors have distinguished between “parameter” uncertainty and “model uncer-
tainty” [Kerkhof et al.]. We find this distinction to be irrelevant: if (Qθ)θ∈E is a
parametric family of (pricing) models, different values (θi)i∈A of the parameter
will define probability measures Qθi

and this is the only ingredient we need here.
The fact that they can be embedded in a “single” parametric family is purely
conventional and depends on the arbitrary definition of a “parametric family”.
In fact by embedding all models in Q in a single super-model one can always
represent model uncertainty as “parameter uncertainty”.

Define the set of contingent claims with a well defined price in all models:

C = {H ∈ FT , sup
Q∈Q

EQ[ |H| ] < ∞} (4.3)

When Q is finite this is simply the set of terminal payoffs which have a well-
defined value under any of the alternative pricing models: C =

⋂n
k=1 L1(Ω,FT , Qk).

For a simple (i.e. piecewise constant and bounded) predictable process
(φt)t∈[0,T ] representing a self-financing trading strategy, the stochastic integral∫ t

0
φu.dSu corresponds to the (discounted) gain from trading between 0 and t

is a Q-martingale. Note that the usual construction of this stochastic integral
depends on the underlying measure Q. Following [Doléans-Dade (1971)], one
can construct a stochastic integral with respect to the whole family Q: for any
simple predictable process φ, there exists a process Gt(φ) such that for every
Q ∈ Q the equality

Gt(φ) =
∫ t

0

φu.dSu

13



holds Q-almost surely. Gt(φ) is then a Q-martingale and defines a model-free
version of the gain of the trading strategy φ. In the case where Q is finite, this
construction coincides with the stochastic integral constructed with respect to
Q = 1

|Q|
∑

Q∈Q Q. However it is more natural to refer to the models Q ∈ Q
instead of Q.

The set of simple predictable processes can be enlarged in various ways 5

to include more complex strategies; we will denote by S the set of admissible
trading strategies and require that for any φ ∈ S the stochastic integral Gt(φ) =∫ t

0
φ.dS is well-defined and is a Q-martingale bounded from below Q-a.s. for

each Q ∈ Q. Note that we have made no assumption about market completeness
or incompleteness, nor do we require that the probability measures Q ∈ Q be
equivalent with each other.

Consider now a mapping µ : C �→ [0,∞[ representing the model uncertainty
on the contingent claim X. The properties enumerated in Section 3 can be
stated as follows:

1. For liquid (benchmark) instruments, model uncertainty reduces to the
uncertainty on market value:

∀i ∈ I, µ(Hi) ≤ |Cask
i − Cbid

i | (4.4)

2. Effect of hedging with the underlying:

∀φ ∈ S, µ(X +
∫ T

0

φt.dSt) = µ(X). (4.5)

In particular the value of a contingent claim which can be replicated in a
model–free way by trading in the underlying has no model uncertainty:

[∃x0 ∈ R,∃φ ∈ S,∀Q ∈ Q, Q(X = x0 +
∫ T

0

φt.dSt) = 1 ] ⇒ µ(X) = 0.(4.6)

3. Convexity: model uncertainty can be decreased through diversification.

∀X1,X2 ∈ C,∀λ ∈ [0, 1] µ(λX1 + (1 − λ)X2) ≤ λµ(X1) + (1 − λ)µ(X2).(4.7)

4. Static hedging with traded options:

∀X ∈ C, ∀u ∈ RK , µ(X +
k∑

i=1

uiHi) ≤ µ(X) +
k∑

i=1

|ui(Cask
i − Cbid

i )|(4.8)

In particular for any payoff which can be statically replicated with traded
options, model uncertainty reduces to the uncertainty on the cost of repli-
cation:

[∃u ∈ RK , X =
K∑

i=1

uiHi] ⇒ µ(X) ≤
K∑

i=1

|ui| |Cask
i − Cbid

i |. (4.9)

5For various definitions of admissible strategies see [Kabanov] or
[Delbaen & Schachermayer].
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Remark 4.2 Contrarily to the conditions defining coherent risk measures, con-
dition (4.4) defines a scale for µ: if µ verifies the above properties then λµ still
verifies them for 0 < λ ≤ 1 but not necessarily for λ > 1. This allows to con-
struct a maximal element among all mappings proportional to µ, defined as the
one which saturates the range constraint (4.4):

µmax = λmaxµ λmax = sup{λ > 0, λµ verifies (4.4)} (4.10)

As long as the set of benchmark instruments is non-empty, 0 < λmax < ∞. Then
for any 0 < λ ≤ 1, λµmax still verifies (4.4)-(4.5)-(4.6)-(4.7)-(4.8)-(4.9) and λ
can be interpreted as the proportion of the bid-ask spread which is attributed
to model uncertainty.

4.2 A “coherent” measure of model uncertainty

Given the ingredients above, we can construct a measure of model uncertainty
verifying the above properties. A payoff X ∈ C has a well-defined value in all
the pricing models Q ∈ Q. Define the upper and lower price bounds by:

π(X) = sup
Q∈Q

EQ[X] π(X) = inf
Q∈Q

EQ[X] = −π(−X) (4.11)

X �→ π(−X) then defines a coherent risk measure. Any of the pricing models
Q ∈ Q will give a value for X falling in the interval [π(X), π(X)]. For a payoff
whose value is not influenced by model uncertainty, π(X) = π(X). We propose
to measure the impact of model uncertainty on the value of a contingent claim
X by

µQ(X) = π(X) − π(X) (4.12)

Proposition 1 (A coherent measure of model uncertainty)

1. π, π assign values to the benchmark derivatives compatible with their mar-
ket bid-ask prices:

∀i ∈ I, Cbid
i ≤ π(Hi) ≤ π(Hi) ≤ Cask

i (4.13)

2. µQ : C �→ R+ defined by (4.12) is a measure of model uncertainty verifying
the properties (4.4)-(4.5)-(4.6)-(4.7)-(4.8)-(4.9).

Proof: see Appendix.
Taking the difference between π(X) and π(X) isolates the model uncertainty

µQ(X) on the payoff. These quantities can be used to compute a margin (for
an OTC instrument) or to provision for model uncertainty on this trade. If the
market value of the derivative is computed using one of the pricing models (say,
EQ1 [X]), the margin for model uncertainty is then π(X) − EQ1 [X] ≤ µQ(X).
µQ(X) thus represents an upper bound on the margin for “model risk”. One
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can summarize the model risk of a position X in options, valued at πm(X), by
the model risk ratio:

MR(X) =
µQ(X)

πm(X)
(4.14)

A high ratio MR(X) indicates that model risk is a large component of the risk
of the portfolio and such a ratio can be used as a tool for model validation.

The computation of the worst case bounds π, π is similar to the superhedg-
ing approach [El Karoui & Quenez]. If all models in Q correspond to complete
market models, then π(X) can be interpreted as the cost of the cheapest strat-
egy dominating X in the worst case model. However in the usual superhedging
approach Q is taken to be the set of all martingale measures equivalent to
a given probability measure P. Therefore, price intervals produced by super-
hedging tend to be quite large and sometimes coincide with maximal arbitrage
bounds [Eberlein & Jacod], rendering them useless when compared with market
prices. Using the approach above, if X is the terminal payoff of a traded option
our construction interval [π(X), π(X)] is compatible with bid-ask intervals for
this option. This remark shows that the calibration condition (4.2) is essen-
tial to guarantee that our measure of model uncertainty is both nontrivial and
meaningful.

4.3 Examples

The following example shows that a given payoff can be highly exposed to model
uncertainty while its ”market risk” is estimated as being low.

Example 4.1 (Uncertain volatility) Consider a market where there is a risk-
less asset with interest r, a risky asset St and a call option on S with maturity
T , trading at price C∗ at t = 0. Consider the alternative diffusion models:

Qi : dSt = St[rdt + σi(t)dWt] (4.15)

where σi : [0, T ] →]0,∞[ is a bounded deterministic volatility function and W
a standard Brownian motion under Qi. Then the calibration condition (4.1)
reduces to

1
T

∫ T

0

σi(t)2dt = Σ2 (4.16)

where Σ is the Black-Scholes implied volatility associated to the call price C∗.
Obviously (4.16) has many solutions, each of which corresponds to a different
scenario for the evolution of market volatility. Examples of such solutions are
piecewise constant or piecewise linear functions of t:

σ1(t) = Σ

σi(t) = ai1[0,T1] +

√
TΣ2 − T1a2

i

T − T1
1]T1,T ] i = 2..n
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with Σ < ai < Σ
√

T/T1 for i = 2..n. Set a1 = Σ and let

a = max{ai, i = 1..n} a = min{ai, i = 1..n}

Now consider the issue of a call option X with maturity T1 < T (with a possibly
different strike). For each i = 1..n, (Ω,F ,FS

t , Qi) defines a complete market
model (i.e. the martingale representation property holds) so under each Qi the
call can be perfectly hedged. However the corresponding ∆-hedging strategy
depends on the volatility structure: it is not model–free. Therefore, while the
P&L of the delta-hedged position is almost surely zero according to the model
Qi used to compute the ∆, it is a random variable with non-zero variance under
any Qj , j 
= i. In fact using the monotonicity of the Black Scholes formula with
respect to volatility it is easy to show that

π(X) = CBS(K,T1; a) π(X) = CBS(K,T1; a)

This example also shows that, when all the alternative pricing models considered
are (one dimensional) diffusion models, model uncertainty reduces to ”Vega
risk”, that is, uncertainty on volatility.

The next example shows that, conversely, a position in derivatives can have
a considerable exposure to market risk but no exposure to model uncertainty:

Example 4.2 (Butterfly position) Consider a market where options are liq-
uidly traded at strike levels K1 < K2 < K3, at market prices C∗

t (T,Ki), i =
1, 2, 3 where K2 is at the money. A butterfly position consists in taking a short
position in two units of the at-the-money call option Ct(T,K2) and a long po-
sition in each of the calls Ct(T,K1),Ct(T,K3). This position has an exposure
to “gamma” risk but since it can be synthesized using market-traded options in
a model-free way the model uncertainty on its value reduces to the uncertainty
on the cost of the static hedge:

µQ(Vt) ≤ |Cbid(K1)−Cask(K1)|+|Cbid(K2)−Cask(K2)|+2|Cbid(K3)−Cask(K3)|.

A typical portfolio of derivatives will be exposed both to market risk and model
uncertainty, but the above examples illustrate the difference between the two
concepts.

The above examples are theoretical. In the case of index options, one dis-
poses of more than a hundred prices and a simple model such as (4.15) is insuf-
ficient to reproduce their smile and skew features: more sophisticated models
such as local volatility models [Dupire (1994)], stochastic volatility models or
models with jumps have to be used. Given an empirical data set of option prices,
how can a family of pricing models compatible with market prices of options
be specified in an effective way? Can one implement an algorithm capable of
generating such a class of models verifying (4.2) and subsequently computing
µ(X) for any given payoff X? [BenHamida & Cont (2004)] give an example of
such a procedure in the case of diffusion (”local volatility”) models:
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Figure 1: DAX options implied volatilities: 13 June 2001.

Example 4.3 Using an evolutionary algorithm, [BenHamida & Cont (2004)]
construct a family {Qi, i = 1..n} of local volatility models

Qi : dSt = St[rdt + σi(t, St)dWt]

compatible with a given set of call option prices (Cbid
i , Cask

i ) in the following
manner: we start with a population of candidate solutions (σi(., .), i = 1..N)
and evolve them iteratively through random search / selection cycles until the
prices generated for the benchmark options by the local volatility functions
(σi(., .), i = 1..N) become compatible with their bid-ask spreads. Denoting by
E the set of admissible local volatility functions, this algorithm defines a Markov
chain in EN , which is designed to converge to a set of model parameters which
minimize the difference between model and market prices of benchmark options.

Here is an empirical example, obtained by applying this procedure to DAX
index options on June 13, 2001. The benchmark instruments are European call
and put options traded on the market, numbering at around 150 quoted strikes
and maturities. The implied volatility surface is depicted in figure 1. Figure
2 gives examples of local volatility functions compatible with market prices of
DAX options on June 13 2001, obtained by applying the algorithm described
above to the data: while these volatility functions look different, they are all
compatible with the market prices of quoted European call options and this
cannot be distinguished on the sole basis of market information. However, they
will not give rise to the same values for American or exotic options for which
we face model uncertainty. Note the high level of uncertainty on short term
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Figure 2: A family of local volatility functions σ(t, S) compatible with the
market prices of DAX options on June 13, 2001 computed using an evolutionary
algorithm [BenHamida & Cont (2004)].

volatility, due to the fact that the value of short term options is not affected
very much by the volatility and thus the information implied by these options
on volatility is imprecise. The diffusion models defined by these local volatility
functions can then be used to price a given exotic option, leading to a range of
prices.

We present now another example where market risk and model risk are both
present, which allows to compare the two; it also illustrates that our approach
to measuring model uncertainty is not tied to the class of diffusion models and
can incorporate more general specifications:

Example 4.4 (Uncertainty on model type: local volatility vs jumps)
Consider the following jump-diffusion model, used in many cases to reproduce
implied volatility skews and smiles in short term options:

Q1 : St = S0 exp[µt + σWt +
Nt∑
j=1

Yj ] (4.17)

where Nt is a Poisson process with intensity λ, W a standard Wiener process and
Yj are IID variables denoting jump sizes. In this example we choose σ = 10%,
λ = 1 and the probability density of Yj is shown in Figure 3. Figure 4 shows
the implied volatilities for call options, computed using (4.17) as a model for
risk neutral dynamics.
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Figure 3: Left: Density of jump sizes in the jump-diffusion model (4.17). Right:
The local volatility, σ(t, S), as function of underlying asset and time in (4.18).

Table 1: Model uncertainty on a barrier option.
Local volatility Black-Scholes+jumps µQ

At the money call T=0.2 3.5408 3.5408 0
Knock out call

K=105, T=0.2, Barrier B=110 2.73 1.63 1.1

The user, uncertain whether Q1 is the right model to use, decides to price
the option using a more familiar diffusion model

Q2 :
dSt

St
= rdt + σ(t, St)dWt (4.18)

where σ(t, S) is calibrated to the implied volatilities in figure (4). The resulting
volatility function σ(t, S) is shown in figure 3 (right).

These two models give exactly the same prices for all call options with matu-
rities between 0.1 and 1 year and all strikes between ±10% of the money. Using
these options as benchmark instruments, Q = {Q1, Q2} verifies (4.1). However,
as figure 5 shows, the typical scenarios they generate are completely different:
Q1 generates discontinuous price trajectories with stationary returns while Q2

generates continuous trajectories with highly non-stationary behavior.
Consider now the pricing of a barrier option, say a knock out call with strike

at the money, maturity T = 0.2 and a knock-out barrier B = 110. Due to
the high short term volatilities needed in the diffusion model to calibrate the
observed call prices, the price is higher than in the model with jumps. As shown
in table 1, model uncertainty on the value of this exotic, yet quite common,
derivative represents 40% of its selling price! This example clearly illustrates
that, even for common derivatives, model uncertainty does not represent a small
correction to the price but a major factor of risk, as important as market risk.
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4.4 Robustness of hedging strategies to model uncertainty

In the above examples, we have applied our measure of model risk to a payoff
X obtained by buying and holding a derivative instrument. Of course, this
is far from being the only interesting case: in most cases a derivative is sold
and then hedged through its lifetime using a model-based hedging strategy. By
applying the above framework to the P&L of a hedged position, one can assess
the impact of model uncertainty on the profit and loss of a hedging strategy.
Consider a (self-financing) hedging strategy φt for a payoff H, derived from a
given model: this can either be a replicating strategy if the model is a complete
market model or a risk-minimizing strategy in the case of incomplete market
models. Then, given the family of models Q, µQ(H − ∫ T

0
φt.dSt) quantifies

the model uncertainty associated to the P&L of the hedged position. Even
when Q contains two elements –the model on which the hedge is based and an
alternative “stress” models– this can lead to significant figures , as illustrated
by the following example:

Example 4.5 (Impact of model uncertainty on P&L of a hedged position)
Whereas sophisticated models are used for pricing equity derivatives, many
traders hedge simple options using the Black-Scholes delta-hedging rule: each
option position is hedged with a position in underlying or futures given by the
Black-Scholes delta, computed using the (current) implied volatility of the op-
tion. Using the implied volatility of the option for computing hedge ratios is
often seen as a way to “correct” for the fact that the Black-Scholes model is
misspecified.

Figure 6 represents the histogram of hedging errors (shortfalls) resulting
from a Black-Scholes delta hedging strategy when the underlying asset evolves
according to the Merton jump-diffusion model [Merton (1976)]:

St = S0 exp(γt + σWt +
Nt∑
j=1

Yj) Yj ∼ N(m, δ2)

where the number of jumps Nt is a standard Poisson process. These results
show that, even for a simple payoff such as a European call option, the P&L
of a “delta-neutral” strategy can be as high as 20% of the value of the option:
delta-neutral strategies are “neutral” to (small) market moves within the model,
but they may have a substantial exposure to model uncertainty.

5 A convex measure of model uncertainty

The approach discussed above is quite intuitive but requires to “calibrate” var-
ious models to a set of benchmark instruments, a task which can be more or
less difficult depending on the complexity of the models and the payoff struc-
tures of the benchmark instruments. We will now see that this difficulty can be
overcome by using the notion of convex risk measure [Föllmer & Schied (2002)].
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As noted in Section 2.3, a convex risk measure can be represented in the form
(2.10), where the penalty function α is a rather abstract object whose value does
not have a clear financial interpretation. Also, the representation (2.10) lacks
a normalization which could allow to compare it to marked-to-market values
of portfolios. We show here that a special choice of the penalty function can
resolve these issues and provide us simultaneously with a suitable generalization
of (4.12) .

Consider as in Section 4, a family of pricing rules Q and a set of benchmark
options with payoffs (Hi)i∈I with market prices (C∗

i )i∈I . However, instead of
requiring the pricing models Q ∈ Q to reproduce the market prices of benchmark
instruments exactly as in (4.1) or within bid-ask spreads as in (4.2), we consider
a larger class of pricing models, not necessarily calibrated to observed option
prices, but penalize each model price by its pricing error ‖C∗ − EQ[H]‖ on the
benchmark instruments:

π∗(X) = sup
Q∈Q

{ EQ[X] − ‖C∗ − EQ[H]‖} (5.1)

π∗(X) = −π∗(−X) = inf
Q∈Q

{ EQ[X] + ‖C∗ − EQ[H]‖} (5.2)

This means we price the payoff X with all the pricing models Q ∈ Q but
we take more or less seriously the prices produced by any of the pricing models
according to the precision with which they are capable of reproducing the market
prices of benchmark instruments. Different choices of norms for the vector
(C∗

i − EQ[Hi])i∈I lead to different measures for the “calibration error”:

‖C∗ − EQ[H]‖∞ = sup
i∈I

|C∗
i − EQ[Hi] | (5.3)

‖C∗ − EQ[H]‖1 =
∑
i∈I

|C∗
i − EQ[Hi] | (5.4)

or, more generally : ‖C∗ − EQ[H]‖p = [
∑
i∈I

|C∗
i − EQ[Hi] |p]1/p (5.5)

In the language of [Föllmer & Schied (2002)], ρ(X) = π∗(−X) is a convex risk
measure associated with the penalty function α given by

α(Q) = ‖C∗ − EQ[H]‖ if Q ∈ Q
= +∞ if Q /∈ Q

Define now, by analogy with (4.12), the following measure for model uncertainty:

∀X ∈ C, µ∗(X) = π∗(X) − π∗(X) (5.6)

The following result shows that µ∗ defines a measure of model uncertainty with
the required properties:

Proposition 2 If the pricing error ‖C∗ − EQ[H]‖ verifies:

∀Q ∈ Q, ∀i ∈ I, ‖C∗ − EQ[H]‖ ≥ |C∗
i − EQ[Hi] | (5.7)

then the following properties hold for π∗, π∗ and µ∗:
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1. π∗ assigns to any benchmark option a value lower than its market price:

∀i ∈ I, π∗(Hi) ≤ C∗
i (5.8)

π∗ assigns to any benchmark option a value higher than its market price:

∀i ∈ I, π∗(Hi) ≥ C∗
i (5.9)

2. Assume the class of pricing models contains at least one model compatible
with the market prices of the benchmark options:

∃Q ∈ Q, ∀i ∈ I, EQ[ Hi ] = C∗
i . (5.10)

Then ∀i ∈ I, π∗(Hi) = π∗(Hi) = C∗
i and for any payoff X ∈ C, π∗(X) ≥

π∗(X).

3. Under assumption (5.10), µ∗ defined by (5.6) is a measure of model un-
certainty verifying the properties (4.4)-(4.5)-(4.6)-(4.7).

4. Static hedging reduces model uncertainty: under assumption (5.10), di-
versifying a position using long positions in benchmark derivatives reduces
model uncertainty:

[ 1 ≥ λk ≥ 0,

K∑
k=0

λk = 1] ⇒ µ∗(λ0X +
K∑

k=1

λkHk) ≤ µ∗(X) (5.11)

In particular, any position which can be replicated by a convex combination
of available derivatives has no model uncertainty:

[∃(λi)i∈I , 1 ≥ λi ≥ 0,
∑
i∈I

λi = 1,X =
∑
i∈I

λiHi] ⇒ µ∗(X) ≤ 0. (5.12)

Proof: see Appendix.

Remark 5.1 (Penalization by weighted pricing error) More generally one
could consider weighted pricing errors as penalty function, for instance:

‖C∗ − EQ[H]‖1,w =
∑
i∈I

wi|C∗
i − EQ[Hi] |.

However, it is interesting to note that requiring (5.8)–(5.9) for any specification
of Q implies that wi ≥ 1. Therefore the penalty functions (5.3)–(5.4)–(5.5) are
the “minimal” ones verifying our requirements. Since putting a weight on the
i-th option amounts to changing its nominal, Hi should be interpreted as the
payoff of i-th benchmark option, the nominal being determined by the (maximal)
quantity of the i-th option available to the investor.6

6See [Cont & Gabay] for a discussion of this point.
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Remark 5.2 Properties (5.11)-(5.12) replace properties (4.8)-(4.9) verified by
the coherent measure of model uncertainty µQ: this is due to the fact that a
convex measure of risk cannot extrapolate the risk of a portfolio to a larger, pro-
portional portfolio. A closer look at (5.12) shows that it is the only reasonable
definition of a static hedge: in line with remark 5.1, Hi represents, in nominal
terms, the maximal position in the i-th derivative so feasible positions in this
derivative are of the type λi Hi with 0 ≤ λi ≤ 1. By contrast in (4.8)-(4.9) we
implicitly allowed unlimited short and long positions in all derivatives and Hi

was defined up to a constant.

In practice µ∗ can be computed in the following manner. Given a set of prices for
the benchmark options, we first choose a pricing model Q1 which can reproduce
these prices and is easily calibrated to option prices. Typical examples are one
dimensional diffusion models (local volatility models) used for equity and index
derivatives and the SABR model [Hagan et al., 2002] for European options on
interest rates. Such models are typically used for their ability to calibrate market
prices, so they satisfy (5.10) but may not generate realistic dynamics for future
market scenarios. We have then the freedom to add to such a calibrated model
Q1 other pricing models Q2, Q3, ... with more realistic features but which may be
more complex to calibrate. The procedure above does not require to calibrate
these models precisely but simply to penalize their pricing errors: the easy-
to-calibrate model Q1 anchors our measure of model uncertainty in the market
prices while more realistic models Q2, Q3, ... can be incorporated without having
to set up heavy numerical procedures for their calibration.

Remark 5.3 (Bid ask spreads) The above construction can be generalized
to the case where market values of benchmark options are not unique but given
by bid and ask prices Cbid

i , Cask
i . The condition (5.7) then has to be replaced

by:
α(Q) ≥ sup

i∈I
max((EQ[Hi] − Cbid

i )+, (Cask
i − EQ[Hi])+).

Remark 5.4 The constraint (5.10) of including at least one arbitrage-free pric-
ing rule Q0 ∈ Q which calibrates the market prices guarantees that option prices
are arbitrage-free and amounts to requiring that ρ(0) = 0 (see the proof of
Proposition 2), which is the normalization condition proposed in [Föllmer & Schied (2002)].
However, this condition may be difficult to satisfy in some cases, especially in
presence of many benchmark instruments with different payoff structures: avail-
able models may only be able to reproduce all options to within a certain pre-
cision ε > 0. In this case one can still conserve the structure above by replacing
π∗ by π∗ + ε, π∗ by π∗ − ε and µ∗ by µ∗ + 2ε. This point is further developed
in [Cont & Gabay].

As more liquid instruments become available, this has the effect of increasing
π∗ and of decreasing π∗ thus the measure of model uncertainty becomes smaller.
This can be interpreted in the following way: the addition of more liquid options
allows a wider range of model-free (static) hedging strategies which allow to
reduce exposure to model uncertainty on a given portfolio.
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Also, from the expression of the penalty functions (5.3)–(5.4)–(5.5) it is
clear that models with lower pricing errors will be more and more favored as
the number of benchmark instruments |I| increases. As |I| → ∞, ‖C∗−EQ[H]‖
will stay finite only if the calibration error is bounded independently of |I|; this
happens for instance if the pricing model Q misprices only a finite number of
benchmark options, all others being calibrated. Conversely, when there are no
options available (I = ∅), ρ is a coherent risk measure defined by the set Q.

6 Discussion

We now summarize the main contributions of this work, discuss some open
questions and possible implications for the risk management of derivative in-
struments.

6.1 Summary

We have proposed a quantitative framework for measuring the impact of model
uncertainty on derivative pricing. Starting from a set of traded benchmark op-
tions and a family Q of option pricing models, we associate a measure of model
uncertainty µ(X), expressed in monetary units, with any derivative with payoff
X in two ways. The first method (Section 4) requires the models in Q to be
pricing models calibrated to the benchmark options and computes the range
µQ(X) of prices for X over all of these calibrated models. The second method
(Section 5) does not require any calibration but penalizes a model price by its
pricing error on the benchmark instruments. In both cases, the specification of
a set of benchmark instruments constitutes a key ingredient in our procedure,
which was missing in preceding approaches to model risk: without it, the mea-
sures of model risk may range between zero and infinity and be meaningless
when compared to market values of portfolios.

Both of these approaches verify the intuitive requirements, outlined in Sec-
tion 3, that a measure of model uncertainty should have in order to be meaning-
ful in the context of risk management. They are both compatible with market
values of traded options and take into account the possibility of model-free hedg-
ing with options. They lead to a decomposition of the risk of a position into
the sum of a first term, which is of the same order of magnitude as its nominal
value and a second term, which can be interpreted as a component of the bid-ask
spread due to model uncertainty. Measures of model uncertainty computed in
this manner are realistic enough to be considered as bid-ask values. They are
directly comparable with market prices and common measures of market risk.

Our approach does not require the set of pricing models considered to de-
fine equivalent measures on scenarios. When all the models considered are
one dimensional diffusions, model uncertainty reduces to uncertainty on future
volatility and the approach adopted here is similar to the Lagrangian Uncertain
Volatility model of [Avellaneda & Paras]. But the notion of model uncertainty
proposed here reaches beyond the concept of uncertain volatility and can en-
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compass other types of models (jumps, stochastic volatility) or sources of model
uncertainty (number of factors in multifactor models, jump sizes, ..).

Finally, it is important to note that our measures of model risk are not
defined “up to a normalization constant”: they directly produce numbers con-
sistent with mark-to-market valuation of portfolios, when available, and do not
require an ad-hoc scaling factor in order to be meaningfully used to provision
for model risk.

6.2 Specifying the class of models

The relevance of our measure of model risk partly hinges on the specification of
the class Q of models. As noted by [Hansen & Sargent], “the development of
computationally tractable tools for exploring model misspecification [...] should
focus on what are the interesting classes of candidate models for applications”.
This issue seems less difficult in option pricing than, say, in macroeconomics,
since a market consensus has emerged on a set of standard pricing models
(though not a unique model!) for each type of underlying asset in the last
decade.

In the approach described in Section 4, a further requirement is the ability
to calibrate the models to market observations. Standard model calibration
algorithms yield a single solution/ pricing model. A first way out is to specify
different model classes and perform calibration separately in each model class,
yielding a calibrated set of parameters from each class. This approach takes into
account uncertainty on model type. Another approach, an example of which
was given in Example 4.3, is to consider a single model class but recognize that
the calibration problem may have multiple solutions and use a stochastic search
algorithm [BenHamida & Cont (2004)]. The two approaches are not exclusive
and may be combined. The availability of efficient numerical procedures will
ultimately orient market practice in one direction or the other.

The approach of Section 5, based on convex risk measures, has the advantage
of relaxing this calibration requirement and thus is potentially more flexible
from a computational point of view. The advantages and drawbacks of the two
approaches remain to be studied in specific settings.

6.3 Updating with new information

In the above discussion, we have considered a market viewed at time t = 0. How
does the procedure described above apply as time evolves? By analogy with
(4.12), one could define a dynamic bid-ask interval by replacing expectations by
conditional expectations:

πt(X) = ess sup
Q∈Q

EQ[X|FS
t ] πt(X) = ess inf

Q∈Q
EQ[X|FS

t ] (6.1)

Then, for each t, πt and πt define coherent risk measures that make use of
the information on the evolution of the underlying up to time t and a natural
candidate for building a measure of model uncertainty would then be µt(X) =
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πt(X) − πt(X). However there are at least two objections to the formulation
(6.1). The first objection is that it does not guarantee dynamic consistency
(i.e. a dynamic programming principle). This problem has been studied in
the framework of a Brownian filtration in [Chen & Epstein, Peng] where it is
shown that a special structure has to be imposed on Q in order for dynamic
consistency to hold. These authors examine the case where the family Q0 is
kept fixed while the market evolves through the evolution of the asset price.
However the pricing models Q ∈ Q0 have only been calibrated to the value of
the benchmark options at t = 0 and simply conditioning them on the evolution
of the underlying asset clearly does not exploit the information given by the
evolution of the market prices of the benchmark options. This is due to the
fact that, in a realistic framework, one cannot assume that the “true” model
describing the joint evolution of the benchmark derivatives is included in the
set Q0. In line with this remark, the market practice is to re-calibrate pricing
models as prices of options evolve through time. This re-calibration procedure
implies that the set of pricing rules Q0 cannot be used at a later date but has
to be replaced by a set Q(t) of pricing rules verifying:

∀Q ∈ Q(t),∀ i ∈ I, EQ[Hi] ∈ [Cbid
i (t), Cask

i (t)] (6.2)

This leads to a time-dependent set Q(t) consisting of updated versions Q(t)
of elements of Q0, each defining a risk-neutral measure on the future paths
D([t, T ]) verifying (6.2). In other words, since the result of model calibration
procedure at time t depends on the prices of benchmark instruments (C∗

i (t), i ∈
I), Q(t) is a set of random measures, whose evolution depends on the market
prices of benchmark options. Hence the updating procedure implied by re-
calibration procedures is more subtle than conditioning on the past evolution of
the underlying asset: the updating procedure must also reflect the evolution of
prices in the options market.

A related practical question is that of sensitivity of measures of model un-
certainty to market conditions.7 This question is already present in the case
of market risk measures such as VaR, which can fluctuate in a non-negligible
manner as market conditions (e.g. prices of underlying assets) vary. A strong
sensitivity would blur the distinction between market risk and model uncer-
tainty. Case studies remain to be done in order to clarify the impact of this
sensitivity in practical examples of derivatives portfolios.

6.4 Conclusion

Quantitative risk management took off in the 1990s with the availability of sim-
ple tools such as Value-at-Risk for measuring market risk: notwithstanding its
technical imperfections, Value-at-Risk convinced practitioners that it is possible
in practice to quantify market risk, had a great impact on risk management prac-
tices and motivated many researchers to improve this methodology in various
ways.

7We thank Joël Bessis for pointing out this issue.
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In the recent years, various case studies have indicated the importance of
“model risk” in the derivative industry and some spectacular failures in risk
management of derivatives have emphasized the consequences of neglecting
model uncertainty. Many large financial institutions are conscious of this is-
sue and have been developing methods to tackle it systematically.

We have provided in this paper a simple methodology which can be used
to quantify model uncertainty and provides meaningful figures compatible with
mark-to-market values of portfolios, when they are available. Our approach can
serve as a basis for provisioning for model uncertainty or simply as a decision
aid for risk managers and regulators.

We hope this work will stimulate further case studies using the methodology
presented here, in order to better understand the impact of model uncertainty
in various contexts.
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A Proof of Proposition 1

1. Each Q ∈ Q verifies the calibration condition (4.2). By taking supremum
(resp. infimum) over Q ∈ Q we obtain: Cask

i ≥ π(Hi) ≥ π(Hi) ≥ Cbid
i .

2. (4.4) follows from the above inequality. To show (4.5), note that for any
φ ∈ S and any Q ∈ Q the gains process Gt(φ) is a Q-martingale so EQ[X+∫ T

0
φt.dSt] = EQ[X] so π(X +

∫ T

0
φt.dSt) = π(X) and π(X +

∫ T

0
φt.dSt) =

π(X) so µQ(X+
∫ T

0
φt.dSt) = µQ(X). Choosing in particular X = x0 ∈ R

we obtain (4.6).
To show the convexity property (4.7), consider X,Y ∈ C and λ ∈ [0, 1].
For each Q ∈ Q we have

λ inf
Q∈Q

EQ[X] + (1 − λ) inf
Q∈Q

EQ[Y ] ≤ EQ[λX + (1 − λ)Y ]

≤ λ sup
Q∈Q

EQ[X] + (1 − λ) sup
Q∈Q

EQ[Y ]

By taking supremum (resp. infimum) over Q we obtain:

λπ(X) + (1 − λ)π(Y ) ≤ π(λX + (1 − λ)Y )
≤ π(λX + (1 − λ)Y ) ≤ λπ(X) + (1 − λ)π(Y )

from which (4.7) is easily derived.
Let us now show (4.8). Consider a portfolio composed of a long position in
X, and positions ui, i = 1..k in k benchmark options Hi, i = 1..k. Assume
without loss of generality that the first u1, ..., uk1 are long positions, the
others being short positions. Since any Q ∈ Q verifies (4.2), we have:

EQ[X] +
k1∑

i=1

uiC
bid
i +

k∑
i=k1+1

uiC
ask
i ≤ EQ[X +

k∑
i=1

uiHi]

≤ EQ[X] +
k1∑

i=1

uiC
ask
i +

k∑
i=k1+1

uiC
bid
i

By taking the supremum (resp. the infimum) over Q ∈ Q we obtain:

π(X) +
k1∑

i=1

uiC
bid
i +

k∑
i=k1+1

uiC
ask
i ≤ π(X +

k∑
i=1

uiHi)

π(X +
k∑

i=1

uiHi) ≤ π(X) +
k1∑

i=1

uiC
ask
i +

k∑
i=k1+1

uiC
bid
i
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Adding the last two inequalities and taking into account the signs of ui

we obtain:

π(X +
k∑

i=1

uiHi) − π(X +
k∑

i=1

uiHi) ≤ π(X) − π(X) +
k∑

i=1

|ui(Cbid
i − Cask

i )|

which yields (4.8). Substituting X = 0 yields (4.9).

B Proof of Proposition 2

Let π∗, π∗ and µ∗ be defined by (5.1)-(5.2)-(5.6).

1. Using (5.7) and noting that

∀Q ∈ Q,∀i ∈ I, −|C∗
i − EQHi| ≤ C∗

i − EQ[Hi] we obtain

EQHi − ‖C∗ − EQ[H]‖ ≤ EQHi − |C∗
i − EQHi|

≤ EQ[Hi] + C∗
i − EQ[Hi] = C∗

i

Taking the supremum over Q ∈ Q we obtain π∗(Hi) ≤ C∗
i . Similarly,

starting from

∀Q ∈ Q,∀i ∈ I, |C∗
i − EQHi| ≥ C∗

i − EQ[Hi] we obtain

EQ[Hi] + ‖C∗ − EQ(H)‖ ≥ EQ[Hi] + |C∗
i − EQHi|

≥ EQ[Hi] + C∗
i − EQ[Hi] = C∗

i

Taking the infimum over Q ∈ Q we obtain π∗(Hi) ≥ C∗
i .

2. Since ρ defined by ρ(X) = π∗(−X) is a convex risk measure, applying
(2.9) to Y = −X and λ = 1/2 yields:

ρ(0) = ρ(−X

2
+

X

2
) ≤ 1

2
(ρ(X) + ρ(−X))

Since π∗(X) = ρ(−X) and π∗(X) = −ρ(X) we obtain

∀X ∈ C, π∗(X) ≥ π∗(X) + 2ρ(0)

Now remark that −ρ(0) = infQ∈Q ‖C∗ − EQ[H]‖ is simply the smallest
calibration error achievable using any of the pricing models in Q. If we
assume the class of pricing models contains at least one model compatible
with the market prices of the benchmark options:

∃Q ∈ Q, ∀i ∈ I, EQ[ Hi ] = C∗
i .

then ρ(0) = 0 and we obtain ∀X ∈ C, π∗(X) ≥ π∗(X).
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3. From the above inequality π∗(Hi) ≥ π∗(Hi) with (5.8) and (5.9) we obtain:

∀i ∈ I, C∗
i ≥ π∗(Hi) ≥ π∗(Hi) ≥ C∗

i

hence µ∗(Hi) = 0 for all i ∈ I. To show (4.6), note that for any φ ∈ S
and any Q ∈ Q the gains process Gt(φ) is a Q-martingale so EQ[X] =
x0 + EQ[

∫ T

0
φ.dS] = x0. Therefore ρ(X) = −x0 and π∗(X) = π∗(X) = x0

hence µ∗(X) = 0. More generally,

ρ(X +
∫ T

0

φtdSt) = sup
Q

{EQ[−X −
∫ T

0

φtdSt] − ‖C∗ − EQ[H]‖}

= sup
Q

{EQ[−X] − ‖C∗ − EQ[H]‖

since
∫ t

0
φ.dS is a martingale under each Q ∈ Q, which implies (4.5).

Using the convexity property (2.9) of ρ we have, for any X,Y ∈ C and
λ ∈ [0, 1]:

µ∗(λX + (1 − λ)Y ) = ρ(λX + (1 − λ)Y ) + ρ(−λX − (1 − λ)Y )
≤ λρ(X) + (1 − λ)ρ(Y ) + λρ(−X) + (1 − λ)ρ(−Y )
= λ[ρ(X) + ρ(−X)] + (1 − λ)[ρ(Y ) + ρ(−Y )]
= λµ∗(X) + (1 − λ)µ∗(Y )

which shows the convexity property (4.7) for µ.

4. To show (5.11), consider λk ≥ 0, k = 0..K with
∑K

k=0 λk = 1. Using the
convexity of µ∗

µ∗(λ0X +
K∑

k=1

λkHk) ≤ λ0µ∗(X) +
K∑

k=1

λkµ∗(Hk)

As shown above, µ∗(Hi) = 0 for all i ∈ I and 0 ≤ λ0 ≤ 1 we obtain (5.11).
Choosing X = 0 and noting that µ∗(0) = 0, we obtain (5.12).
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