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Abstract. We propose a stable nonparametric method for constructing an option pricing model
of exponential Lévy type, consistent with a given data set of option prices. After demonstrating the
ill-posedness of the usual and least squares version of this inverse problem, we suggest to regularize
the calibration problem by reformulating it as the problem of finding an exponential Lévy model that
minimizes the sum of the pricing error and the relative entropy with respect to a prior exponential
Lévy model. We prove the existence of solutions for the regularized problem and show that it yields
solutions which are continuous with respect to the data, stable with respect to the choice of prior
and converge to the minimum-entropy least squares solution of the initial problem when the noise
level in the data vanishes.
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1. Introduction. The specification of an arbitrage-free option pricing model on
a time horizon T∞ involves the choice of a risk-neutral measure [25]: a probability
measure Q on the set Ω of possible trajectories {St}t∈[0,T∞] of the underlying asset
such that the discounted asset price e−rtSt is a martingale (where r is the discount
rate). Such a probability measure Q then specifies a pricing rule which attributes to an
option with terminal payoff HT at T the value C(HT ) = e−rTEQ[HT ]. For example,
the value under the pricing rule Q of a call option with strike K and maturity T
is given by e−rTEQ[(ST −K)+]. Given that data sets of option prices have become
increasingly available, a common approach for selecting the pricing model is to choose,
given option prices (C(Hi))i∈I with maturities Ti payoffs Hi, a risk-neutral measure
Q compatible with the observed market prices, i.e. such that C(Hi) = e−rTiEQ[Hi].
This inverse problem of determining a pricing model Q verifying these constraints is
known as the “model calibration” problem. The number of observed options can be
large (' 100− 200 for index options) and the Black-Scholes model has to be replaced
with models with richer structure such as nonlinear diffusion models [18] or models
with jumps [13]. The inverse problem is ill-posed in these settings [14, 33] and various
methods have been proposed for solving it in a stable manner, mostly in the framework
of diffusion models [1, 4, 5, 6, 9, 16, 18, 26, 32, 33].

Given the ill–posed nature of the inverse problem, an extra criterion must be
used to select a model compatible with observed option prices. The use of relative
entropy as a model selection criterion has solid theoretical foundations [17] and has
been investigated by many authors in the context of option pricing.

The notion of minimal entropy martingale measure (MEMM)—the pricing mea-
sure Q that minimizes the relative entropy with respect to a reference probability
P— has been investigated by many authors [22, 19, 29]. However, option prices com-
puted using the MEMM are in general not consistent with the market-quoted prices
of traded European options and can lead to arbitrage opportunities with respect to
market-traded options.
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The notion of minimal entropy distribution consistent with observed market
prices was introduced in a static framework in [4, 3, 35]: given prices of call options
{CM (Ti,Ki)}i∈I and a prior distribution P on scenarios, it is obtained by minimizing
relative entropy over all probability measures Q ∼ P such that

CM (Ti,Ki) = EQ[e−rTi(STi −Ki)+] for i ∈ I (1.1)

This approach is based on relative entropy minimization under constraints [17] and
yields a computable result. It was extended to the case of stochastic processes by the
Weighted Monte Carlo method of Avellaneda et al [5], but the martingale property is
not taken into account since it would yield an infinite number of constraints [30]. As
a result, derivative prices computed with the weighted Monte Carlo algorithm may
contain arbitrage opportunities, especially when applied to forward start contracts.

Goll and Rüschendorf [24] consider the notion of consistent (or calibrated) mini-
mal entropy martingale measure (CMEMM), defined as the solution of

I(Q∗|P ) = min
Q∈M∗

I(Q|P ),

where the minimum is taken over all martingale measures Q ∼ P verifying (1.1).
While this notion seems to conciliate the advantages of the MEMM and Avellaneda’s
entropy minimization under constraints, no algorithm is proposed in [24] to compute
the CMEMM. In fact, the notion of CMEMM does not in general preserve the struc-
ture of the prior—e.g. the Markov property—and it may be difficult to represent.1

We also note that such model selection methods based on relative entropy are
not convenient when dealing with one-dimensional diffusion models since as soon as
the model has a diffusion coefficient different from the prior their measures become
singular and the relative entropy is infinite.

In this paper we show that the shortcomings of the above approaches can be
overcome by enlarging the class of models to include processes with jumps and using
relative entropy as a regularization criterion rather than a selection criterion. On one
hand, introducing jumps in the prior model allows to obtain a large class of equivalent
martingale measures which also have finite relative entropy with respect to the prior,
avoiding the singularity which arises in diffusion models. On the other hand, by
restricting the class of pricing models to exponential Lévy models —where the risk-
neutral dynamics of the logarithm of the stock price is given by a Lévy process— we
are able to go beyond a simple existence result and obtain a computable alternative to
the CMEMM. Also, unlike the Weighted Monte Carlo approach, our approach yields
as solution a continuous-time price process whose discounted value is a martingale.
Finally, the use of regularization yields a stable solution to the inverse problem for
which a computational approach is possible [14].

The relation between the option prices and the parameters of the process (its Lévy
measure) being nonlinear, we face a nonlinear, infinite dimensional inverse problem.
After demonstrating the ill–posedness of the usual and least squares version of this
inverse problem, we show that it can be regularized by using as penalization term
the relative entropy with respect to a prior exponential Lévy model. We show that
our approach yields solutions which are continuous with respect to the data, stable
with respect to the choice of prior and converge to the minimum-entropy least squares
solution of the initial problem.

1In particular, if X is a Lévy process under the prior P , it will in general no longer be a Lévy
process under a consistent minimal entropy martingale measure.
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Unlike linear inverse problems for which general results on regularization methods
and their convergence properties are available [20], nonlinear inverse problems have
been explored less systematically. Our study is an example of rigorous analysis of
regularization using entropy for a nonlinear, infinite-dimensional inverse problem.
Previous results on regularization using entropy have been obtained in Banach space
setting [21] by mapping the problem to a Tikhonov regularization problem. Using
probabilistic methods, we are able to use a direct approach and extend these result
to the spaces of probability measures considered here.

The paper is structured as follows. Section 2 recalls basic facts about Lévy pro-
cesses and exponential Lévy models. In Section 3 we formulate the calibration problem
as that of finding a martingale measure Q, consistent with market-quoted prices of
traded options, under which the logarithm of the stock price process remains a Lévy
process. We show that both this problem and its least squares version are ill-posed:
a solution need not exist and when it exists, may be unstable with respect to pertur-
bations in the data. Section 4 discusses relative entropy in the case of Lévy processes,
its use as a criterion for selecting solutions and introduces the notion of minimum-
entropy least squares solution. In Section 5 we formulate the regularized version of the
calibration problem, show that it always admits a solution depending continuously on
market data, discuss conditions for the solutions to be equivalent martingale measures
and formulate conditions under which they converge to the minimum-entropy least
squares solutions as the noise level in the data goes to zero.

In Section 6 we show that the solutions of the regularized calibration problem
are stable with respect to small perturbations of the prior measure. The solutions
of the regularized calibration problem with any prior measure can thus be approxi-
mated (in the weak sense) by the solutions of regularized problems with discretized
priors, which has implications for the discretization and the numerical solution of the
regularized calibration problem, further discussed in [14]. In the appendix we discuss
some properties of relative entropy in the case of Lévy processes.

2. Definitions and notations. Consider a time horizon T∞ <∞ and denote by
Ω the space of real-valued cadlag functions on [0, T∞], equipped with the Skorokhod
topology [27]. The time horizon T∞ must be chosen finite since we will work with the
class of Lévy processes absolutely continuous with respect to a given Lévy process, and
on an infinite time interval this class is trivial since in this case absolute continuity of
Lévy processes is equivalent identity in law [27, Theorem VI.4.39]. Unless otherwise
mentioned, X is the coordinate process: for every ω ∈ Ω, Xt(ω) := ω(t). F is
the smallest σ-field, for which the mappings ω ∈ Ω 7→ ω(s) are measurable for all
s ∈ [0, T∞] and for any t ∈ [0, T∞], (Ft) is the natural filtration of (Xt)t∈[0,T∞]. Weak
convergence of measures will be denoted by ⇒.

Lévy processes. A Lévy process {Xt}t≥0 on (Ω,F , P ) is a stochastic process with
stationary independent increments, satisfying X0 = 0. The characteristic function of
Xt has the following form, called the Lévy-Khinchin representation [34]:

E[eizXt ] = etψ(z) with ψ(z) = −1
2
Az2 + iγz +

∫ ∞
−∞

(eizx − 1− izh(x))ν(dx)(2.1)

where A ≥ 0 is the unit variance of the Brownian motion part of the Lévy process,
γ ∈ R, ν is a positive measure on R verifying ν({0}) = 0 and∫ ∞

−∞
(x2 ∧ 1)ν(dx) <∞,
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and h is the truncation function: any bounded measurable function R→ R such that
h(x) ≡ x on a neighborhood of zero. The most common choice of truncation function
is h(x) = x1|x|≤1 but sometimes in this paper we will need h to be continuous. The
triplet (A, ν, γ) is called the characteristic triplet of X with respect to the truncation
function h.

Model setup. We consider exponential Lévy models, where the stock price St is
modelled, under a risk–neutral measure Q [25], as the exponential of a Lévy process:

St = S0e
rt+Xt (2.2)

where r is the interest rate. Since Q is a risk-neutral probability measure, eXt must
be a martingale. It follows from (2.1) that this is the case if and only if

A

2
+ γ +

∫ ∞
−∞

(ex − 1− h(x))ν(dx) = 0. (2.3)

Under Q call option prices can be evaluated as discounted expectations of terminal
payoffs:

CQ(T,K) = e−rTEQ[(ST −K)+] = e−rTEQ[(S0e
rT+XT −K)+]. (2.4)

Notation. In the sequel P(Ω) denotes the set of probability measures (stochastic
processes) on (Ω,F), L denotes the set of all probability measures P ∈ P(Ω) under
which the coordinate process X is a Lévy process and M stands for the set of all
probability measures P ∈ P(Ω), under which exp(Xt) is a martingale. LNA is the set
of all probability measures P ∈ L corresponding to arbitrage–free exponential Lévy
models, that is, to Lévy processes that are not almost surely increasing nor almost
surely decreasing. Furthermore for B > 0 we define

L+
B = {P ∈ L, P [∆Xt ≤ B ∀t ∈ [0, T∞] ] = 1 },

the set of Lévy processes with jumps bounded from above by B.
The following lemma shows the usefulness of the above definitions.
Lemma 2.1. The set M∩L+

B is weakly closed for every B > 0.
Proof. Let {Qn}∞n=1 ⊂ M ∩ L+

B with characteristic triplets (An, νn, γn) with
respect to a continuous truncation function h and let Q be a Lévy process with
characteristic triplet (A, ν, γ) with respect to h, such that Qn ⇒ Q. Note that the
limit in distribution of a sequence of Lévy processes is necessarily a Lévy process: due
to convergence of characteristic functions, the limiting process must have stationary
and independent increments. Define a function f by

f(x) :=


0, x ≤ B,
1, x ≥ 2B,
x−B
B B < x < 2B.

By Corollary VII.3.6 in [27],
∫∞
−∞ f(x)ν(dx) = limn→∞

∫∞
−∞ f(x)νn(dx) = 0, which

implies that the jumps of Q are bounded by B. Define

g(x) :=
{
ex − 1− h(x)− 1

2h
2(x), x ≤ B,

eB − 1− h(B)− 1
2h

2(B), x > B.
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Then, once again by Corollary VII.3.6 in [27] and because Qn satisfies the martingale
condition (2.3) for every n,

γ +
A

2
+
∫ ∞
−∞

(ex − 1− h(x))ν(dx) = γ +
A+

∫∞
−∞ h2(x)ν(dx)

2
+
∫ ∞
−∞

g(x)ν(dx)

= lim
n→∞

{
γn +

An +
∫∞
−∞ h2(x)νn(dx)

2
+
∫ ∞
−∞

g(x)νn(dx)

}
= 0,

which shows that Q also satisfies the condition (2.3).

3. The calibration problem and its least squares formulation. Suppose
first that the market data CM are consistent with the class of exponential Lévy models.
This is for example the case when the market pricing rule is an exponential Lévy model
but can hold more generally since many models may give the same prices for a given
set of European options. For instance one can construct, using Dupire’s formula [18],
a diffusion model that gives the same prices, for a set of European options, as a
given exp-Lévy model [12]. Using the notation, defined in the preceding section, the
calibration problem assumes the following form:

Problem 1 (Calibration with equality constraints). Given prices of call options
{CM (Ti,Ki)}i∈I , find an arbitrage–free exponential Lévy model Q∗ ∈M∩L such that

∀i ∈ I, CQ
∗
(Ti,Ki) = CM (Ti,Ki). (3.1)

When the market data is not consistent with the class of exponential Lévy models,
the exact calibration problem may not have a solution. In this case one may consider
an approximate solution: instead of reproducing the market option prices exactly,
one may look for a Lévy triplet which reproduces them in a least squares sense. Let
w be a probability measure on [0, T∞] × [0,∞) (the weighting measure, determining
the relative importance of different data points). An option data set is defined as
a mapping C : [0, T∞] × [0,∞) → [0,∞) and the data sets that coincide w-almost
everywhere are considered identical. One can introduce a norm on option data sets
via

‖C‖2w :=
∫

[0,T∞]×[0,∞)

C(T,K)2w(dT × dK). (3.2)

The quadratic pricing error in model Q is then given by ‖CM −CQ‖2w. If the number
of constraints is finite then w =

∑N
i=1 wiδ(Ti,Ki)(dT × dK) (with e.g. N constraints),

where {wi}1≤i≤N are positive weights that sum up to one. Therefore, in this case

‖CM − CQ‖2w =
N∑
i=1

wi(CM (Ti,Ki)− CQ(Ti,Ki))2. (3.3)

The following lemma establishes some useful properties of the pricing error func-
tional.

Lemma 3.1. The pricing error functional Q 7→ ‖CM−CQ‖2w is uniformly bounded
and weakly continuous on M∩L.

Proof. From Equation (2.4), CQ(T,K) ≤ S0. Absence of arbitrage in the mar-
ket implies that the market option prices satisfy the same condition. Therefore,
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(CM (T,K)−CQ(T,K))2 ≤ S2
0 and since w is a probability measure, ‖CM −CQ‖2w ≤

S2
0 .

Let {Qn}n≥1 ⊂M∩L and Q ∈M∩L be such that Qn ⇒ Q. For all T,K,

lim
n
CQn(T,K) = e−rT lim

n
EQn [(S0e

rT+XT −K)+]

= e−rT lim
n
EQn [S0e

rT+XT −K] + e−rT lim
n
EQn [(K − S0e

rT+XT )+]

= S0 −Ke−rT + e−rTEQ[(K − S0e
rT+XT )+] = CQ(T,K).

Therefore, by the dominated convergence theorem, ‖CM − CQn‖2w → ‖CM − CQ‖2w.

The calibration problem now takes the following form:
Problem 2 (Least squares calibration problem). Given prices CM of call op-

tions, find Q∗ ∈M∩L, such that

‖CM − CQ
∗
‖2w = inf

Q∈M∩L
‖CM − CQ‖2w. (3.4)

In the sequel, any such Q∗ will be called a least squares solution and the set of all
least squares solutions will be denoted by LSS(CM ).

Several authors [2, 8] have used least squares formulations similar to (3.4) for
calibrating parametric models without taking into account that the least squares
calibration problem is ill-posed in several ways:

Lack of identification. Option prices are only available for a finite number of
strikes (typically between 10 and 100) and knowing the prices of a finite number of
options is not sufficient to reconstruct the Lévy process. This problem is discussed in
detail in [14, 36].

Absence of solution. In some cases even the least squares problem may not admit
a solution, as shown by the following (artificial) example.

Example 3.1. Suppose that S0 = 1, there are no interest rates or dividends and
the (equally weighted) market data consist of the following two observations:

CM (T = 1,K = 1) = 1− e−λ and CM (T = 1,K = eλ) = 0, (3.5)

with some λ > 0. It is easy to see that these prices are, for example, compatible with
the (martingale) asset price process St = eλt1t≤τ1 , where τ1 is the time of the first
jump of a Poisson process with intensity λ. We will show that if the market data are
given by (3.5), the calibration problem (3.4) does not admit a solution.

Equation (2.4) implies that in every risk-neutral model Q, for fixed T , CQ(T,K)
is a convex function of K and that CQ(T,K = 0) = 1. The only convex function
which satisfies this equality and passes through the market data points (3.5) is given
by C(T = 1,K) = (1 −Ke−λ)+. Therefore, in every arbitrage-free model that is an
exact solution of the calibration problem with market data (3.5), for every K ≥ 0,
P [S1 ≤ K] = e−λ1K≤eλ . Since in an exponential Lévy model P [S1 > 0] = 1, there is
no risk-neutral exponential Lévy model for which ‖CM − CQ‖w = 0.

On the other hand, infQ∈M∩L ‖CM−CQ‖2w = 0. Indeed, let {Nt}t≥0 be a Poisson
process with intensity λ. Then for every n, the process

Xn
t := −nNt + λt(1− e−n) (3.6)

belongs to M∩L and

lim
n→∞

E[(eX
n
t −K)+] = lim

n→∞

∞∑
k=0

e−λt
(λt)k

k!

(
e−nk+λt(1−e−n) −K

)+

= (1−Ke−λt)+.



Retrieving Lévy processes from option prices 7

We have shown that infQ∈M∩L ‖CM − CQ‖2 = 0 and that for no Lévy process Q ∈
M ∩ L, ‖CM − CQ‖2 = 0. Thus the calibration problem (3.4) does not admit a
solution.

Lack of continuity of solutions with respect to market data. Market option prices
are typically defined up to a bid-ask spread and the prices used for calibration may
therefore be subject to perturbations of this order. If the solution of the calibration
problem is not continuous with respect to market data, these small errors may dra-
matically alter the result of calibration, rendering it useless. In addition, in absence of
continuity small daily changes in prices could lead to large variations of calibrated pa-
rameters and of quantities computed using these parameters, such as prices of exotic
options.

When the calibration problem has more than one solution, care should be taken
in defining continuity. In the sequel, we will use the following definition [7, 20]:

Definition 3.2 (Continuity with respect to data). The solutions of a calibration
problem are said to depend continuously on input data at the point CM if for every
sequence of data sets {CnM}n≥0 such that ‖CnM − CM‖w −−−−→n→∞

0, if, for every n, Qn
is a solution of the calibration problem with data CnM then

1. {Qn}n≥1 has a weakly convergent subsequence {Qnm}m≥1.
2. The limit Q of every weakly convergent subsequence of {Qn}n≥1 is a solution

of the calibration problem with data CM .
If the solution of the calibration problem with the limiting data CM is unique,

this definition reduces to the standard definition of continuity, because in this case
every subsequence of {Qn} has a further subsequence converging towards Q, which
implies Qn ⇒ Q.

Remark 3.1. Note that the above definition can accommodate the presence
of random errors (“noise”) in the data. In this case the observational error can
be described by a separate probability space (Ω0, E , p0). The continuity property
must then be interpreted as almost-sure continuity with respect to the law p0 of
the observational errors: for every (random) sequence {CnM}n≥0 such that ‖CnM −
CM‖w −−−−→

n→∞
0 almost surely, then any sequence of solution with data {CnM}n≥0

must verify the properties of Definition 3.2 p0-almost surely.
It is easy to construct an example of market data leading to a least squares

calibration problem (3.4) that does not satisfy the above definition.
Example 3.2. Assume S0 = 1, no interest rates nor dividends and observations

given by a single option price:

CnM (T = 1,K = 1) = E[(eX
n
1 −1)+] for n ≥ 1 and CM (T = 1,K = 1) = 1− e−λ,

where Xn
t is defined by Equation (3.6) and λ > 0. Then ‖CnM − CM‖w −−−−→n→∞

0 and

Xn
t is a solution for data CnM , but the sequence {Xn

t } has no convergent subsequence
(cf. Corollary VII.3.6 in [27]).

In addition to these theoretical obstacles, even if a solution exists, it may be
difficult to compute numerically since, as shown in [14, 36], the pricing error ‖CM −
CQ‖2 is typically non-convex and can have many local minima, preventing a gradient-
based minimization algorithm from finding the solution.

4. Relative entropy as a selection criterion. When constraints given by
option prices do not determine the exponential Lévy model completely, additional
information may be introduced into the problem by specifying a prior model : we
start from a reference Lévy process P and look for the solution of the problem (3.4)
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that has the smallest relative entropy with respect to P . For two probabilities P and
Q on the same measurable space (Ω,F), the relative entropy of Q with respect to P
is defined by

I(Q|P ) =

{
EP

[
dQ
dP log dQ

dP

]
if Q� P

∞ otherwise,
(4.1)

where by convention x log x = 0 when x = 0.
Problem 3 (Minimum entropy least squares calibration problem). Given prices

CM of call options and a prior Lévy process P , find a least squares solution Q∗ ∈
LSS(CM ), such that

I(Q∗|P ) = inf
Q∈LSS(CM )

I(Q|P ). (4.2)

In the sequel, any such Q∗ will be called a minimum entropy least squares solution
(MELSS) and the set of all such solutions will be denoted by MELSS(CM ).

P reflects a priori knowledge about the nature of possible trajectories of the
underlying asset and their probabilities of occurrence. A natural choice of prior,
ensuring absence of arbitrage in the calibrated model, is an exponential Lévy model
estimated from the time series of returns. Whether this choice is adopted or not does
not affect our discussion below. Other possible ways to choose the prior model in
practice are discussed in [14], which also gives an empirical analysis of the effect of
the choice of prior on the solution of the calibration problem.

The choice of relative entropy as a method for selection of solutions of the cali-
bration problem is driven by the following considerations:

• Relative entropy can be interpreted as a (pseudo-)distance to the prior P : it
is convex, nonnegative functional of Q for fixed P , equal to zero if and only
if dQ
dP = 1 P -a.s. To see this, observe that

EP
[
dQ

dP
log

dQ

dP

]
= EP

[
dQ

dP
log

dQ

dP
− dQ

dP
+ 1
]
,

and that z log z − z + 1 is a convex nonnegative function of z, equal to zero
if and only if z = 1.

• Relative entropy for Lévy processes is easily expressed in terms of their char-
acteristic triplets (see Theorem A.1).
• Relative entropy has an information-theoretic interpretation and has been

repeatedly used for model selection in finance (see Section 1).
Using relative entropy for selection of solutions removes, to some extent, the identi-
fication problem of least-squares calibration. Whereas in the least squares case, this
was an important nuisance, now, if two measures reproduce market option prices with
the same precision and have the same entropy relative to the prior, this means that
both measures are compatible with all the available information. Knowledge of many
such probability measures instead of one may be seen as an advantage, because it
allows to estimate model risk and provide confidence intervals for the prices of ex-
otic options [12]. However, the calibration problem (4.2) remains ill-posed: since the
minimization of entropy is done over the results of least squares calibration, problem
(4.2) may only admit a solution if problem (3.4) does. Also, LSS(CM ) is not neces-
sarily a compact set, so even if it is nonempty, (4.2) may not have a solution. Other
undesirable properties such as absence of continuity and numerical instability are also
inherited from the least squares approach.
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The minimum entropy least squares solution does not always exist, but if the prior
is chosen correctly such that (3.4) admits a solution with finite relative entropy with
respect to the prior, then minimum entropy least-squares solutions will also exist:

Lemma 4.1. Let P ∈ LNA∩L+
B for some B > 0 and assume problem (3.4) admits

a solution Q+ with I(Q+|P ) = C <∞. Then problem (4.2) admits a solution.
Proof. Under the condition of the lemma, it is clear that the solution Q∗ of

problem (4.2), if it exists, satisfies I(Q∗|P ) ≤ C. This entails that Q∗ � P , which
means by Theorem IV.4.39 in [27] that Q∗ ∈ L+

B . Therefore, Q∗ belongs to the set

L+
B ∩ {Q ∈M∩L : ‖CQ − CM‖ = ‖CQ

+
− CM‖} ∩ {Q ∈ L : I(Q|P ) ≤ C}.(4.3)

Lemma A.2 and the Prohorov’s theorem entail that the level set {Q ∈ L : I(Q|P ) ≤
C} is relatively weakly compact. On the other hand, by Corollary A.4, I(Q|P ) is
weakly lower semicontinuous with respect to Q for fixed P . Therefore, the set {Q ∈
P(Ω) : I(Q|P ) ≤ C} is weakly closed and since by Lemma 2.1,M∩L+

B is also weakly
closed, the set M ∩ L+

B ∩ {Q ∈ L : I(Q|P ) ≤ C} is weakly compact. Lemma 3.1
then implies that the set (4.3) is also weakly compact. Since I(Q|P ) is weakly lower
semicontinuous, it reaches its minimum on this set.

Remark 4.1. It is essential for our analysis that the model has discontinuous
trajectories, i.e. the prior P corresponds to a process with jumps, not a diffusion
process. If P corresponds to the law of a Markovian diffusion model then the set of
processes which have both the martingale property and finite entropy with respect
to P is reduced to a single element and the solution to 4.2 is trivial (this follows e.g.
from Theorem IV.4.39 in [27]).

5. Regularization using relative entropy. As observed in [14] and in Section
4, problem (4.2) is ill-posed and hard to solve numerically. In particular its solutions,
when they exist, may not be stable with respect to perturbations of market data.
If we do not know the prices CM exactly but only dispose of observations CδM with
||CδM−CM ||w ≤ δ and want to construct an approximation to MELSS(CM ), it is not a
good idea to solve problem (4.2) with the noisy data CδM because MELSS(CδM ) may be
very different from MELSS(CM ). We therefore need to regularize the problem (4.2),
that is, construct a family of continuous “regularization operators” {Rα}α>0, where α
is the regularization parameter, such that Rα(CδM ) converges to a minimum entropy
least-squares solution as the noise level δ tends to zero if an appropriate parameter
choice rule δ 7→ α(δ) is used [20]. The approximation to MELSS(CM ) using the noisy
data CδM is then given by Rα(CδM ) with an appropriate choice of α.

Following a classical approach to regularization of ill-posed problems [20, 4], we
regularize (4.2) by using the relative entropy as a penalization term:

Jα(Q) = ‖CδM − CQ‖2w + αI(Q|P ), (5.1)

where α is the regularization parameter and solve the following optimization problem:
Problem 4 (Regularized calibration problem). Given prices CM of call options,

a prior Lévy process P and a regularization parameter α > 0, find Q∗ ∈M∩L, such
that

Jα(Q∗) = inf
Q∈M∩L

Jα(Q). (5.2)

Problem (5.2) can be thought of in two ways:
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• If the minimum entropy least squares solution with the true data CM exists,
(5.2) allows to construct a stable approximation of this solution using the
noisy data.
• If the MELSS(CM ) = ∅, either because the set of least squares solutions is

empty or because the least squares solutions are incompatible with the prior,
the regularized problem (5.2) allows to achieve, in a stable manner, a trade-off
between matching the constraints and the prior information.

In the rest of this section we study the regularized calibration problem. Under our
standing hypothesis that the prior Lévy process has jumps bounded from above and
corresponds to an arbitrage free market (P ∈ LNA∩L+

B), we show that the regularized
calibration problem always admits a solution that depends continuously on the market
data. In addition, we give a sufficient condition on the prior P for the solution to be
an equivalent martingale measure and show how the regularization parameter α must
be chosen depending on the noise level δ if the regularized solutions are to converge
to the solutions of the minimum entropy least squares calibration problem (4.2).

5.1. Existence of solutions. The following result shows that, unlike the exact
or the least squares formulations, the regularized inverse problem always admits a
solution:

Theorem 5.1. Let P ∈ LNA∩L+
B for some B > 0. Then the calibration problem

(5.2) has a solution Q∗ ∈M∩L+
B.

Proof. By Lemma A.5, there exists Q0 ∈M∩L with I(Q0|P ) <∞. The solution,
if it exists, must belong to the level set LJα(Q0) := {Q ∈ L : I(Q|P ) ≤ Jα(Q0)}.
Since Jα(Q0) = ‖CM − CQ

0‖2w + I(Q0|P ) < ∞, by Lemma A.2, LJα(Q0) is tight
and, by Prohorov’s theorem, weakly relatively compact. Corollary A.4 entails that
I(Q|P ) is weakly lower semicontinuous with respect to Q. Therefore {Q ∈ P(Ω) :
I(Q|P ) ≤ Jα(Q0)} is weakly closed and since by Lemma 2.1,M∩L+

B is weakly closed,
M∩L+

B ∩ LJα(Q0) is weakly compact. Moreover, by Lemma 3.1, the squared pricing
error is weakly continuous, which entails that Jα(Q) is weakly lower semicontinuous.
Therefore, Jα(Q) achieves its minimum value onM∩L+

B ∩LJα(Q0), which proves the
theorem.

Since P ∈ L+
B (i.e. with jumps of X bounded from above P -a.s.), solutions Q are

also in L+
B . This may seem a limitation if the data is generated by a Lévy process

with jumps unbounded from above. This case is unlikely in financial applications: the
form of Lévy densities found empirically in [14] gives little evidence for large upward
jumps. Even in the theoretical case where the observed option prices are generated
by an exponential–Lévy model with jumps unbounded from above, the localization
estimates in [15, Proposition 4.2.] show that we can reproduce such prices with a
Lévy process in L+

B by choosing B large enough.
Since every solution Q∗ of the regularized calibration problem (5.2) has finite

relative entropy with respect to the prior P , necessarily Q∗ � P . However, Q∗

need not in general be equivalent to the prior. When the prior corresponds to the
“objective” probability measure, absence of arbitrage is guaranteed if options are
priced using an equivalent martingale measure [25]. The following theorem gives a
sufficient condition for this equivalence.

Theorem 5.2. Let P ∈ LNA ∩L+
B and assume the characteristic function ΦPT of

P satisfies ∫ ∞
−∞
|ΦPT (u)|du <∞ (5.3)
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for some T < T0, where T0 is the shortest maturity, present in the market data. Then
every solution Q∗ of the calibration problem (5.2) satisfies Q∗ ∼ P .

Remark 5.1. Condition (5.3) implies that the prior Lévy process has a continu-
ous density at time T and all subsequent times. Two important examples of processes
satisfying the condition (5.3) for all T are

• Processes with non-zero Gaussian component (A > 0).
• Processes with stable-like behavior of small jumps, that is, processes whose

Lévy measure satisfies

∃β ∈ (0, 2), lim inf
ε↓0

ε−β
∫ ε

−ε
|x|2ν(dx) > 0. (5.4)

For a proof, see [34, Proposition 28.3]. This class includes tempered stable
processes [13] with α+ > 0 and/or α− > 0.

To prove Theorem 5.2 we will use the following lemma:
Lemma 5.3. Let P ∈M∩L+

B with characteristic triplet (A, ν, γ) and character-
istic exponent ψ. There exists C <∞ such that∣∣∣∣ψ(v − i)

(v − i)v

∣∣∣∣ ≤ C ∀v ∈ R.

Proof. From the Lévy-Khinchin formula and (2.3),

ψ(v − i) = −1
2
Av(v − i) +

∫ ∞
−∞

(ei(v−i)x + iv − ex − ivex)ν(dx). (5.5)

Observe first that

ei(v−i)x + iv − ex − ivex = iv(xex + 1− ex) +
θv2x2ex

2
for some θ with |θ| ≤ 1.

Therefore, for all v with |v| ≥ 2,∣∣∣∣ei(v−i)x + iv − ex − ivex

(v − i)v

∣∣∣∣ ≤ xex + 1− ex + x2ex. (5.6)

On the other hand

ei(v−i)x + iv − ex − ivex

(v − i)v
=
iex(eivx − 1)

v
− i(ei(v−i)x − 1)

v − i

= −xex − ivx2

2
eθ1ivx + x+

i(v − i)x2

2
eθ2i(v−i)x

with some θ1, θ2 ∈ [0, 1]. Therefore, for all v with |v| ≤ 2,∣∣∣∣ei(v−i)x + iv − ex − ivex

(v − i)v

∣∣∣∣ ≤ x(1−ex)+
x2

2
(v+

√
1 + v2ex) ≤ x(1−ex)+x2(1+2ex).

(5.7)
Since the support of ν is bounded from above, the right-hand sides of (5.6) and (5.7)
are ν-integrable and the proof of the lemma is completed.

Proof of Theorem 5.2. Let Q∗ be a solution of (5.2) with prior P . By Lemma
A.5, there exists Q0 ∈ M∩ L such that Q0 ∼ P . Denote the characteristic triplet of
Q∗ by (A, ν∗, γ∗) and that of Q0 by (A, ν0, γ0).
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Let Qx be a Lévy process with characteristic triplet (A, xν0 + (1 − x)ν∗, xγ0 +
(1 − x)γ∗). From the linearity of the martingale condition (2.3), it follows that for
all x ∈ [0, 1], Qx ∈ M ∩ L. Since Q∗ realizes the minimum of Jα(Q), necessarily
Jα(Qx) − Jα(Q∗) ≥ 0 for all x ∈ [0, 1]. Our strategy for proving the theorem is first

to show that ‖CM−C
Qx‖2−‖CM−CQ

∗
‖2

x is bounded as x → 0 and then to show that if
I(Qx|P )−I(Q∗|P )

x is bounded from below as x→ 0, necessarily Q∗ ∼ P .
The first step is to prove that the characteristic function Φ∗ of Q∗ satisfies the

condition (5.3) for some T < T0. If A > 0, this is trivial. Assume that A = 0. In this
case, |Φ∗T (u)| = exp(T

∫∞
−∞(cos(ux) − 1)ν∗(dx)). Denote dν∗

dνP
:= φ∗. Since Q∗ � P ,

by Theorem IV.4.39 in [27],
∫∞
−∞(

√
φ∗(x) − 1)2νP (dx) ≤ K < ∞ for some constant

K. Therefore, there exists another constant C > 0 such that∫
{φ∗(x)>C}

(1− cos(ux))|φ∗ − 1|νP (dx) < C

uniformly on u. For all r > 0,∫ ∞
−∞

(1− cos(ux))|φ∗ − 1|νP (dx) ≤ C +
∫
{φ∗(x)≤C}

(1− cos(ux))|φ∗ − 1|νP (dx)

≤ C +
r

2

∫
{φ∗(x)≤C}

(1− cos(ux))2νP (dx) +
1
2r

∫
{φ∗(x)≤C}

(φ∗ − 1)2νP (dx)

≤ C + r

∫ ∞
−∞

(1− cos(ux))νP (dx) +
K(
√
C + 1)2

2r
.

This implies∫ ∞
−∞

(cos(ux)− 1)ν∗(dx) ≤ (1 + r)
∫ ∞
−∞

(cos(ux)− 1)νP (dx) + C +
K(
√
C + 1)2

2r

for all r > 0. Therefore, if the characteristic function of P satisfies the condition (5.3)
for some T , the characteristic function of Q∗ will satisfy it for every T ′ > T .

Since P ∈ LNA∩L+
B , Qx ∈M∩L+

B for all x ∈ [0, 1]. Therefore, condition (11.15)
in [13] is satisfied and option prices can be computed using Equation (11.20) of the
above reference2:

CQx(T,K) = (1−Ke−rT )+

+
1

2π

∫ ∞
−∞

e−iv logK+ivrT exp(T (1− x)ψ∗(v − i) + Txψ0(v − i))− 1
iv(1 + iv)

dv,

where ψ0 and ψ∗ denote the characteristic exponents of Q0 and Q∗. It follows that

CQx(T,K)− CQ∗(T,K)
x

=
1

2π

∫ ∞
−∞

e−iv logK+ivrT e
T (1−x)ψ∗(v−i)+Txψ0(v−i) − eTψ∗(v−i)

iv(1 + iv)x
dv

2This method for option pricing by Fourier transform is originally due to Carr and Madan [10].
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Since <ψ0(v − i) ≤ 0 and <ψ∗(v − i) ≤ 0 for all v ∈ R, Lemma 5.3 implies∣∣∣∣∣e−iv logK+ivrT e
T (1−x)ψ∗(v−i)+Txψ0(v−i) − eTψ∗(v−i)

iv(1 + iv)x

∣∣∣∣∣
≤ T |e

T (1−x)ψ∗(v−i)||ψ0(v − i)− ψ∗(v − i)|
|v(1 + iv)|

≤ T |eT (1−x)ψ∗(v−i)|C ′

for some constant C ′. From the dominated convergence theorem and since Q∗ satisfies
(5.3), ∂C

Qx (T,K)
∂x |x=0 exists and is bounded uniformly on T and K in the market data

set. This in turn means that ‖CM−C
Qx‖2−‖CM−CQ

∗
‖2

x is bounded as x → 0. To
complete the proof, it remains to show that if I(Qx|P )−I(Q∗|P )

x is bounded from below
as x → 0, necessarily Q∗ ∼ P . Using the convexity (with respect to νQ and γQ) of
the two terms in the expression (A.1) for relative entropy, we have:

I(Qx|P )− I(Q∗|P )
x

=
T∞
2Ax

{
xγ0 + (1− x)γ∗ − γP −

∫
|z|≤1

z(xν0 + (1− x)ν∗ − νP )(dz)

}2

1A 6=0

− T∞
2Ax

{
γ∗ − γP −

∫
|z|≤1

z(ν∗ − νP )(dz)

}2

1A 6=0

+
T∞
x

∫ ∞
−∞
{(xφ0 + (1− x)φ∗) log(xφ0 + (1− x)φ∗)− xφ0 − (1− x)φ∗ + 1}νP (dz)

− T∞
x

∫ ∞
−∞
{φ∗ log(φ∗)− φ∗ + 1}νP (dz)

≤ T∞
2A

{
γ0 − γP −

∫
|z|≤1

z(ν0 − νP )(dz)

}2

1A 6=0

− T∞
2A

{
γ∗ − γP −

∫
|z|≤1

z(ν∗ − νP )(dz)

}2

1A 6=0

+ T∞

∫
{φ∗>0}

{φ0 log(φ0)− φ0 + 1}νP (dz)− T∞
∫
{φ∗>0}

{φ∗ log(φ∗)− φ∗ + 1}νP (dz)

+ T∞

∫
{φ∗=0}

{φ0 log(xφ0)− φ0}νP (dz) ≤ I(Q0|P ) + T∞

∫
{φ∗=0}

(φ0 log x− 1)νP (dz)

Since Jα(Qx)−Jα(Q∗) ≥ 0, this expression must be bounded from below. Therefore,
because φ0 > 0, necessarily νP ({φ∗ = 0}) = 0 and Theorem IV.4.39 in [27] entails
that P � Q∗.

5.2. Continuity of solutions with respect to data.

Theorem 5.4 (Continuity of solutions with respect to data). Let {CnM}n≥1 and
CM be data sets of option prices such that

‖CnM − CM‖w →
n→∞

0.
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Let P ∈ LNA ∩ L+
B, α > 0 and for each n, let Qn be a solution of the calibration

problem (5.2) with data CnM , prior Lévy process P and regularization parameter α.
Then {Qn}n≥1 has a subsequence, converging weakly to Q∗ ∈ M∩ L+

B and the limit
of every converging subsequence of {Qn}n≥1 is a solution of calibration problem (5.2)
with data CM , prior P and regularization parameter α.

Proof. By Lemma A.5, there exists Q0 ∈ M ∩ L with I(Q0|P ) < ∞. Since,
by Lemma 3.1, ‖CQ0 − CnM‖2 ≤ S2

0 for all n, αI(Qn|P ) ≤ S2
0 + αI(Q0|P ) for all

n. Therefore, by Lemmas 2.1 and A.2 and Prohorov’s theorem, {Qn}n≥1 is weakly
relatively compact. Together with Lemma 2.1 this proves the first part of the theorem.

Choose any subsequence of {Qn}n≥1, converging weakly to Q∗ ∈M∩L+
B . To sim-

plify notation, this subsequence is denoted again by {Qn}n≥1. The triangle inequality
and Lemma 3.1 imply that

‖CQn − CnM‖2 −−−−→
n→∞

‖CQ
∗
− CM‖2 (5.8)

Since, by Lemma A.3, the relative entropy functional is weakly lower semi-continuous
with respect to Q, for every Q ∈M∩L+

B ,

‖CQ
∗
− CM‖2 + αI(Q∗|P ) ≤ lim inf

n
{‖CQn − CnM‖2 + αI(Qn|P )}

≤ lim inf
n
{‖CQ − CnM‖2 + αI(Q|P )}

= lim
n
‖CQ − CnM‖2 + αI(Q|P )

= ‖CQ − CM‖2 + αI(Q|P ),

where the second inequality follows from the fact that Qn is the solution of the cali-
bration problem with data CnM and the last line follows from the triangle inequality.

5.3. Convergence to minimum-entropy least squares solutions. The con-
vergence analysis of regularization methods for inverse problems usually involves the
study of the solution of the regularized problem as the noise level δ vanishes, the
regularization parameter being chosen as a function α(δ) of the noise level using some
parameter choice rule. The following result gives conditions on the parameter choice
rule δ 7→ α(δ) under which the solutions of the regularized problem (5.2) converge to
minimum entropy least squares solutions defined by (4.2):

Theorem 5.5. Let {CδM} be a family of data sets of option prices such that
‖CM −CδM‖ ≤ δ, let P ∈ LNA ∩L+

B and assume there exists a solution Q of problem
(3.4) with data CM (a least squares solution) such that I(Q|P ) <∞.

In the case where the constraints are attainable i.e. ‖CQ − CM‖ = 0 let α(δ) be
such that α(δ)→ 0 and δ2

α(δ) → 0 as δ → 0. Otherwise, let α(δ) be such that α(δ)→ 0
and δ

α(δ) → 0 as δ → 0.
Then every sequence {Qδk}, where δk → 0 and Qδk is a solution of problem (5.2)

with data CδkM , prior P and regularization parameter α(δk), has a weakly convergent
subsequence. The limit of every convergent subsequence is a solution of problem (4.2)
with data CM and prior P . If the minimum entropy least squares solution is unique
MELSS(CM ) = {Q+} then

Qδ ⇒
δ→0

Q+.
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Proof. By Lemma 4.1, there exists at least one MELSS with data CM and prior
P , with finite relative entropy with respect to the prior. Let Q+ ∈ MELSS(CM ).
Since Qδk is the solution of the regularized problem, for every k,

‖CQ
δk − CδkM ‖

2 + α(δk)I(Qδk |P ) ≤ ‖CQ
+
− CδkM ‖

2 + α(δk)I(Q+|P ).

Using the fact that for every r > 0 and for every x, y ∈ R,

(1− r)x2 + (1− 1/r)y2 ≤ (x+ y)2 ≤ (1 + r)x2 + (1 + 1/r)y2,

we obtain that

(1− r)‖CQ
δk − CM‖2 + α(δk)I(Qδk |P )

≤ (1 + r)‖CQ
+
− CM‖2 +

2δ2
k

r
+ α(δk)I(Q+|P ), (5.9)

and since Q+ ∈ LSS(CM ), this implies for all r ∈ (0, 1) that

α(δk)I(Qδk |P ) ≤ 2r‖CQ
+
− CM‖2 +

2δ2
k

r
+ α(δk)I(Q+|P ). (5.10)

If the constraints are met exactly, ‖CQ+ −CM‖ = 0 and with the choice r = 1/2,
the above expression yields:

I(Qδk |P ) ≤ 4δ2
k

α(δk)
+ I(Q+|P ).

Since, by the theorem’s statement, in the case of exact constraints δ2
k

α(δk) → 0, this
implies

lim sup
k
{I(Qδk |P )} ≤ I(Q+|P ). (5.11)

If ‖CQ+ − CM‖ > 0 (misspecified model) then the right-hand side of (5.10)
achieves its maximum when r = δk‖CQ

+ − CM‖−1, in which case we obtain

I(Qδk |P ) ≤ 4δk
α(δk)

‖CQ
+
− CM‖+ I(Q+|P ).

Since in the case of approximate constraints, δk
α(δk) → 0, we obtain (5.11) once again.

Inequality (5.11) implies in particular that I(Qδk |P ) is uniformly bounded, which
proves, by Lemmas A.2 and 2.1, that {Qδk} is relatively weakly compact inM∩L+

B .
Choose a subsequence of {Qδk}, converging weakly to Q∗ ∈M∩L+

B . To simplify
notation, this subsequence is denoted again by {Qδk}k≥1. Substituting r = δ into
Equation (5.9) and making k tend to infinity shows that

lim sup
k
‖CQ

δk − CM‖2 ≤ ‖CQ
+
− CM‖2.

Together with Lemma 3.1 this implies that

‖CQ
∗
− CM‖2 ≤ ‖CQ

+
− CM‖2,
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hence Q∗ is a least squares solution. By weak lower semicontinuity of I (cf. Lemma
A.3) and using (5.11),

I(Q∗|P ) ≤ lim inf
k

I(Qδk |P ) ≤ lim sup
k

I(Qδk |P ) ≤ I(Q+|P ),

which means that Q∗ ∈ MELSS(CM ). The last assertion of the theorem follows
from the fact that in this case every subsequence of {Qδk} has a further subsequence
converging toward Q+.

Remark 5.2 (Random errors). In line with Remark 3.1, it is irrelevant whether
the noise in the data is “deterministic” or “random”, as long the error level δ is
interpreted as a worst-case error level i.e. an almost sure bound on the error:

p0(||CδM − CM || ≤ δ) = 1. (5.12)

In this case, Theorem 5.5 holds for random errors, all convergences being interpreted
as almost-sure convergence with respect to the law p0 of the errors.

6. Stability with respect to the prior. If we choose a prior Lévy process P
with a finite number of jump sizes (sometimes called simple Lévy processes):

νP =
M−1∑
k=0

pkδ{xk}(dx). (6.1)

then the solution Q satisfies Q� P , by Theorem IV.4.39 in [27] so its Lévy measure
of the solution necessarily satisfies νQ � νP and is of the form

νQ =
M−1∑
k=0

qkδ{xk}(dx), (6.2)

The calibration problem (5.2) is then a finite-dimensional optimization problem and
can be solved using a numerical optimization algorithm [14]. The advantage of this
method is that we are simply solving (5.2) with a specific choice of prior, so all results
of Section 5 hold. Numerical methods for solving this problem are discussed in the
companion paper [14]. Here we will complement these results by a theorem showing
that the solution of a calibration problem with any prior can be approximated (in
the weak sense) by a sequence of solutions of calibration problems with simple Lévy
processes as priors. We start by showing that every Lévy process can be approximated
by simple Lévy processes, of the form (6.1):

Lemma 6.1. Let P be a Lévy process with characteristic triplet (A, ν, γ) with
respect to a continuous truncation function h and for every n, let Pn be a Lévy process
with characteristic triplet (A, νn, γ) (with respect to h) where

νn :=
2n∑
k=1

δ{xk}(dx)
µ([xk − 1/

√
n, xk + 1/

√
n))

1 ∧ x2
k

,

xk := (2(k − n) − 1)/
√
n and µ is a (positive and finite) measure on R, defined by

µ(B) :=
∫
B

(1 ∧ x2)ν(dx) for all B ∈ B(R). Then Pn ⇒ P .
Proof. For a function f ∈ Cb(R), define

fn(x) :=


0, x ≥ 2

√
n,

0, x < −2
√
n,

f(xi), x ∈ [xi − 1/
√
n, xi + 1/

√
n) with 1 ≤ i ≤ 2n,
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Then
∫

(1 ∧ x2)f(x)νn(dx) =
∫
fn(x)µ(dx). Since f(x) is continuous, fn(x) n→∞−−−−→

f(x) for all x and since f is bounded, the dominated convergence theorem implies

lim
n

∫
(1 ∧ x2)f(x)νn(dx) = lim

n

∫
fn(x)µ(dx) =

∫
(1 ∧ x2)f(x)ν(dx). (6.3)

With f(x) ≡ h2(x)
1∧x2 the above yields:∫

h2(x)νn(dx) n→∞→
∫
h2(x)ν(dx).

On the other hand, for every g ∈ Cb(R) such that g(x) ≡ 0 on a neighborhood of 0,
f(x) := g(x)

1∧x2 belongs to Cb(R). Therefore, from Equation (6.3), lim
n

∫
g(x)νn(dx) =∫

g(x)ν(dx) and by Corollary VII.3.6 in [27], Pn ⇒ P . To compute numerically
the solution of the calibration problem (5.2) with a given prior P , we can construct,
using Lemma 6.1, an approximating sequence {Pn} of simple Lévy processes such
that Pn ⇒ P . Problem (5.2) with P replaced by Pn is then a finite dimensional
optimization problem can can be solved. The resulting sequence {Qn} of solutions
will converge, as shown in the following theorem, to a solution of the calibration
problem with prior P :

Theorem 6.2. Let P, {Pn}n≥1 ⊂ LNA ∩ L+
B such that Pn ⇒ P , let α > 0, let

CM be a data set of option prices and for each n let Qn be a solution of the calibration
problem (5.2) with prior Pn, regularization parameter α and data CM . Denote the
characteristic triplet of Pn by (An, νPn , γ

P
n ) and that of P by (A, νP , γP ) (with respect

to a continuous truncation function h). If An → A > 0 then the sequence {Qn}n≥1 has
a weakly convergent subsequence and the limit of every weakly convergent subsequence
of {Qn}n≥1 is a solution of the calibration problem (5.2) with prior P .

Proof. By Lemma A.5, there exists C < ∞ such that for every n, one can find
Q̃n ∈M∩L with I(Q̃n|Pn) ≤ C. Since ‖CQ̃n−CM‖2w ≤ S2

0 for every n and Qn is the
solution of the calibration problem, I(Qn|Pn) ≤ S2

0/α+C <∞ for every n. Therefore,
by Lemma A.2, {Qn} is tight and, by Prohorov’s theorem and Lemma 2.1, weakly
relatively compact in M∩L+

B . Choose a subsequence of {Qn}, converging weakly to
Q ∈ M ∩ L+

B . To simplify notation, this subsequence is also denoted by {Qn}n≥1.
It remains to show that Q is indeed a solution of (5.2). We can parameterize the
characteristic triplet of any Qφ ∈M∩L with I(Q|P ) <∞ as(

A,φνP , γφ := −A
2
−
∫ ∞
−∞

(ex − 1− h(x))φνP (dx)
)
.

where φ ∈ L1( (|x|2 ∧ 1)νP (dx) ), φ ≥ 0. To prove that Q is a solution of (5.2), we
need to establish that

‖CQ − CM‖2w + αI(Q,P ) ≤ ‖CQ
φ

− CM‖2w + αI(Qφ|P ) (6.4)

This will be shown in three steps.
Step 1. Let C(k)

b (R) denote the set of continuous bounded functions φ : R → R

equal to k on some neighborhood of 0: for each φ ∈ C(k)
b (R) there exists δ > 0 with

φ(x) = k ∀x : |x| < δ. The first step is to prove (6.4) for every φ ∈ C(1)
b . Choose one

such φ and let Qφn denote an element of M∩L with triplet(
An, φν

P
n , γ

φ
n := −An

2
−
∫ ∞
−∞

(ex − 1− h(x))φνPn (dx)
)
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Corollary VII.3.6 in [27] and the fact that Pn ⇒ P imply that Qφn ⇒ Qφ and therefore
by Lemma 3.1,

lim
n
‖CQ

φ
n − CM‖2w = ‖CQ

φ

− CM‖2w.

Moreover, φ log φ+1−φ ∈ C(0)
b (R) and h(φ−1) ∈ C(0)

b (R). Therefore, using once again
Corollary VII.3.6 in [27], we obtain (here, we use the hypothesis limAn = A > 0):

lim
n
I(Qφn|Pn) = lim

n

T∞
2An

{
γφn − γPn −

∫ ∞
−∞

h(x)(φ− 1)νPn (dx)
}2

1An 6=0

+ lim
n
T∞

∫ ∞
−∞

(φ log φ+ 1− φ)νPn (dx) = I(Qφ|P ).

Lemma A.3 entails that

I(Q,P ) ≤ lim inf
n
I(Qn, Pn), (6.5)

and since, by Lemma 3.1, the pricing error is weakly continuous, we have, using the
optimality of Qn,

‖CQ − CM‖2w + αI(Q,P ) ≤ lim inf
n
{‖CQn − CM‖2w + αI(Qn, Pn)}

≤ lim inf
n
{‖CQ

φ
n − CM‖2w + αI(Qφn, Pn)} = ‖CQ

φ

− CM‖2w + αI(Qφ, P ). (6.6)

This proves (6.4) for all φ ∈ C(1)
b (R).

Step 2. Let φ ∈ L1((|x|2 ∧ 1)νP ) such that φ ≥ 0 and |φ(x)− 1| ≤ C(|x| ∧ 1) for
every x ∈ R. Then there exists a sequence {φn} ⊂ C(1)

b (R) such that φn → φ νP -a.e.
and |φn(x)− 1| ≤ C(|x| ∧ 1) for every n and every x ∈ R. Then by Step 1,

‖CQ − CM‖2w + αI(Q,P ) ≤ ‖CQ
φn − CM‖2w + αI(Qφn , P ) ∀n. (6.7)

Using the dominated convergence theorem and Corollary VII.3.6 in [27] yields that
Qφn ⇒ Qφ. Since |h(x)(φn − 1)| ≤ Ch(x)(|x| ∧ 1) and

φn log φn + 1− φn ≤ (φn − 1)2 ≤ C2(|x|2 ∧ 1),

the dominated convergence theorem yields:

lim
n
I(Qφn |Pn) = lim

n

T∞
2A

{
γφn − γP −

∫ ∞
−∞

h(x)(φn − 1)νP (dx)
}2

1A 6=0

+ lim
n
T∞

∫ ∞
−∞

(φn log φn + 1− φn)νP (dx) = I(Qφ|P ).

Therefore, by passing to the limit n→∞ in (6.7), we obtain that (6.4) holds for every
φ ∈ L1((|x|2 ∧ 1)νP ) such that φ ≥ 0 and |φ(x)− 1| ≤ C(|x| ∧ 1).

Step 3. Let us now choose a nonnegative φ ∈ L1((|x|2 ∧ 1)νP ). Without loss of
generality, we can assume I(Qφ|P ) <∞. Let

φn(x) =


1− n(|x| ∧ 1), φ(x) < 1− n(|x| ∧ 1),
1 + n(|x| ∧ 1), φ(x) > 1 + n(|x| ∧ 1),
φ(x) otherwise.
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Then φn ≤ φ ∨ 1 and once again, the dominated convergence theorem and Corollary
VII.3.6 in [27] entail that Qφn ⇒ Qφ. Since |h(x)(φn − 1)| ≤ |h(x)(φ − 1)| and
φn log φn + 1− φn ≤ φ log φ+ 1− φ, again, by dominated convergence we obtain that
limn I(Qφn |Pn) = I(Qφ|P ) and by passage to the limit n → ∞ in (6.7), (6.4) holds
for all φ ∈ L1((|x|2 ∧ 1)νP ) with φ ≥ 0, which completes the proof of the theorem.

Another implication of the above theorem is that small changes in the prior Lévy
process lead to small changes in the solution: the solution is not very sensitive to
minor errors in the determination of the prior measure. This result confirms the
empirical observations made in [14].

7. Conclusion. We have proposed here a stable method for constructing an op-
tion pricing model of exponential Lévy type, consistent with a given data set of option
prices. Our approach is based on the regularization of the calibration problem using
the relative entropy with respect to a prior exp-Lévy model as penalization term. The
regularization restores existence and stability of solutions; the use of relative entropy
links our approach to previous work using relative entropy as a criterion for selection
of pricing rules. This technique is readily amenable to numerical implementation, as
shown in [14], where empirical applications to financial data are also discussed.

The problem studied here is an example of regularization of a nonlinear, infinite-
dimensional inverse problem with noisy data. The above results may also be useful
for other nonlinear inverse problems where positivity constraints on the unknown
parameter make regularization by relative entropy suitable.

Finally, although we have considered the setting of Lévy processes, this approach
can also be adapted to other models with jumps—such as stochastic volatility models
with jumps (see [13, Chapter 15] for a review)—where the jump structure is described
by a Lévy measure, to be retrieved from observations.

Appendix A. Relative entropy for Lévy processes. In this appendix we
explicitly compute the relative entropy of two Lévy processes in terms of their char-
acteristic triplets and establish some properties of the relative entropy viewed as a
functional on Lévy processes. Under additional assumptions the relative entropy of
two Lévy processes was computed in [11] in the case where Q is equivalent to P and
the Lévy process has finite exponential moments under P and in [30] in the case where
log dνQ

dνP
is bounded. We give here an elementary proof valid for all Lévy processes.

Theorem A.1 (Relative entropy of Lévy processes). Let {Xt}t≥0 be a real-valued
Lévy process on (Ω,F , Q) and on (Ω,F , P ) with respective characteristic triplets
(AQ, νQ, γQ) and (AP , νP , γP ). Suppose that Q � P (by Theorem IV.4.39 in [27],
this implies that AQ = AP and νQ � νP ) and denote A := AQ = AP . Then for
every time horizon T ≤ T∞ the relative entropy of Q|FT with respect to P |FT can be
computed as follows:

IT (Q|P ) = I(Q|FT |P |FT ) =
T

2A

{
γQ − γP −

∫ 1

−1

x(νQ − νP )(dx)
}2

1A 6=0+

T

∫ ∞
−∞

(
dνQ

dνP
log

dνQ

dνP
+ 1− dνQ

dνP

)
νP (dx). (A.1)

Proof. Let {Xc
t }t≥0 be the continuous martingale part of X under P (a Brownian

motion), µ be the jump measure of X and φ := dνQ

dνP
. From [27, Theorem III.5.19],

the density process Zt := dQ|Ft
dP |Ft

is the Doléans-Dade exponential of the Lévy process
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{Nt}t≥0 defined by

Nt := βXc
t +

∫
[0,t]×R

(φ(x)− 1){µ(ds× dx)− ds νP (dx)},

where β is given by

β =
{ 1

A{γ
Q − γP −

∫
|x|≤1

x(φ(x)− 1)νP (dx)} if A > 0,
0 otherwise.

Choose 0 < ε < 1 and let I := {x : ε ≤ φ(x) ≤ ε−1}. We split Nt into two independent
martingales:

N ′t := βXc
t +

∫
[0,t]×I

(φ(x)− 1){µ(ds× dx)− ds νP (dx)} and

N ′′t :=
∫

[0,t]×(R\I)
(φ(x)− 1){µ(ds× dx)− ds νP (dx)}.

SinceN ′ andN ′′ never jump together, [N ′, N ′′]t = 0 and E(N ′+N ′′)t = E(N ′)tE(N ′′)t
(cf. Equation II.8.19 in [27]). Moreover, since N ′ and N ′′ are Lévy processes and
martingales, their stochastic exponentials are also martingales (Proposition 8.23 in
[13]). Therefore,

IT (Q|P ) = EP [ZT logZT ]
= EP [E(N ′)TE(N ′′)T log E(N ′)T ] + EP [E(N ′)TE(N ′′)T log E(N ′′)T ]
= EP [E(N ′)T log E(N ′)T ] + EP [E(N ′′)T log E(N ′′)T ] (A.2)

if these expectations exist.
Since ∆N ′t > −1 a.s., E(N ′)t is almost surely positive. Therefore, from Lemma

5.8 in [23], Ut := log E(N ′)t is a Lévy process with characteristic triplet:

AU = β2A,

νU (B) = νP (I ∩ {x : log φ(x) ∈ B}) ∀B ∈ B(R),

γU = −β
2A

2
−
∫ ∞
−∞

(ex − 1− x1|x|≤1)νU (dx).

This implies that U has bounded jumps and all exponential moments. Therefore,
E[UT eUT ] <∞ and can be computed as follows:

EP [UT eUT ] = −i d
dz
EP [eizUT ]|z=−i = −iTψ′(−i)EP [eUT ] = −iTψ′(−i)

= T (AU + γU +
∫ ∞
−∞

(xex − x1|x|≤1)νU (dx))

=
β2AT

2
+ T

∫
I

(φ(x) log φ(x) + 1− φ(x))νP (dx) (A.3)

It remains to compute EP [E(N ′′)T log E(N ′′)T ]. Since N ′′ is a compound Poisson
process, E(N ′′)t = ebt

∏
s≤t(1 + ∆N ′′s ), where b =

∫
R\I(1 − φ(x))νP (dx). Let ν′′ be

the Lévy measure of N ′′ and λ its jump intensity. Then

E(N ′′)T log E(N ′′)T = bTE(N ′′)T + ebT
∏
s≤T

(1 + ∆N ′′s )
∑
s≤T

log(1 + ∆N ′′s )
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and

EP [E(N ′′)T log E(N ′′)T ]

= bT + ebT
∞∑
k=0

e−λT
(λT )k

k!
E[
∏
s≤T

(1 + ∆N ′′s )
∑
s≤T

log(1 + ∆N ′′s )|k jumps]

Since, under the condition that N ′′ jumps exactly k times in the interval [0, T ], the
jump sizes are independent and identically distributed, we find, denoting the generic
jump size by ∆N ′′:

EP [E(N ′′)T log E(N ′′)T ]

= bT + ebT
∞∑
k=0

e−λT
(λT )k

k!
kE[1 + ∆N ′′]k−1E[(1 + ∆N ′′) log(1 + ∆N ′′)]

= bT + λTE[(1 + ∆N ′′) log(1 + ∆N ′′)]

= bT + T

∫ ∞
−∞

(1 + x) log(1 + x)ν′′(dx)

= T

∫
R\I

(φ(x) log φ(x) + 1− φ(x))νP (dx).

In particular, EP [E(N ′′)T log E(N ′′)T ] is finite if and only if the integral in the last
line is finite. Combining the above expression with (A.3) and (A.2) finishes the proof.

Lemma A.2. Let P, {Pn}n≥1 ⊂ L+
B for some B > 0, such that Pn ⇒ P . Then

for every r > 0, the level set Lr := {Q ∈ L : I(Q|Pn) ≤ r for some n} is tight.
Proof. For every Q ∈ Lr, choose any element of {Pn}n≥1, for which I(Q|PQ) ≤ r

and denote it by PQ. The characteristic triplet of Q is denoted by (AQ, νQ, γQ) and
that of PQ by (APQ , νPQ , γPQ). In addition, we define φQ := dνQ

dνPQ
. From Theorem

A.1, ∫ ∞
−∞

(φQ(x) log φQ(x) + 1− φQ(x))νPQ(dx) ≤ r/T∞.

Therefore, for u sufficiently large,∫
{φQ>u}

φQνPQ(dx) ≤
∫
{φQ>u}

2φQ[φQ log φQ + 1− φQ]νPQ(dx)
φQ log φQ

≤ 2r
T∞ log u

,

which entails that for u sufficiently large,∫
{φQ>u}

νQ(dx) ≤ 2r
T∞ log u

uniformly with respect toQ ∈ Lr. Let ε > 0 and choose u such that
∫
{φQ>u} ν

Q(dx) ≤ ε/2
for every Q ∈ Lr. By Corollary VII.3.6 in [27],∫ ∞

−∞
f(x)νPn(dx)→

∫ ∞
−∞

f(x)νP (dx)

for every continuous bounded function f that is identically zero on a neighborhood of
zero. Since the measures νP and νPn for all n ≥ 1 are finite outside a neighborhood



22 R. CONT and P. TANKOV

of zero and Pn ⇒ P , we can choose a compact K such that νPn(R \K) ≤ ε/2u for
every n. Then

νQ(R \K) =
∫

(R\K)∩{φQ≤u}
φQνPQ(dx) +

∫
(R\K)∩{φQ>u}

νQ(dx) ≤ ε (A.4)

It is easy to check by computing derivatives that for every u > 0, on the set
{x : φQ(x) ≤ u},

(φQ − 1)2 ≤ 2u(φQ log φQ + 1− φQ).

Therefore, for u sufficiently large and for all Q ∈ Lr,∣∣∣∫
|x|≤1

x(φQ − 1)νPQ(dx)
∣∣∣

≤

∣∣∣∣∣
∫
|x|≤1, φQ≤u

x(φQ − 1)νPQ(dx)

∣∣∣∣∣+

∣∣∣∣∣
∫
|x|≤1, φQ>u

x(φQ − 1)νPQ(dx)

∣∣∣∣∣
≤
∫
|x|≤1

x2νPQ(dx) +
∫
|x|≤1, φQ≤u

(φQ − 1)2νPQ(dx) + 2
∫
φQ>u

φQνPQ(dx)

≤
∫
|x|≤1

x2νPQ(dx) + 2u
∫ ∞
−∞

(φQ log φQ + 1− φQ)νPQ(dx) +
4r

T∞ log u

≤
∫
|x|≤1

x2νPQ(dx) +
3ru
T∞

. (A.5)

By Proposition VI.4.18 in [27], the tightness of {Pn}n≥1 implies that

APn +
∫
|x|≤1

x2νPn(dx) (A.6)

is bounded uniformly on n, which means that the right hand side of (A.5) is bounded
uniformly with respect to Q ∈ Lr. From Theorem IV.4.39 in [27], AQ = APQ for all
Q ∈ Lr because for the relative entropy to be finite, necessarily Q � PQ. Theorem
A.1 then implies that{

γQ − γP −
∫ 1

−1

x(νQ − νP )(dx)
}2

≤ 2APQr
T∞

.

From (A.6), APn is bounded uniformly on n. Therefore, inequality (A.5) shows that
|γQ| is bounded uniformly with respect to Q. For u sufficiently large,

AQ +
∫ ∞
−∞

(x2 ∧ 1)φQνPQ(dx) ≤ AQ + u

∫
φQ≤u

(x2 ∧ 1)νPQ(dx)

+
∫
φQ>u

φQνPQ(dx) ≤ APQ + u

∫ ∞
−∞

(x2 ∧ 1)νPQ(dx) +
2r

T∞ log u
(A.7)

and (A.6) implies that the right hand side is bounded uniformly with respect to
Q ∈ Lr. By Proposition VI.4.18 in [27], (A.4), (A.7) and the fact that |γQ| is bounded
uniformly with respect to Q entail that the set Lr is tight.
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Lemma A.3. Let Q and P be two probability measures on (Ω,F). Then

I(Q|P ) = sup
f∈Cb(Ω)

{∫
Ω

fdQ−
∫

Ω

(ef − 1)dP
}
, (A.8)

where Cb(Ω) is space of bounded continuous functions on Ω.
Proof. Observe that

φ(x) =
{
x log x+ 1− x, x > 0,
∞, x ≤ 0

and φ∗(y) = ey − 1 are proper convex functions on R, conjugate to each other and
apply Corollary 2 to [31, Theorem 4].

Corollary A.4. The relative entropy functional I(Q|P ) is weakly lower semi-
continuous with respect to Q for fixed P .

Lemma A.5. Let P, {Pn}n≥1 ⊂ LNA ∩ L+
B for some B > 0 such that Pn ⇒ P .

There exists a sequence {Qn}n≥1 ⊂M∩L+
B with Qn ∼ Pn for every n and a constant

C <∞ such that I(Qn|Pn) ≤ C for every n.
Proof. Let h : R → R be a continuous truncation function. For n ≥ 1, let

(An, νn, γn) be the characteristic triplet of Pn with respect to h and let

f(β, Pn) := γn +
(

1
2

+ β

)
An +

∫ ∞
−∞

{
(ex − 1)eβ(ex−1) − h(x)

}
νn(dx).

The first step is to show that for every n, there exists a unique βn such that f(βn, Pn) =
0 and that the sequence {βn}n≥1 is bounded.

Since for every n, Pn ∈ L+
B , the dominated convergence theorem yields:

f ′β(β, Pn) = An +
∫ ∞
−∞

(ex − 1)2eβ(ex−1)νn(dx) > 0,

and since Pn ∈ LNA, the Lévy process (X,Pn) is not a.s. increasing nor a.s. decreas-
ing, which means that at least one of the following conditions holds:

1. An > 0,
2. νn((−∞, 0)) > 0 and νn(0,∞) > 0,
3. An = 0, νn((−∞, 0)) = 0 and γn −

∫∞
−∞ h(x)νn(dx) < 0,

4. An = 0, νn((0,∞)) = 0 and γn −
∫∞
−∞ h(x)νn(dx) > 0.

Since f ′β(β, Pn) ≥ An + min
(∫ 0

−∞(ex − 1)2νn(dx),
∫∞

0
(ex − 1)2νn(dx)

)
, if conditions

1 or 2 above hold, f ′β(β, Pn) is bounded from below by a positive constant therefore

∃!βn : f(βn, Pn) = 0. (A.9)

If condition 3 above holds, limβ→−∞ f(β, Pn) = γn −
∫∞
−∞ h(x)νn(dx) < 0 and

limβ→∞ f(β, Pn) = ∞, which means that (A.9) also holds. The case when condi-
tion 4 above is satisfied may be treated similarly.

Let us now show that the sequence {βn}n≥1 is bounded. Rewrite f(β, Pn) as:

f(β, Pn) := γn +
(

1
2

+ β

)(
An +

∫ ∞
−∞

h2(x)νn(dx)
)

+
∫ ∞
−∞

{
(ex − 1)eβ(ex−1) − h(x)−

(
1
2

+ β

)
h2(x)

}
νn(dx). (A.10)
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Since (ex − 1)eβ(ex−1) − x −
(

1
2 + β

)
x2 = o(|x|2) and the integrand in the last

term of (A.10) is bounded on (−∞, B], by Corollary VII.3.6 in [27], for every β,
limn f(β, Pn) = f(β, P ).

Since P also belongs to L+
B ∩ LNA, by the same argument as above, there exists

a unique β∗ such that f(β, P ) = 0 and f ′β(β∗, P ) > 0. This means that there exist
ε > 0 and finite constants β− < β∗ and β+ > β∗ such that f(β−, P ) < −ε and
f(β+, P ) > ε. One can then find N such that for all n ≥ N , f(β−, Pn) < −ε/2 and
f(β+, Pn) > ε/2, which means that βn ∈ [β−, β+] and the sequence {βn} is bounded.
For every n, let (X,Qn) be the Lévy process with characteristic triplet (with respect
to h)

AQn = An, νQn = eβn(ex−1)νn

γQn = γn +Anβn +
∫ ∞
−∞

h(x)(eβ(ex−1) − 1)νn(dx).

The measure Qn is in fact the minimal entropy martingale measure for Pn [29], but
this result is not used here. From Theorem A.1,

I(Qn|Pn) = −T
{
βn
2

(1 + βn)An + βnγn +
∫ ∞
−∞
{eβn(ex−1) − 1− βnh(x)}νn(dx)

}
.

(A.11)
To show that the sequence {I(Qn|Pn)}n≥1 is bounded, observe that for

∀x ∈ [−1, 1],
∣∣∣eβ(ex−1) − 1− βx

∣∣∣ ≤ βeβ(e−1)+1(1 + βe)|x|2

∀x ≤ B,
∣∣∣eβ(ex−1) − 1− βx1|x|≤1

∣∣∣ ≤ βeβ(eB+1) + 1 + βB.

The uniform boundedness of the sequence of relative entropies now follows from (A.11)
and Theorem VI.4.18 in [27].
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