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1 Introduction

The central question about groups of finite Morley rank is the Cherlin-Zil’ber
Conjecture, which states that the infinite simple ones are algebraic. The search
for satisfactory analogues in the context of groups of finite Morley rank of key
notions in algebraic group theory has therefore been a continuing concern.

Semisimple and unipotent elements are fundamental for understanding affine
algebraic groups. While Carter subgroups of groups of finite Morley rank (Defi-
nition 6.5) offer a reasonably well-behaved analogue of maximal tori in algebraic
groups (see [12], [14] and [21]), there has been more than one proposition for
an analogue of unipotent subgroups of algebraic groups. The most recent and
most effective of these has been introduced by Burdges in [7] (see section 2). In
this article, following up on Burdges’ ideas, we introduce and study U -groups
(Definition 5.1) as a new analogue of unipotent subgroups for groups of finite
Morley rank. Our main result is:

Theorem 6.4. – Let G be a solvable connected group of finite Morley rank.
Then G′ is a U -group.

One of the early and fundamental results on groups of finite Morley rank
states that the derived subgroup of a connected solvable group of finite Morley
rank is nilpotent (Fact 6.1). This is a weak parallel to the well-known fact about
algebraic groups that the derived subgroup of a connected solvable algebraic
group is unipotent. The lack of a robust notion of unipotent subgroup in the
case of groups of finite Morley rank is an obstacle to a more precise conclusion.
By introducing U -groups, we try to overcome this obstacle and our main result
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provides a closer analogue to the situation in algebraic groups than Fact 6.1.
These U -groups are characterized by a structure theorem given as Theorem 5.4,
in terms of the fundamental notion of a homogeneous U0,r-group (Definition
3.1). From a technical point of view, the critical result is Theorem 4.11, dealing
with actions on such groups.

To briefly go over the history around unipotence in groups of finite Mor-
ley rank, one can start from Altseimer and Berkman’s notion of quasiunipotent
group [2]. This is a nilpotent definable connected group of finite Morley rank
containing no p-torus (a p-torus being an abelian divisible p-subgroup). Quasi-
unipotent groups turned out to be a good approximation to unipotent algebraic
groups (see Lemma 2.4 of [2]) and they were very useful in [13]. Furthermore we
proved that the derived subgroup of a connected solvable group of finite Morley
rank is quasiunipotent (Proposition 3.26 of [13]).

The main problem around unipotence is to find a notion which corresponds
to the characteristic zero case, since definable connected p-subgroups of bounded
exponent in groups of finite Morley rank are good analogues for nonzero char-
acteristic. The notions of U0,r-groups and 0-unipotent groups introduced by
Burdges in [7] (see section 2 for the definition) aim at overcoming the com-
plications of the unipotence problem in characteristic zero. Significant recent
applications of Burdges’ notions can be found in [7], [8], [9] and [14]. Despite its
effectiveness, Burdges’ notion of unipotence has a weakness: it is not necessar-
ily preserved by passage to definable subgroups. In the present article, in order
to remedy this problem, we impose a condition of homogeneity on Burdges’
U0,r-groups (Definition 3.1).

It should nevertheless be emphasized that neither our notion of U -group nor
Burdges’ notion of 0-unipotence is the ideal analogue for a unipotent subgroup
of an algebraic group. In fact, an ideal analogue should have three essential
properties: it should be nilpotent; every solvable group of finite Morley rank
should have a unique maximal one; the derived subgroup of a connected solvable
group of finite Morley rank should be such a group. In solvable groups, Burdges’
0-unipotent groups enjoy the first two properties but not the last one. Our U -
groups satisfy the first and third conditions but are likely never to meet the
second one because of the conjectured existence of bad fields of characteristic
zero. The existence of such hypothetical fields of finite Morley rank with a
distinguished proper infinite multiplicative subgroup has been a longstanding
open problem in model theory (see for example [20] for more details).

As a result, for the time being we can only approximate unipotence.
The organization of the paper is as follows. In section 2, we go over the

definitions of Burdges’ notions on unipotence, which are central to this paper
as well. In section 3, we introduce and study homogeneous U0,r-groups. Section
4 is devoted to the proof of the first and the most technical theorem of this
paper (Theorem 4.11). In section 5, we introduce U -groups and obtain their
precise structural description in Theorem 5.4. We also show that every definable
quotient and every definable subgroup of a U -group is a U -group (Corollary 5.8).
Section 6 contains the main result of this article (Theorem 6.8). Afterwards,
looking at quotients of solvable connected groups of finite Morley rank, we prove
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Theorem 6.20. To state this final result, we introduce a new type of subgroup of
a group of finite Morley rank G, namely C(G) (Definition 6.11). Our Theorem
6.20 shows that in a connected solvable group, C(G) is the only place where
homogeneity in the sense of this article can be lost, and implies that the Fitting
subgroup of a centerless connected solvable group is a U -group. These results
have recently been applied in the classification of simple groups of finite Morley
rank of odd type by Adrien Deloro [11].

2 U0,r-groups

For a notion analogous to unipotence in algebraic groups, Burdges [7] intro-
duced the notions of reduced rank and U0,r-groups. In this section we recall the
definitions and known results.

The notations will be as in [3], which is also our basic reference. Before
introducing U0,r-groups we need to recall three facts. The first two of the
following facts are well-known consequences of the Zil’ber Indecomposability
Theorem [22]. The third is a relatively simple fact about lifting torsion in
groups of finite Morley rank. These results will be used in the sequel without
mention.

Fact 2.1. – (Zil’ber, [22]) Let G be a group of finite Morley rank. The
subgroup generated by a set of definable connected subgroups of G is definable
and connected and it is the setwise product of finitely many of them.

Fact 2.2. – (Zil’ber, [22]) Let H ≤ G be a definable connected subgroup. Let
X ⊆ G be any subset. Then the subgroup [H, X] is definable and connected.

Fact 2.3. – (Borovik, Nesin, [4]) Let G be a group of finite Morley rank
and let H be a definable normal subgroup of G. If x is an element of G such
that x is a p-element of G = G/H then the coset xH contains a p-element. In
particular, if G is torsion-free, then G/H is torsion-free.

An abelian connected group of finite Morley rank is indecomposable if it is
not the sum of two proper definable subgroups. The radical J(A) of a nontrivial
abelian group A of finite Morley rank is the maximal proper definable connected
subgroup without a proper definable supplement, i.e. without a proper defin-
able subgroup B such that A = J(A)B (the existence and the unicity of J(A)
is warranted by Lemma 2.6 of [7]). In particular, the radical J(A) of an inde-
composable group is its unique maximal proper definable connected subgroup.
Also we define J(1) = 1.

Fact 2.4. – (Burdges, Lemma 2.4, [7]) Every connected abelian group of
finite Morley rank can be written as a finite sum of indecomposable subgroups.

If A is an abelian group of finite Morley rank, we define the reduced rank as
in [7]:

r(A) = rk(A/J(A)).
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The most interesting indecomposable groups A are the ones having A/J(A)
torsion-free:

Definition 2.5. – An indecomposable group A is 0-indecomposable if A/J(A)
is torsion-free.

In particular, Fact 2.4 says that any torsion-free group of finite Morley rank
is generated by its 0-indecomposable subgroups.

From now on r 6= 0 is a fixed natural number.
If G is any group of finite Morley rank, then we also define as in [7]

U0,r(G) = 〈A ≤ G | A is 0-indecomposable, r(A) = r〉

We say that G is a U0,r-group whenever G = U0,r(G).

Fact 2.6. – (Burdges, Lemma 2.11, [7]) Let f : G −→ H be a
definable homomorphism between two groups of finite Morley rank. Then

1. (Push-forward) f(U0,r(G)) ≤ U0,r(H) is a U0,r-group.
2. (Pull-back) If U0,r(H) ≤ f(G) then f(U0,r(G)) = U0,r(H).

In particular, an extension of a U0,r-group by a U0,r-group is a U0,r-group.

We introduce the Fitting subgroup:

Definition 2.7. – The Fitting subgroup F (G) of a group G is the subgroup
generated by all the normal nilpotent subgroups of G.

Fact 2.8. – (Nesin, [15]) In any group G of finite Morley rank, the Fitting
subgroup is definable and nilpotent.

In any group G of finite Morley rank, the 0-rank of G is defined to be

r0(G) = max {r(A) | A ≤ G is 0-indecomposable}

We can now state an essential link between U0,r-groups and Fitting sub-
group:

Fact 2.9. – (Burdges, Theorem 2.16, [7]) Let G be a connected solvable
group of finite Morley rank. Then F (G) contains U0,r0(G)(G).

Remark 2.10. – In [7], Burdges defines 0-unipotent groups to be groups G
of finite Morley rank such that U0,r0(G)(G) = G. This 0-unipotence notion is
fundamental in [7] and in [14].
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3 Homogeneous U0,r-groups

Recall that r is a fixed nonzero natural number.
Generally, a definable connected subgroup H of a U0,r-group G is not a

U0,r-subgroup, even if G is abelian. Thus we are led to introduce a notion of
homogeneity.

Definition 3.1. – A U0,r-group H is homogeneous if every definable connected
subgroup of H is a U0,r-subgroup.

Remark 3.2. – A definable connected subgroup of a homogeneous U0,r-group is
homogeneous.

Lemmas 3.3 and 3.4 are analogous to Fact 2.6:

Lemma 3.3. – A definable quotient of a homogeneous U0,r-group is a homoge-
neous U0,r-group.

Proof – Let G be a homogeneous U0,r-group and H be a normal definable
subgroup of G. Let K/H be a connected definable subgroup of G/H. By
definition of a homogeneous U0,r-group, the connected component K◦ of K is
a U0,r-subgroup. Then K/H = K◦H/H is a U0,r-group by fact 2.6 (Push-
forward), and finally G/H is a homogeneous U0,r-group. �

Lemma 3.4. – An extension of a homogeneous U0,r-group by a homogeneous
U0,r-group is a homogeneous U0,r-group.

Proof – Let G be a group of finite Morley rank with H a normal homoge-
neous U0,r-subgroup such that G/H is a homogeneous U0,r-group. Let L be a
definable connected subgroup of G. Then L/(H ∩ L) ∼= LH/H is a U0,r-group.
By Fact 2.6 (Pull-back) we have L = U0,r(L)(H ∩ L) = U0,r(L)(H ∩ L)◦, so
L/(H ∩ L)◦ ∼= U0,r(L)/U0,r(L) ∩ (H ∩ L)◦ is a U0,r-group. As H is a homo-
geneous U0,r-group, (H ∩ L)◦ is a U0,r-group. Now Fact 2.6 (Pull-back) shows
that L is a U0,r-group. It follows that G is a homogeneous U0,r-group. �

Corollary 3.5. – Let G be a group of finite Morley rank with two homogeneous
U0,r-subgroups A and B such that G = AB. Assume that A is normal in G.
Then G is a homogeneous U0,r-group.

We recall the definition of a bad group, a hypothetical counterexample to the
Cherlin-Zil’ber Conjecture:

Definition 3.6. – A bad group is a nonsolvable connected group G of finite
Morley rank all of whose proper definable connected subgroups are nilpotent.

Proposition 3.8 shows that homogeneous U0,r-groups have properties similar
to groups of bounded exponent (Fact 3.7):
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Fact 3.7. – (Poizat, Proposition 3.23, [19]) A connected group of finite
Morley rank and bounded exponent is either nilpotent or contains a bad group.

Proposition 3.8. – A homogeneous U0,r-group is either nilpotent or contains
a bad group. In particular, a solvable homogeneous U0,r-group is nilpotent.

Proof – Let G be a homogeneous U0,r-group. If G 6= 1 and G is solvable,
then we have r = r0(G). Thus we obtain G = U0,r0(G)(G) ≤ F (G) (Fact 2.9),
and G is nilpotent.

If G is nonsolvable, G has a minimal nonsolvable definable connected sub-
group H. By minimality of H and by the preceding, H is a bad group. �

Corollary 3.9. – A homogeneous U0,r-group not containing a bad group is
torsion-free.

Proof – Let G be a homogeneous U0,r-group which does not contain a
bad group. We may assume that all proper definable connected subgroups of
G are torsion-free. By Proposition 3.8, G is nilpotent. Let N be a maximal
proper definable connected subgroup of G. Then N is normal in G and N is
torsion-free.

But G/N is abelian and, by maximality of N , G/N does not have a nontrivial
proper definable connected subgroup, in particular G/N is indecomposable and
J(G/N) = 1. Moreover G/N is a homogeneous U0,r-group (Lemma 3.3) and
so G/N is generated by its 0-indecomposable subgroups. Therefore G/N is
a 0-indecomposable group and, since J(G/N) = 1, this proves that G/N is
torsion-free. As N is torsion-free too, G is torsion-free. �

On the other hand, we do not know if every homogeneous U0,r-group is
torsion-free, or whether it may have an involution. That is why we ask the
question:

Question 3.10. – Let G be a connected group of finite Morley rank whose
solvable definable connected subgroups are nilpotent. Is G equal to the union
of its nilpotent definable connected subgroups ? Can G have an involution ?

Remark 3.11. – By results of [5] and of [10], it is known a group of finite
Morley rank whose proper definable connected subgroups are nilpotent, that is
a bad group, is equal to the union of its nilpotent definable connected subgroups
and that it has no involutions.

We can control the intersections of homogeneous U0,r-subgroups and homo-
geneous U0,s-subgroups for s 6= r:

Corollary 3.12. – Let G be a group of finite Morley rank with two definable
subgroups H and K. Suppose that H is a homogeneous U0,r-subgroup and that K
is a homogeneous U0,s-subgroup for s 6= r. Then H ∩K is finite. Furthermore,
whenever G does not contain a bad group, then H ∩K = 1.
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Proof – The subgroup (H ∩K)◦ is at the same time a homogeneous U0,r-
group and a homogeneous U0,s-group. If (H ∩K)◦ 6= 1, then (H ∩K)◦ contains
a 0-indecomposable subgroup A 6= 1. But the reduced rank of A is r = s by
homogeneity of H and K. This contradicts r 6= s. Hence H ∩K is finite.

Furthermore, whenever G does not contain a bad group, then H is torsion-
free (Corollary 3.9), so H ∩K = 1. �

4 Nilpotent U0,r-groups

In this section, using homogeneous U0,r-groups, we wish to elucidate the struc-
ture of nilpotent groups. We will prove a key result (Theorem 4.11) for the
proof of the principal theorem of this article (Theorem 6.8)

First we recall structural results by Nesin (Fact 4.1) and by Burdges (Fact
4.2).

Fact 4.1. – (Nesin, [17]) Let G be a nilpotent group of finite Morley rank.
Then G is a central product G = D ∗ C where

D is definable, connected, characteristic and divisible,
C is definable, characteristic and of bounded exponent,
the torsion part T of D is divisible and central in D.

Furthermore, D ∩ C is finite.

If X is a subset of a group G of finite Morley rank, then the definable closure
of X, denoted by d(X), is the intersection of all the definable subgroups of G
which contain X. By the descending chain condition on definable subgroups,
this intersection is definable.

Fact 4.2. – (Burdges, [9]; Theorem 2.31 of [8]) Let G be a nilpotent
group of finite Morley rank. Using the notations of Fact 4.1, the following
decomposition of D holds:

D = d(T ) ∗ U0,1(G) ∗ U0,2(G) ∗ · · · ∗ U0,r0(G)(G)

Proposition 4.4 is our first result about nilpotent homogeneous U0,r-groups.
It is analogous to the result of [17] which says that the commutator subgroup
of a divisible nilpotent group of finite Morley rank is torsion-free.

Lemma 4.3. – Let G be a nilpotent U0,r-group. Then G/Z(G)◦ is a homoge-
neous U0,r-group.

Proof – By Fact 4.2, G is divisible and, by Fact 4.1, G/Z(G)◦ is torsion-
free. Moreover, by Fact 2.6 (Push-forward), G/Z(G)◦ is a U0,r-group.

By Fact 4.2 we have U0,s(G) ≤ Z(G)◦ for every s 6= r. Hence G/Z(G)◦ is a
homogeneous U0,r-group by Fact 2.6 (Pull-back). �

Proposition 4.4. – If G is a nilpotent U0,r-group, then G′ is a homogeneous
U0,r-subgroup.
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Proof – We proceed by induction on rk(G). We may assume that G is not
abelian. Let g ∈ Z2(G) \ Z(G). For all u ∈ G we consider γ(u) = [g, u]. Then
γ is a definable homomorphism of groups and γ(G) is isomorphic to G/CG(g).
Thus γ(G) is a homogeneous U0,r-subgroup by Lemmas 3.3 and 4.3. But we
have g ∈ Z2(G), so γ(G) is an infinite normal subgroup of G. By induction
hypothesis, G′γ(G)/γ(G) is a homogeneous U0,r-group, and G′ is a homogeneous
U0,r-subgroup by Lemma 3.4. �

The rest of this section is devoted to the proof of Theorem 4.11.

Lemma 4.5. – Let G be a nilpotent group of finite Morley rank. If G has
a nontrivial homogeneous U0,r-subgroup, then Z(G)◦ has a nontrivial homoge-
neous U0,r-subgroup too.

Proof – Proceeding by induction on the Morley rank of G, we may suppose
that Z2(G)/Z(G)◦ contains a nontrivial homogeneous U0,r-subgroup of the form
V/Z(G)◦ with Z(G)◦ ≤ V . Then for x ∈ G\CG(V ), the commutator map [x, v]
induces a homomorphism γ : V/Z(G)◦ → Z(G), and by Lemma 3.3 its image is
a homogeneous U0,r-subgroup of Z(G). �

Lemma 4.6. – Let G be a group of finite Morley rank.
(i) Then G possesses a largest normal homogeneous U0,r-subgroup.
(ii) If G is nilpotent, then G has a unique largest homogeneous

U0,r-subgroup.

Proof – (i) comes from Corollary 3.5.
If G is nilpotent, then in view of (i) and Lemma 3.4 we may suppose, after

passing to a quotient, that G contains no normal homogeneous U0,r-subgroup.
Then by Lemma 4.5 G contains no nontrivial homogeneous U0,r-subgroup. �

Lemma 4.7. – Let G be a group of finite Morley rank and A an abelian G-
minimal U0,r-subgroup of G. Then A is a homogeneous U0,r-subgroup.

Proof – Let M be a maximal proper definable connected subgroup of A.
By Fact 2.6 (Push-forward), the quotient A/M is a U0,r-group and it is torsion-
free by maximality of M . In particular M contains the torsion part T of A, and
the G-minimality of A implies d(T ) = 1. Thus A is torsion-free.

Let B be a minimal infinite definable subgroup of A. Then B is torsion-free
and, by minimality of B, it is a homogenoeous U0,s-subgroup of A for some
s. By G-minimality of A, the G-invariant closure of B is A. Therefore A is a
homogeneous U0,s-subgroup (Corollary 3.5), hence s = r. �

Fact 4.8. – (Zil’ber, [24]) Let G = A o H be a group of finite Morley rank
where A and H are infinite definable abelian subgroups and A is H-minimal.
Assume CH(A) = 1. Then:

(i) The subring K = Z[H]/annZ[H](A) of the set End(A) of endomor-
phisms of A is a definable algebraically closed field; in fact, there exists an
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integer l such that every element of K can be represented by an endomorphism
of the form Σl

i=1hi, for some elements hi ∈ H.
(ii) A ∼= K+, H is isomorphic to a subgroup T of K× and H acts on A

by multiplication.
(iii) In particular, H acts freely on A, K = T + · · · + T (l times) and

(with additive notation) A = {Σl
i=1hia : hi ∈ H} for any a ∈ A∗.

Fact 4.9. – (Reineke, Theorem 6.4 of [3]) In an infinite group of finite
Morley rank, a minimal infinite definable subgroup A is abelian. Furthermore,
either A is divisible or is an elementary abelian p-group for some prime p.

Fact 4.10. – (Burdges, [9]; Lemma 2.32 of [8]) Let G be a solvable group
of finite Morley rank, let S ⊆ G be a subset, and let H be a nilpotent U0,r-
group which is normal in G. Then [H, S] ≤ H is a U0,r-group.

Theorem 4.11. – Let G be a connected group of finite Morley rank (not neces-
sarily solvable). Assume that G acts definably by conjugation on H, a nilpotent
U0,r-group. Then [G, H] is a homogeneous U0,r-group.

Proof – Suppose there is a counterexample G acting by conjugation on H.
Let GH = H o G. We can suppose GH of minimal Morley rank.

(1) H contains no nontrivial homogeneous U0,r-subgroup and H is abelian.

By Lemma 4.6 (ii), H has a unique largest homogeneous U0,r-subgroup A. If
A is nontrivial, then [G, H]A/A is a homogeneous U0,r-group by minimality of
GH , and [G, H] is a homogeneous U0,r-subgroup (Lemma 3.4). This contradicts
the choice of G and H. Hence A = 1 and H is abelian (Proposition 4.4).

(2) G is abelian.

By Fact 4.9, the group G/CG(H)◦ has an infinite abelian definable connected
subgroup A/CG(H)◦. Assume rk(G) 6= rk(A/CG(H)◦). By minimality of GH ,
the subgroup [A, H] is a homogeneous U0,r-subgroup of H. Then A centralizes
H by (1), contradicting the choice of A. Therefore rk(G) = rk(A/CG(H)◦),
hence G = A and CG(H)◦ = 1. So G is abelian.

(3) [G, H] = H.

Suppose [G, H] 6= H. Since [G, H] is a U0,r-group (Fact 4.10), the min-
imality of GH and (1) yield [G, [G, H]] = 1. Since H is abelian by (1) and
G′

H ≤ H by (2), the group [GH , [GH , G′
H ]] is contained in [G, [G, H]] = 1 and

GH is nilpotent. Therefore [G, H] is contained in [GH , U0,r(GH)] = U0,r(GH)′

(Facts 4.1 and 4.2). Then, by Proposition 4.4, [G, H] is a homogeneous U0,r-
subgroup and (1) yields [G, H] = 1. This contradicts the choice of G and H.

(4) H has a unique G-minimal subgroup A and H/A is a homogeneous
U0,r-group.
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Let A and B be G-minimal subgroups of H. By (3) and by minimality of
GH , H/A = [G, H]A/A is a homogeneous U0,r-group and B/B ∩A ∼= BA/A is
a U0,r-group. Hence, by Fact 2.6 (Pull-back), B = U0,r(B)(B ∩ A). If A 6= B,
then B∩A is finite and B = U0,r(B) is a U0,r-subgroup, so B is a homogeneous
U0,r-subgroup of H (Lemma 4.7), contradicting (1). This proves (4).

(5) CG(A) = CG(H) = CG(H/A).

Let x ∈ G. By (1) the map γx = [x, h] is a definable endomorphism of H.
Moreover, by (2), the subgroup I = Im(γx) is normalized by G.

Assume x ∈ CG(A). Since H/A is a homogeneous U0,r-group by (4), the
subgroup I ∼= H/CH(x) is a homogeneous U0,r-subgroup (Lemma 3.3). By (1),
we obtain I = 1 and x ∈ CG(H).

Assume x ∈ CG(H/A). By G-minimality of A, either I is finite or I = A.
But I ∼= H/CH(x) is a U0,r-group (Fact 2.6 (Push-forward)), so by (1) and
Lemma 4.7, I = 1 and x ∈ CG(H).

(6) H/A is G-minimal.

Let B/A be a G-minimal subgroup of H/A. By (4), B/A is a U0,r-group
and we obtain B = U0,r(B)A (Fact 2.6 (Pull-back)), in particular U0,r(B) is
infinite. Hence, by (4), U0,r(B) contains A, and B is a U0,r-subgroup of H.

Assume H 6= B. By (1) and by minimality of GH , G centralizes B and A.
Hence G centralizes H by (5), contradicting the choice of G and H.

(7) Final contradiction.

Let R be the (commutative) subring of End (H) generated by L = G/CG(H).
For all u ∈ R, the kernel Ker (u) of u and the image Im(u) of u are definable
subgroups of H and they are normalized by G. Thus, by (4) and (6), we have
either Ker (u)◦ = 1 either Ker (u)◦ = A or Ker (u) = H.

Suppose Ker (u)◦ = A. Since H/A is a homogeneous U0,r-group by (4), then
Im(u) ∼= H/Ker (u) is a homogeneous U0,r-group (Lemma 3.3). As Im(u) is
infinite and is normalized by G, we contradict (1).

We have proved that, for all u ∈ R, either Ker (u)◦ = 1 or Ker (u) = H.
By (5), we can apply Zil’ber’s Field Theorem (Fact 4.8) to A o L. Thus

there is an integer l such that, for all u ∈ R, the restriction u|A of u to A can be
represented by a sum of l elements g1, . . . , gl of L. Let v = g1 + . . . + gl ∈ R.
Thus Ker (u−v) contains A by choice of g1, . . . , gl, and so Ker (u−v) = H. We
deduce from this the equality u = g1 + . . . + gl. Consequently, all elements of R
can be written as a sum of l elements of L. It follows that R has finite Morley
rank. Since we proved that, for all (u, v) ∈ R×R, we have u = v ⇔ u|A = v|A,
also the ring R is definably isomorphic to the subring R(A) of End (A) generated
by L. By Fact 4.8, R(A)+ is definably isomorphic to A, therefore R+ is definably
isomorphic to A.
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By (5) and by (6), we can apply Fact 4.8 to (H/A)oL too, and the preceding
argument applied to (H/A)oL shows that R+ is definably isomorphic to H/A.

Thus A and H/A are definably isomorphic. But this contradicts the facts
that H/A is a U0,r-group by (4) while A is not by (1) and Lemma 4.7. �

5 The subgroup U(G)

In this section, we attach a subgroup U(G) to each group G of finite Morley
rank. This subgroup U(G) is an analogue to the unipotent radical of an algebraic
group. We introduce the related notion of a U -group, which is central for the
rest of this article.

From now on, let N∗ denote N \ {0}.

Definition 5.1. – For every group G of finite Morley rank, we denote by U(G)
the subgroup of G generated by its normal homogeneous U0,s-subgroups where s
covers N∗ and by its normal definable connected subgroups of bounded exponent.

A U -group is a group G of finite Morley rank such that G = U(G).

Remark 5.2. – If G is a group of finite Morley rank, then U(G) is definable
and connected. Moreover, we have U(U(G)) = U(G).

Proposition 5.3 shows that U -groups have some similar properties to con-
nected groups of finite Morley rank of bounded exponent (Fact 3.7):

Proposition 5.3. – A U -group is either nilpotent or contains a bad group. In
particular, in every solvable group G of finite Morley rank, U(G) is nilpotent.

Proof – Let G be a U -group which does not contain a bad group. Propo-
sition 3.8 says that, for all s ∈ N∗, the homogeneous U0,s-subgroups of G are
nilpotent. The definable connected subgroups of G of bounded exponent are
nilpotent too by Fact 3.7. Thus G = U(G) is generated by its normal nilpotent
subgroups. Therefore G = F (G) and G is nilpotent by Fact 2.8. �

Now we analyze the structure of U -groups:

Theorem 5.4. – Let G be a U -group. Then G has the following decomposition:

G = B ∗ U0,1(G) ∗ U0,2(G) ∗ · · · ∗ U0,r0(G)(G)

where B is definable, connected, definably characteristic and of bounded expo-
nent;

U0,s(G) is a homogeneous U0,s-subgroup for each s ∈ {1, 2, . . . , r0(G)};
the intersections of the form U0,s(G) ∩ U0,t(G) for s 6= t are finite.

In particular, if G does not contain a bad group, then

G = B × U0,1(G)× U0,2(G)× · · · × U0,r0(G)(G)
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Proof – Let B be the largest normal definable connected subgroup of G of
bounded exponent. Then B is definably characteristic in G and we have

G = BV1V2 · · ·Vr0(G)

where Vs is the largest normal homogeneous U0,s-subgroup of G for each s ∈
{1, 2, . . . , r0(G)} (Lemma 4.6 (i)).

For each k ∈ {0, . . . , r0(G)}, we set Wk = 〈Vi | i ∈ {1, . . . , k} ∪ {s}〉 and
Wr0(G)+1 = BWr0(G) = G. Let A be a 0-indecomposable subgroup of G of re-
duced rank s ∈ {1, . . . , r0(G)}. By Lemma 3.3, for every k ∈ {0, . . . , r0(G)}, the
group AWk/J(A)Wk ∩ J(A)Wk+1/J(A)Wk is trivial. Therefore A is contained
in J(A)W0 = J(A)Vs, so A = J(A)(Vs ∩ A). Thus A ≤ Vs and Vs = U0,s(G).
Hence Uo,s(G) is a homogeneous U0,s-subgroup.

Let s 6= t be two elements of {1, 2, . . . , r0(G)}. By Corollary 3.12, Vs ∩Vt is
finite. Since [Vs, Vt] is a connected subgroup of Vs ∩ Vt, we obtain [Vs, Vt] = 1.

Moreover Vs contains [B, Vs] which is a definable connected subgroup, so
[B, Vs] is a homogeneous U0,s-subgroup. At the same time, B contains [B, Vs],
so [B, Vs] is of bounded exponent. This proves that [B, Vs] is trivial. Conse-
quently, G is the central product of B, V1, V2, . . . , Vr0(G).

If G does not contain a bad group, then the equality follows from Corollaries
3.9 and 3.12 and Proposition 5.3. �

Corollary 5.5. – Let G be a U -group. Then U0,r(G) is a homogeneous U0,r-
group.

Corollary 5.6. – Let G be a group of finite Morley rank. Then U(G) is the
largest normal U -subgroup of G. Furthermore, if G is nilpotent, then U(G) is
the largest U -subgroup of G.

Proof – Let V be a normal U -subgroup of G. By Theorem 5.4, we have
V = B ∗ U0,1(V ) ∗ U0,2(V ) ∗ · · · ∗ U0,r0(V )(V ) where each factor is normal in G
and hence contained in U(G). Thus V ≤ U(G).

If G is nilpotent, this follows from Lemma 4.6 and the analogous statement
for Up(G). �

We give a useful characterization of U -groups:

Proposition 5.7. – Let G be a connected group of finite Morley rank. Then G
is a U -group if and only if G has the following properties:

(i) there is a normal definable connected subgroup B of G of bounded
exponent and such that UB/V B is finite for each abelian torsion section U/V
of G with V definable;

(ii) for each s ∈ N∗, U0,s(G) is a homogeneous U0,s-subgroup.

Proof – (=⇒) Let G be a U -group. Then G satisfies (ii) by Corollary 5.5.
Let U/V be an abelian torsion section of G with V definable. By Theorem

5.4, G has the following decomposition: G = B ∗ U0,1(G) ∗ U0,2(G) ∗ · · · ∗
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U0,r0(G)(G) where B is a definable connected subgroup of bounded exponent.
We set W0 = B and, for each s ∈ {0, 1, . . . , r0(G)− 1}, Ws+1 = WsU0,s+1(G).
Then Ws is a normal definable subgroup of G for each s ∈ {0, 1, . . . , r0(G)}.
If U/V is finite, then UB/V B too. If U/V is infinite, there is a smallest s ∈
{0, 1, . . . , r0(G)} such that UWs/V Ws is finite.

Suppose s ≥ 1. Let S/V Ws−1 = (V Ws ∩ UWs−1)/V Ws−1. By minimality
of s, S/V Ws−1 is infinite. So S/V Ws−1 is an infinite abelian torsion subgroup
of V Ws/V Ws−1 and d(S/V Ws−1)◦ is an infinite abelian definable connected
subgroup of V Ws/V Ws−1.

Since U0,s(G) is a homogeneous U0,s-subgroup, Lemma 3.3 says that the
quotient V Ws/V Ws−1 = U0,s(G)V Ws−1/V Ws−1 is a homogeneous U0,s-group.
Therefore d(S/V Ws−1)◦ is a homogeneous U0,s-subgroup. Since d(S/V Ws−1)◦

is abelian, d(S/V Ws−1)◦ is torsion-free by Corollary 3.9. That is impossible
since S/V Ws−1∩d(S/V Ws−1)◦ is an infinite torsion subgroup of d(S/V Ws−1)◦,
proving s = 0. Hence UW0/V W0 = UB/V B is finite and we obtain (i).

(⇐=) Conversely, let G be a connected group of finite Morley rank satisfying
(i) and (ii). Then U(G) contains B and U0,s(G) for each s ∈ {1, 2, . . . , r0(G)}.
Assume that G is not a U -group, that is G/U(G) 6= 1. Let H/U(G) be a
minimal infinite definable subgroup of G/U(G). Then H/U(G) is connected
and, by Fact 4.9, H/U(G) is abelian.

If H/U(G) has an infinite torsion subgroup T/U(G), then we have T/U(G) =
TB/U(G)B and T/U(G) is finite by (i), contradicting the choice of T/U(G).
Thus, by Fact 4.9, H/U(G) is divisible, and so H/U(G) is torsion-free. By
minimality of H/U(G), H/U(G) is 0-indecomposable. Let s be the reduced
rank of H/U(G). By Fact 2.6 (Pull-back), we have H = U0,s(H)U(G). But
U0,s(G) contains U0,s(H) and U0,s(G) is a homogeneous U0,s-subgroup by (ii).
Consequently, U(G) contains U0,s(H) and we obtain H = U(G), contradicting
the choice of H/U(G). This proves that G is a U -group. �

We derive the following closure properties.

Corollary 5.8. –
(i) Every definable quotient of a U -group is a U -group.
(ii) Every definable connected subgroup of a U -group is a U -group.

Proof – (i) follows from Theorem 5.4 and Lemma 3.3.
We prove (ii). Let H be a definable connected subgroup of a U -group G.

Let B be a subgroup of G satisfying the assertion (i) of the Proposition 5.7.
Consider C = (B∩H)◦. Thus C is a normal definable connected subgroup of H
of bounded exponent. Moreover, if U/V is an abelian torsion section of H with
V definable, then UB/V B is finite by choice of B. Therefore U(B∩H)/V (B∩H)
is finite and also UC/V C since C has finite index in C ∩H. Hence H satisfies
condition (i) of the Proposition 5.7.

Let s ∈ N∗. Then by Corollary 5.5, U0,s(H) is a homogeneous U0,r-subgroup,
giving condition (ii) of Proposition 5.7 as well. �
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6 U-groups and solvable groups

6.1 Commutator subgroup

Turning to a consideration of the commutator subgroup of a solvable connected
group of finite Morley rank, we will prove the principal theorem of this paper.

The following fact of Nesin and Zil’ber is fundamental in the analysis of
groups of finite Morley rank. Our Theorem 6.8 will sharpen this result.

Fact 6.1. – (Nesin, [18]; Zil’ber, [23]) Let G be a solvable connected group
of finite Morley rank. Then G′ is nilpotent.

By studying the quotient G/F (G)◦, Nesin proved a few more:

Fact 6.2. – (Nesin, [16]) Let G be a connected and solvable group of finite
morley rank. Then G/F (G)◦ (so also G/F (G)) is a divisible abelian group.

We recall that, for every prime number p, a p-torus is a divisible abelian
p-group.

Fact 6.3. – (Borovik, Poizat, [6]) Let T be a p-torus in a group G of finite
Morley rank. Then [NG(T ) : CG(T )] < ∞. Moreover, there exists a natural
number c such that [NG(T ) : CG(T )] < c for any p-torus T ≤ G.

Lemma 6.4. – Let G be a connected group of finite Morley rank. If G acts
definably by conjugation on a nilpotent group H of finite Morley rank, then
[G, H] is a U -group.

Proof – By Fact 4.1, we may assume that H is divisible. By Facts 4.2 and
6.3, we may assume that H is a U0,r-group. Hence Theorem 4.11 proves the
lemma. �

Carter subgroups are crucial in the study of solvable groups of finite Morley
rank. We recall their definition and useful properties.

Definition 6.5. – A subgroup C of a group G of finite Morley rank is a Carter
subgroup of G if it is nilpotent and self-normalizing in G.

By the normalizer condition in nilpotent groups and Fact 6.6, Carter sub-
groups are definable.

Fact 6.6. – (Corollary 5.38, [3]) Let G be a group of finite Morley rank and
let H be a subgroup of G. If H is solvable (resp. nilpotent) of class n, then
d(H) is solvable (resp. nilpotent) of class n.

Frank Wagner [21] studied Carter subgroups in a more general context than
groups of finite Morley rank. In particular, he proved the following.
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Fact 6.7. – (Wagner, [21]) Let G be a solvable connected group of finite
Morley rank. Then G has a Carter subgroup C and any two such subgroups are
conjugate. Moreover, if L is a normal definable subgroup of G such that G/L is
nilpotent, then G = LC.

Theorem 6.8. – Let G be a solvable connected group of finite Morley rank.
Then G′ is a U -group.

Proof – Let C be a Carter subgroup of G (Fact 6.7). By Lemma 6.4,
the subgroups (C◦)′ and L = [G, F (G)] are some U -groups. It follows from
Facts 6.1 and 6.7 that G = LC◦ and G′ = L(C◦)′. But G′ is nilpotent (Fact
6.1), so U(G′) contains L and (C◦)′ by Corollary 5.6. Therefore U(G′) contains
G′ = L(C◦)′ and G′ is a U -group by Corollary 5.8 (ii). �

Then we obtain an analogue to Fact 6.2.

Corollary 6.9. – Let G be a connected solvable group of finite Morley rank.
Then G/U(G) is a divisible abelian group.

Proof – By Fact 4.1, the subgroup F (G)◦ has a largest definable connected
subgroup C of bounded exponent and F (G)◦/C is divisible. Then C is contained
in U(G) and F (G)◦/U(G) is divisible. Hence G/U(G) is divisible-by-divisible
(Fact 6.2) and, since this quotient is abelian (Theorem 6.8), it is divisible. �

In the first version of this article, I asked a question which the referee then
answered. Here is his proof.

Theorem 6.10. – (The referee of this paper) Let G be a connected group
of finite Morley rank (not necessarily solvable). Assume that G acts definably
by conjugation on H a solvable connected group of finite Morley rank. Then
[G, H] is a U -group.

Proof – We consider a minimal counterexample G acting on H a solvable
connected group of finite Morley rank. We may assume that G is ω-saturated.
By minimality of G and by Fact 4.9, L = G/CG(H/U(H)) is abelian, and either
L is divisible or L is an elementary abelian p-group for some prime p.

If L is divisible, then by ω-saturation, the group G has an element x such
that x = xCG(H/U(H)) has infinite order in L. Therefore D = d(x)◦ is an
abelian definable connected subgroup which does not centralize H/U(H). We
consider the semidirect product H o D where D acts by conjugation on H.
Then (H o D)′ is a normal U -subgroup of H by Theorem 6.8. Thus we have
[H, D] ≤ (H o D)′ ≤ U(H), contradicting D 6≤ CG(H/U(H)).

If L is an elementary abelian p-group for some prime p, we consider W =
H/U(H) o L where L acts by conjugation on H/U(H). Since W/F (W )◦ is
abelian and divisible (Fact 6.2), the group L is contained in F (W )◦. But
H/U(H) is abelian by Theorem 6.8, so W = F (W )◦ is nilpotent (Fact 2.8).
Since H/U(H) is divisible (Corollary 6.9), Fact 4.1 shows that L centralizes
H/U(H), contradicting the choice of L. �
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6.2 Quotient group

In this section, we study the U -group of a quotient of a solvable connected
group of finite Morley rank by its center (Theorem 6.20). For this, we introduce
a subgroup C(G):

Definition 6.11. – Let G be a group of finite Morley rank. We denote by
C(G) the intersection of all centralizers CG(A) with A varying over the class of
connected groups of finite Morley rank acting definably on G.

Remark 6.12. – In every connected group G of finite Morley rank, C(G) is a
definable, central and definably characteristic subgroup of G.

We will need the following known facts and definitions.
If X is a subgroup of a group G of finite Morley rank, the connected compo-

nent of X, denoted by X◦, is X ∩ d(X)◦.

Fact 6.13. – (Borovik, Poizat, [6]) Let P be a locally finite p-subgroup of a
group G of finite Morley rank. Then the following hold:

(i) P ◦ is nilpotent and P ◦ = B ∗ T is a central product of a nilpotent group
B of bounded exponent and a p-torus T .

(ii) If P 6= 1, then Z(P ) 6= 1 and P satisfies the normalizer condition.
(iii) If P is infinite and has a finite exponent then Z(P ) has infinitely many

elements of order p and P is nilpotent.

Fact 6.14. – (Borovik, Nesin, [4]) Let G be a connected solvable group of
finite Morley rank. Then the Sylow p-subgroups of G are connected.

Fact 6.15. – (Altınel, Cherlin, Corredor, Nesin, [1]) Let π be a set of
primes. Any two maximal π-subgroups of a solvable group of finite Morley rank
are conjugate.

Fact 6.16. – (Altınel, Cherlin, Corredor, Nesin, [1]) Let G be a solvable
group of finite Morley rank, N be a normal definable subgroup of G, and let H
be a maximal π-subgroup of G for some set π of primes. Then, HN/N is a
maximal π-subgroup of G/N , and all maximal π-subgroups of G/N are of this
form.

Fact 6.17. – (Lemma 4.20, [13]) Let G be a solvable connected group of finite
Morley rank and T a p-torus of G. Then T ∩ F (G) is contained in Z(G).

Lemma 6.18 improves Fact 6.17:

Lemma 6.18. – Let G be a solvable connected group of finite Morley rank and
T a p-torus of G. Then T ∩ F (G) is contained in C(G).
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Proof – Let A be a connected group of finite Morley rank acting definably
by conjugation on G. Consider the semi-direct product L = G o A induced by
this action. Assume that T is a maximal p-torus of G.

By a Frattini argument using Facts 6.13 and 6.15, we obtain L = NL(T )G.
By Fact 6.3, NL(T )◦ = CL(T )◦. Thus L = CL(T )G and the conclusion now
follows from Fact 6.17. �

Lemma 6.19. – Let G be a solvable connected group of finite Morley rank.
Then F (G) = C(G)F (G)◦.

Proof – Let π be the set of primes dividing the order of F (G)/F (G)◦. Let
p ∈ π and S be a Sylow p-subgroup of G. By Facts 6.13 and 6.14, there exist
a definable connected p-subgroup B of bounded exponent and a p-torus T such
that S = B ∗ T .

Since G/F (G)◦ is abelian and divisible (Fact 6.2), the group B is contained
in F (G)◦ and all p-elements of G/F (G)◦ are contained in TF (G)◦/F (G)◦ (Fact
6.16). This proves that all p-elements of F (G)/F (G)◦ are contained in

(F (G)/F (G)◦) ∩ (TF (G)◦/F (G)◦) = (F (G) ∩ T )F (G)◦/F (G)◦

Moreover Lemma 6.18 proves that C(G) contains F (G)∩T . So all p-elements of
F (G)/F (G)◦ are contained in C(G)F (G)◦/F (G)◦. This is true for each p ∈ π
and so, by the choice of π, we obtain F (G)/F (G)◦ = C(G)F (G)◦/F (G)◦. �

Theorem 6.20. – Let G be a solvable connected group of finite Morley rank.
Then the Fitting subgroup of G/C(G) is a U -group.

In particular, if G is centerless, then F (G) is a U -group.

Proof – As F (G/C(G)) = F (G)/C(G), Lemma 6.19 yields F (G/C(G)) =
C(G)F (G)◦/C(G) and so F (G/C(G)) is connected.

We show that F (G/C(G)) satisfies the properties (i) and (ii) of Proposition
5.7. Let T be the maximal divisible torsion subgroup of F (G). If A is a con-
nected group of finite Morley rank acting definably on G, then A centralizes T
(Fact 6.3) and so C(G) contains T . Hence F (G/C(G)) = F (G)/C(G) does not
have a nontrivial divisible torsion subgroup (Fact 6.16). Therefore, by Fact 4.1,
the group F (G/C(G)) satisfies condition (i) of Proposition 5.7.

We now show that F (G/C(G)) satisfies condition (ii) of the Proposition 5.7.
Let s ∈ N∗. We show that U0,s(F (G/C(G))) is a homogeneous U0,s-group. Since
F (G/C(G)) does not have a nontrivial divisible torsion subgroup, it suffices to
prove that every nontrivial 0-indecomposable subgroup of U0,s(F (G/C(G))) has
a reduced rank equal to s. Fact 2.6 (Pull-back) gives:

U0,s(F (G/C(G))) = U0,s(F (G)◦C(G)/C(G)) = U0,s(F (G)◦C(G))C(G)/C(G)

But we have (F (G)◦C(G))◦ = F (G)◦, so we obtain:

U0,s(F (G/C(G))) = U0,s(F (G)◦)C(G)/C(G)
∼= U0,s(F (G)◦)/(U0,s(F (G)◦) ∩ C(G))
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Assume that U0,s(F (G/C(G))) has a nontrivial 0-indecomposable subgroup
having a reduced rank t 6= s. Then U0,s(F (G)◦)/(U0,s(F (G)◦) ∩ C(G)) has a
0-indecomposable subgroup A/(U0,s(F (G)◦) ∩ C(G)) of reduced rank t.

Let K be a connected group of finite Morley rank acting definably by con-
jugation on G. Since U0,s(F (G)◦) contains A, we have

[K, U0,t(A)] ≤ [K, U0,t(F (G)◦)] ∩ [K, U0,s(F (G)◦)]

Theorem 4.11 proves that [K, U0,t(F (G)◦)] is a homogeneous U0,t-subgroup
and that [K, U0,s(F (G)◦)] is a homogeneous U0,s-subgroup. Since [K, U0,t(A)]
is connected, [K, U0,t(A)] = 1 by Corollary 3.12. Thus K centralizes U0,t(A),
and C(G) contains U0,t(A). We obtain A = U0,t(A)(U0,s(F (G)◦)∩C(G)) (Fact
2.6 (Pull-back)), hence A = U0,s(F (G)◦) ∩ C(G)), contradicting the choice of
A.

Thus, for each s ∈ N
∗, U0,s(F (G/C(G))) is a homogeneous U0,s-group,

proving (ii) of the Proposition 5.7. Hence F (G/C(G)) is a U -group. �
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