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Abstract

The paper considers dynamo action in steady fluid flows having a cat’s eye stream
line topology. The flows considered are two-dimensional, depending on x and y only,
but have all three components of velocity and so can act as kinematic dynamos. The
limit of large magnetic Reynolds number R is considered and numerical results are
presented for the different types of magnetic mode that may be amplified.

In particular a new class of modes, which are termed cat’s eye modes, is identified.
These modes consist of sheets of field that lie along the separatrices and hyperbolic
points that define a single row of cat’s eyes. They have growth rates that fall off very
slowly with large R, and their wavenumber k in the z-direction scales approximately
as the square root of R. The fluid flow amplifies these magnetic fields by a variant
of the stretch–fold–shear mechanism, acting in a steady flow.

Key words: Dynamo, cat’s eye flow, induction equation, magnetic field, alpha
effect.

1 Introduction

The aim of this paper is to study dynamo action in steady two-dimensional
flows u(x, y) for which the stream lines possess a cat’s eye topology. When
the flow is projected onto the (x, y)-plane, as in the example in figure 1, some
stream lines form closed eddies, the eyes of the cat, while others are open,
forming channels; in between is a network of separatrices and hyperbolic stag-
nation points. Such flows are commonly generated by hydrodynamic insta-
bilities, an example being the Ekman instability. In a rotating fluid system,
an Ekman layer can become hydrodynamically unstable, at a sufficiently high
Reynolds number based on the Ekman layer thickness. Rolls appear within
the fluid flow, which takes a two-dimensional form and is steady in a suitably
translating frame.
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Fig. 1. Stream lines of constant ψ(x, y) are shown for the flow (2.4). The flow is
periodic in the x-direction.

These steady two-dimensional flows, which possess all three components of
velocity, u = (u1, u2, u3)(x, y), are sufficiently complicated to function as kine-
matic dynamos. In the case of Ekman instabilities, kinematic dynamo action
was studied by Ponty, Gilbert & Soward (2001). The magnetic fields may be
taken proportional to eikz, with a wave-number k along the axes of the cat’s
eyes. At a fixed, large magnetic Reynolds number R, magnetic field modes
are unstable over a wide range of values of k. For moderate k, the most un-
stable magnetic fields generally take the form of Ponomarenko modes. The
field is confined to stream surfaces localised within each cat’s eye and takes
the form of spiralling tubes of field in three dimensions (see figures 2(a) and
4(a)). This type of dynamo action was first studied in a cylindrical geometry
by Ponomarenko (1973) (see also the related model of Lortz, 1968) and since
by Solovyev (1985), Gilbert (1988), Ruzmaikin, Sokoloff & Shukurov (1988),
Soward (1990) and Gilbert & Ponty (2000), amongst others.

For larger k the dominant mode takes a different form, of a magnetic field
localised along the network of separatrices and hyperbolic stagnation points
(see figures 2(b), 4(b) and 5). It appears to grow more strongly than the
Ponomarenko modes at large R and has a smaller spatial scale. A mode with
this general form may be called a ‘separatrix mode’, as it localises on the
network of separatrices and thrives on the exponential stretching at hyperbolic
points in the network. We will take the term ‘separatrix mode’ to refer to any
such mode that localises in this way at large R; however there can be different
subfamilies depending on the topology of the separatrices.

One important subfamily is that of ‘Roberts modes’, which are found in the
flow of Roberts (1972) and have been studied at large R analytically in Soward
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Fig. 2. Magnetic field in the flow (2.4) with R = 500. In (a) there is a Ponomarenko
mode with k = 2.5, and (b) a cat’s eye mode with k = 5. In each case Bz is plotted
in the (x, y)-plane with positive field yellow/red and negative field blue/black.

(1987) and numerically in a related flow by Plunian, Marty & Alemany (1999).
In these cases there is a doubly periodic network of separatrices, bounding
square cells, and a mean field on large scales possessing both x and y compo-
nents. On the other hand, for the cat’s eye geometry depicted in figure 1 the
network of separatrices is periodic in just one direction, and defines a row of
cat’s eyes in the (x, y)-plane. We therefore adopt the term ‘cat’s eye mode’
for a mode such as that in figure 2(b) where the field localises along a single

row of cat’s eyes; such modes constitute a subfamily of the separatrix mode
family, distinct from the Robert’s mode subfamily.

The aim of this paper is to elucidate the properties of these cat’s eye modes,
and their links to other numerical and asymptotic studies. The paper is struc-
tured as follows. Section 2 studies a cat’s eye mode present in the flow of
figure 1, a plane layer bounded in the coordinate y, and elucidates the basic
stretch–fold–shear mechanism by which the magnetic field can be amplified.
For computational efficiency, and to compare with previous work, we then
move to a doubly periodic geometry in section 3. Here there are multiple,
parallel rows of cat’s eyes, separated by channels. We vary the wavenumber
k, and R, to see the different types of modes that can be excited, and their
properties. For large-scale magnetic modes with k ≪ 1, the α-effect becomes
applicable, as determined in the theory of Childress & Soward (1989), and
we compare our results with this theory in section 4. Finally section 5 offers
concluding discussion.
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2 Cat’s eye modes in a plane layer

We solve the induction equation, written in the form

∂tB = ∇× (u × B) + ε∇2
B, ∇ · B = 0, (2.1)

for a given flow u(x, y) having scale and turnover time of order unity. Here
R = ε−1 is the magnetic Reynolds number, taken to be large, with 0 < ε ≪ 1.
We consider eigenmodes with wavenumber k,

B = b(x, y)ept+ikz + complex conjugate. (2.2)

The flow considered below is defined in the plane layer −1 ≤ y ≤ 1, and
periodic in x, period 2π. We impose insulating boundary conditions on the
magnetic field, which therefore matches to a potential field satisfying ∇×B =
0 for y > 1 or y < −1. In practise the choice of magnetic boundary condition
is unimportant, as the modes we consider are (for large R) localised in the
body of the fluid, away from the boundaries.

We consider a flow taking the incompressible form

u = (ψy,−ψx, w), ψ = ψ(x, y), w = w(x, y). (2.3)

Our first example is the flow depicted in figure 1, of the form

ψ = −ay
2 + b cos x

a+ b cosx
+

b

b− a
, w = cψ, (2.4)

with
a = 5, b = −1, c = 1. (2.5)

This flow is designed to be broadly similar to the flows seen for the Ekman
instability (Hoffman, Busse & Chen, 1998; Ponty, Gilbert & Soward, 2001,
2003). Note however that in this flow the velocity w is constant on stream lines
of constant ψ, The quantities ψ and w are zero at the hyperbolic stagnation
point (0, π) in the (x, y)-plane and on the corresponding separatrices, negative
in the channels, and positive in the cat’s eyes, where the sense of the motion
is anticlockwise. This feature that w = w(ψ) is not the case in general for an
Ekman instability, and this has implications for the way in which the field is
folded at large R in a flow such as (2.4). We will therefore consider a flow (3.7)
below, which relaxes this condition.

A typical view of a cat’s eye mode is shown in figure 2(b) from a run with
k = 5 and R = 500. For contrast, figure 2(a) shows a Ponomarenko mode with
k = 2.5 and the same value of R. Plotted in each case is the Bz component
of field, in the (x, y)-plane, for a typical slice of constant z. Although the two
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Fig. 3. Growth rate Re p as a function of k for R = 500 and the flow (2.4) and (2.5).
The points k = 2.5 and k = 5 are highlighted.
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Fig. 4. Magnetic field as in figure 2 but with plots of isosurfaces, Bz = Bz0 (blue),
Bz = −Bz0 (red) and, in (b) only, |B| = B0 (green). In (a) k = 2.5 and we have
Bz0 = 0.5maxBz (with maxBz ≃ 0.6max |B|), and in (b) k = 5 and the levels
Bz0 = 0.65maxBz, B0 = 0.65max |B| are used (with maxBz ≃ 0.1max |B|).

pictures have some features in common, in particular blobs of each sign of
field, in figure 2(b) the field has structure on the separatrices and hyperbolic
points seen in the stream line pattern of figure 1. The growth rate of magnetic
modes is shown in figure 3 as a function of k for R = 500.

In figure 4 we study the magnetic field in three dimensions for these two cases.
Again (a) shows the k = 2.5 Ponomarenko mode, and (b) the k = 5.0 cat’s
eye mode. In each case isosurfaces of positive and negative Bz field are shown
as blue and red tubes, respectively. These show a similar configuration for the
two modes; however in (b) an isosurface of constant |B| in green reveals that
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Fig. 5. Magnetic field as in figure 4(b) with k = 5, but with plots of isosur-
faces, Bx = Bx0 (yellow), Bx = −Bx0 (green), By = By0 (red), and By = −By0

(blue). Here Bx0 = 0.25maxBx and By0 = 0.28maxBy, with Bx0 ≃ max |B| and
By0 ≃ 0.25max |B|.

the tubes are linked to strong sheets of field that lie on unstable manifolds
of the hyperbolic stagnation points of the flow. The effect of the hyperbolic
points appears to be to stretch the magnetic field into flux sheets along the
unstable manifolds. This stretching, and compression of structure along the
stable manifolds, is well known to intensify magnetic energy locally, and not
magnetic flux, but flux amplification is the key ingredient required for any
dynamo (fast or slow). At large R it is natural to seek some folding mechanism
that can achieve this. To show the flux sheets in greater detail figure 5 shows
the isosurfaces of positive and negative Bx (yellow, green) and By (red, blue)
field for the k = 5.0 cat’s eye mode only. The sheets now appear as yellow and
green sheets intersecting the left- and right-hand sides of the box. However
the plot now reveals that the sheets are linked by y-directed fields. It appears
that magnetic field from the tip of one sheet, say the yellow sheet, Bx > 0,
is carried around the edges of the cat’s eyes, just inside, where it is turned
to become positive By field (red). Simultaneously it is being translated in the
z-direction so as to feed into the next sheet along, in this case the green sheet
with Bx < 0.

This suggests a possible mechanism for the dynamo, depicted schematically in
figure 6, and simply a variant of the well-known stretch–fold–shear mechanism
(Bayly & Childress, 1988) acting in a steady flow (Soward, 1987). In figure
6(a) sheets of field are compressed at the hyperbolic stagnation points, and
extend along their unstable manifolds. Light lines show the flow field and
heavier lines/arrows the magnetic field. In figure 6(b) we examine a single
sheet, which diffuses inside the cat’s eye and is carried around the eye, leading
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Fig. 6. Schematic mechanism for a cat’s eye mode in the (x, y)-plane, described in
the text.

to a reversal of sign. Simultaneously the z-component of the flow carries these
reversed fields in the z-direction so that they reinforce a sheet with the opposite
sign, that lies a distance π/k in the z-direction. Note that the fields depicted
in this figure are not divergence free, but this is because we are sketching the
Bx and By components only, and not trying to draw the Bz component that
can ensure that ∇ · B = 0 is satisfied.

3 Cat’s eye modes in periodic geometry

To understand better the properties of cat’s eye modes and how they fit in
with other classes of dynamo modes, we move from the plane layer geometry to
flows that are doubly periodic in the (x, y)-plane. This class of flows has been
widely studied in terms of dynamo action since Roberts (1972). We consider
a cat’s eye flow with

ψ = A cosx− B cos y, w = ψ, (3.1)

that is,
u = A(0, sin x, cos x) +B(sin y, 0,− cos y). (3.2)

This is a member of the family of ABC flows (with C = 0), defined by Beltrami
(1889), Arnold (1965) and Childress (1967). Dynamo action in ABC flows was
first studied by Roberts (1972), Arnold & Korkina (1983) and Galloway &
Frisch (1986). The flow (3.2) is defined in an equivalent form by Childress
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Fig. 7. Stream lines of constant ψ(x, y) are shown for the flow (3.1), (3.3) with
|ψ| = ψc dotted.

Fig. 8. Magnetic field growth rate Re p as a function of k for R = 1000 and flow
(3.2), (3.3); (b) is simply a magnified view of the bottom left corner of (a).

& Soward (1989), who studied dynamo action for low k, as we will discuss
shortly. Provided |A| 6= |B| the flow has a pattern of cat’s eyes in the (x, y)-
plane, separated by channels. As an example, we use the parameter values

A =
√

3/5, B = 2A, (3.3)

and the flow is depicted in figure 7.

We have examined the growth rates of magnetic fields for various values of
R and ranges of k. Figure 8 shows the growth rate Re p plotted against k for
R = 1000. There are a number of peaks in the curve. Corresponding magnetic
fields for certain k-values are depicted in figure 9, which shows Bz in the (x, y)-
plane, and in figure 10, which gives the z-averaged magnetic energy |b|2, from
(2.2). Note that fields in figure 9 depend on the slice in z chosen, whereas
those in figure 10 are independent of z.
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Fig. 9. Magnetic field structure for R = 1000 and (a) k = 3.8 (cat’s eye mode), (b)
k = 1.0 (Ponomarenko mode, m = 3), (c) k = 0.3 (Ponomarenko mode, m = 1),
and (d) k = 0.001 (α-effect mode). In each case Bz is plotted in the (x, y)-plane
with positive field yellow/red and negative field blue/black.

The most prominent feature of figure 8 is the peak of maximum growth rate
at k ≃ 3.8, for which the corresponding magnetic field is shown in figures 9(a)
and 10(a). This is clearly the cat’s eye mode we have already seen in the plane
layer simulation; the magnetic field is localised along individual rows of cat’s
eyes, and vanishes within the channels and within the cat’s eyes.

Reducing k, there is then a series of peaks in the range 0 < k < 2. These
appear to be Ponomarenko modes, and two with m = 3 and m = 1 are
depicted in figures 9(b,c) and 10(b,c). Ponomarenko modes localise on stream
surfaces of constant ψ in the limit of large R, and vary as eimϑ+ikz where ϑ
is an angle coordinate on the closed stream line in the (x, y)-plane defining
the stream surface. The stream surface itself is given by a resonance condition
mΩ′(ψ) + kw′(ψ) = 0, where Ω(ψ) is the angular velocity around the stream
line. This theory of Ponomarenko dynamos was established for cylindrical
geometry by Gilbert (1988) and Ruzmaikin, Sokoloff & Shukurov (1988) and
generalised by Soward (1990) and Gilbert & Ponty (2000). A given stream
surface can only support a growing mode provided the geometrical condition
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Fig. 10. Magnetic field structure as in figure 9 but with the z-averaged energy
density |b|2 plotted in each case and black corresponding to zero energy density, red
to maximal density.

is met, using the notation of Gilbert & Ponty (2000) which should be referred
to for definitions of αm and γ. Checking this criterion numerically for the cat’s
eye flow with the parameters (3.3) indicates that Ponomarenko dynamo action
can only occur on stream surfaces with |ψ| > ψc ≃ 0.943. The stream lines
ψ = ±ψc are shown dotted in figure 7. It may be seen that the Ponomarenko
modes in figures 9(b,c) and 10(b,c) are localising in the cat’s eyes inside those
stream surfaces, and the cat’s eye mode in 9(a) and 10(a) in the region |ψ| < ψc

containing the separatrices.

This confirms that the cat’s eye modes seen are distinct from the Ponomarenko
modes. Another important feature is the scaling of growth rates as a function
of k at large R. Whereas the fastest growing Ponomarenko mode has the
scalings

m, k = O(R1/3), Re p = O(R−1/3), (3.5)

and spatial scale across stream surfaces of order R−1/3 (e.g., Gilbert & Ponty,
2000), the cat’s eye mode has faster growth rates and smaller scales. Figure
11 shows the wave number and growth rate for the fastest growing cat’s eye
mode. There appears to be a scaling of

k = o(R1/2), Re p = o(1), (3.6)
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Fig. 11. In (a) the wave number k and (b) the growth rate Re p for the fastest
growing cat’s eye mode, are plotted against R. The dotted line in (a) shows the
scaling k ∝ R1/2.

Fig. 12. Magnetic field growth rate Re p as a function of k for R = 1000 and flow
(3.7) with (a) φ = π/36 and (b) φ = π/12.

where the o symbol has the usual meaning, but here we use it to indicate a
dependence that is slower than a power law in R. We generally expect this
type of scaling: the growth rate must go to zero for large R as a steady, smooth
two-dimensional flow is necessarily a slow dynamo (Klapper & Young, 1995).
On the other hand the analytical study Soward (1987) of Roberts modes shows
growth rates going to zero extremely slowly, as log logR/ logR, and k scaling
as O((R/ logR)1/2). We appear to have a broadly similar situation here, as far
as we can tell numerically. In any case the scaling observed is plainly distinct
from that in (3.5) for Ponomarenko modes.

Finally let us now replace (3.1) by

ψ = A cosx− B cos y, w = A cosx− B cos(y − φ), (3.7)

where φ is a fixed angle. For a general value of φ the spatial pattern of the
vertical velocity w is shifted in the y-direction and is no longer a function of ψ.
Figure 12 shows growth rate against k for R = 1000, φ = π/36 and φ = π/12.
We see that the very broad peak evident in figure 8 first of all narrows as φ is
increased from zero, and growth rates are reduced. As φ is further increased
the peak breaks up and the growth rate now has an oscillatory form as a
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function of k.

To see why these oscillations arise consider first the case when w = w(ψ)
(φ = 0) and work in a frame in which w = 0 at the hyperbolic points. Then
w = 0 along the separatrices also, and so field has to diffuse off the separatrix
in order to be carried in the z-direction and reinforce neighbouring bands of
field (as seen in figure 5). Now when w 6= w(ψ), and in the frame in which
w = 0 at the hyperbolic points, there will be a net displacement, say ∆,
as a particle moves around very close to the separatrices in a circuit of one
cat’s eye. Whether or not this displacement is favourable to the feeding of a
folded sheet of field into neighbouring sheets will depend on the wavenumber
k, and we expect oscillations as k is varied, as observed. This may also explain
the complex variation of growth rate against k that emerges in the study of
dynamo action in Ekman layer instabilities; see figure 5 of Ponty, Gilbert &
Soward (2001).

4 Modes for k ≪ 1 governed by the α-effect

The cat’s eye flow (3.1) has been studied analytically for magnetic fields pos-
sessing a large scale in the z direction, 0 < k ≪ 1, in the limit of large R,
by Childress & Soward (1989). In this case an α-effect description becomes
appropriate. A constant magnetic field is imposed (i.e., with k = 0) initially,
and the field is allowed to evolve to a steady state. The α-effect matrix α is
then determined by measuring the induced emf u × B = αB in the usual
way, where the overline denotes an average over the (x, y)-plane. In view of
the symmetry of the flow the α-matrix is diagonal, with entries α1 and α2,
say. Then a mean field that varies slowly in z satisfies

∂tB1 = −∂z(α2B2), ∂tB2 = ∂z(α1B1), (4.1)

and a mode depending as eikz has growth rate

p ≃ ±k√α1α2. (4.2)

This may be viewed as the leading term in a Taylor expansion for small k.
The next terms in the expansion would contribute an O(k2) term that may
be identified with an eddy diffusion term.

According to the theory of Childress & Soward (1989) the αj components scale
as

α1 = O(R−3/2), α2 = C1R. (4.3)

The large-scale growing magnetic field is a helical wave, but with 〈B2
1〉z/〈B

2
2〉z =

|α2/α1|. Thus in the limit of large R, the mean B1 field becomes the dominant
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Fig. 13. Components (a) |α1| and (b) |α2|, measured numerically and plotted against
R for the cat’s eye flow with the parameters (3.3). Dotted lines show the theoretical
results in (4.3). In (a) only the scaling law is shown, but in (b) the constant C1 is
given from Childress & Soward (1989).

Fig. 14. Magnetic field growth rate Re p as a function of k for k small and R = 32, 64
and 128 (reading down the solid curves). The dotted curves give the low-k prediction
from the α-effect calculation.

component. Field is expelled from the cat’s eyes, and the mode is depicted in
figures 9(d) and 10(d). Note that from figure 10(d) the strongest fields lie on
the separatrices joining the hyperbolic points, as for the cat’s eye mode, but
there are additionally fields within the channels, and these are crucial for the
mode to communicate across channels and possess a large-scale field.

To confirm the scalings in (4.3), figure 13 shows the αj components measured
numerically, and there is good agreement. Note that in (b) the constant C1 is
included, being defined precisely below; this is given by the theory of Childress
& Soward (1989), valid in the limit A ≃ B, or δ ≪ 1, with δ defined below in
(4.7). Given that here δ = 1/3, the agreement is fair.

The α-effect gives a window of dynamo action that exists only for low k, in
fact in a range 0 < k ≤ O(R−1) that becomes narrow as R increases. This is
explained by Childress & Soward (1989): an α-effect dynamo requires large-
scale fields in x and y-directions with components within the channels as seen.
However the vertical shear within the channels is very effective at destroying
such fields if they vary in z, unless they vary only on a very large, O(R),
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β R′ R′1/2α(+): sim bl asy R′1/2α(−): sim bl asy

0.5 25 0.2214 1.3792

0.5 64 0.2227 1.3805

0.5 100 0.2232 1.3812

0.5 ∞ 0.2246 0.2248 1.383 1.320

1.0 64 0.1172 3.3582

1.0 100 0.1177 3.3646

1.0 144 0.1179 3.3680

1.0 ∞ 0.1186 0.1250 3.377 3.455

Table 1
Comparison with table 1 of Childress & Soward (1989). Here β = δR′1/2. Columns
3–5 gives results for R′1/2α(+) and columns 6–8 give those for R′1/2α(−). The labels
are ‘sim’ for results computed numerically using a two-dimensional simulation for
the value of R′ given, ‘bl’ for the numerical solution for the boundary layer equations
(valid in the limit R′ → ∞) taken from Childress & Soward (1989) and ‘asy’ for
their asymptotic approximation valid for large R′ and large β.

lengthscale. The window of dynamo action for very low k is not visible in
figure 8 and indeed it is time-consuming to determine it accurately at large
R. Instead figure 14 shows results for R = 32, 64 and 128, for low values of k.
The dotted lines give the results from the numerical computations of α1 and
α2 in figure 13, substituted into the formula (4.2); there is good agreement
with theory, and we see clearly how the window of dynamo action controlled
by the α-effect shrinks as R is increased.

We have undertaken further runs to check the boundary layer calculations of
Childress & Soward (1989). They find it convenient to write the flow as

ψ′ = sin x′ sin y′ + δ cosx′ cos y′, w′ =
√

2ψ′. (4.4)

Explicitly the transformation required to obtain this form is from (x, y, z, t)
to (x′, y′, z′, t′) with

L(x′ +π) = 2−1/2(x− y), Ly′ = 2−1/2(x+ y), Lz′ = z, t′ = tU/L, (4.5)

and other quantities become

R′ = RLU, k′ = kL, p′ = pL/U, α′

j = αj/U, (4.6)

where

U = 2−1/2(A+B), L =
√

2, δ = (B − A)/(B + A). (4.7)
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The α-tensor has eigenvalues α′

1 and α′

2 but now takes the form
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 . (4.8)

Note that α′

1 = −Lα(+) and α′

2 = −Lα(−), in the notation of Childress &
Soward (1989) (see their equation (1.20)). The scaling α(−) = 2

3
δ3R′ given in

their equation (3.23) for δ ≪ 1, then becomes α2 = C1R with C1 = −2
3
L2U2δ3,

and this is what used in the figure 13(b).

Using the Childress & Soward (1989) coordinate system and related quan-
tities, table 1 gives results for the α-effect computed in our simulations for
comparison. There is further explanation in the table caption. They consider
a limit in which the channel width goes to zero as R′ → ∞, keeping the pa-
rameter β = δR′1/2 constant. There is good agreement, and our simulations
for moderate R′ confirm their boundary layer calculations, valid for large R′

and their asymptotic theory, valid for large R′ and large β.

5 Discussion

We have discussed dynamo action in flows with rows of cat’s eyes and identified
a family of cat’s eye modes. The cleanest picture came out of studying the
doubly periodic ABC flow (with C = 0, A < B). In this case there is a
clear hierarchy of modes. For very low k we have the modes identified by
Childress & Soward (1989) which may be described by an α-effect. These may
be thought of as global modes, in that they involve a z-dependent mean field
with both an x- and a y-component. Such fields cannot exist in a bounded
plane layer (under perfectly conducting or insulating boundary conditions)
and so this mode is special to the doubly-periodic geometry. The mode also
requires communication between rows of cat’s eyes, across the channels, and
this means that it only exists as a growing mode in a very small range of
k ≤ O(R−1).

From these global modes, the next set in our hierarchy is the cat’s eye family
that we have explored. In this case the field lives along a single row of cat’s
eyes, but does not communicate across the channels. Such modes are equally
at home in the doubly periodic and singly periodic plane layer geometries.
They represent very efficient amplifiers of magnetic fields, with growth rate
falling off very slowly with R; however their scale is small, with k = o(R1/2),
as far as we can tell numerically. Finally we have the Ponomarenko modes,
which are the most localised, and can live in a single cat’s eye, or a single
convective cell. Their properties are well-understood; they grow slowly by an
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αω mechanism available on curved stream-surfaces, and the magnetic fields
have less fine-scale structure.

These families are only really defined in the sense of their asymptotic structure
in the limit R → ∞, and all three classes are seemingly distinct in this limit,
having very different scalings for their growth rates and preferred wavenumbers
k. (It is possible that the α-effect mode may be thought of as cat’s eye modes,
coupled across the channels, from some similar features in figures 10(a,d), but
a theory is lacking here.) For the ABC cat’s eye flow there is a gap between
stream surfaces |ψ| > ψc which can support growing Ponomarenko modes,
and the separatrix, which supports the cat’s eye mode. This gap in physical
space between the two classes of modes was identified by Soward (1990), and
appears to rely on the property w = w(ψ) of the vertical flow. For the cat’s
eye flow, a streamline close to the separatrix ψ = A − B has period given
approximately by

T (ψ) ≡ 2π

Ω(ψ)
≃ 2√

AB
log

32AB

µ(B −A)
, (5.1)

where ψ = A−B − µ with 0 < µ≪ 1. Thus Ω′′(ψ)/Ω′(ψ) diverges as µ→ 0,
whereas if w = w(ψ) depends smoothly on ψ, then w′′(ψ)/w′(ψ) remains finite.
With further analysis from Gilbert & Ponty (2000) it is found that

αm/γ ≃ Ω′/2Ω, (5.2)

independently of the details of the motion along the separatrix. This means
that the inequality (3.4) is necessarily violated as µ→ 0 (Soward, 1990), and
Ponomarenko modes are isolated from the separatrices.

However if we now write down some general w(x, y), divorced from ψ (that is,
not any particular function of ψ), the situation changes. In a frame in which
the vertical velocity is zero at the hyperbolic points, the mean velocity in the
z-direction will be approximately w̄(ψ) = ∆/T (ψ) where ∆ is the total z-
displacement of a particle on one traversal of the two separatrices defining the
eye. When (3.4) is generalised to account for non-constant vertical velocity
the left-hand side becomes |Ω′′(ψ)/Ω′(ψ)− w̄′′(ψ)/w̄′(ψ)|, but this vanishes at
leading order because now w̄ ∝ Ω.

In short, a flow with w = w(ψ) has certain properties not shared by flows
with general w, and further investigation of the case of general w would be of
interest. In particular, generally is there a gap between Ponomarenko modes
and separatrix modes, or not, and does this have implications for the modes
that are actually realised in a kinematic dynamo? We leave this as a topic for
future study, but note that in this case another α-effect, arising from vertical
motion, has now to be included in the right-hand side of the generalisation of
(3.4), giving additional complications.
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It would also be interesting to study the cat’s eye modes found analytically,
and develop a general theory for their growth rates. Here the aim would be
to work with a quite general stream function ψ having cat’s eye topology, and
a general vertical velocity w. The magnetic fields would have behaviour at
the hyperbolic points matched with that along the separatrices, in a fusion of
the studies Soward (1987), Childress & Soward (1989) and Gilbert & Ponty
(2000). Finally it is of course valuable to study the saturation of such dynamo
instabilities, and this is currently work in progress for the Ekman instability.
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