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Abstract

We discuss the role of additive polynomials and p-polynomials in the theory of valued fields

of positive characteristic and in their model theory. We outline the basic properties of rings

of additive polynomials and discuss properties of valued fields of positive characteristic as

modules over such rings. We prove the existence of Frobenius-closed bases of algebraic

function fields F |K in one variable and deduce that F/K is a free module over the ring of

additive polynomials with coefficients in K. Finally, we prove that every minimal purely

wild extension of a henselian valued field is generated by a p-polynomial.

1 Introduction

This paper is to some extent a continuation of my introductive and programmatic paper
[Ku3]. In that paper I pointed out that the ramification theoretical defect of finite exten-
sions of valued fields is responsible for the problems we have when we deal with the model
theory of valued fields, or try to prove local uniformization in positive characteristic.

In the present paper I will discuss the connection between the defect and additive
polynomials. I will state and prove basic facts about additive polynomials and then treat
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several instances where they enter the theory of valued fields in an essential way that is
particularly interesting for model theorists and algebraic geometers. I will show that non-
commutative structures (skew polynomial rings) play an essential role in the structure
theory of valued fields in positive characteristic. Further, I will state the main open
questions. I will also include some exercises.

In the next section, I will give an introduction to additive polynomials and describe
the reasons for their importance in the model theory of valued fields. For the convenience
of the reader, I outline the characterizations of additive polynomials in Section 3 and the
basic properties of rings of additive polynomials in Section 4. For more information on
additive polynomials, the reader may consult [Go]. The remaining sections of this paper
will then be devoted to the proofs of some of the main theorems stated in Section 2.

2 Reasons for the importance of additive polynomi-

als in the model theory of valued fields

A polynomial f ∈ K[X] is called additive if

f(a+ b) = f(a) + f(b) (1)

for all elements a, b in every extension field L of K, that is, if the mapping induced by f
on L is an endomorphism of the additive group (L,+). If K is infinite, then f is additive
already when condition (1) is satisfied for all a, b ∈ K: see part b) of Corollary 23 in
Section 3.

It follows from the definition that an additive polynomial cannot have a non-zero
constant term. If the characteristic charK is zero, then the only additive polynomials
over K are of the form cX with c ∈ K. If charK = p > 0, then the mapping a 7→ ap is
an endomorphism of K, called the Frobenius. Therefore, the polynomial Xp is additive
over any field of characteristic p. Another famous and important additive polynomial is
℘(X) := Xp −X, the additive Artin-Schreier polynomial. An extension of a field K
of characteristic p generated by a root of a polynomial of the form Xp−X− c with c ∈ K
is called an Artin-Schreier extension. We will see later that Artin-Schreier extensions
play an important role in the theory of fields in characteristic p.

Note that there are polynomials defined over a finite field which are not additive, but
satisfy the condition for all elements coming from that field. For example, we know that
ap = a and thus ap+1 − a2 = 0 for all a ∈ Fp . Hence, the polynomial g(X) := Xp+1 −X2

satisfies g(a+ b) = 0 = g(a) + g(b) for all a, b ∈ Fp . But it is not an additive polynomial.
To show this, let us take an element ϑ in the algebraic closure of Fp such that ϑp−ϑ = 1.
Then g(ϑ) = ϑ(ϑp− ϑ) = ϑ. On the other hand, g(ϑ+ 1) = (ϑ+ 1)((ϑ+ 1)p− (ϑ+ 1)) =
(ϑ+ 1)(ϑp + 1p− ϑ− 1) = ϑ+ 1 6= ϑ = g(ϑ) + g(1). Hence, already on the extension field
Fp(ϑ), the polynomial g does not satisfy the additivity condition.
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The following well known theorem gives a very useful characterization of additive
polynomials. I will present a proof in Section 3.

Theorem 1 Let p be the characteristic exponent of K (i.e., p = charK if this is positive,
and p = 1 otherwise). Take f ∈ K[X]. Then f is additive if and only if it is of the form

f(X) =
m∑

i=0

ciX
pi

with ci ∈ K . (2)

Assume that charK = p > 0. Then as a mapping on K, Xp is equal to the Frobenius
endomorphism ϕ. Similarly, Xp2

is equal to the composition of ϕ with itself, written as
ϕ2, and by induction, we can replace 2 by every integer n. On the other hand, the mono-
mial X induces the identity mapping, which we may write as ϕ0. Note that addition and
composition of additive mappings on (K,+) give again additive mappings (in particular,
addition of additive polynomials gives additive polynomials). It remains to interpret the
coefficients of additive polynomials as mappings. This is easily done by viewing K as a
K-vector space: the mapping c· induced by c ∈ K is given by multiplication a 7→ ca, and
it is an automorphism of (K,+) if c 6= 0. So cXpn

as a mapping is the composition of
ϕn with c· . We will write this composition as cϕn. Adding these monomials generates
new additive mappings of the form

∑m
i=0 ciϕ

i, and addition of such mappings gives again
additive mappings of this form. Composition of such additive mappings generates again
additive mappings, and the reader may compute that they can again be written in the
above form. In this way, we are naturally led to considering the ring K[ϕ] of all poly-
nomials in ϕ over K, where multiplication is given by composition. From the above we
see that this ring is a subring of the endomorphism ring of the additive group of K. The
correspondence that we have worked out now reads as

m∑

i=0

ciX
pi

←→
m∑

i=0

ciϕ
i ∈ K[ϕ] (3)

which means that both expressions describe the same additive mapping on K. For in-
stance, the additive Artin-Schreier polynomial Xp − X corresponds to ϕ − 1 . Through
the above correspondence, the ring K[ϕ] may be considered as the ring of additive
polynomials over K. Note that this ring is not commutative; in fact, we have

ϕc = cpϕ for all c ∈ K .

This shows that assigning ϕ 7→ z induces an isomorphism of K[ϕ] onto the skew polyno-
mial ring K[z;ϕ]. But we will keep the notation “K[ϕ]” since it is simpler.

Let me state some basic properties of the ring K[ϕ]. For more information, I recom-
mend the comprehensive book “Free rings and their relations” by P. M. Cohn ([C1], [C2]).
Let R be a ring with 1 6= 0. Equipped with a function deg : R \ {0} → N∪ {0}, the ring
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R is called left euclidean if for all elements s, s′ ∈ R, s 6= 0, there exist q, r ∈ R such
that

s′ = qs+ r with r = 0 or deg r < deg s ,

and it is called right euclidean if the same holds with “s′ = sq + r” in the place of
“s′ = qs + r”. (Usually, the function deg is extended to 0 by setting deg 0 = −∞.) For
example, polynomial rings over fields equipped with the usual degree function are both-
sided euclidean rings. Further, an integral domain R is called a left principal ideal
domain if every left ideal in R is principal (and analogously for “right” in the place of
“left”). I leave it to the reader to show that every left (or right) euclidean integral domain
is a left (or right) principal ideal domain. Finally, an integral domain R is called a left
Ore domain if

Rr ∩Rs 6= {0} for all r, s ∈ R \ {0} ,

and it is called a right Ore domain if rR ∩ sR 6= {0} for all r, s ∈ R \ {0}. Every left
(or right) Ore domain can be embedded into a skew field (cf. [C1], §0.8, Corollary 8.7).
The reader may prove that a left (or right) principal ideal domain is a left (or right) Ore
domain.

The ring K[ϕ] may be equipped with a degree function which satisfies deg 0 = −∞ and
deg

∑m
i=0 ciϕ

i = m if cm 6= 0. This degree function is a homomorphism of the multiplicative
monoid of K[ϕ] \ {0} onto N ∪ {0} since it satisfies deg rs = deg r + deg s. In particular,
this shows that K[ϕ] is an integral domain. The following theorem is due to O. Ore [O2];
I will give a proof in Section 4.

Theorem 2 The ring K[ϕ] is a left euclidean integral domain and thus also a left prin-
cipal ideal domain and a left Ore domain. It is right euclidean if and only if K is perfect;
if K is not perfect, then K[ϕ] is not even right Ore.

Example 1 Let Fp denote the field with p elements. The ring Fp[ϕ] is a both-sided
euclidean integral domain, and every field K of characteristic p is a left Fp[ϕ]-module and
a left K[ϕ]-module, where the action of ϕ on K is just the application of the Frobenius
endomorphism. K is perfect if and only if every element of K is divisible by the ring
element ϕ. But this does not imply that K is a divisible Fp[ϕ]- or K[ϕ]-module. For
instance, if K admits non-trivial Artin-Schreier extensions, that is, if K 6= ℘(K) =
(ϕ − 1)K, then there are elements in K which are not divisible by ϕ − 1. On the other
hand, K is a divisible Fp[ϕ]- and K[ϕ]-module if K is algebraically closed.

Observe that K is not torsion free as an Fp[ϕ]- or K[ϕ]-module. Indeed, K contains
Fp which satisfies

(ϕ− 1)Fp = {0} .

♦
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Example 2 The power series field K := Fp((t)) = {
∑∞

i=N cit
i | N ∈ Z , ci ∈ K} (also

called “field of formal Laurent series over Fp”) is not perfect, since t does not admit a
p-th root in K. Hence, the ring K[ϕ] is not right Ore. K is a left K[ϕ]-module. ♦

In Section 4, Remark 24, I will collect a few properties of the rings K[ϕ] that follow
from Theorem 2, and describe what happens if K is not perfect. We will see that in
that case the structure of K[ϕ]-modules becomes complicated. It seems that the “bad”
properties of K[ϕ], for K non-perfect, are symptomatic for the problems algebraists and
model theorists have with non-perfect valued fields in positive characteristic. Let me
discuss the most prominent of such non-perfect valued fields.

The field Fp((t)) carries a canonical valuation vt , called the t-adic valuation. It is
given by vt

∑∞
i=N cit

i = N if cN 6= 0 and vt0 = ∞. (Fp((t)), vt) is a complete discretely
valued field, with value group vtFp((t)) = Z (that is what “discretely valued” means) and
residue field Fp((t))vt = Fp . At the first glance, such fields may appear to be the best
known objects in valuation theory. Nevertheless, the following prominent questions about
the elementary theory Th(Fp((t)), vt) are still unanswered:

Open Problem 1 Is the elementary theory of the valued field Fp((t)) model complete?
Does it admit quantifier elimination in some natural language? Is it decidable? If yes,
what would be a complete recursive axiomatization?

The corresponding problem for the p-adics was solved in the mid 1960s independently
by Ax and Kochen [A–K] and by Ershov [E]. Since then, the above problem has been well
known to model-theoretic algebraists, but resisted all their attacks.

Encouraged by the similarities between Fp((t)) and the field Qp of p-adic numbers,
one might try to give a complete axiomatization for Th(Fp((t)), vt) by adapting the well
known axioms for Th(Qp, vp). They express that (Qp, vp) has the following elementary
properties:

• It is a henselian valued field of characteristic 0. A valued field (K, v) is called henselian
if it satisfies Hensel’s Lemma: If f is a polynomial with coefficients in the valuation ring
O of v and if b ∈ O such that vf(b) > 0 while vf ′(b) = 0, then there is some a ∈ O
such that f(a) = 0 and v(a − b) > 0. This holds if and only if the extension of v to the
algebraic closure of K is unique.

• Its value group a Z-group, i.e., an ordered abelian group elementarily equivalent to Z.

• Its residue field is Fp .

• vpp is equal to 1 (= the smallest positive element in the value group).

The last condition is not relevant for Fp((t)) since there, p · 1 = 0. Nevertheless, we
may add a constant name t to L so that one can express by an elementary sentence that
vtt = 1.

A naive adaptation would just replace “characteristic 0” by “characteristic p” and p
by t. But there is an elementary property of valued fields that is satisfied by all valued
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fields of residue characteristic 0 and all formally p-adic fields, but not by all valued fields
in general. It is the property of being defectless. A valued field (K, v) is called defectless
if for every finite extension L|K, equality holds in the fundamental inequality

n ≥
g∑

i=1

eifi , (4)

where n = [L : K] is the degree of the extension, v1, . . . , vg are the distinct extensions of
v from K to L, ei = (viL : vK) are the respective ramification indices, and fi = [Lvi : Kv]
are the respective inertia degrees. (Note that g = 1 if (K, v) is henselian.) There is a simple
example, due to F. K. Schmidt, which shows that there is a henselian discretely valued
field of positive characteristic which is not defectless (cf. [Ri], Exemple 1, p. 244). This
field has a finite purely inseparable extension with non-trivial defect. But defect does not
only appear in purely inseparable extensions: there is an example, due to A. Ostrowski, of
a complete valued field admitting a finite separable extension with non-trivial defect (cf.
[Ri], Exemple 2, p. 246). These and several other examples of extensions with non-trivial
defect of various types can also be found in [Ku12] (see also [Ku8]).

However, each power series field with its canonical valuation is henselian and defectless
(cf. [Ku12]). In particular, (Fp((t)), vt) is defectless. For a less naive adaptation of the
axiom system of Qp, we will thus add “defectless”. We obtain the following axiom system
in the language L(t) = L ∪ {t}:

(K, v) is a henselian defectless valued field
K is of characteristic p
vK is a Z-group
Kv = Fp

vt is the smallest positive element in vK .





(5)

Let us note that also (Fp(t), vt)
h, the henselization of (Fp(t), vt), satisfies these axioms. The

henselization of a valued field (K, v) is a henselian algebraic extension which is minimal
in the sense that it admits a (unique!) embedding over K in every henselian extension
of (K, v). Henselizations exist for all valued fields, and they are separable extensions (cf.
[Ri], Théorème 2, p. 176). It is well known that (Fp(t), vt)

h is a defectless field, being
the henselization of a global field (cf. [Ku9]). It is also well known that (Fp(t), vt)

h is
existentially closed in (Fp((t)), vt) (see below for the definition of this notion); this fact
follows from work of Greenberg [Gre] and also from Theorem 2 of [Er1] (see also [Ku7]
for some related information). But it is not known whether (Fp((t)), vt) is an elementary
extension of (Fp(t), vt)

h.
It did not seem unlikely that axiom system (5) could be complete, until I proved in

[Ku1] (cf. [Ku4]):

Theorem 3 The axiom system (5) is not complete.
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I will give an idea of the proof of this theorem in Section 2.3 below. It was inspired
by an observation of Lou van den Dries. He had worked with a modified axiom system
(with larger residue fields) and had found an elementary sentence which he was not able
to deduce from that axiom system (as it turned out, that wasn’t van den Dries’ fault).
This sentence was formulated using only addition, multiplication with the element t and
application of the Frobenius, but no general multiplication. This led van den Dries to the
question whether one could at least determine the model theory of Fp((t)) as a module
which admits multiplication with t and application of the Frobenius, forgetting about
general multiplication. But this means that we view Fp((t)) as a left K[ϕ]-module, where
the field K contains t and should be contained in Fp((t)). But then, K is not perfect, and
therefore the structure of K[ϕ]-modules may be quite complicated.

There is a common feeling that additive polynomials play a crucial role in the theory of
valued fields of positive characteristic. So indeed, van den Dries’ question may be the key
to the model theory of Fp((t)) (but it could be as hard to solve as the original problem).
In this paper, I will give some reasons for this common feeling, but also confront it with
our present problem of understanding the notion of extremality.

2.1 Reason #1: Kaplansky’s hypothesis A

For a valued field (K, v), we denote by vK its value group and by Kv its residue field. An
extension (K, v) ⊂ (L, v) of valued fields is called immediate if the induced embeddings
of vK in vL and of Kv in Lv are onto. Henselizations are immediate extensions (cf. [Ri],
Corollaire 1, p. 184). Wolfgang Krull [Kr] (see also [Gra]) proved that every valued field
admits a maximal immediate extension. A natural and in fact very important question is
whether this is unique up to (valuation preserving) isomorphism. This plays a role when
one wishes to embed valued fields in power series fields. In his celebrated paper [Ka1],
Irving Kaplansky gave a criterion, called “hypothesis A”, which guarantees uniqueness.
(We will present it later.) Kaplansky then showed that a valued field (K, v) of positive
characteristic having a cross-section and satisfying hypothesis A can be embedded in the
power series field Kv((vK)) over its residue field Kv with exponents in its value group
vK. Kaplansky also gives examples which show that this may fail if hypothesis A is
not satisfied. In this case, there are maximal fields (= valued fields not admitting any
proper immediate extensions) which do not have the form of a power series field (not even
if one allows factor systems).

If we are considering an elementary class of valued fields satisfying hypothesis A (which
can be expressed by a recursive scheme of elementary sentences in the language of valued
rings), then the uniqueness of maximal immediate extensions can be fruitfully used in
the proof of model theoretic properties. Let us give the example of algebraically maximal
Kaplansky fields. A valued field is called algebraically maximal if it does not admit
any proper immediate algebraic extension. It is called a Kaplansky field if it satisfies
hypothesis A. The following theorem is due to Ershov [Er1] and, independently, Ziegler
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[Zi].

Theorem 4 The elementary theory of an algebraically maximal Kaplansky field is com-
pletely determined by the elementary theory of its value group and the elementary theory
of its residue field.

In other words, algebraically maximal Kaplansky fields satisfy the following Ax–
Kochen–Ershov principle:

vK ≡ vL ∧ Kv ≡ Lv =⇒ (K, v) ≡ (L, v) (6)

where the first elementary equivalence is in the language of ordered groups, the second
in the language of rings and the third in the language of valued rings. In the case of
(K, v) ⊆ (L, v) there is also a version of the Ax–Kochen–Ershov principle with “≡”
replaced by “≺” (elementary extension). In the same situation, there is also the more
basic version

vK ≺∃ vL ∧ Kv ≺∃ Lv =⇒ (K, v) ≺∃ (L, v) (7)

where “≺∃” means “existentially closed in”, that is, every existential elementary sen-
tence which holds in the upper structure also holds in the lower structure. In fact, it has
turned out that proving this version is the essential step in proving Ax–Kochen–Ershov
principles and other model theoretic results about valued fields; the further results then
often follow by general model theoretic arguments (the reader should think of Robinson’s
Test).

Hypothesis A implicitly talks about additive polynomials. Following Kaplansky [Ka2],
we will call a polynomial f ∈ K[X] a p-polynomial if it is of the form

f(X) = A(X) + c , (8)

where A ∈ K[X] is an additive polynomial, and c is a constant in K. A field K of
characteristic p > 0 will be called p-closed if every p-polynomial in K[X] has a root in
K. That is,

K is p-closed if and only if it is a divisible K[ϕ]-module.

In particular, every p-closed field is perfect.

Now hypothesis A for a valued field (K, v) with charKv = p > 0 reads as follows:

(A1) the value group vK is p-divisible, and
(A2) the residue field Kv is p-closed.

For valued fields (K, v) with charKv = 0, hypothesis A is empty. The condition of a field
to be p-closed seemed obscure at the time of Kaplansky’s paper. But we have learned
to understand this condition better. The following theorem was first proved by Whaples
in [Wh2], using the cohomology theory of additive polynomials. A more elementary
proof was later given in [Del]. Then Kaplansky gave a short and elegant proof in his
“Afterthought: Maximal Fields with Valuation” ([Ka2]). We will reproduce this proof in
Section 9.
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Theorem 5 A field K of characteristic p > 0 is p-closed if and only if it does not admit
any finite extensions of degree divisible by p.

This theorem lets us understand hypothesis A much better. Based on this insight,
Kaplansky’s result about uniqueness of maximal immediate extensions is reproved in
[Ku–Pa–Ro]. There, it is deduced from the Schur–Zassenhaus Theorem about conjugacy
of complements in profinite groups, via Galois correspondence.

As we are shifting our focus to additive polynomials, the original condition “p-closed”
regains its independent interest. In Section 9 we will use Theorem 5 to prove:

Theorem 6 A henselian valued field of characteristic p > 0 is p-closed if and only if it
is an algebraically maximal Kaplansky field.

For a generalization of the notion “p-closed” and of this theorem to fields of characteristic
0 see [V], in particular Corollary 5.

By Theorem 5 we can split condition (A2) into two distinct conditions:

(A2.1) the residue field Kv is perfect, and
(A2.2) the residue field Kv does not admit any finite separable extension of degree
divisible by p.

While (A2.1) is a perfectly natural condition about fields, (A2.2) is somewhat unusual.
This is the reason for the fact that Kaplansky fields are not often found in applications.
Certainly also the other conditions restrict the possible applications (for example, Fp((t))
doesn’t satisfy (A1)). But for instance, every perfect valued field of characteristic p > 0
satisfies conditions (A1) and (A2.1) (but not necessarily (A2.2)). So we would obtain a
more natural condition if we could drop condition (A2.2). To obtain good model theoretic
properties for fields satisfying (A1) and (A2.1), one has to require again that they are
algebraically maximal. Such fields form a part of an important larger class of valued
fields, the tame fields. A tame field is a henselian field whose algebraic closure is equal
to the ramification field Kr of the normal extension Ksep|K, where Ksep denotes the
separable-algebraic closure of K. The ramification field of a normal separable-algebraic
extension of valued fields is the fixed field in that extension of a certain subgroup of the
Galois group, the ramification group. We don’t need the definition of this group here;
we only need the basic properties of the field Kr which I will put together in Theorem 38
below. By part e) of this theorem, every tame field is defectless, and it follows directly
from the definition that every tame field is perfect. In [Ku1] (cf. also [Ku11]) I proved:

Theorem 7 The elementary theory of a tame field is completely determined by the ele-
mentary theory of its value group and the elementary theory of its residue field.

All tame fields satisfy conditions (A1) and (A2.1), but not necessarily (A2.2). That
means that we have lost the uniqueness of maximal immediate extensions. But the above
result shows that uniqueness is not necessary for an elementary class of valued fields to
have good model theoretic properties. However, we have to work much harder. This work
is again directly related to additive polynomials, and we will describe this connection now.
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2.2 Reason #2: the defect and purely wild extensions

Let us assume that (K, v) is henselian. Then for every finite extension L of K, we have
g = 1 in the fundamental inequality (4). Then the Lemma of Ostrowski (cf. [Ri], Théorème
2, p. 236) tells us that we have an equality

[L : K] = (vL : vK) · [Lv : Kv] · pδ , (9)

where p is the characteristic exponent of the residue field Kv, and δ is a non-negative
integer. The factor pδ is called the defect of the extension (L|K, v); it is trivial if pδ = 1.
Consequently, every valued field with residue field of characteristic 0 is defectless.

It follows from Theorem 38 that a valued field is tame if it is henselian and for every
finite extension L|K,

• the characteristic of Kv does not divide (vL : vK),

• the extension Lv|Kv is separable, and

• the extension (L|K, v) is defectless.

The ramification field Kr is the unique maximal tame extension of every henselian field
(K, v).

As I have explained in [Ku3], the presence of non-trivial defect is one of the main
obstacles in proving an Ax–Kochen–Ershov principle like (7). Let me quickly sketch this
again. Assume that (L, v) is an extension of a henselian field (K, v) such that vK ≺∃ vL
and Kv ≺∃ Lv. Then we take (K∗, v∗) to be an |L|+-saturated elementary extension of
(K, v). It follows that v∗K∗ is a |vL|+-saturated extension of vK; hence vK ≺∃ vL yields
that vL can be embedded over vK in v∗K∗. It also follows that K∗v∗ is an |Lv|+-saturated
extension of vL; hence Kv ≺∃ Lv yields that Lv can be embedded over Kv in K∗v∗. Now
we have to lift these embeddings to an embedding of (L, v) in (K∗, v∗) over K. Once
this is achieved, we are done, because every existential elementary sentence which holds
in (L, v) carries over to its image in (K∗, v∗), from there up to (K∗, v∗), and from there
down to the elementary substructure (K, v).

By a general model theoretic argument, the situation can be reduced to the case where
L is finitely generated over K. That is, (L|K, v) is a valued function field (by “function
field”, we will always mean “algebraic function field”). Hence, we need the structure
theory of valued function fields to solve our embedding problem (as it is the case for the
problem of local uniformization). Let us assume that we can reduce to the case where
the transcendence degree of L|K is 1. This can be done for tame fields, but for the
model theory of Fp((t)), this is another serious problem, again connected with additive
polynomials (see Section 2.3). Assume further that we have lifted the embeddings of
vL and Lv to an embedding of some subfield L0 of L. Then L|L0 is a finite immediate
extension, and in general, it will be proper (i.e., L 6= L0). Taking henselizations, we
obtain that also Lh|Lh

0 is a finite immediate extension. Since we assumed that (K, v)
is henselian (which is true for every algebraically maximal and every tame field), its
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elementary extension (K∗, v∗) is also henselian. Therefore, the embedding of L0 extends
to an embedding of Lh

0 in K∗ (this is the universal property of the henselization). But if
Lh 6= Lh

0 , we do not know how to lift the extension further (which we would need to get
all of L embedded), unless we have uniqueness of maximal immediate extensions. Since
Lh|Lh

0 is immediate, we have (vLh : vLh
0) = 1 and [Lhv : Lh

0v] = 1; hence if Lh 6= Lh
0 , then

by (9), the extension has non-trivial defect, equal to its degree.
We see that indeed, the presence of non-trivial defect constitutes a serious obstacle for

our embedding problem. So we have to avoid the defect. In certain cases, it will not even
appear. All tame fields are defectless fields (and so are all other valued fields for which
we know good model theoretic results). This does not mean that every valued function
field over a tame field is defectless. But for a certain type of valued function fields, this is
true. Let (L|K, v) be an extension of valued fields of finite transcendence degree. Then
the following inequality holds (cf. [B], Chapter VI, §10.3, Theorem 1):

trdegL|K ≥ dimQ(Q⊗ (vL/vK)) + trdegLv|Kv . (10)

If equality holds then we will say that (L|K, v) is without transcendence defect. For
such function fields, we have ([Ku1], [Ku9]):

Theorem 8 (Generalized Stability Theorem) Let (L|K, v) be a valued function field
without transcendence defect. If (K, v) is a defectless field, then also (L, v) is a defectless
field.

Using this theorem, one can prove (cf. [Ku9]):

Theorem 9 Let (K, v) be a henselian defectless field. Then the Ax–Kochen–Ershov prin-
ciple (7) holds for every extension (L, v) of (K, v) without transcendence defect.

I proved Theorem 8 in [Ku1]. How does this proof work? How can we see whether a
given valued field is defectless? First of all, a valued field is defectless if and only if its
henselization is (see [Ku9]; a partial proof is also given in [En]). So we can assume that L
is the henselization of a valued function field. Second, if (k, v) is any henselian field, then
every finite extension of k inside the ramification field kr has trivial defect, and if k1|k is
any finite extension, then k1|k and kr.k1|k

r have the same defect (cf. Theorem 38). So in
our situation, we have to show that every finite extension of Lr has trivial defect. The
advantage of working over Lr is that general ramification theory tells us that Lsep|Lr is a
p-extension. A normal and separable field extension is called a p-extension if its Galois
group is a pro-p-group. It follows from the general theory of p-groups (cf. [H], Chapter
III, §7, Satz 7.2 and the following remark) via Galois correspondence that every finite
separable-algebraic extension of Lr is a tower of Galois extensions of degree p. Hence we
just have to show by induction that each of them has trivial defect. (The complementary
case of purely inseparable extensions is much easier and can be disposed of more directly.)
Now every Galois extension k′|k of degree p of fields of characteristic p is an Artin-Schreier
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extension; this well known fact is proved by an application of Hilbert’s Theorem 90. We
include a proof in Section 7 (Theorem 35), as a special case of a generalization which we
will discuss below.

Let ϑ be a root of Xp−X − a. Then k′ = k(ϑ) = k(ϑ− c) for every c ∈ k. As Xp−X
is an additive polynomial, we have (ϑ− c)p − (ϑ− c) = a− cp + c, that is, ϑ− c is a root
of the p-polynomial Xp −X − (a− cp + c). So we may change a by subtracting elements
in k of the form cp − c, without changing the extension generated by the polynomial.
The idea in our above situation is now to find by this method a suitable normal form
for the element a from which we can read off that the extension has trivial defect. The
idea of deducing suitable normal forms for Artin-Schreier extensions (and for Kummer
extensions in the case of fields of characteristic 0) can already be found in the work of
Hasse, Whaples, Epp ([Ep], see also [Ku5]), Matignon and Abhyankar.

Let us quickly discuss two examples. We wish to show that a given Artin-Schreier
extension L′|Lr has trivial defect. Before we go on, we note that by valuation theoretical
arguments, the proof of Theorem 8 can be reduced to the case where K and hence also
its residue field Kv is algebraically closed. Assume that the transcendence degree of L|K
is 1. Then by (10) with equality, we can have

• dimQ(Q⊗ (vL/vK)) = 1 and trdegLv|Kv = 0, or
• dimQ(Q⊗ (vL/vK)) = 0 and trdegLv|Kv = 1.

In the first case, there is an element x ∈ L such that vx is rationally independent over
vK. Under certain additional conditions, we can then take a to be a polynomial in x with
coefficients in K. Since the values of the monomials in this polynomial a = a(x) lie in
distinct cosets modulo vK, their values are distinct. By the ultrametric triangle law, this
implies that the value of such a monomial is equal to the least value of its monomials.
Now we can use the above method to get rid of p-th powers of x in a(x) (we can replace a
monomial cxkp by c1/pxk. Therefore, we can assume that all monomials appearing in the
polynomial a(x) are of the form cix

i with i not divisible by p. Then the value va(x) is not
divisible by p in vLr. This value cannot be positive since otherwise, the extension would
be trivial by Hensel’s Lemma. With the value being negative, the reader may show that
if ϑ is a root of Xp −X − a(x), then

vϑ =
va(x)

p
.

This implies that (vL′ : vLr) = p = [L′ : Lr], so the extension has trivial defect.
In the second case, we will have an element x ∈ L of value 0 whose residue xv is

transcendental over Kv. Now we will have to deal with finite sums of the form cidi where
di ∈ L are representatives of elements in the residue field. We play the same game as
before, trying to come up with a residue that has no p-th root, from which it would follow
in a similar way as above that [L′v : Lrv] = p = [L′ : Lr], showing that the extension has
trivial defect. The problem here is that when we replace some monomial cidi by its p-th
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root c
1/p
i d

1/p
i , then even if the residue d

1/p
i v does not have a p-th root in Lv, the element

d
1/p
i might sum up with some other dj to an element whose residue has again a p-th root

in Lv. We somehow have to see that this process cannot go on infinitely. A good idea
would be to take the di such that their residues form a basis of Lv|Kv. But then we

would need that also the residue of d
1/p
i is in this basis. It is easily seen that a basis being

closed under taking p-th roots (as long as we stay in Lv) is the same as a basis being
closed under taking p-th powers (in other words, being closed under the Frobenius). Such
a basis will be called a Frobenius-closed basis. See Lemma 25 which gives the exact
formulation of the property of a Frobenius-closed basis that we need in [Ku9].

The residue field of K(x) is just Kv(xv). Further, L being a function field of transcen-
dence degree 1, L|K(x) is a finite extension. It follows from the fundamental inequality
that also Lv|K(x)v is a finite extension. This shows that Lv|Kv is a function field of
transcendence degree 1. So in order to prove our theorem in the second case, our task
is to find a Frobenius-closed basis for every function field of transcendence degree 1 over
an algebraically closed field of positive characteristic. In [Ku1], I proved a more general
result:

Theorem 10 Let F be an algebraic function field of transcendence degree 1 over a perfect
field K of characteristic p > 0. If K is relatively algebraically closed in F , then there exists
a Frobenius-closed basis for F |K.

The proof and some further background are given in Section 5. There, we will also
deduce the following result from Theorem 10, showing the connection between Frobenius-
closed bases and additive polynomials:

Theorem 11 If F is an algebraic function field of transcendence degree 1 over a perfect
field K of characteristic p > 0 and if K is relatively algebraically closed in F , then F/K
is a free K[ϕ]-module.

The second important theorem that I use in the proof of Theorem 7 is needed when
the valued function field (L|K, v) has non-trivial transcendence defect, i.e., equality does
not hold in (10). In reducing to transcendence degree 1 by induction, one reaches the
case where (L, v) is an immediate extension of transcendence degree 1 of the tame field
(K, v). The defect is then avoided by means of the following theorem.

Theorem 12 (Henselian Rationality)
Let (K, v) be a tame field and (L|K, v) an immediate function field of transcendence degree
1. Then the henselization (L, v)h of (L, v) is henselian rational, i.e.,

there is x ∈ L such that Lh = K(x)h . (11)
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For valued fields of residue characteristic 0, the assertion is a direct consequence of the fact
that every such field is defectless (in fact, every x ∈ L\K will then do the job). In contrast
to this, the case of positive residue characteristic requires a much deeper structure theory
of immediate algebraic extensions of henselian fields, in order to find suitable elements x.
I proved this theorem in [Ku1] (cf. also [Ku10]).

The proof works as follows. Suppose we have chosen the wrong x. Then the extension
Lh|K(x)h is proper and immediate. So by (9) its defect is equal to its degree and thus non-
trivial. If Lh|K(x)h were an Artin-Schreier extension, we could employ the same methods
as described above to find a normal form that allows us to find a better x (i.e., one for
which the degree [Lh : K(x)h] is smaller). But in general, even if Lh|K(x)h is separable, it
will not necessarily be a tower of Artin-Schreier extensions. Note that because its degree
is a prime, an Artin-Schreier extension does not admit any proper subextensions; such
an extension is called minimal. This leads us to the following question: what is the
structure of minimal subextensions of such extensions Lh|K(x)h?

Since Lh|K(x)h is immediate, but every finite subextension of K(x)r|K(x)h (where
K(x)r := (K(x)h)r ) is defectless by part e) of Theorem 38, it follows that Lh|K(x)h is
linearly disjoint from K(x)r|K(x)h. Take any henselian field (k, v). Then an algebraic ex-
tension k1 is called purely wild if k1|k is linearly disjoint from kr|k. Hence, our extension
Lh|K(x)h is purely wild. Our question is now answered by the following theorem, which
again shows the importance of p-polynomials and hence also of additive polynomials. This
theorem is due to Florian Pop ([Pop]).

Theorem 13 Let (k, v) be a henselian field of characteristic p > 0 and (k1|k, v) a minimal
purely wild extension. Then there exist an additive polynomial A(X) ∈ Ok[X] and an
element ϑ ∈ k1 such that k1 = k(ϑ) and the p-polynomial A(X) − A(ϑ) is the minimal
polynomial of ϑ over k.

It can be shown using Hensel’s Lemma that if k1 6= k, then A(ϑ) /∈ Ok .

Using the additivity of the polynomial A like I used the additivity of the Artin-
Schreier polynomial Xp − X before, it is indeed possible to deduce a normal form that
allows to find a better x. Therefore, Theorem 13 is an important ingredient in the proof of
Theorem 12. Three sections of this paper are devoted to the previously unpublished proof
of Theorem 13. For the convenience of the reader, G-modules and twisted homomorphisms
are introduced in Section 6. In Section 7, a Galois theoretical result of independent interest
is proved. It is a generalization of the theorem that I have already used above and that
states that every Galois extension of degree p in characteristic p is an Artin-Schreier
extension. Then I apply it in Section 8 to the situation of purely wild extensions and
derive Theorem 13.

Theorem 13 gains even more importance in conjunction with a result of Matthias Pank
(see [Ku–Pa–Ro]):
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Theorem 14 Let (K, v) be a henselian field. Then Kr admits a field complement W in
the algebraic closure K̃, that is, W.Kr = K̃ and W ∩Kr = K. Every such complement W
is a maximal purely wild extension of K. The quotient group vW/vK is a p-group (where
p is the characteristic exponent of Kv), and the extension Wv|Kv is purely inseparable.

Note that (K, v) is a tame field if and only if W = K.

2.3 Reason #3: extremality and elementary properties of addi-
tive polynomials

If f is a polynomial in n variables with coefficients in K, then we will say that (K, v) is
extremal with respect to f if the set

{vf(a1, . . . , an) | a1, . . . , an ∈ K} ⊆ vK ∪ {∞} (12)

has a maximum. This means that

∃Y1, . . . , Yn∀X1, . . . , Xnvf(X1, . . . , Xn) ≤ vf(Y1, . . . , Yn)

holds in (K, v). It follows that being extremal with respect to f is an elementary property
in the language of valued fields with parameters from K. Note that the maximum is∞ if
and only if f admits a K-rational zero. A valued field (K, v) is called extremal if for all
n ∈ N, it is extremal with respect to every polynomial f in n variables with coefficients in
K. This notion is due to Ershov. The property of being extremal can be expressed by a
countable scheme of elementary sentences (quantifying over the coefficients of all possible
polynomials of degree at most n in at most n variables). Hence, it is elementary in the
language of valued fields.

The following result was first stated by Delon in [Del], but the proof contained gaps.
The gaps were later filled by Ershov in [Er2]. I give an alternative proof in [Ku8].

Theorem 15 A valued field is algebraically maximal if and only if it is extremal with
respect to every polynomial in one variable.

The following related results, also proved in [Ku8], illustrate again the importance of
additive and p-polynomials. First, using Theorem 13, we can push the result stated in
Theorem 15 even further:

Theorem 16 A henselian valued field of characteristic p > 0 is algebraically maximal if
and only if it is extremal with respect to every p-polynomial in one variable.

A polynomial A ∈ K[X1, . . . , Xn] in n variables is called additive if for all elements
a1, . . . , an, b1, . . . , bn in any extension field of K,

A(a1 + b1, . . . , an + bn) = A(a1, . . . , an) + A(b1, . . . , bn) .
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In fact, if A is additive then

A(X1, . . . , Xn) =
n∑

i=1

Ai(Xi)

where
Ai(Xi) := A(0, . . . , 0, Xi, 0, . . . , 0)

are additive polynomials in one variable. As before, a polynomial f ∈ K[X1, . . . , Xn] in
n variables is called p-polynomial if it is of the form A + c where A ∈ K[X1, . . . , Xn]
is additive, and c ∈ K. From the above we see that also every p-polynomial is a sum of
p-polynomials in one variable.

A valued field is called inseparably defectless if all purely inseparable extensions
have trivial defect. The following is proved in [Ku8]:

Theorem 17 A valued field (K, v) of characteristic p > 0 is inseparably defectless if and
only if it is extremal with respect to every p-polynomial of the form

b−
n∑

i=1

biX
p
i , n ∈ N, b, b1, . . . , bn ∈ K . (13)

Observe that again, all of these notions can be axiomatized by recursive elementary
axiom schemes.

I will now sketch the basic idea of the proof of Theorem 3. Note that the image of a
polynomial f on a valued field K has the optimal approximation property in the sense of
[Ku4] and [Dr–Ku] if and only if K is extremal with respect to f − c for every c ∈ K.
Consequently,

the images of all additive polynomials over (K, v) have the optimal approximation property
if and only if K is extremal with respect to all p-polynomials over K.

This holds in one variable as well as in several variables.

In [Ku4], I considered the following additive polynomial over Fp((t)):

Xp
0 −X0 + tXp

1 + . . . + tp−1Xp
p−1 . (14)

I showed that the image of this polynomial has the optimal approximation property in
Fp((t)). Then I constructed an extension (L, v) of Fp((t)) of transcendence degree 1 which
is henselian, defectless, has value group a Z-group, with vt the smallest positive element,
and residue field Fp , but the image of the above polynomial does not have the optimal
approximation property in (L, v). This shows that Fp((t)) with its t-adic valuation is not
an elementary substructure of (L, v). This yields Theorem 3.

Further, I proved in [Ku4] that in all maximal fields, the images of all additive polyno-
mials which satisfy a certain elementary condition have the optimal approximation prop-
erty. Maximal fields are interesting objects in the model theory of valued fields because

16



all maximal immediate extensions of a valued field are maximal. So if we are considering
an elementary class of valued fields closed under maximal immediate extensions (so far,
this is the case for all classes of valued fields without additional structure that play a role
in model theory), and if the Ax–Kochen–Ershov principle (6) holds for this class, then
every field in the class should be elementarily equivalent to all of its maximal immediate
extensions. Therefore, the following question is very important:

Open Problem 2 Is every maximal field of characteristic p > 0 extremal with respect
to every p-polynomial in several variables? Is every maximal field extremal?

Since every maximal field is algebraically maximal, Theorem 15 shows that it is at least
extremal with respect to every polynomial in one variable. To answer the first question to
the affirmative, one would have to eliminate the condition in the result mentioned above.

In [Ku4], I also construct an immediate function field (F, v) of transcendence degree 1
over (L, v) such that (L, v) is not existentially closed in (F, v). Any maximal immediate
extension (M, v) of (F, v) is also a maximal immediate extension of (L, v). Since (L, v)
is not existentially closed in (F, v), it is not existentially closed in (M, v). So it is not an
elementary substructure of (M, v), and it cannot lie in an elementary class which has the
good properties discussed above.

The function field F is generated over L by two elements x0, x1 which satisfy an
equation

x = xp
0 − x0 + txp

1

where x is an element in L which is transcendental over Fp((t)). So the existential sentence

∃X0∃X1 : x = Xp
0 −X0 + tXp

1

holds in F . On the other hand, L is constructed in such a way that this sentence does
not hold in L. This proves that L is not existentially closed in F and, a fortiori, (L, v) is
not existentially closed in (F, v).

The function field F |L shows the following interesting symmetry between a generating
Artin-Schreier extension and a generating purely inseparable extension of degree p. On
the one hand, we have the Artin-Schreier extension

L(x0, x1)|L(x1)

given by
xp

0 − x0 = x− txp
1 . (15)

On the other hand we have the purely inseparable extension

L(x0, x1)|L(x0)

given by

xp
1 =

1

t
(−xp

0 + x0 + x) .
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From equation (15) it is immediately clear that the function field L(x0, x1) becomes ra-
tional after a constant field extension by t1/p; namely

F (t1/p) = L(t1/p)(x0 + t1/px1) .

This shows that the base field L, not being existentially closed in the function field F ,
becomes existentially closed in the function field after a finite purely inseparable constant
extension, although this extension is linearly disjoint from F |L.

In our above example there also exists a separable constant field extension L′|L of
degree p such that (F.L′)h is henselian rational. To show this, we take a constant d ∈ L
and an element a in the algebraic closure of L satisfying

t = ap − da ,

and we put L′ = L(a). If we choose d with a sufficiently high value, then we will have that
vdaxp

1 > 0. From this we deduce by Hensel’s Lemma that there is an element b ∈ L′(x1)
h

such that bp − b = −daxp
1. If we put z = x0 + ax1 + b ∈ L′(x0, x1)

h, we get that

zp − z = x− txp
1 + apxp

1 − ax1 − dax
p
1 = x− ax1 + (ap − da− t)xp

1 = x− ax1 ,

which shows that
x1 ∈ L′(z) .

This in turn yields that b ∈ L′(z)h and consequently,

x0 = z − ax1 − b ∈ L
′(z)h .

Altogether, we have proved that

L′(x0, x1)
h = L′(z)h

is henselian rational.

Let us discuss one more problem about the model theory of Fp((t)) that becomes
visible through our above example. It can be shown that for every k ∈ N, the sentence

∀X∃X0, . . . , Xpk−1 , Y : X = Xpk

0 −X0 + tXpk

1 + . . . + tp
k−1Xpk

pk−1 + Y ∧ vY ≥ 0

holds in Fp((t)) as well as in every maximal field which satisfies axiom system (5). On
the other hand, given any n ∈ N, the construction of (L, v) can be modified in such a way
that for some k the above sentence does not hold in (L, v) and that the smallest extension
of (L, v) within any maximal immediate extension in which that sentence holds is at least
of transcendence degree n over L. This is in drastic contrast to the tame behaviour shown
by tame fields:
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If (M |K, v) is an immediate extension, (M, v) is a tame field and K is relatively alge-
braically closed in M , then also (K, v) is a tame field.

(For a proof, see [Ku11].) This property of tame fields is used in an essential way in the
proof of Theorem 7 in order to reduce to immediate extensions of transcendence degree
1 (so that Theorem 12 can be applied). Apparently, in the case of fields elementarily
equivalent to Fp((t)), we have to succeed without this tool.

For the construction of the field L, I needed a handy criterion for defectless fields. The
following is proved in [Ku8]:

Theorem 18 A valued field of positive characteristic is henselian and defectless if and
only if it is separable-algebraically maximal and inseparably defectless.

The proof uses a classification of Artin-Schreier extensions with non-trivial defect accord-
ing to whether they can be obtained as a deformation of a purely inseparable extension
with non-trivial defect, or not (cf. [Ku8]). This classification is also of independent inter-
est. For instance, S. D. Cutkosky and O. Piltant [Cu–Pi] give an example of a tower of
two Artin-Schreier extensions with non-trivial defect of a rational function field in which
a certain form of “relative resolution” fails. It would be interesting to know whether such
properties depend on the classification. In [Ku6], valued rational function fields are con-
structed which allow an infinite tower of Artin-Schreier extensions with non-trivial defect,
but it is not clear whether one can obtain both sorts of extensions. The classification may
also be important for the characterization of all valued fields whose maximal immediate
extensions are finite (cf. [V] for the background).

2.4 But what about extremality for all polynomials?

Let us come back to the question whether every maximal field is extremal. We know the
answer in the case of discrete valued fields:

Theorem 19 If (K, v) is a henselian defectless field with value group isomorphic to Z,
then (K, v) is extremal.

In [Del], Delon deduced this from the work of Greenberg [Gre]. An elegant model
theoretic proof was given by Ershov. The theorem implies that in particular, (Fp((t)), vt) is
extremal. It also implies that every henselian defectless field with value group isomorphic
to Z is extremal with respect to all p-polynomials in several variables. An alternative
proof for this fact can be found in [Dr–K]. It uses the local compactness of Fp((t)). If
this could be eliminated in the case of maximal fields, we could at least prove that every
maximal field is extremal with respect to all p-polynomials in several variables. This
generates the following question:

Open Problem 3 If a henselian field of characteristic p > 0 is extremal with respect to
all p-polynomials in several variables, does this imply that it is extremal?
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Are p-polynomials representative for all polynomials when extremality is concerned?
Theorem 16 indicates that modulo henselization this is true for polynomials in one vari-
able. But can we associate directly to every polynomial in one variable a p-polynomial
in one variable from which we can read off information about extremality? A result of
Kaplansky ([Ka1], Lemma 10), originally proved to be used in the construction of one
of the counterexamples to embeddability in power series fields, shows that this can be
done over every henselian field with archimedean value group. Using technical machinery
developed in [Ku1], this result can be generalized (the proof is implicit in [Ku1]):

Proposition 20 Let (K, v) be a henselian field and (aρ)ρ<λ a pseudo Cauchy sequence
in K without a limit in K. Pick a polynomial f of minimal degree such that the value
vf(aρ) is not ultimately fixed. Then there is an additive polynomial A ∈ K[X] such that
for all large enough ρ,

v(f(aρ) − A(aρ)) > vf(aρ)

(which in particular implies that vf(aρ) = vA(aρ)).

Open Problem 4 Is Proposition 20 also true for polynomials in several variables?

If this were not the case, then it would destroy our hope to capture the complete theory
of Fp((t)) by adjoining axioms about extremality with respect to additive polynomials to
axiom system (5). That would mean that additive polynomials are important but do not
tell us all the missing information about Fp((t)).

It should be mentioned that the case of several variables is very much different from
the case of one variable, and there is not much hope of treating it by induction on the
number n of variables starting with n = 1. Indeed, if (L|K, v) is an immediate extension
generated by a polynomial f , then a pseudo Cauchy sequence of algebraic type can be
constructed with respect to which the value of f is not fixed (for these notions, see [Ka1]).
This has been done in [Er2] and in [Ku8]. A similar procedure is not known for the case
of several variables.

2.5 Concluding remarks about valued K[ϕ]-modules

Van den Dries’ question can be reformulated as: Determine the model theory of valued
K[ϕ]-modules. What do we mean by a “valued module”? There are some notions of
“valued module” in the literature, but as far as I know they do not cover the case we
are interested in. Basically, one could define a “valued module” to be a module which
also has the structure of a valued abelian group. But without any further assumptions
on the compatibility between module structure and valuation, this would not lead us far.
So we have to choose axioms for the compatibility that cover the case we are interested
in. I have done this in [Ku2], but these axioms are not yet in a very satisfactory form.
Although the structure of K[ϕ]-modules can be nasty when K is not perfect, there is still
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the valuation on them and it appears that with an appropriate choice of axioms one can
tame these modules. Indeed, a first answer to van den Dries’ question was given by his
student Thomas Rohwer who proved in his thesis [Roh] the following results:

Theorem 21 The elementary theory of Fp((t)) as an Fp((t))[ϕ]-module with a predicate
for Fp[[t]] is model complete. The elementary theory of Fp((t)) as an Fp(t)[ϕ]-module with
a predicate for Fp[[t]] is decidable.

It should be noted that Pheidas and Zahidi [Ph–Za] prove analogous results for Fp[t] as
an Fp[t][ϕ]-module.

Theorem 21 immediately leads to a number of questions:

Open Problem 5 What do Rohwer’s results tell us about the model theory of the valued
field Fp((t))?

Open Problem 6 Does the elementary theory of Fp((t)) as an Fp((t))[ϕ]- or Fp(t)[ϕ]-
module admit quantifier elimination in some natural language?

Rohwer works with predicates Vi that are interpreted by the sets of all elements of
value ≥ i. This gives less information than a binary predicate P (x, y) interpreted by
vx ≤ vy (“valuation divisibility”).

Open Problem 7 What are the model theoretic properties of the elementary theory of
Fp((t)) as a valued Fp((t))[ϕ]- or Fp(t)[ϕ]-module in a language which includes a binary
predicate for valuation divisibility?

Open Problem 8 What is the structure of extensions of valued K[ϕ]-modules? Can
one prove Ax–Kochen–Ershov principles for valued K[ϕ]-modules?

An important tool in the model theory of valued fields is Kaplansky’s well known result
that a valued field is maximal if and only if every pseudo Cauchy sequence in this field has
a limit (cf. [Ka1]). One can ask the same question for other valued structures. In the case
of valued modules with value-preserving scalar multiplication, the corresponding result
is already in the literature. For the case of valued modules with the above mentioned
axioms that cover the case of the valued K[ϕ]-module Fp((t)), I proved the corresponding
result in [Ku2]. Together with Rohwer’s work, this seems to be a good start towards a
comprehensive study of valued K[ϕ]-modules, including a full answer to van den Dries’
question, but quite a bit of work remains to be done.
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3 Characterization of additive polynomials

In this section we give the basic characterizations of additive polynomials and prove
Theorem 1.

Lemma 22 Take f ∈ K[X] and consider the following polynomial in two variables:

g(X,Y ) := f(X + Y )− f(X)− f(Y ) . (16)

If there is a subset A of cardinality at least deg f in some extension field of K such that
g vanishes on A× A, then f is additive and of the form (2).

Proof: Assume that there is a subset A of cardinality at least deg f in some extension
field of K such that g vanishes on A×A. Take L to be any extension field of K. By field
amalgamation, we may assume that A is contained in an extension field L′ of L. For all
c ∈ L′, the polynomials g(c, Y ) and g(X, c) are of lower degree than f . This follows from
their Taylor expansion. Assume that there exists c ∈ L such that g(c, Y ) is not identically
0. Since A has more than deg g(c, Y ) many elements, it follows that there must be a ∈ A
such that g(c, a) 6= 0. Consequently, g(X, a) is not identically 0. But since A has more
than deg g(X, a) many elements, this contradicts the fact that g(X, a) vanishes on A.
This contradiction shows that g(c, Y ) is identically 0 for all c ∈ L. That is, g vanishes on
L×L. Since this holds for all extension fields L of K, we have proved that f is additive.

By what we have shown, g(c, Y ) vanishes identically for every c in any extension field
of K. That means that the polynomial g(X,Y ) ∈ K(Y )[X] has infinitely many zeros.
Hence, it must be identically 0. Write f = dnX

n + . . .+ d0 . Then g(X,Y ) is the sum of
the forms dj(X + Y )j − djX

j − djY
j of degree j, 1 ≤ j ≤ deg f . Since g is identically

0, the same must be true for each of these forms and thus for all (X + Y )j − Xj − Y j

for which dj 6= 0. But (X + Y )j − Xj − Y j ≡ 0 can only hold if j is a power of the
characteristic exponent of K. Hence, dj = 0 if j is not a power of p. Setting ci := dpi , we
see that f is of the form (2). 2

Proof of Theorem 1: Suppose that f ∈ K[X] is additive. Then the polynomial g
defined in (16) vanishes on every extension field L of K. Choosing L to be infinite and
taking A = L, we obtain from the foregoing lemma that f is of the form (2).

Conversely, for every i ∈ N, the mapping x 7→ xpi

is a homomorphism on every field
of characteristic exponent p. Hence, every polynomial ciX

pi

is additive, and so is the
polynomial

∑m
i=0 ciX

pi

. 2

Corollary 23 Take f ∈ K[X].
a) If f is additive, then the set of its roots in the algebraic closure K̃ of K is a subgroup
of the additive group of K̃. Conversely, if the latter holds and f has no multiple roots,
then f is additive.
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b) If f satisfies condition (1) on a field with at least deg f many elements, then f is
additive.

Proof: a): If f is additive and a, b are roots of f , then f(a + b) = f(a) + f(b) = 0;
hence a+ b is also a root. Further, f(0) = f(0 + 0) = f(0) + f(0) shows that 0 = f(0) =
f(a− a) = f(a) + f(−a) = f(−a), so 0 and −a are also roots. This shows that the set of
roots of f form a subgroup of (K̃,+).

Now assume that the set A of roots of f forms a subgroup of (K̃,+), and that f has
no multiple roots. The latter implies that A has exactly deg f many elements. Since
A+A = A, the polynomial g(X,Y ) = f(X+Y )−f(X)−f(Y ) vanishes on A×A. Hence
by Lemma 22, f is additive.

b): This is an immediate application of Lemma 22. 2

Exercise 1 a) Let K be any finite field. Give an example of a polynomial f ∈ K[X] which is not
additive but induces an additive mapping on (K,+).
b) Show that the second assertion in part a) of Corollary 23 fails if we drop the condition that f has no
multiple roots. Replace this condition by a suitable condition on the multiplicity of the roots.
c) Deduce Corollary 23 from the theorem of Artin as cited in [L], VIII, §11, Theorem 18.

4 Rings of additive polynomials

This section is devoted to the structure of rings of additive polynomials. Euclidean division
is discussed in the following

Proof of Theorem 2: Take s =
∑m

i=0 ciϕ
i and s′ =

∑n
i=0 diϕ

i. If deg s′ < deg s, then
we set q = 0 and r = s′. Now assume that deg s′ = n ≥ m = deg s. Then

deg(s′ − dnc
−pn−m

m ϕn−m s) ≤ n− 1 < deg s′ .

Now take q ∈ K[ϕ] such that deg(s′ − qs) is minimal. Then deg(s′ − qs) < deg s.
Otherwise, we could apply the above to s′−qs in the place of s′, finding some q′ ∈ R such
that deg(s′ − (q + q′)s) = deg(s′ − qs− q′s) < deg(s′ − qs) contradicting the minimality
of q. Setting r = s′ − qs, we obtain s′ = qs+ r with deg r < deg s. We have proved that
K[ϕ] is left euclidean. If K is perfect, hence K = Kpm

, then we also have

deg(s′ − s (c−1
m dn)1/pm

ϕn−m) ≤ n− 1 < deg s′ ,

and in the same way as above one deduces that K[ϕ] is right euclidean.
Now assume that K is not perfect and choose some element c ∈ K not admitting a

p-th root in K. Then Kp ∩ cKp = {0} and

ϕK[ϕ] ∩ cϕK[ϕ] = {0}
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since every nonzero additive polynomial in the set ϕK[ϕ] has coefficients in Kp whereas
every nonzero additive polynomial in cϕK[ϕ] has coefficients in cKp. 2

Remark 24 Let us state some further properties of the ring K[ϕ] which follow from
Theorem 2. More generally, let R be any left principal ideal domain. Then R is a left
free ideal ring (fir), and it is thus a semifir, i.e., every finitely generated left or right
ideal is free of unique rank (note that this property is left-right symmetrical, cf. [C2],
Chapter 1, Theorem 1.1). Consequently, every finitely generated submodule of a (left or
right) free R-module is again free, cf. [C2], Chapter 1, Theorem 1.1 . On the other hand,
every finitely generated torsion free (left or right) R-module is embeddable in a (finitely
generated) free R-module if and only if R is right Ore, cf. [C2], Chapter 0, Corollary 9.5
and [Ge], Proposition 4.1 . Being a semifir, R is right Ore if and only if it is a right
Bezout ring. But if R is not right Ore, then it contains free right ideals of arbitrary finite
or countable rank, and R is thus not right noetherian, cf. [C2], Chapter 0, Proposition 8.9
and Corollary 8.10 . Every projective (left or right) R-module is free, cf. [C2], Chapter 1,
Theorem 4.1 . A right R-module is flat if and only if it is torsion free, and a left R-module
M is flat if and only if every finitely generated submodule of M is free, cf. [C2], Chapter 1,
Corollary 4.7 and Proposition 4.5 . In view of the above, the latter is the case if and only
if every finitely generated submodule of M is embeddable in a free R-module. Further, a
left R-module M is flat if and only if for every n ∈ N and all right linearly independent
elements r1, . . . , rn ∈ R,

∀x1, . . . , xn ∈M :
∑

rixi = 0 ⇒ ∀i : xi = 0 ,

cf. [C1], Chapter 1, Lemma 4.3 . As a semifir, R is a coherent ring. Finally, since R is left
Ore, it can be embedded in a skew field of left fractions, cf. [C2], Chapter 0, Corollary 8.7 .

Note that in particular, the above shows that all finitely generated torsion free (left
or right) K[ϕ]-modules are free if and only if K is perfect, that is, K[ϕ] is euclidean on
both sides.

Exercise 2 Describe the relation of the degree functions on K[X] and K[ϕ] via the correspondence (3),
giving thereby a proof of deg rs = deg r + deg s. Show that it also satisfies deg r + s ≤ max{deg r,deg s}
with equality holding if deg r 6= deg s. Can it be transformed into a valuation?

5 Frobenius-closed bases of function fields

In this section, we prove the existence of Frobenius-closed bases of algebraic function fields
F |K of transcendence degree 1, and exhibit the connection between their existence and
the structure of F as a K[ϕ]-module (for arbitrary transcendence degree).

Take an arbitrary extension F |K of fields of characteristic p > 0. Recall that a K-basis
B of F is called Frobenius-closed if Bp ⊂ B, where Bp = {bp | b ∈ B} = ϕB. In [Ku9]
we need Frobenius-closed bases because they have the following property:
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Lemma 25 Take a Frobenius-closed basis zj, j ∈ J , of F |K. If the sum

s =
∑

i∈I

cizi , ci ∈ K , I ⊂ J finite

is a p-th power, then for every i ∈ I with ci 6= 0, the basis element zi is a p-th power of a
basis element.

Proof: Assume that

s =


 ∑

j∈J0

cj
′zj




p

, cj
′ ∈ K

where J0 ⊂ J is a finite index set. Then

∑

i∈I

cizi = s =
∑

j∈J0

(cj
′)pzp

j

where the elements zp
j are also basis elements by hypothesis, which shows that every zi

which appears on the left hand side (i.e., ci 6= 0) equals a p-th power zp
j appearing on the

right hand side. 2

We will show the existence of Frobenius-closed bases for algebraic function fields of
transcendence degree 1 over a perfect field of characteristic p > 0, provided that K is
relatively algebraically closed in F . We first prove the following:

Lemma 26 If F is an algebraic function field of transcendence degree 1 over an alge-
braically closed field K of arbitrary characteristic and q is an arbitrary natural number
> 1, then there exists a basis of F |K which is closed under q-th powers.

If F = K(x) is a rational function field, then our lemma follows from the Partial Fraction
Decomposition: Every element f ∈ F has a unique representation

f = c+
∑

n>0

cnx
n +

∑

a∈K

∑

n>0

ca,n
1

(x− a)n

where only finitely many of the coefficients c, cn, ca,n ∈ K are nonzero. If we put

ta =
1

x− a
, t∞ = x

then it follows that the elements

1, tna with a ∈ K ∪ {∞}, n ∈ N

form a K-basis of F ; this basis has the property that every power of a basis element is
again a basis element.
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For general function fields the Partial Fraction Decomposition remains true in a modi-
fied form (according to Helmut Hasse) that we shall describe now. At this point, we need
the Riemann-Roch Theorem. In order to apply it, we have to introduce some notation.
In what follows, we always assume that K is relatively algebraically closed in F . A di-
visor of F |K is an element of the (multiplicatively written) free abelian group generated
by all places of F |K. (By a place of F |K we mean a place of F which is trivial on K,
i.e., P |K = id. We identify equivalent places.) The places themselves are called prime
divisors. A divisor may thus be written in the form

A =
∏

P

P vP A

where the product is taken over all places of F |K and the vPA are integers, only finitely
many of them nonzero. The degree of a non-trivial place P of F |K, denoted by degP ,
is defined to be the degree [FP : K] (which is finite since F |K is an algebraic function
field in one variable). Accordingly, the degree of a divisor A, denoted by degA, is
defined to be the integer

∑
P vPA · degP . By the symbol “vP ” we will also denote the

valuation on F which is associated with the place P . Following the notation of [F–Jr], we
set

L(A) := {f ∈ F | vPf ≥ −vPA for all places P of F |K}

is a K-vector space. Indeed, 0 ∈ L(A) since vP 0 = ∞ > −vPA for all places P of F |K.
Further, vP (K×) = {0}, hence ∀c ∈ K× : vP (cf) = vPf for all P , so f ∈ L(A) implies
cf ∈ L(A). Finally, if f, g ∈ L(A), then vP (f − g) ≥ min{vPf, vPg} ≥ −vPA for all P ,
hence f − g ∈ L(A). We write

dimA := dimK L(A) .

The divisor A determines bounds for the zero and pole orders of the algebraic functions
in L(A). For example, if A = P n with n a natural number, then f ∈ L(A) if and only if
f has no pole at all (in which case it is a constant function) or has a pole at P of pole
order at most n = vPA.

Theorem 27 (Riemann-Roch)
Let F |K be an algebraic function field in one variable with K relatively algebraically closed
in F . There exists a smallest non-negative integer g, called the genus of F |K, such that

dimA ≥ degA− g + 1

for all divisors A of F |K. Furthermore,

dimA = degA− g + 1

whenever degA > 2g − 2.
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For a proof, see [Deu].

Let P∞ be a fixed place of F |K and R∞ the ring of all f ∈ F which satisfy vPf ≥ 0
for every P 6= P∞. The following is an application of the Riemann-Roch Theorem:

Corollary 28 For every P 6= P∞ there exists an element tP ∈ F such that

vP tP = −1

vQtP ≥ 0 for Q 6= P, P∞ .

Proof: If we choose n ∈ N as large as to satisfy n degP∞ > 2g − 2, then by the
Riemann-Roch Theorem,

dim(PP n
∞) = degP + n degP∞ − g + 1 > n degP∞ − g + 1 = dimP n

∞ .

Hence there is an element tP ∈ L(PP n
∞)\L(P n

∞). This element has the required properties.
2

We return to the proof of our lemma, assuming that K is algebraically closed. Hence,
K is the residue field of every place P of F |K (that is, degP = 1). Every tP of the
foregoing corollary is the inverse of a uniformizing parameter for P . Every f ∈ F can
be expanded P -adically with respect to such a uniformizing parameter, and the principal
part appearing in this expansion has the form

hP (f) =
∑

n>0

cP,nt
n
P ,

where only finitely many of the coefficients cP,n ∈ K are nonzero, namely n ≤ −vPf .
By construction, tP has only a single pole 6= P∞ and this pole is P ; the same holds for
hP (f) (if hP (f) 6= 0). Consequently,

h = f −
∑

P 6=P∞

hP (f)

has no pole other than P∞ and is thus an element of R∞. We have shown that f has a
unique representation

f = h+
∑

P 6=P∞

∑

n>0

cP,nt
n
P

with coefficients cP,n ∈ K and an element h ∈ R∞. This shows that the elements

tnP with P 6= P∞, n ∈ N

form a K-basis of F modulo R∞ which has the property that every power of a basis
element is again a basis element.
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Now it remains to show that R∞ admits a basis which is closed under q-th powers. An
integer n ∈ N is called pole number of P∞ if there exists tn ∈ R

∞ such that vP∞
tn = −n.

Let H∞ ⊆ N be the set of all pole numbers. Fixing a tn for every n ∈ H∞ , we get a
K-basis

1, tn with n ∈ H∞

of R∞. To get a basis which is closed under q-th powers, we have to carry out our choice
as follows:

Observe that H∞ is closed under addition; in particular

qH∞ ⊂ H∞ .

For every m ∈ H∞ \ qH∞ we choose an arbitrary element tm ∈ R
∞ with vP∞

tm = −m.
Every n ∈ H∞ can uniquely be written as

n = qνm where ν ≥ 0 and m ∈ H∞ \ qH∞ .

Accordingly we put
tn = t qν

m

which implies
vP∞

tn = qν · vP∞
tm = −qνm = −n .

This construction produces a K-basis

1, t qν

m with m ∈ H∞ \ qH∞, ν ≥ 0

of R∞, which is closed under q-th powers. This concludes the proof of our lemma.

For the generalization of this lemma to perfect ground fields of characteristic p > 0
we have to choose q = p.

Proof of Theorem 10: We have to prove:

Let F be an algebraic function field of transcendence degree 1 over a perfect field K of
characteristic p > 0. If K is relatively algebraically closed in F , then there exists a
Frobenius-closed basis for F |K.

If K is not algebraically closed, we have to modify the proof of the previous lemma since
not every place P of K has degree 1. (Such a modification is also necessary for the Partial
Fraction Decomposition in K(x) if K is not algebraically closed.) The modification reads
as follows:

For every place P of F |K, let

dP = degP = [FP : K]

be the degree of P . For every P 6= P∞ we choose elements uP,i ∈ R
∞, 1 ≤ i ≤ dP , such

that their residues uP,1P, ..., uP,dP
P form a K-basis of FP . We note that for every ν ≥ 0,
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the pν-th powers upν

P,i of these elements have the same property: their P -residues also form
a K-basis of FP since K is perfect.
We write every n ∈ N in the form

n = pνm with m ∈ N, (p,m) = 1, ν ≥ 0

and observe that the elements

upν

P,i t
n
P with P 6= P∞, n ∈ N, 1 ≤ i ≤ dP

form a Frobenius-closed K-basis of F modulo R∞.

It remains to construct a Frobenius-closed K-basis of R∞. This is done as follows: We
consider the K-vector spaces

Ln = L(P n
∞) = {x ∈ F | vP∞

x ≥ −n and vP (x) ≥ 0 for P 6= P∞} .

By our assumption that K is relatively algebraically closed in F , we have L0 = K.
Further,

R∞ =
⋃

n∈N

Ln .

We set
d∞,n := dimLn/Ln−1 ≥ 0 .

(Note that by the Riemann-Roch Theorem, d∞,n = [FP∞ : K] for large enough n; cf. the
proof of the above corollary.) Now for n = 1, 2, ... we shall choose successively basis
elements tn,i ∈ Ln modulo Ln−1 . Then the elements

1, tn,i with n ∈ N, 1 ≤ i ≤ d∞,n

form a K-basis of R∞. To obtain that this basis is Frobenius-closed, we organize our
choice as follows:

If n = pm, the p-th powers tpm,i ∈ Ln are linearly independent modulo Lp(m−1) and
even modulo Lpm−1 = Ln−1. This fact follows from our hypothesis that K is perfect: the
existence of nonzero elements ci ∈ K with

∑
cit

p
m,i ∈ Lpm−1, i.e., vP∞

∑
cit

p
m,i > −pm,

would yield vP∞

∑
c
1/p
i tm,i > −m, hence ≥ −m + 1, showing that

∑
c
1/p
i tm,i ∈ Lm−1,

which is a contradiction. In our choice of the elements tn,i we are thus free to take all the
elements tpm,i and to extend this set to a basis of Ln modulo Ln−1 by arbitrary further
elements, if necessary (for n large enough, the elements tpm,i will already form such a
basis). This procedure guarantees that the p-th power of every basis element tm,i is again
a basis element, namely equal to tpm,j for suitable j. Hence a basis constructed in this
way will be Frobenius-closed. 2

Let F |K be an arbitrary extension of fields of characteristic p > 0. Both F and K
are K[ϕ]-modules, and so is the quotient module F/K . Suppose that F/K is a free
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K[ϕ]-module. Then it admits a K[ϕ]-basis. Let B0 ⊂ F be a set of representatives for
such a K[ϕ]-basis of F/K. It follows that

B =
∞⋃

n=0

Bpn

0 ∪ {1} =
∞⋃

n=0

ϕnB0 ∪ {1}

is a set of generators of the K-vector space F . By our construction of B, every K-linear
combination of elements of B\{1}may be viewed as aK[ϕ]-linear combination of elements
of B0 . This shows that the elements of B are K-linearly independent, and B is thus a
Frobenius-closed basis of F |K. Note that B0 is the basis of a free K[ϕ]-submodule M of
F which satisfies F = M ⊕K .

The converse to this procedure would mean to extract aK[ϕ]-basisB0 from a Frobenius-
closed K-basis B. But B0 can only be found if for every element b ∈ B \{1} there is some
element b0 which is not a p-th power in F and such that b = bp

n

0 for some n ∈ N ∪ {0} .
This will hold if no element of F \K has a pn-th root for every n ∈ N.

Lemma 29 If F |K is an algebraic function field (of arbitrary transcendence degree), and
if K is relatively algebraically closed in F , then no element of F \K has a pn-th root for
every n ∈ N.

Proof: Let f ∈ F \K. Since K is relatively algebraically closed in F , we know that f
is transcendental over K. So we may choose a transcendence basis T of F |K containing
f . We may choose a K-rational valuation v on the rational function field K(T ) such that
the values of all elements in T are rationally independent (cf., e.g., [Ku7]). This yields
that vK(T ) =

⊕
t∈T Zvt. In particular, vf is not divisible by p in vK(T ). Since F |K(T )

is finite, the same is true for (vF : vK(T )) by the fundamental inequality (4). This yields
that there is some n ∈ N such that vf is not divisible by pn in vF . Hence, f does not
admit a pn-th root in F . 2

This lemma shows that if F |K is an algebraic function field with K relatively alge-
braically closed in F , admitting a Frobenius-closed basis B and if we let B0 be the set of all
elements in B which do not admit a p-th root in F , then we obtain B =

⋃∞
n=0B

pn

0 ∪ {1}.
Since the elements of B are K-linearly independent, the elements of B0 are K[ϕ]-linearly
independent over K. Moreover, B0 is a set of generators of the K[ϕ]-module F over K.
Hence, the set B0/K is a K[ϕ]-basis of F/K . We have thus proved:

Proposition 30 Let F |K be an algebraic function field (of arbitrary transcendence de-
gree), and K relatively algebraically closed in F . Then F admits a Frobenius-closed K-
basis if and only if F/K is a free K[ϕ]-module.

This lemma shows that Theorem 10 implies Theorem 11.

Open Problem 9 Do Theorems 10 and 11 also hold for transcendence degree > 1?
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Open Problem 10 Do Theorems 10 and 11 also hold if the assumption thatK be perfect
is replaced by the assumption that F |K be separable? Note that if K is not perfect, then
there exist places P of F |K such that FP |K is not separable, even if F |K is separable.
In this case, the construction of the proof of Theorem 10 breaks down and it cannot be
expected that there is a Frobenius-closed K-basis of F which is as “natural” as the ones
produced by that construction.

Exercise 3 Show that F/K cannot be a free K[ϕ]-module if K is not relatively algebraically closed in
F . Does there exist an algebraic field extension which admits a Frobenius-closed basis? Prove a suitable
version of Proposition 30 which does not use the assumption that K be relatively algebraically closed in
F .

6 G-modules and group complements

In this section, we introduce some notions that we will need in the next section. Take any
group G. For σ ∈ G, conjugation by σ means the automorphism

G 3 τ 7→ τσ := σ−1τσ .

Note that
τσρ = ρ−1σ−1τ σ ρ = ρ−1(τσ)ρ = (τσ)ρ for all τ, σ, ρ ∈ G . (17)

Further, we set τ−σ := (τ−1)σ (which indeed is the inverse of τσ). As usual, we set
Mσ = {mσ | m ∈M} for every subset M ⊂ G. A subgroup N is normal in G if and only
if Nσ = N for all σ ∈ G. We always have Gσ = G. Hence, if H is a group complement
of the normal subgroup N in G, that is,

HN = G and H ∩N = {1} , (18)

then so is every conjugate Hσ for σ ∈ G. Uniqueness up to conjugation would mean that
these are the only group complements of N in G.

We shall now introduce two notions that will play an important role in Section 7. A
right G-module is an arbitrary group N together with a mapping µ from G into the
group of automorphisms of N such that µ(σρ) = µ(ρ) ◦ µ(σ). For example, to every
σ ∈ G we may associate the conjugation by σ; in view of (17), this turns G into a right
G-module. In this setting, a subgroup N of G is normal if and only if it is a G-submodule
of G. A mapping φ from G into a G-module N is called a twisted homomorphism (or
crossed homomorphism) if it satisfies

φ(σρ) = φ(σ)ρφ(ρ) for all σ, ρ ∈ G . (19)

As for a usual homomorphism, also the kernel of a twisted homomorphism is a subgroup
of G, but it may not be normal in G.
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Let us assume that H is a group complement of the normal subgroup N in G. It
follows from (18) that every element σ ∈ G admits a unique representation

σ = σHσN with σH ∈ H , σN ∈ N (20)

Note that H is a system of representatives for the left cosets of G modulo N . Since N�G,
we have HN = NH, and H is also a system of representatives for the right cosets of G.

Now assume in addition that N is abelian. Then the scalar multiplication of the
G-module N given by conjugation reads as

σρ = ρ−1
N (ρ−1

H σρH)ρN = ρ−1
H σρH = σρ

H for all σ ∈ N , ρ ∈ G (21)

since ρN and ρ−1
H σρH are elements of N . According to (20) and (21) we write

σρ = σHσNρHρN = σHρHρ
−1
H σNρHρN = σHρHσ

ρ
NρN .

Hence, the projection σ 7→ σH onto the first factor in (20) is the canonical epimorphism
from G onto H with kernel N . The other projection σ 7→ σN is a twisted homomorphism
from G onto N , satisfying

(σρ)N = σρ
NρN for all σ, ρ ∈ G ; (22)

it induces the identity on N , and its kernel is H.

7 Field extensions generated by p-polynomials

In this section, let K be a field of characteristic p > 0. By a Galois extension
we mean a normal and separable, but not necessarily finite algebraic extension. A field
extension L|K is called p-elementary extension if it is a finite Galois extension and its
Galois group is an elementary-abelian p-group, that is, an abelian p-group in which every
nonzero element has order p. In particular, [L : K] is a power of p.

In this section, we will consider the following larger class of all extensions L|K which
satisfy the following condition:

there exists a Galois extension K ′|K which is linearly disjoint from L|K,
such that L.K ′|K ′ is a p-elementary extension
and also L.K ′|K is a Galois extension.





(23)

From the linear disjointness it follows that GalL.K ′|L ' GalK ′|K and that [L : K] =
[L.K ′ : K ′] which yields that [L : K] = pn for some natural number n. For a further
investigation of this situation, we will use the following notation. We set

L′ := L.K ′
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and define

• G := GalL′|K ,
• N := GalL′|K ′

�G ,
• H := GalL′|L ' GalK ′|K ' G/N .

The group N is abelian of order pn. Since K ′|K is assumed to be a Galois extension, N is
a normal subgroup of G. That is, N is a right G-module with scalar multiplication given
by conjugation:

(σ, τ) 7→ στ = τ−1στ for all σ ∈ N , τ ∈ G .

Since L.K ′ = L′ and L ∩K ′ = K, we have that H ∩N = 1 and G = HN , that is, H is a
group complement for N in G. As we have seen in the last section, every element σ ∈ G
admits a unique representation (20). Since N is abelian, the scalar multiplication of the
G-module N is given by (21). The projection σ 7→ σN is a twisted homomorphism from
G onto N , satisfying (22); it induces the identity on N , and its kernel is H.

Lemma 31 If L|K satisfies condition (23) then w.l.o.g., the extension K ′|K may as-
sumed to be finite (which yields that also L′|K is finite).

Proof: Suppose that K ′|K is an arbitrary algebraic extension such that (23) holds. Let
N0 := {τ ∈ G | ∀σN ∈ N : τ−1σNτ = σN} be the subgroup of all automorphisms in G
whose action on N is trivial (i.e., N0 is the centralizer of N in G). Since N is abelian, it
is contained in N0 . Consequently, the fixed field K0 of N0 in L′ is contained in K ′ (which
is the fixed field of N in L′ by definition of N). Since N is a normal subgroup of G, also
its centralizer N0 is a normal subgroup of G, showing that K0|K is a Galois extension.
We set H0 := G/N0. By our choice of N0 , the action of G on N induces an action of H0

on N which is given by ρ−1σNρ = τ−1σNτ for ρ = τN0 ∈ H0 . Consequently, H0 must be
finite, being a group of automorphisms of the finite group N . This proves that K0|K is
a finite Galois extension with Galois group H0 . Recall that it follows from (23) that also
L|K is finite.

We claim thatH∩N0 is a normal subgroup ofG. Let τ ∈ H∩N0 and σ ∈ G; we want to
show that τσ ∈ H ∩N0. Write σ = σHσN according to (20). Then τσ = σ−1

N (σ−1
H τσH)σN ;

since σH ∈ H and N0�G, we find that τ ′ := σ−1
H τσH ∈ H∩N0. In particular, τ ′ lies in the

centralizer of N . In view of σN ∈ N we obtain τσ = σ−1
N τ ′σN = σ−1

N σNτ
′ = τ ′ ∈ H ∩N0.

We have proved that H ∩N0 is a normal subgroup of G. With L0 the fixed field of H ∩N0

in L′, we hence obtain a Galois extension L0|K. Since L0 = L.K0, the extension L0|K is
finite.

Finally, it remains to show that GalL0|K0 ' GalL′|K ′ which also yields that L0|K0

is p-elementary. Observe that HN0 = G since it contains HN = G. Now we compute:
GalL0|K0 = GalL′|K0 /GalL′|L0 = N0/(H ∩N0) ' H.N0/H = G/H ' N = GalL′|K ′.
We have proved that condition (23) also holds with K0 , L0 in the place of K ′ , L′. 2
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In view of this lemma, we will assume in the sequel that all field extensions
are finite.

Like N , also the additive group (L′,+) is a right G-module, the scalar multiplication
given by

(a, τ) 7→ aτ := τ−1a for all a ∈ L′ , τ ∈ G .

Let us show:

Lemma 32 There is an embedding φ : N −→ (L′,+) of right G-modules.

Proof: By the Normal Basis Theorem (cf. [L]), the finite Galois extension K ′|K admits
a normal basis. That is, there exists b ∈ K ′ such that bρ, ρ ∈ GalK ′|K , is a basis of K ′

over K. Since H is a set of representatives in G for GalK ′|K, we may represent these
conjugates as bρ, ρ ∈ H. Let ψ : N → (K,+) be any homomorphism of groups (there is
always at least the trivial one), and set

φ(σN) :=
∑

ρ∈H

ψ(ρσNρ
−1) bρ for all σN ∈ N . (24)

Since ψ is a group homomorphism fromN into (L′,+), the same is true for φ. Given τ ∈ G,
we write τ = τHτN ; then bρτ = (bρτ

H )τ
N = bρτ

H since bρτ
H ∈ K ′ and τN ∈ N = GalL′|K ′.

Observing also that H = HτH and using (21), we compute:

φ(σN)τ =
∑

ρ∈H

ψ(ρσNρ
−1) bρτ =

∑

ρ∈H

ψ(ρτ−1
H σN(ρτ−1

H )−1) bρ

=
∑

ρ∈H

ψ(ρσ
τ
H

N ρ−1) bρ = φ(σ
τ
H

N ) = φ(στ
N)

which shows that φ is a homomorphism of right G-modules.
Now we have to choose ψ so well as to guarantee that φ becomes injective. If φ(σN) = 0

then ψ(ρσNρ
−1) = 0 for all ρ ∈ H since by our choice of b, the conjugates bρ, ρ ∈ H,

are linearly independent over K. In particular, φ(σN) = 0 implies ψ(σN) = 0. Hence, φ
will be injective if we are able to choose ψ to be injective. This is done as follows. The
elementary-abelian p-group N may be viewed as a finite-dimensional Fp-vector space.
If K is an infinite field (which by our general assumption has characteristic p), then it
contains Fp-vector spaces of arbitrary finite dimension; so there exists an embedding ψ of
N into (K,+). If K is a finite field, then all finite extensions of K are cyclic, their Galois
groups being generated by a suitable power of the Frobenius ϕ; consequently, N must be
cyclic. Since it is also elementary-abelian, N is isomorphic to Z/pZ which is the additive
group of Fp ⊂ K. Hence also in this case, N admits an embedding ψ into (K,+). 2

By composition with φ, the twisted homomorphism σ 7→ σN is turned into a mapping
σ 7→ φ(σN) from G into (L′,+). We shall write φ(σ) instead of φ(σN), thereby considering
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the G-module homomorphism φ : N → (L′,+) as being extended to φ : G → (L′,+).
By construction, the latter has kernel H and is injective on N . Further, it satisfies
φ(στ) = φ((στ)N) = φ(στ

NτN) = φ(σN)τ + φ(τN) = φ(σ)τ + φ(τ) showing that φ is a
twisted homomorphism in the following sense:

φ(στ) = φ(σ)τ + φ(τ) for all σ, τ ∈ G . (25)

We claim that there exists an element ϑ ∈ L′ such that

ϑτ = ϑ+ φ(τ) for all τ ∈ G . (26)

Note that (26) determines ϑ up to addition of elements from K. (Indeed, ϑ′ satisfies the
same equation if and only if (ϑ− ϑ′)τ = ϑ− ϑ′, i.e., if and only if ϑ− ϑ′ ∈ K.)

The element ϑ can be constructed as follows. We choose an element a ∈ L′ such that
the trace s := TrL′|K(a) =

∑
σ∈G σa =

∑
σ∈G a

σ is not zero (we have seen in the foregoing
proof that such an element exists: we could choose a to be the generator of a normal basis
of L′|K; the linear independence will then force the trace to be nonzero). We set

ϑ := −
1

s

∑

σ∈G

φ(σ) aσ . (27)

Given τ ∈ G, we have Gτ = G and

1 =
1

s

∑

σ∈G

aσ =
1

s

∑

σ∈G

aστ

which we use to compute

ϑτ = −
1

s

∑

σ∈G

φ(σ)τaστ = −
1

s

∑

σ∈G

((φ(σ)τ + φ(τ))aστ − φ(τ)aστ )

= −
1

s

∑

σ∈G

φ(στ)aστ + φ(τ)
1

s

∑

σ∈G

aστ

= −
1

s

∑

σ∈G

φ(σ)aσ + φ(τ)
1

s

∑

σ∈G

aσ = ϑ+ φ(τ) .

This proves that ϑ indeed satisfies (26).

Remark 33 The additive analogue of Hilbert’s Satz 90 (cf. [L] or [J], chapter 1, section
15) says that H1(G, (L′,+)) = 0. Since the twisted homomorphism φ : G → (L′,+)
may be interpreted as a 1-cocycle, this implies that φ splits, which indicates the existence
of ϑ. Replacing the twisted homomorphism φ by an arbitrary 1-cocycle in our above
computation provides a proof of this additive analogue.
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Since H is the kernel of φ, (26) yields that H is the group of all automorphisms of L′|K
which fix ϑ. Since on the other hand, by definition of H = GalL′|L the fixed field of H
in L′ is L, we know from Galois theory that L = K(ϑ). Let us now compute the minimal
polynomial f of ϑ over K. The group N may be viewed as a system of representatives
for the left cosets of G modulo H. Consequently, the elements ϑτ , τ ∈ N , are precisely
all conjugates of ϑ over K. So

f(X) =
∏

τ∈N

(X − ϑτ ) =
∏

τ∈N

(X − ϑ− φ(τ)) = A(X − ϑ) ,

where
A(X) :=

∏

τ∈N

(X − φ(τ)) .

The roots of A form the additive group φ(N). Since we have chosen φ to be injective, we
have |φ(N)| = |N | = degA. By part a) of Corollary 23 it follows that A is an additive
polynomial. In particular,

f(X) = A(X − ϑ) = A(X)−A(ϑ) .

Since f(X) ∈ K[X], we have A(X) ∈ K[X] and A(ϑ) ∈ K. Since deg f = degA = |N | =
[L : K] = [K(ϑ) : K], f is the minimal polynomial of ϑ over K.

We have proved:

Theorem 34 Let L|K be an extension which satisfies condition (23). Then there exist
an additive polynomial A(X) ∈ K[X] and an element ϑ ∈ L such that L = K(ϑ) and
A(X)−A(ϑ) ∈ K[X] is the minimal polynomial of ϑ over K.

As an example, let us discuss an important special case. Let us assume that L|K is
a Galois extension of degree p. Then its Galois group is just Z/pZ, and the extension
is thus p-elementary. In the above setting, we may then choose K ′ = K which yields
L′ = L, G = N = Z/pZ and H = 1. The embedding φ : N −→ (L′,+) may be chosen
“by hand” to be the most natural one: N = Z/pZ = (Fp,+) ⊂ (L′,+). We obtain

A(X) =
∏

i∈Fp

(X − i) = Xp −X

since the latter is the unique polynomial of degree p which vanishes on all elements
of Fp. The extension L|K is thus generated by the root ϑ of the polynomial f(X) =
Xp−X−A(ϑ) which we call an Artin-Schreier polynomial. The extension L|K is an
Artin-Schreier extension. So we have shown:

Theorem 35 Every Galois extension of degree p of a field of characteristic p > 0 is an
Artin-Schreier extension.
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Inspired by this special case, we want to investigate whether we can get more infor-
mation about the additive polynomial A if we strengthen the hypotheses. For instance,
φ may be injective even if ψ is not. In our special case, N = Z/pZ was an irreducible
G-module, that is, it did not admit any proper nonzero G-submodule. But if N is an
irreducible G-module, then every G-module homomorphism φ can only have kernel 0 or
N , so if it does not vanish, then it is injective. For φ as defined in (24), we obtain φ 6= 0
if ψ 6= 0. So it will suffice to take ψ : N → (Fp ,+) as a nonzero (additive) character; it
exists since N is a non-trivial p-group. With this choice of ψ, we obtain

φ(N) ⊂
∑

ρ∈H

Fp b
ρ =

∑

ρ∈H

Fp ρb .

Since the coefficients of the polynomial A are the elementary symmetric polynomials of
the elements φ(τ), τ ∈ N , they lie in the ring Fp[ ρb | ρ ∈ H].

The condition that N be an irreducible G-module has turned out to be of certain
importance. It is satisfied in the following special case:

Lemma 36 Assume that L|K is minimal with the property (23), that is, there is no proper
non-trivial subextension with the same property. Then N is an irreducible G-module.

Proof: Assume that M is a G-submodule of N , that is, M is a normal subgroup of G.
Then HM is a subgroup of G containing H. In view of the unique representation (20), we
have HM = H if and only if M = 1 and HM = G if and only if M = N . Note that the
fixed field L′

1 of M in L′ is a Galois extension of K containing K ′. Further, the fixed field
L1 of HM is contained in L, and it satisfies L1.K

′ = L′
1 since HM ∩N = M ∩N = M .

Consequently, also L1|K has property (23).
Suppose now that L|K is minimal with the property (23). Then L1 = L or L1 = K.

Hence HM = H or HM = G, that is, M = 1 or M = N , showing that the G-module N
is irreducible. 2

We summarize our preceding discussion in the following

Lemma 37 Assume that L|K is minimal with the property (23). If K ′|K is infinite, we
may replace it by a suitable finite subextension. For every b ∈ K ′ generating a normal
basis of K ′|K, and for every nonzero additive character ψ : N → (Fp,+), the G-module
homomorphism φ defined in (24) is injective. Moreover, the coefficients of the correpond-
ing additive polynomial A(X) lie in the ring

K ∩ Fp[ ρb | ρ ∈ H] .

Exercise 4 Let char K = p > 0 and L|K be an Artin-Schreier extension and ϑ an Artin-Schreier

generator of L|K, that is, L = K(ϑ) and ϑp − ϑ ∈ K. Show that all other Artin-Schreier generators of
L|K are of the form iϑ + c with i ∈ {1, 2, . . . , p − 1} and c ∈ K. Can something similar be said in the
setting of Theorem 34? (Hint: use the uniqueness statement following equation (26)).
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8 Minimal purely wild extensions

This section is devoted to the proof of Theorem 13 which shows the important connec-
tion between purely wild (and in particular, immediate) extensions of henselian fields of
positive characteristic and additive polynomials.

Before we continue, we put together several facts from ramification theory that can
be found in [En], [N] and [Ku12] or can be deduced easily from other facts (exercise
for the reader). For a field L, we denote by L̃ its algebraic closure and by GalL the
absolute Galois group Gal L̃|L of L. Recall that for a henselian field (K, v), Kr denotes
the ramification field of the extension (Ksep|K, v).

Theorem 38 Let (K, v) be a henselian field and p the characteristic exponent of Kv.
Then the following assertions hold:

a) GalKr is a normal subgroup of GalK and Kr|K is a Galois extension.
b) GalKr is a pro-p-group, so the separable-algebraic closure of K is a p-extension of Kr.
c) The value group vKr consists of all elements in the ordered divisible hull of vK whose
order modulo vK is prime to p. The residue field Krv is the separable-algebraic closure
of Kv.
d) If vKr = vK (we say that Kr|K is unramified), then for every Galois subextension
K ′|K of Kr|K, we have GalK ′|K ' GalK ′v|Kv.
e) Every finite extension (K2|K1, v), where K ⊆ K1 ⊆ K2 ⊆ Kr, is defectless.
f) If L is an algebraic extension of K, then Lr = L.Kr, and the extensions (Lr|Kr, v)
and (L|K, v) have the same defect.
g) If (L, v) is an immediate henselian extension of (K, v), not necessarily algebraic, then
Lr = L.Kr.

Let (K, v) be a henselian field which is not tame and thus admits purely wild extensions
(see Theorem 14). Theorem 13 will follow from Theorem 34 if we are able to show that
every minimal purely wild extension L|K satisfies condition (23) which is the hypothesis
the latter theorem. As a natural candidate for an extension K ′|K which is Galois and
linearly disjoint from L|K, we can take the extension Kr|K. By part f) of Theorem 38
we know that L.Kr = Lr. We set

• G := GalK,
• N := GalKr, which is a normal subgroup of G and a pro-p-group,
• H := GalL, which is a maximal proper subgroup of G since L|K is a minimal non-
trivial extension, and which satisfies N .H = G since Kr|K is linearly disjoint from L|K
• D := N ∩H = GalL.Kr = GalLr .

The next lemma examines this group theoretical situation.

Lemma 39 Let G be a profinite group with maximal proper subgroup H. Assume that the
non-trivial pro-p-group N is a normal subgroup of G not contained in H. Then D = N∩H
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is a normal subgroup of G and the finite factor group N /D is an elementary-abelian p-
group. Further, N /D is an irreducible right G/D-module.

Proof: By the maximality of H, we have HN = G. Since N 6⊂ H, we have that D is
a proper subgroup of N . Since every maximal proper subgroup of a profinite group is of
finite index, we have that (N : D) = (G : H) is finite. Observe that D is H-invariant
(which means that Dσ = D for every σ ∈ H). This is true since N � G and H are H-
invariant. Assume that E is an H-invariant subgroup of N containing D. Then HE is a
subgroup of G containing H. From the maximality of H it follows that either HE = H or
HE = G, whence either E = D or E = N (this argument is as in the proof of Lemma 36).
We have proved that D is a maximal H-invariant subgroup of N .

Now let Φ(N ) be the Frattini subgroup of N , i.e., the intersection of all maximal
open subgroups of N . Since D 6= N , we can pick some maximal proper subgroup of N
containing D, and since it also contains Φ(N ), it follows that DΦ(N ) 6= N . Being a
characteristic subgroup of N , the Frattini subgroup Φ(N ) is H-invariant like N . Conse-
quently, also the group DΦ(N ) is H-invariant. From the maximality of D we deduce that
DΦ(N ) = D, showing that

Φ(N ) ⊂ D .

On the other hand, the factor groupN /Φ(N ) is a (possibly infinite dimensional) Fp-vector
space (cf. [R–Zal], part (b) of Lemma 2.8.7). In view of Φ(N ) ⊂ D, this yields that also
D is a normal subgroup of N and that also N /D is an elementary-abelian p-group. Since
D is H-invariant, D �N implies that

D �HN = G .

As a normal subgroup of G, N is a G-module, and in view of D � G it follows that N /D
is a G/D-module. If it were reducible then there would exist a proper subgroup E of N
such that E/D is a non-trivial G/D-module. But then, E must be a normal subgroup of
G properly containing D; in particular, E would be a proper H-invariant subgroup of N ,
in contradiction to the maximality of D. 2

This lemma shows that Lr|K is Galois and Lr = L.Kr is a finite p-elementary extension
of Kr. Hence L|K satisfies (23) with K ′ = Kr. We apply Theorem 34 to obtain an
additive polynomial A(X) ∈ K[X] and an element ϑ ∈ L such that L = K(ϑ) and that
A(X) − A(ϑ) is the minimal polynomial of ϑ over K. Since L|K is a minimal purely
wild extension by our assumption, it is in particular minimal with property (23) and thus
satisfies the hypothesis of Lemma 37. Hence, the extension Kr|K can be replaced by a
finite subextension K ′|K, and A(X) may be chosen such that its coefficients lie in the
ring K ∩ Fp[ ρb | ρ ∈ H], where b is the generator of a normal basis of K ′|K. Since vK

is cofinal in vK̃ = ṽK, we may choose some c ∈ K such that vcb ≥ 0. Since (K, v) is
henselian by assumption, it follows that vσ(cb) = vcb ≥ 0 for all σ ∈ GalK. On the other
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hand, cb is still the generator of a normal basis of K ′|K. So we may replace b by cb, which
yields that K ∩ Fp[ ρb | ρ ∈ H] ⊂ OK and consequently, that A(X) ∈ OK [X].

Now assume in addition that (K|k, v) is an immediate extension of henselian fields.
Then we may infer from part g) of Theorem 38 that Kr = kr.K . So the Galois extension
K ′ of K is the compositum of K with a suitable Galois extension k′ of k. In this case, b
may be chosen to be already the generator of a normal basis of k′ over k; it will then also
be the generator of a normal basis of K ′ over K. With this choice of b, we obtain that
the ring K ∩ Fp[ ρb | ρ ∈ H] is contained in K ∩ k′ = k, whence A(X) ∈ Ok[X]. Let us
summarize what we have proved; the following theorem will imply Theorem 13.

Theorem 40 Let (K, v) be a henselian field and (L|K, v) a minimal purely wild extension.
Then Lr|K is a Galois extension and Lr|Kr is a p-elementary extension. Hence, L|K
satisfies condition (23), and there exist an additive polynomial A(X) ∈ OK [X] and an
element ϑ ∈ L such that L = K(ϑ) and that A(X)−A(ϑ) is the minimal polynomial of ϑ
over K. If (K|k, v) is an immediate extension of henselian fields, then A(X) may already
be chosen in Ok[X].

Let us conclude this section by discussing the following special case. Assume that the
value group vK is divisible by all primes q 6= p. Then by part c) of Theorem 38, Kr|K is
an unramified extension. Consequently by part d) of Theorem 38, GalK ′|K ' GalK ′|K
and we may choose the element b such that b is the generator of a normal basis of K ′|K.
It follows that the residue mapping is injective on the ring Fp[ρb | ρ ∈ H] and thus, also
the mapping τ 7→ φ(τ) is injective. In this case, we obtain that

A(X) =
∏

τ∈N

(X − φ(τ))

has no multiple roots and is thus separable.

9 p-closed fields

This section is devoted to the proofs of the two theorems that deal with p-closed fields of
positive characteristic.

Proof of Theorem 5: We have to prove that

A field K is p-closed if and only if it does not admit any finite extensions of degree divisible
by p.

“⇐”: Assume that K does not admit any finite extensions of degree divisible by p. Take
any p-polynomial f ∈ K[X]. Write f = A+c where A ∈ K[X] is an additive polynomial.
Let h be an irreducible factor of f ; by hypothesis, it has a degree d not divisible by p. Fix
a root b of h in the algebraic closure K̃ of K. All roots of f are of the form b+ ai where
the ais are roots of A. By part a) of Corollary 23 the roots of A in K̃ form an additive
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group. The sum of the roots of h lies in K. This gives us db + s ∈ K, where s is a sum
of a subset of the ais and is therefore again a root of A. Likewise, d−1s is a root of A (as
d is not divisible by p, it is invertible in K). Then b + d−1s = d−1(db+ s) is a root of f ,
and it lies in K, as required.

“⇒”: (This part of the proof is apparently due to David Leep.) Assume that K is
p-closed. Since K is perfect, it suffices to take a Galois extension L|K of degree n and
show that p does not divide n. By the normal basis theorem there is a basis b1, . . . , bn of
L|K where the bis are the roots of some irreducible polynomial over K. Since they are
linearly independent over K, their trace is non-zero. The elements

1, b1, b
p
1, . . . , b

pn−1

1

are linearly dependent over K since [L : K] = n. Therefore there exist elements
d0, . . . , dn−1, e ∈ K such that the p-polynomial

f(X) = dn−1X
pn−1

+ . . .+ d0X + e

has b1 as a root. It follows that all the bis are roots of f . Thus the elements b2 −
b1, . . . , bn − b1 are roots of the additive polynomial f(X) − e. Since these n − 1 roots
are linearly independent over K, they are also linearly independent over the prime field
Fp . This implies that the additive group G generated by the elements b2− b1, . . . , bn− b1
contains pn−1 distinct elements, which therefore must be precisely the roots of f(X)− e.
So G + b1 is the set of roots of f . By hypothesis, one of these roots lies in K; call it ϑ.
There exist integers m2, . . . ,mn such that

ϑ = m2(b2 − b1) + . . .+mn(bn − b1) + b1 .

In this equation take the trace from L to K. The elements b1, . . . , bn all have the same
trace; hence the trace of every mi(bi − b1) is 0. It follows that the trace nϑ of ϑ is equal
to the trace of b1 ; as we have remarked already, this trace is non-zero. Hence nϑ 6= 0,
which shows that n is not divisible by p. 2

Proof of Theorem 6: We have to prove:

A henselian valued field of characteristic p > 0 is p-closed if and only if it is an alge-
braically maximal Kaplansky field.

We will use Theorem 5 throughout the proof without further mention. Assume first that
(K, v) is henselian and that K is p-closed. Since every finite extension of the residue field
Kv can be lifted to an extension of K of the same degree, it follows that Kv is p-closed.
Likewise, if the value group vK were not p-divisible, then K would admit an extension
of degree p; this shows that vK is p-divisible. We have thus proved that (K, v) is a
Kaplansky field. Since the degree of every finite extension of K is prime to p, it follows
that (K, v) is defectless, hence algebraically maximal.
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For the converse, assume that (K, v) is an algebraically maximal Kaplansky field. Since
the henselization is an immediate algebraic extension, it follows that (K, v) is henselian.
By Theorem 14, there exists a field complement W of Kr in K̃. As vK is p-divisible and
Kv is p-closed, hence perfect, the same theorem shows that W is an immediate extension
of K. Hence W = K, which shows that Kr = K̃. So every finite extension L|K is a
subextension of Kr|K and is therefore defectless; that is, [L : K] = (vL : vK)[Lv : Kv].
As the right hand side is not divisible by p, (K, v) being a Kaplansky field, we find that
p does not divide [L : K]. By Theorem 5, this proves that K is p-closed. 2
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réal, Montréal, 2nd ed. (1968)

[Roh] Rohwer, T. : Valued difference fields as modules over twisted polynomial
rings, Ph.D. thesis, Urbana (2003). Available at:

http://math.usask.ca/fvk/theses.htm
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