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1 Introduction

The topic of this work is a detailed study of credit default swaps within the framework of a reduced-
form model of credit risk. We start, in Section 2, by dealing with the valuation and trading of a
generic defaultable claim. The presentation in this section, although largely based on Section 2.1
in Bielecki and Rutkowski (2002), is adapted to our current purposes, and the notation is modified
accordingly. We believe that it is more convenient to deal with a generic dividend-paying asset,
rather than with a specific example of a credit derivative since most basic properties of prices of
defaultable assets and related trading strategies are already apparent in a general set-up. In Section
3, we first provide results concerning the valuation and trading of credit default swaps under the
assumption that the default intensity is deterministic and the interest rate is zero. Subsequently, we
derive a closed-form solution for replicating strategy for an arbitrary non-dividend paying defaultable
claim in a market in which a bond and a credit default swap are traded, and we examine the market
completeness.

This work was completed during our visit to the Isaac Newton Institute for Mathematical Sciences
in Cambridge. We thank the organizers of the programme Developments in Quantitative Finance
for the kind invitation.

2 Valuation and Trading Defaultable Claims

The goal of this section is to give a brief presentation of general results concerning the valuation
and trading of defaultable claims.

2.1 Generic Defaultable Claims

A strictly positive random variable τ , defined on a probability space (Ω,G,Q), is termed a random
time. In view of its interpretation, it will be later referred to as a default time. We introduce
the jump process Ht = 11{τ≤t} associated with τ , and we denote by H the filtration generated by
this process. We assume that we are given, in addition, some auxiliary filtration F, and we write
G = H ∨ F, meaning that we have Gt = σ(Ht,Ft) for every t ∈ R+.

Definition 2.1 By a defaultable claim maturing at T we mean the quadruple (X, A, Z, τ), where
X is an FT -measurable random variable, A is an F-adapted process of finite variation, Z is an
F-predictable process and τ is a random time.

The financial interpretation of the components of a defaultable claim becomes clear from the
following definition of the dividend process D, which describes all cash flows associated with a
defaultable claim over the lifespan ]0, T ], that is, after the contract was initiated at time 0. Of
course, the choice of 0 as the date of inception is arbitrary.

Definition 2.2 The dividend process D of a defaultable claim maturing at T equals, for every
t ∈ [0, T ],

Dt = X11{τ>T}11[T,∞[(t) +
∫

]0,t]

(1−Hu) dAu +
∫

]0,t]

Zu dHu.

The financial interpretation of the definition above justifies the following terminology: X is the
promised payoff, A represents the process of promised dividends, and the process Z, termed the
recovery process, specifies the recovery payoff at default. It is worth stressing that, according to
our convention, the cash payment (premium) at time 0 is not included in the dividend process D
associated with a defaultable claim. When we deal with a credit default swap, the premium at time
0 is typically equal to zero, and the process A represents in fact the premium paid in instalments
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up to maturity date or default, whichever comes first. For instance, if At = −κt for some constant
κ > 0, then the ‘price’ of a stylized credit default swap is formally represented by this constant,
referred to as the continuously paid credit default spread or premium (see Section 3.1 for details).

If the other covenants of the contract are known (i.e., the payoffs X and Z are given), the
valuation of a swap is equivalent to finding the level of the spread κ that makes the swap worthless
at inception. Typically, in a credit default swap we have X = 0, and Z is determined in reference
to a recovery rate of the reference credit-risky entity. In a more realistic approach, the process A
is discontinuous, with jumps occurring at the premium payment dates. In this note, we shall only
deal with a stylized CDS with a continuously paid premium.

Let us return to the general set-up. It is clear that the dividend process D follows a process of
finite variation on [0, T ]. Since

∫

]0,t]

(1−Hu) dAu =
∫

]0,t]

11{τ>u} dAu = Aτ−11{τ≤t} + At11{τ>t},

it is also apparent that if default occurs at some date t, the ‘promised dividend’ At − At− that is
due to be received or paid at this date is disregarded. If we denote τ ∧ t = min (τ, t) then we have

∫

]0,t]

Zu dHu = Zτ∧t11{τ≤t} = Zτ11{τ≤t}.

Let us stress that the process Du −Dt, u ∈ [t, T ], represents all cash flows from a defaultable claim
received by an investor who purchases it at time t. Of course, the process Du −Dt may depend on
the past behavior of the claim (e.g., through some intrinsic parameters, such as credit spreads) as
well as on the history of the market prior to t. The past dividends are not valued by the market,
however, so that the current market value at time t of a claim (i.e., the price at which it trades at
time t) depends only on future dividends to be paid or received over the time interval ]t, T ].

Suppose that our underlying financial market model is arbitrage-free, in the sense that there
exists a spot martingale measure Q∗ (also referred to as a risk-neutral probability), meaning that Q∗
is equivalent to Q on (Ω,GT ), and the price process of any tradeable security, paying no coupons or
dividends, follows a G-martingale under Q∗, when discounted by the savings account B, where

Bt = exp
(∫ t

0

ru du

)
.

2.2 Buy-and-hold Strategy

We write Si, i = 1, 2, . . . , k to denote the price processes of k primary securities in an arbitrage-free
financial model. We make the standard assumption that the processes Si, i = 1, 2, . . . , k − 1 follow
semimartingales. In addition, we set Sk

t = Bt so that Sk represents the value process of the savings
account. The last assumption is not necessary, however. We can assume, for instance, that Sk is the
price of a T -maturity risk-free zero-coupon bond, or choose any other strictly positive price process
as as numéraire.

For the sake of convenience, we assume that Si, i = 1, 2, . . . , k − 1 are non-dividend-paying
assets, and we introduce the discounted price processes Si∗ by setting Si∗

t = Si
t/Bt. All processes

are assumed to be given on a filtered probability space (Ω,G,Q), where Q is interpreted as the
real-life (i.e., statistical) probability measure.

Let us now assume that we have an additional traded security that pays dividends during its
lifespan, assumed to be the time interval [0, T ], according to a process of finite variation D, with
D0 = 0. Let S denote a (yet unspecified) price process of this security. In particular, we do not
postulate a priori that S follows a semimartingale. It is not necessary to interpret S as a price
process of a defaultable claim, though we have here this particular interpretation in mind.

Let a G-predictable, Rk+1-valued process φ = (φ0, φ1, . . . , φk) represent a generic trading strat-
egy, where φj

t represents the number of shares of the jth asset held at time t. We identify here S0
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with S, so that S is the 0th asset. In order to derive a pricing formula for this asset, it suffices to
examine a simple trading strategy involving S, namely, the buy-and-hold strategy.

Suppose that we have purchased at time 0 one unit of the 0th asset at the initial price S0, and
we hold it until time T . We assume all the proceeds from dividends are re-invested in the savings
account B. More specifically, we consider a buy-and-hold strategy ψ = (1, 0, . . . , 0, ψk), where ψk is
a G-predictable process. The associated wealth process U(ψ) equals

Ut(ψ) = St + ψk
t Bt, ∀ t ∈ [0, T ], (1)

so that its initial value equals U0(ψ) = S0 + ψk
0 .

Definition 2.3 We say that a strategy ψ = (1, 0, . . . , 0, ψk) is self-financing if

dUt(ψ) = dSt + dDt + ψk
t dBt,

or more explicitly, for every t ∈ [0, T ],

Ut(ψ)− U0(ψ) = St − S0 + Dt +
∫

]0,t]

ψk
u dBu. (2)

We assume from now on that the process ψk is chosen in such a way (with respect to S,D and
B) that a buy-and-hold strategy ψ is self-financing. Also, we make a standing assumption that the
random variable Y =

∫
]0,T ]

B−1
u dDu is Q∗-integrable.

Lemma 2.1 The discounted wealth U∗
t (ψ) = B−1

t Ut(ψ) of any self-financing buy-and-hold trading
strategy ψ satisfies, for every t ∈ [0, T ],

U∗
t (ψ) = U∗

0 (ψ) + S∗t − S∗0 +
∫

]0,t]

B−1
u dDu. (3)

Hence we have, for every t ∈ [0, T ],

U∗
T (ψ)− U∗

t (ψ) = S∗T − S∗t +
∫

]t,T ]

B−1
u dDu. (4)

Proof. We define an auxiliary process Û(ψ) by setting Ût(ψ) = Ut(ψ)− St = ψk
t Bt for t ∈ [0, T ]. In

view of (2), we have

Ût(ψ) = Û0(ψ) + Dt +
∫

]0,t]

ψk
u dBu,

and so the process Û(ψ) follows a semimartingale. An application of Itô’s product rule yields

d
(
B−1

t Ût(ψ)
)

= B−1
t dÛt(ψ) + Ût(ψ) dB−1

t

= B−1
t dDt + ψk

t B−1
t dBt + ψk

t Bt dB−1
t

= B−1
t dDt,

where we have used the obvious identity: B−1
t dBt + Bt dB−1

t = 0. Integrating the last equality, we
obtain

B−1
t

(
Ut(ψ)− St

)
= B−1

0

(
U0(ψ)− S0

)
+

∫

]0,t]

B−1
u dDu,

and this immediately yields (3). ¤

It is worth noting that Lemma 2.1 remains valid if the assumption that Sk represents the savings
account B is relaxed. It suffices to assume that the price process Sk is a numéraire, that is, a
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strictly positive continuous semimartingale. For the sake of brevity, let us write Sk = β. We say
that ψ = (1, 0, . . . , 0, ψk) is self-financing it the wealth process

Ut(ψ) = St + ψk
t βt, ∀ t ∈ [0, T ],

satisfies, for every t ∈ [0, T ],

Ut(ψ)− U0(ψ) = St − S0 + Dt +
∫

]0,t]

ψk
u dβu.

Lemma 2.2 The relative wealth U∗
t (ψ) = β−1

t Ut(ψ) of a self-financing trading strategy ψ satisfies,
for every t ∈ [0, T ],

U∗
t (ψ) = U∗

0 (ψ) + S∗t − S∗0 +
∫

]0,t]

β−1
u dDu,

where S∗ = β−1
t St.

2.3 Spot Martingale Measure

Our next goal is to derive the risk-neutral valuation formula for the ex-dividend price St. To this
end, we assume that our market model is arbitrage-free, meaning that it admits a (not necessarily
unique) martingale measure Q∗, equivalent to Q, which is associated with the choice of B as a
numéraire.

Definition 2.4 We say that Q∗ is a spot martingale measure if the discounted price Si∗ of any
non-dividend paying traded security follows a Q∗-martingale with respect to G.

It is well known that the discounted wealth process U∗(φ) of any self-financing trading strategy
φ = (0, φ1, φ2, . . . , φk) is a local martingale under Q∗. In what follows, we shall only consider
admissible trading strategies, that is, strategies for which the discounted wealth process U∗(φ) is a
martingale under Q∗. Then a market model in which only admissible trading strategies are allowed
is arbitrage-free, in the usual sense.

Following this line of arguments, we postulate that the trading strategy ψ introduced in Section
2.2 is also admissible, so that its discounted wealth process U∗(ψ) follows a martingale under Q∗
with respect to G. This assumption is quite natural if we wish to prevent arbitrage opportunities in
the extended model of the financial market. Indeed, since we postulate that S is traded, the wealth
process U(ψ) can be formally seen as an additional non-dividend paying tradeable security.

To derive a pricing formula for a defaultable claim, we make a natural assumption that the
market value at time t of the 0th security comes exclusively from the future dividends stream, that
is, from the cash flows occurring in the open interval ]t, T [. Since the lifespan of S is [0, T ], this
amounts to postulate that ST = S∗T = 0. To emphasize this property, we shall refer to S as the
ex-dividend price of the 0th asset.

Definition 2.5 A process S with ST = 0 is the ex-dividend price of the 0th asset if the discounted
wealth process U∗(ψ) of any self-financing buy-and-hold strategy ψ follows a G-martingale under
Q∗.

As a special case, we obtain the ex-dividend price a defaultable claim with maturity T .

Proposition 2.1 The ex-dividend price process S associated with the dividend process D satisfies,
for every t ∈ [0, T ],

St = Bt EQ∗
(∫

]t,T ]

B−1
u dDu

∣∣∣Gt

)
. (5)
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Proof. The postulated martingale property of the discounted wealth process U∗(ψ) yields, for every
t ∈ [0, T ],

EQ∗
(
U∗

T (ψ)− U∗
t (ψ)

∣∣Gt

)
= 0.

Taking into account (4), we thus obtain

S∗t = EQ∗
(
S∗T +

∫

]t,T ]

B−1
u dDu

∣∣∣Gt

)
.

Since, by virtue of the definition of the ex-dividend price we have ST = S∗T = 0, the last formula
yields (5). ¤

It is not difficult to show that the ex-dividend price S satisfies, for every t ∈ [0, T ],

St = 11{t<τ}S̃t, (6)

where the process S̃ represents the ex-dividend pre-default price of a defaultable claim.

The cum-dividend price process S̄ associated with the dividend process D is a G-martingale
under Q∗, given by the formula, for every t ∈ [0, T ],

S̄t = Bt EQ∗
( ∫

]0,T ]

B−1
u dDu

∣∣∣Gt

)
. (7)

The savings account B can be replaced by an arbitrary numéraire β. The corresponding valuation
formula becomes, for every t ∈ [0, T ],

St = βt EQβ

(∫

]t,T ]

β−1
u dDu

∣∣∣Gt

)
, (8)

where Qβ is a martingale measure on (Ω,GT ) associated with a numéraire β, that is, a probability
measure on (Ω,GT ) given by the formula

dQβ

dQ∗
=

βT

β0BT
, Q∗-a.s.

2.4 Self-Financing Trading Strategies

Let us now examine a general trading strategy φ = (φ0, φ1, . . . , φk) with G-predictable components.
The associated wealth process U(φ) equals Ut(φ) =

∑k
i=0 φi

tS
i
t , where, as before S0 = S. A strategy

φ is said to be self-financing if Ut(φ) = U0(φ) + Gt(φ) for every t ∈ [0, T ], where the gains process
G(φ) is defined as follows:

Gt(φ) =
∫

]0,t]

φ0
u dDu +

k∑

i=0

∫

]0,t]

φi
u dSi

u.

Corollary 2.1 Let Sk = B. Then for any self-financing trading strategy φ, the discounted wealth
process U∗(φ) = B−1

t Ut(φ) follows a martingale under Q∗.

Proof. Since B is a continuous process of finite variation, Itô’s product rule gives

dSi∗
t = Si

t dB−1
t + B−1

t dSi
t

for i = 0, 1, . . . , k, and so

dU∗
t (φ) = Ut(φ) dB−1

t + B−1
t dUt(φ)
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= Ut(φ) dB−1
t + B−1

t

( k∑

i=0

φi
t dSi

t + φ0
t dDt

)

=
k∑

i=0

φi
t

(
Si

t dB−1
t + B−1

t dSi
t

)
+ φ0

t B
−1
t dDt

=
k−1∑

i=1

φi
t dSi∗

t + φ0
t

(
dS∗t + B−1

t dDt

)
=

k−1∑

i=1

φi
t dSi∗

t + φ0
t dŜt,

where the auxiliary process Ŝ is given by the following expression:

Ŝt = S∗t +
∫

]0,t]

B−1
u dDu.

To conclude, it suffices to observe that in view of (5) the process Ŝ satisfies

Ŝt = EQ∗
( ∫

]0,T ]

B−1
u dDu

∣∣∣Gt

)
, (9)

and thus it follows a martingale under Q∗. ¤

It is worth noting that Ŝt, given by formula (9), represents the discounted cum-dividend price
at time t of the 0th asset, that is, the arbitrage price at time t of all past and future dividends
associated with the 0th asset over its lifespan. To check this, let us consider a buy-and-hold strategy
such that ψk

0 = 0. Then, in view of (4), the terminal wealth at time T of this strategy equals

UT (ψ) = BT

∫

]0,T ]

B−1
u dDu. (10)

It is clear that UT (ψ) represents all dividends from S in the form of a single payoff at time T . The
arbitrage price πt(Ŷ ) at time t < T of a claim Ŷ = UT (ψ) equals (under the assumption that this
claim is attainable)

πt(Ŷ ) = Bt EQ∗
(∫

]0,T ]

B−1
u dDu

∣∣∣Gt

)

and thus Ŝt = πt(Ŷ )/Bt. It is clear that discounted cum-dividend price follows a martingale under
Q∗ (under the standard integrability assumption).

Remarks. (i) Under the assumption of uniqueness of a spot martingale measure Q∗, any Q∗-
integrable contingent claim is attainable, and the valuation formula established above can be justified
by means of replication.
(ii) Otherwise – that is, when a martingale probability measure Q∗ is not uniquely determined by
the model (S1, S2, . . . , Sk) – the right-hand side of (5) may depend on the choice of a particular
martingale probability, in general. In this case, a process defined by (5) for an arbitrarily chosen
spot martingale measure Q∗ can be taken as the no-arbitrage price process of a defaultable claim.
In some cases, a market model can be completed by postulating that S is also a traded asset.

2.5 Martingale Properties of Prices of a Defaultable Claim

In the next result, we summarize the martingale properties of prices of a generic defaultable claim.

Corollary 2.2 The discounted cum-dividend price Ŝt, t ∈ [0, T ], of a defaultable claim is a Q∗-
martingale with respect to G. The discounted ex-dividend price S∗t , t ∈ [0, T ], satisfies

S∗t = Ŝt −
∫

]0,t]

B−1
u dDu, ∀ t ∈ [0, T ],

and thus it follows a supermartingale under Q∗ if and only if the dividend process D is increasing.
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In an application considered in Section 3, the finite variation process A is interpreted as the
positive premium paid in instalments by the claimholder to the counterparty in exchange for a
positive recovery (received by the claimholder either at maturity or at default). It is thus natural
to assume that A is a decreasing process, and all other components of the dividend process are
increasing processes (that is, we postulate that X ≥ 0, and Z ≥ 0). It is rather clear that, under
these assumptions, the discounted ex-dividend price S∗ is neither a super- or submartingale under
Q∗, in general.

Assume now that A ≡ 0, so that the premium for a defaultable claim is paid upfront at time 0,
and it is not accounted for in the dividend process D. We postulate, as before, that X ≥ 0, and
Z ≥ 0. In this case, the dividend process D is manifestly increasing, and thus the discounted ex-
dividend price S∗ is a supermartingale under Q∗. This feature is quite natural since the discounted
expected value of future dividends decreases when time elapses.

The bottom line is that the martingale properties of the price of a defaultable claim depend on
the specification of a claim and conventions regarding the prices (ex-dividend price or cum-dividend
price). This point will be illustrated below by means of a detailed analysis of prices of credit default
swaps.

3 Valuation and Trading Credit Default Swaps

We are now in the position to apply the general theory to the case of a particular class contracts,
specifically, credit default swaps. We work throughout under a spot martingale measure Q∗ on
(Ω,GT ). In the first step, we shall work under additional assumptions that the auxiliary filtration F
is trivial, so that G = H and the interest rate r = 0. Subsequently, these restrictions will be relaxed.

3.1 Valuation of a Credit Default Swap

A stylized credit default swap is formally introduced through the following definition.

Definition 3.1 A credit default swap with a constant spread κ and recovery at default is a default-
able claim (0, A, Z, τ), where Zt ≡ δ(t) and At = −κt for every t ∈ [0, T ]. An RCLL function
δ : [0, T ] → R represents the protection payment and a constant κ ∈ R is termed the spread (or the
premium) of a CDS.

We shall first analyze the valuation and trading credit default swaps in a simple model of default
risk with the filtration G = H generated by the process Ht = 11{τ≤t}. We denote by F the cumulative
distribution function of the default time τ under Q∗, and we assume that F is a continuous function,
with F (0) = 0 and F (T ) < 1 for some fixed date T > 0. Also, we write G = 1 − F to denote the
survival probability function of τ , so that G(t) > 0 for every t ∈ [0, T ]. For simplicity, we assume
that the interest rate r = 0, so that the price of a savings account Bt = 1 for every t. Our results
can be easily extended to the case of a constant r.

Note that we have only one tradeable asset in our model (a savings account), and we wish to
value a defaultable claim within this model. It is clear that any probability measure Q∗ on (Ω,HT ),
equivalent to Q, can be chosen as a spot martingale measure for our model. The choice of Q∗ is
reflected in the cumulative distribution function F (in particular, in the default intensity if F is
absolutely continuous).

3.1.1 Ex-dividend Price of a CDS

Consider a CDS with the spread κ, which was initiated at time 0 (or indeed at any date prior to
the current date t). Its market value at time t does not depend on the past otherwise than through
the level of the spread κ. For the moment, we assume that κ is an arbitrary constant. Unless stated
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otherwise, we assume that the recovery (also known here as the protection payment) is received at
the time of default and it is equal δ(t) if default occurs at time t.

In view of (5), the ex-dividend price of a CDS maturing at T with spread κ is given by the
formula

St(κ) = EQ∗
(
δ(τ)11{t<τ≤T} − 11{t<τ}κ

(
(τ ∧ T )− t

) ∣∣∣Ht

)
. (11)

Note that in Lemma 3.1, we do not need to specify the inception date s of a CDS. We only assume
that the maturity date T , the spread κ, and the protection payment δ are given.

Lemma 3.1 The ex-dividend price at time t ∈ [s, T ] of a credit default swap with spread κ and
recovery at default equals

St(κ) = 11{t<τ}
1

G(t)

(
−

∫ T

t

δ(u) dG(u)− κ

∫ T

t

G(u) du

)
. (12)

Proof. We have, on the set {t < τ},

St(κ) = −
∫ T

t
δ(u) dG(u)
G(t)

− κ

(
− ∫ T

t
u dG(u) + TG(T )

G(t)
− t

)

=
1

G(t))

(
−

∫ T

t

δ(u) dG(u)− κ
(
TG(T )− tG(t)−

∫ T

t

u dG(u)
))

.

Since ∫ T

t

G(u) du = TG(T )− tG(t)−
∫ T

t

u dG(u),

we conclude that (12) holds. ¤
The ex-dividend price of a CDS can also be represented as follows (see (6))

St(κ) = 11{t<τ}S̃t(κ), ∀ t ∈ [0, T ], (13)

where S̃t(κ) stands for the ex-dividend pre-default price of a CDS. It is useful to note that formula
(12) yields an explicit expression for S̃t(κ) and that it follows a continuous function provided that
G is continuous.

3.1.2 Market CDS Spreads

Assume now that a CDS was initiated at some date s ≤ t and its initial price was equal to zero. Since
a CDS with this property plays an important role, we introduce a formal definition. In Definition
3.2, it is implicitly assumed that a recovery function δ is given.

Definition 3.2 A market CDS started at s is a CDS initiated at time s whose initial value is equal
to zero. A T -maturity CDS market spread at time s is the level of the spread κ = κ(s, T ) that makes
a T -maturity CDS started at s worthless at its inception. A CDS market spread at time s is thus
determined by the equation Ss(κ(s, T )) = 0, where S is defined by (12).

In our set-up, by virtue of Lemma 3.1, the T -maturity market spread κ(s, T ) is a solution to the
equation ∫ T

s

δ(u) dG(u) + κ(s, T )
∫ T

s

G(u) du = 0,

and thus we have, for every s ∈ [0, T ],

κ(s, T ) = −
∫ T

s
δ(u) dG(u)

∫ T

s
G(u) du

. (14)
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Remarks. Let us comment briefly on a model calibration. Suppose that at time 0 the market
gives the premium of a CDS for any maturity T . In this way, the market chooses the risk-neutral
probability measure Q∗. Specifically, if κ(0, T ) is the T -maturity market CDS spread for a given
recovery function δ then we have

κ(0, T ) = −
∫ T

0
δ(u) dG(u)

∫ T

0
G(u) du

.

Hence, if credit default swaps with the same recovery function δ and varying maturities are traded at
time 0, it is possible to find the implied risk-neutral c.d.f. F (and thus the default intensity γ under
Q∗) from the term structure of CDS spreads κ(0, T ) by solving an ordinary differential equation.

Standing assumptions. We fix the maturity date T , and we write briefly κ(s) instead of κ(s, T ).
In addition, we assume that all credit default swaps have a common recovery function δ.

Note that the ex-dividend pre-default value at time t ∈ [0, T ] of a CDS with any fixed spread
κ can be related to the market spread κ(t). We have the following result, in which the quantity
ν(t, s) = κ(t)− κ(s) represents the calendar CDS market spread (for a given maturity T ).

Proposition 3.1 The ex-dividend price of a market CDS started at s with recovery δ at default and
maturity T equals, for every t ∈ [s, T ],

St(κ(s)) = 11{t<τ} (κ(t)− κ(s))

∫ T

t
G(u) du

G(t)
= 11{t<τ} ν(t, s)

∫ T

t
G(u) du

G(t)
, (15)

or more explicitly,

St(κ(s)) = 11{t<τ}

∫ T

t
G(u) du

G(t)

(∫ T

s
δ(u) dG(u)

∫ T

s
G(u) du

−
∫ T

t
δ(u) dG(u)

∫ T

t
G(u) du

)
. (16)

Proof. To establish equality (16), it suffices to observe that St(κ(s)) = St(κ(s)) − St(κ(t)), and to
use (12) and (14). ¤

Remarks. A representation of the value of a swap in terms of market swap rates is well known
to hold for default-free interest rate swaps. It is especially useful if the calendar spread follows a
stochastic process; in particular, it leads to the Black swaption formula within the framework of
Jamshidian’s (1997) model of co-terminal forward swap rates.

3.1.3 Case of a Constant Default Intensity

Assume that δ(t) = δ is independent of t, and F (t) = 1− e−γt for a constant default intensity γ > 0
under Q∗. In this case, the valuation formulae for a CDS can be further simplified. In view of
Lemma 3.1, the ex-dividend price of a CDS with spread κ equals, for every t ∈ [0, T ],

St(κ) = 11{t<τ}(δγ − κ)γ−1
(
1− e−γ(T−t)

)
.

The last formula (or the general formula (14)) yields κ(s) = δγ for every s < T , so that the market
spread κ(s) is independent of s. As a consequence, the ex-dividend price of a market CDS started
at s equals zero not only at the inception date s, but indeed at any time t ∈ [s, T ], both prior to and
after default). Hence, this process follows a trivial martingale under Q∗. As we shall see in what
follows, this martingale property the ex-dividend price of a market CDS is an exception, rather than
a rule.
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3.2 Price Dynamics of a CDS

In what follows, we assume that

G(t) = Q∗(τ > t) = exp
(
−

∫ t

0

γ(u) du

)

where the default intensity γ(t) under Q∗ is deterministic. We first focus on the dynamics of the
ex-dividend price of a CDS with spread κ started at some date s < T .

Lemma 3.2 The dynamics of the ex-dividend price St(κ) on [s, T ] are

dSt(κ) = −St−(κ) dMt + (1−Ht)(κ− δ(t)γ(t)) dt, (17)

where the H-martingale M under Q∗ is given by the formula

Mt = Ht −
∫ t

0

(1−Hu)γ(u) du, ∀ t ∈ R+. (18)

Hence, the process S̄t(κ), t ∈ [s, T ], given by the expression

S̄t(κ) = St(κ) +
∫ t

s

δ(u) dHu − κ

∫ t

s

(1−Hu) du (19)

is a Q∗-martingale for t ∈ [s, T ].

Proof. It suffices to recall that

St(κ) = 11{t<τ}S̃t(κ) = (1−Ht)S̃t(κ)

so that
dSt(κ) = (1−Ht) dS̃t(κ)− S̃t−(κ) dHt.

Using formula (12), we find easily that we have

dS̃t(κ) = γ(t)S̃t(κ) dt + (κ(s)− δ(t)γ(t)) dt.

In view of (18), the proof of (17) is complete. To prove the second statement, it suffices to observe
that the process N given by

Nt = St(κ)−
∫ t

s

(1−Hu)(κ− δ(u)γ(u)) du = −
∫ t

s

Su−(κ) dMu

is an H-martingale under Q∗. But for every t ∈ [s, T ]

S̄t(κ) = Nt +
∫ t

s

δ(u)Mu,

so that S̄(κ) also follows an H-martingale under Q∗. Note that the process S̄(κ) given by (19)
represents the cum-dividend price of a CDS, so that the martingale property S̄(κ) is expected. ¤

Equality (17) emphasizes the fact that a single cash flow of δ(τ) occurring at time τ can be
formally treated as a dividend stream at the rate δ(t)γ(t) paid continuously prior to default. It is
clear that we also have

dSt(κ) = −S̃t−(κ) dMt + (1−Ht)(κ− δ(t)γ(t)) dt. (20)

It can be useful to reformulate the dynamics of a market CDS in terms of market observables,
such as CDS spreads.
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Corollary 3.1 The dynamics of the ex-dividend price St(κ(s)) on [s, T ] are also given as

dSt(κ(s)) = −St−(κ(s)) dMt + (1−Ht)

(∫ T

t
G(u) du

G(t)
dtν(t, s)− ν(t, s) dt

)
. (21)

Proof. In the present set-up, for any fixed s, the calendar spread ν(t, s), t ∈ [s, T ] is a continuous
function of bounded variation. In view of (17), it suffices to check that

∫ T

t
G(u) du

G(t)
dtν(t, s)− ν(t, s) dt = (κ(s)− δ(t)γ(t)) dt, (22)

where dtν(t, s) = dt(κ(t)− κ(s)) = dκ(t). Equality (22) follows by elementary computations. ¤

3.2.1 Trading Strategies with a CDS

We shall show that in the present set-up, in order to replicate an arbitrary contingent claim Y
settling at time T and satisfying the usual integrability condition, it suffices to deal with two traded
assets: a CDS with maturity U ≥ T and a constant savings account B = 1. Since one can always
work with discounted values, the last assumption is not restrictive.

According to Section 2.4, a strategy φt = (φ0
t , φ

1
t ), t ∈ [0, T ], is self-financing if the wealth process

U(φ), defined as
Ut(φ) = φ0

t St(κ) + φ1
t , (23)

satisfies
dUt(φ) = φ0

t dSt(κ) + φ0
t dDt, (24)

where S(κ) is the ex-dividend price of a CDS with the dividend stream D. As usual, we say that a
strategy φ replicates a contingent claim Y if UT (φ) = Y . On the set {τ ≤ t ≤ T} the ex-dividend
price S(κ) equals zero, and thus the total wealth is necessarily invested in B, so that it is constant.
This means that φ replicates Y if and only if Uτ∧T (φ) = Y .

Lemma 3.3 For any self-financing strategy φ we have, on the set {τ ≤ T},

∆τU(φ) := Uτ (φ)− Uτ−(φ) = φ0
τ (δ(τ)− S̃τ (κ)). (25)

Proof. In general, the process φ0 is G-predictable. In our model, φ0 is assumed to be an RCLL
function. The jump of the wealth process U(φ) at time τ equals, on the set {τ ≤ T},

∆τU(φ) = φ0
τ∆τS + φ1

τ∆τD

where ∆τS(κ) = Sτ (κ)− Sτ−(κ) = −S̃τ (κ) (recall that the ex-dividend price S(κ) drops to zero at
default time) and manifestly ∆τD = δ(τ). ¤

3.3 Hedging of a Contingent Claim in the CDS Market

An HT -measurable random variable can be represented as follows

Y = 11{T≥τ}h(τ) + 11{T<τ}c(T ), (26)

where h : [0, T ] → R is a Borel function, and c(T ) is a constant. For concreteness, we shall deal with
claims Y such that h is an RCLL function, but this restriction is not essential.

We first recall a suitable version of the predictable representation theorem. Subsequently, we
derive closed-form solution for the replicating strategy for a claim Y given by (26) and settling at
time T . As tradeable assets, we shall use a CDS started at time 0 and maturing at T , and a savings
account.
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3.3.1 Representation Theorem

For any RCLL function ĥ : R+ → R such that the random variable ĥ(τ) is integrable, we set
M̂t = EQ∗(ĥ(τ) |Ht) for every t ∈ R+. It is clear that M̂ is an H-martingale under Q∗. The
following version of the martingale representation theorem is well known (see, for instance, Blanchet-
Scalliet and Jeanblanc (2004), Jeanblanc and Rutkowski (2002) or Proposition 4.3.2 in Bielecki and
Rutkowski (2002)).

Proposition 3.2 Assume that G is continuous and ĥ is an RCLL function such that the random
variable ĥ(τ) is Q∗-integrable. Then the H-martingale M̂ admits the following integral representation

M̂t = M̂0 +
∫

]0,t]

(ĥ(u)− ĝ(u)) dMu, (27)

where the continuous function ĝ : R+ → R is given by the formula

ĝ(t) =
1

G(t)
EQ∗

(
11{τ>t}ĥ(τ)

)
= − 1

G(t)

∫ ∞

t

ĥ(u) dG(u). (28)

Remark. It is easily seen that on the set {t ≤ τ} we have ĝ(t) = M̂t−. Therefore, formula (27) can
also be rewritten as follows

M̂t = M̂0 +
∫

]0,t]

(
ĥ(u)− M̂u−

)
dMu. (29)

3.3.2 Replication of a Defaultable Claim

Assume now that a random variable Y given (26) represents a contingent claim settling at T .
Formally, we deal with a defaultable claim of the form (X, 0, Z, τ), where X = c(T ) and Zt = h(t).

To deal with such a claim, we shall apply Proposition 3.2 to the function ĥ, where ĥ(t) = h(t)
for t < T and ĥ(t) = c(T ) for t ≥ T (recall that Q∗(τ = T ) = 0). In this case, we obtain

ĝ(t) =
1

G(t)

(
−

∫ T

t

h(u) dG(u) + c(T )G(T )

)
, (30)

and thus for the process M̂t = EQ∗(Y |Ht), t ∈ [0, T ], we have

M̂t = EQ∗(Y ) +
∫

]0,t]

(h(u)− ĝ(u)) dMu (31)

with ĝ given by (30). Recall that S̃(κ) is the pre-default ex-dividend price process of a CDS with
spread κ and maturity T . We know that S̃(κ) is a continuous function of t if G is continuous.

Proposition 3.3 Assume that the inequality S̃t(κ) 6= δ(t) holds for every t ∈ [0, T ]. Let φ0 be an
RCLL function given by the formula

φ0
t =

h(t)− ĝ(t)

δ(t)− S̃t(κ)
, (32)

and let φ1
t = Ut(φ) − φ0

t St(κ), where the process U(φ) is given by (24) with the initial condition
U0(φ) = EQ∗(Y ), where Y is given by (26). Then the self-financing trading strategy φ = (φ0, φ1) is
admissible and it s a replicating strategy for a defaultable claim (X, 0, Z, τ), where X = c(T ) and
Zt = h(t).
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Proof. The idea of the proof is based on the observation that it is enough to concentrate on the
formula for trading strategy prior to default. In view of Lemma 3.2, the dynamics of the price S(κ)
are

dSt(κ) = −St−(κ) dMt + (1−Ht)(κ− δ(t)γ(t)) dt.

and thus we have, on the set {τ > t} ,

dS̃t(κ) = dSt(κ) =
(
γ(t)S̃t(κ) + κ− δ(t)γ(t)

)
dt.

From Corollary 2.1, we know that the wealth U(φ) of any admissible self-financing strategy is a
H-martingale under Q∗. Since under the present assumptions dBt = 0, for the wealth process Ut(φ)
we obtain, on the set {τ > t},

dUt(φ) = φ0
t (dS̃t(κ)− κ dt) = −φ0

t γ(t)
(
δ(t)− S̃t(κ)

)
dt. (33)

For the martingale M̂ = EQ∗(Y |Ht) associated with Y , in view of (31) we obtain, on the set {τ > t},

dM̂t = −γ(t)(h(t)− ĝ(t)) dt. (34)

We wish to find φ0 such that Ut(φ) = M̂t for every t ∈ [0, T ]. To this end, we first focus on the
equality 11{t<τ}Ut(φ) = 11{t<τ}M̂t for pre-default values. A comparison of (33) with (34) yields

φ0
t =

h(t)− ĝ(t)

δ(t)− S̃t(κ)
, ∀ t ∈ [0, T ]. (35)

We thus see that if U0(φ) = M̂0 then also 11{t<τ}Ut(φ) = 11{t<τ}M̂t for every t ∈ [0, T ]. As usual,
the second component of a self-financing strategy φ is given by (23), that is, φ1

t = Ut(φ)− φ0
t St(κ),

where U(φ) is given by (24) with the initial condition U0(φ) = EQ∗(Y ). In particular, we have that
φ1

0 = EQ∗(Y )− φ0
0S0(κ).

To complete the proof, that is, to show that Ut(φ) = M̂t for every t ∈ [0, T ], it suffices to compare
the jumps of both processes at time τ (both martingales are stopped at τ). It is clear from (31) that
the jump of M̂ equals ∆τM̂ = h(τ)− ĝ(τ). Using (25), we get for the jump of the wealth process

∆τU(φ) = φ0
τ (δ(τ)− S̃τ (κ)) = h(τ)− ĝ(τ),

and thus we conclude that Ut(φ) = M̂t for every t ∈ [0, T ]. In particular, φ is admissible and
UT (φ) = Uτ∧T (φ) = h(τ ∧ T ) = Y , so that φ replicates a claim Y . ¤

Note that if κ = κ(0) then S0(κ(0)) = 0, so that φ1
0 = U0(φ) = EQ∗(Y ).

Let us now analyze the condition S̃t(κ) 6= δ(t) for every t ∈ [0, T ]. It ensures, in particular,
that the wealth process U(φ) has a non-zero jump at default time for any the self-financing trading
strategy such that φ0

t 6= 0 for every t ∈ [0, T ]. It appears that this condition is not restrictive, since
it is satisfied under mild assumptions.

Indeed, if κ > 0 and δ is a non-increasing function then the inequality S̃t(κ) < δ(t) is valid
for every t ∈ [0, T ] (this follows easily from (11)). For instance, if γ(t) > 0 and the protection
payment δ > 0 is constant then it is clear from (14) that the market spread κ(0) is strictly positive.
Consequently, formula (11) implies that S̃t(κ(0)) < δ for every t ∈ [0, T ], as was required. To
summarize, when a tradeable asset is a market CDS with a constant δ > 0 and the default intensity
is strictly positive then the inequality holds.

Let us finally observe that if the default intensity vanishes on some set then we do not need to
impose the inequality S̃t(κ) 6= δ(t) on this set in order to equate (33) with (34), since the requested
equality will hold anyway.

The method of proof is based on the following observation.
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Lemma 3.4 Let M1 and M2 be arbitrary two H-martingales under Q∗. If for every t ∈ [0, T ] we
have 11{t<τ}M1

t = 11{t<τ}M2
t then M1

t = M2
t for every t ∈ [0, T ].

Proof. We have M i
t = EQ∗(hi(τ) |Ht) for some functions hi : R+ → R such that hi(τ) is Q∗-

integrable. Using the well known formula for the conditional expectation

EQ∗(hi(τ) |Ht) = 11{t≥τ}hi(τ)− 11{t<τ}
1

G(t)

∫ ∞

t

hi(u) dG(u) = 11{t≥τ}hi(τ) + 11{t<τ}ĝi(t),

and the assumption that 11{t<τ}M1
t = 11{t<τ}M2

t , we obtain the equality ĝ1(t) = ĝ2(t) for every
t ∈ [0, T ] (recall that Q∗(τ > t) > 0 for every t ∈ [0, T ]). Therefore, we have

∫ ∞

t

h1(u) dG(u) =
∫ ∞

t

h2(u) dG(u), ∀ t ∈ [0, T ].

This immediately implies that h1(t) = h2(t) on [0, T ], almost everywhere with respect to the distri-
bution of τ , and thus we have h1(τ) = h2(τ), Q∗-a.s. Consequently, M1

t = M2
t for every t ∈ [0, T ].

¤

In our case, Lemma 3.4 can be applied to the following H-martingales under Q∗: M1 = U(φ) is
the wealth process of an admissible self-financing strategy φ and M2 = M̂ is the conjectured price
of a claim Y , as given by the risk-neutral valuation formula.

Let us note that the method presented above can be extended to replicate a contingent claim
defaultable claim (X, A, Z, τ), where X = c(T ), At =

∫ t

0
a(u) du and Zt = h(t) for some RCLL

functions a and h. In this case, it is natural to expect that the cum-dividend price process πt

associated with a defaultable claim (X,A, Z, τ), is given by the formula, for every t ∈ [0, T ],

πt = M̂t + 11{t≤τ}

∫ τ

0

a(u) du + 11{t<τ}
1

G(t)

∫ T

t

a(u)G(u) du, (36)

where M̂t = EQ∗(Y |Ht), where Y is given by (26). Hence, the pre-default dynamics of this process
are

dπt = dM̂t + γ(t)â(t) dt = −γ(t)
(
h(t)− ĝ(t)− â(t)

)
dt,

where we set â(t) = (G(t))−1
∫ T

t
a(u)G(u) du. Note that â(t) represents the pre-default value of the

future promised dividends associated with A.

Therefore, arguing as in the proof of Proposition 3.3, we find the following formula for a repli-
cating strategy φ

φ0
t =

h(t)− ĝ(t)− â(t)

δ(t)− S̃t(κ)
, ∀ t ∈ [0, T ]. (37)

It is easy to see that the jump condition at time τ , mentioned in the second part of the proof of
Proposition 3.3, is satisfied in this case as well.

Remark. Of course, if we take as (X, A,Z, τ) a CDS with spread κ and recovery function δ, then
we will get h(t) = δ(t) and ĝ(t) + â(t) = S̃t(κ), so that clearly φ0

t = 1 for every t ∈ [0, T ].

The following immediate corollary to Proposition 3.3 is worth stating (let us stress once again that
the assumption that a claim is represented by an RCLL function, as opposed to a Borel measurable
function, is not essential).

Corollary 3.2 Assume that S̃t(κ) 6= δ(t) for every t ∈ [0, T ]. Then the market is complete, in the
sense, that any defaultable claim (X, A,Z, τ), where X = c(T ), At =

∫ t

0
a(u) du and Zt = h(t) for

some constant c(T ) and RCLL functions a and h, is attainable through continuous trading in a bond
and a CDS. The arbitrage price πt of a defaultable claim satisfies, for every t ∈ [0, T ],

πt = Ut(φ) = M̂t = π0 +
∫

]0,t]

(h(u)− πt−) dMu,
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where

π0 = EQ∗(Y ) +
∫ T

0

a(t)G(t) dt,

and π̃t = ĝ(t) + â(t) + At is its pre-default price, so that we have, for every t ∈ [0, T ]

πt = 11{t<τ}(ĝ(t) + â(t) + At) + 11{t≥τ}(h(τ) + Aτ ) = 11{t<τ}π̃t− + 11{t≥τ}πτ .

3.3.3 Case of a Constant Default Intensity

As a partial check of the calculations above, we shall consider once again the case of constant
default intensity and constant protection payment. In this case, κ(0) = δγ and St(κ(0)) = 0 for
every t ∈ [0, T ], so that

dUt(φ) = −φ0
t δγ dt = −φ0

t κ(0) dt. (38)

Furthermore, for any RCLL function h, formula (35) yields

φ0
t = δ−1

(
h(t) + eγt

∫ T

t

h(u) d
(
e−γu

)− c(T )e−γT
)
. (39)

Assume, for instance, that h(t) = δ for t ∈ [0, T [ and c(T ) = 0. Then (39) gives φ0
t = e−γ(T−t).

Since S0(κ(0)) = 0, we have φ1
0 = π0(Y ) = U0(φ) = δ(1 − e−γT ). In view of (38), the gains/losses

from positions in market CDSs over the time interval [0, t] equal, on the set {τ > t},

Ut(φ)− U0(φ) = −δγ

∫ t

0

φ0
u du = −δγ

∫ t

0

e−γ(T−u) du = −δe−γT
(
eγt − 1

)
< 0.

Suppose that default occurs at some date t ∈ [0, T ]. Then the protection payments is collected, and
the wealth at time t becomes

Ut(φ) = Ut−(φ) + φ0
t δ = δ(1− e−γT )− δe−γT

(
eγt − 1

)
+ δe−γ(T−t) = δ.

The last equality shows that the strategy is indeed replicating on the set {τ ≤ T}. On the set
{τ > T}, the wealth at time T equals

UT (φ) = δ(1− e−γT )− δe−γT
(
eγT − 1

)
= 0.

Since St(κ(0)) = 0 for every t ∈ [0, T ], we have that φ1
t = Ut(φ) for every t ∈ [0, T ].

3.3.4 Short Sale of a CDS

As usual, we assume that the maturity T of a CDS is fixed and we consider the situation where the
default has not yet occurred.

1. Long position. We say that an agent has a long position at time t in a CDS if he owns at time
t a CDS contract that had been created (initiated) at time s0 by some two parties and was sold to
the agent (by means of assignment for example) at time s. If s0 = s then the agent is an original
counter-party to the contract, that is the agent owns the contract from initiation. If an agent owns
a CDS contract, the agent is entitled to receive the protection payment for which the agent pays
the premium. The long position in a contract may be liquidated at any time s < t < T by means of
assignment or offsetting.

2. Short position. We stress that the short position, namely, selling a CDS contract to a dealer,
can only be created for a newly initiated contract. It is not possible to sell to a dealer at time t a
CDS contract initiated at time s0 < t.

3. Offsetting a long position. If an agent has purchased at time s0 ≤ s < T a CDS contract
initiated at s0, he can offset his long position by creating a short position at time t. A new contract
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is initiated at time t, with the initial price St(κ(s0)), possibly with a new dealer. This short position
offsets the long position outstanding, so that the agent effectively has a zero position in the contract
at time t and thereafter.

4. Market constraints. The above taxonomy of positions may have some bearing on portfolios
involving short positions in CDS contracts. It should be stressed that not all trades involving a CDS
are feasible in practice. Let us consider the CDS contract initiated at time t0 and maturing at time
T . Recall that the ex-dividend price of this contract for any t ∈ [t0, τ ∧ T [ is St(κ(t0)). This is the
theoretical price at which the contract should trade so to avoid arbitrage. This price also provides
substance for the P&L analysis as it really marks-to-market positions in the CDS contract.

Let us denote the time-t position in the CDS contract of an agent as φ0
t , where t ∈ [t0, τ ∧ T ].

The strategy is subject to the following constraints:

φ0
t ≥ 0 if φ0

t0 ≥ 0

and
φ0

t ≥ φ0
t0 if φ0

t0 ≤ 0.

It is clear that both restrictions are related to short sale of a CDS. The next simple result shows
that under some assumptions a replicating strategy for a claim Y does not require a short sale of a
CDS.

Corollary 3.3 Assume that S̃t(κ) < δ(t) for every t ∈ [0, T ]. Let h be a non-increasing function
and let c(T ) ≤ h(T ). Then φ0

t ≥ 0 for every t ∈ [0, T ].

Proof. It is enough to observe that if h be a non-increasing function and c(T ) ≤ h(T ) then it follows
easily from the first equality in (28) that for the function ĝ given by (30) we have that h(t) ≥ ĝ(t)
for every t ∈ [0, T ]. In view of (32), this shows that φ0

t ≥ 0 for every t ∈ [0, T ]. ¤
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