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Introduction

This paper presents some methods to hedge defaultable derivatives under the assumption that there
exist tradeable assets with dynamics allowing for elimination of default risk of derivative securities.
We investigate hedging strategies in alternative frameworks with different degrees of generality, an
abstract semimartingale framework and a more specific Markovian set-up, and we use two alternative
approaches.

On the one hand, we use the stochastic calculus approach in order to establish rather abstract
characterization results for hedgeable contingent claims in a fairly general set-up. We subsequently
apply these results to derive closed-form solutions for prices and replicating strategies in particular
models.

On the other hand, we examine the PDE approach in a Markovian setting. In this method, the
arbitrage price and the hedging strategy for an attainable contingent claim are described in terms
of solutions of a pair of coupled PDEs. Again, for some standard examples of defaultable claims, we
provide explicit formulae for prices and hedging strategies (for further examples of trading strategies
involving tradeable credit derivatives, we refer to Laurent [30] or Bielecki et al. [7]). As expected,
both methods yield identical results for some special cases considered in this work.

For the sake of simplicity, we only deal with financial models with no more than three primary
assets (models with an arbitrary number of primary assets were studied in Bielecki et al. [5]). Also, it
is postulated throughout that the default time is the same for all defaultable securities. An extension
of our results to the case of several (possibly dependent) default times is crucial if someone wishes
to cover the so-called basket credit derivatives (in this regard, see Section 6 in Bielecki et al. [6]).

Let us comment briefly on the terminology used in this work. Traditionally, credit risk models
are classified either as structural models (also known as value-of-the-firm models) or as reduced-form
models (also termed intensity-based models). In their original forms, the two approaches, structural
and reduced-form, are extreme cases, in the sense that the default time is modelled either as a
predictable stopping time (the first moment when the firm’s value hits some barrier, as in Black
and Cox [8]), or by a totally inaccessible stopping time (defined via its intensity, as in Jarrow
and Turnbull [24]). However, as argued by several authors (see, for instance, Duffie and Lando
[16], Giesecke [20]-[21], Jarrow and Protter [23], Jeanblanc and Valchev [27], or Guo at al. [22]),
probabilistic properties of default time are directly related to the publicly available information (it
is important, for instance, whether the value of the firm and/or the default triggering barrier are
observed by the market with absolute accuracy).

In fact, in several structural models the default time is no longer predictable, as it was the case
in classic models with deterministic default triggering barrier and full observation of the firm value
process (see, Merton [31] or Black and Cox [8]). For this reason, we decided to refer to credit risk
models considered in this work as models with totally unexpected default (the strict mathematical
term, totally inaccessible stopping time, seems to be rather cumbersome for a frequent use). For
a more exhaustive presentation of mathematical theory of credit risk, we refer to Arvanitis and
Gregory [1], Bielecki and Rutkowski [2], Bielecki et al. [3], Cossin and Pirotte [14], Duffie and
Singleton [17], Lando [29], or Schönbucher [35].
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1 Totally Unexpected Default

In this section, we describe briefly the fundamental features of the credit risk models with unexpected
default. Also, we collect here few technical results that are used in subsequent sections.

1.1 General Set-up

We assume that we are given a probability space (Ω,G,P) and a nonnegative random variable τ
on this space. We always postulate that τ is strictly positive with probability 1. Note that the
probability measure P represents the historical probability reflecting the real-life dynamics of prices
of primary traded assets, rather than some martingale measure for our financial model. We first
focus on different definitions of default intensity encountered in the literature.

1.1.1 Intensity of a Stopping Time

Suppose that (Ω,G,P) is endowed with some filtration G̃ such that τ is a G̃-stopping time. Let H

be the default process, defined as Ht = 11{t≥τ} (note that H is a bounded G̃-submartingale). We say
that τ admits a G̃-intensity if there exists a G̃-adapted, nonnegative process λ̃ such that the process

Mt = Ht −
∫ t

0

λ̃u du = Ht −
∫ t∧τ

0

λ̃u du (1)

is a G̃-martingale (the second equality in (1) follows from the fact that the process H is stopped
at τ). Then M is called the compensated G̃-martingale of the default process H. In order for a
G̃-stopping time τ to admit a G̃-intensity λ̃, it has to be totally inaccessible with respect to G̃, so
that P(τ = θ) = 0 for any G̃-predictable stopping time θ. The simplest example is the moment of
the first jump a Poisson process. Note that the intensity λ̃ necessarily vanishes after default.

Remark 1.1 Some authors define the intensity as the process λ̃ such that Ht −
∫ t∧τ

0
λ̃u du is a

G̃-martingale. In that case, the process λ̃ is not uniquely defined after time τ .

1.1.2 F-Intensity of a Random Time

We change the perspective, and we no longer assume that the filtration G̃ is given a priori. We assume
instead that τ is a positive random variable on some probability space (Ω,G,P). Let H = (Ht, t ≥ 0)
be the natural filtration generated by the default process (Ht, t ≥ 0), and let F = (Ft, t ≥ 0) be
some reference filtration in (Ω,G,P).

We assume throughout that the information available to an investor is modeled by the filtration
G = F ∨ H. Consequently, we can reduce our study to the case where the default intensity (if it
exists) is G-adapted, meaning that the process M given by (1) is a G-martingale for some G-adapted
process λ̃. In this setting, there exists a process λ = (λt, t ≥ 0), called the F-intensity of τ , which
is F-adapted and equal to λ̃ before default, so that λ̃t11{t≤τ} = λt11{t≤τ} for every t ∈ R+. The
existence of λ̃ (and its uniqueness under some technical conditions) follows from the following result
(see Dellacherie et al. [15], Page 186).

Lemma 1.1 Let G = F ∨ H. Then for any G-predictable process ζ there exists an F-predictable
process ζ̃ such that

ζ̃t11{t≤τ} = ζt11{t≤τ}, ∀ t ∈ R+. (2)

If, in addition, the inequality Ft := P(τ ≤ t | Ft) < 1 holds for every t ∈ R+ then the process ζ̃
satisfying (2) is unique.
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Of course, we have that

Mt = Ht −
∫ t∧τ

0

λ̃u du = Ht −
∫ t∧τ

0

λu du.

Suppose that the reference filtration is chosen in such a way that the default events {τ ≤ t} are not
in F. Then the F-intensity λ is uniquely defined after τ and, typically, does not vanish after τ .

1.2 Hypothesis (H)

In this section, we focus on the invariance property of the so-called hypothesis (H) under an equiv-
alent change of a probability measure.

Definition 1.1 We say that filtrations F and G, with F ⊆ G, satisfy the hypothesis (H) under P
whenever any F-local martingale L follows also a G-local martingale.

Remark 1.2 We emphasize that, in general, an F-martingale may fail to follow a G-martingale.
As a trivial example, consider a fixed date T > 0 and take Gt = FT for every t ∈ [0, T ]. Then any
F-martingale L satisfies EP(Lt | Gs) = Lt for s ≤ t, and thus L is not a G-martingale, in general. It
is even possible, but more difficult, to produce an example of an F-martingale, which is not a semi-
martingale with respect to G. For other counter-examples, in particular those involving progressive
enlargement of filtrations, we refer interested reader to Protter [34], or Mansuy and Yor [32].

The original formulations of the hypothesis (H) refer to martingales (or even square-integrable
martingales), rather than local martingales. We shall show that in our set-up the definition given
above is equivalent to the original definition. In fact, the hypothesis (H) postulates a certain form
of conditional independence of σ-fields associated with F and G, rather than a specific property of
F-(local) martingales. In particular the following well known result is valid.

Lemma 1.2 Assume that G = F ∨ H, where F is an arbitrary filtration and H is generated by the
process Ht = 11{τ≤t}. Then the following conditions are equivalent to the hypothesis (H).
(i) For any t, h ∈ R+, we have

P(τ ≤ t | Ft) = P(τ ≤ t | Ft+h). (3)

(i’) For any t ∈ R+, we have
P(τ ≤ t | Ft) = P(τ ≤ t | F∞). (4)

(ii) For any t ∈ R+, the σ-fields F∞ and Gt are conditionally independent given Ft under P, that is,

EP(ξ η | Ft) = EP(ξ | Ft)EP(η | Ft)

for any bounded, F∞-measurable random variable ξ and bounded, Gt-measurable random variable η.
(iii) For any t ∈ R+, and any u ≥ t the σ-fields Fu and Gt are conditionally independent given Ft.
(iv) For any t ∈ R+ and any bounded, F∞-measurable random variable ξ: EP(ξ | Gt) = EP(ξ | Ft).
(v) For any t ∈ R+, and any bounded, Gt-measurable random variable η: EP(η | Ft) = EP(η | F∞).

Proof. The proof of equivalence of conditions (i’)-(v) can be found, for instance, in Section 6.1.1 of
Bielecki and Rutkowski [2] (for related results, see Elliott et al. [19]). Using monotone class theorem
it can be shown that conditions (i) and (i’) are equivalent. Hence, we shall only show that condition
(iv) and the hypothesis (H) are equivalent.

Assume first that the hypothesis (H) holds. Consider any bounded, F∞-measurable random
variable ξ. Let Lt = EP(ξ | Ft) be the martingale associated with ξ. Then, (H) implies that L is also
a local martingale with respect to G, and thus a G-martingale, since L is bounded (recall that any
bounded local martingale is a martingale). We conclude that Lt = EP(ξ | Gt) and thus (iv) holds.
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Suppose now that (iv) holds. First, we note that the standard truncation argument shows that
the boundedness of ξ in (iv) can be replaced by the assumption that ξ is P-integrable. Hence, any
F-martingale L is an G-martingale, since L is clearly G-adapted and we have, for every t ≤ s,

Lt = EP(Ls | Ft) = EP(Ls | Gt).

Now, suppose that L is an F-local martingale so that there exists an increasing sequence of F-
stopping times τn such that limn→∞ τn = ∞, for any n the stopped process Lτn follows a uniformly
integrable F-martingale. Hence, Lτn is also a uniformly integrable G-martingale, and this means
that L follows a G-local martingale. ¤

1.2.1 Hazard Process

Let τ be a random time on a space (Ω,G,P) such that the filtrations F and G = F ∨ H satisfy the
hypothesis (H). Then, from (4), the process Ft = P(τ ≤ t | Ft) is increasing.

We make the standing assumption that Ft < 1 for every t ∈ R+, and we define the F-hazard
process Γ by setting Γt = − ln (1 − Ft). Let, in addition, the process F be absolutely continuous
with respect to the Lebesgue measure, so that

Ft =
∫ t

0

fu du, ∀ t ∈ R+,

for some F-progressively measurable (or F-predictable) process f . Then the F-hazard process satisfies

Γt =
∫ t

0

γu du, ∀ t ∈ R+,

where the F-intensity γ is given by

γt =
ft

1− Ft
, ∀ t ∈ R+. (5)

From now on, we take (5) as the definition of the F-intensity γ, and we make the standing assumption
that the hypothesis (H) holds under P. The following auxiliary result is standard (see, for instance,
Elliott et al. [19] or Blanchet-Scalliet and Jeanblanc [9]).

Lemma 1.3 For any P-integrable, FT -measurable random variable X we have, for t ∈ [0, T ],

EP(X11{T<τ} | Gt) = 11{t<τ} eΓtEP(Xe−ΓT | Ft).

1.2.2 Canonical Construction

We now describe the canonical construction of a random time with a given F-hazard process. Let
Ψ be an F-adapted, increasing, nonnegative process with Ψ0 = 0 and limt→∞Ψt = ∞. We define a
nonnegative random variable τ by setting

τ = inf { t ∈ R+ : Ψt ≥ Θ},
where Θ is a random variable independent of F, with the exponential distribution of parameter 1.
Of course, the existence of Θ on the original probability space (Ω,G,P) is not guaranteed, so that
we allow for an extension of the underlying probability space.

We shall now find the process Ft = P{τ ≤ t | Ft}. Since clearly {τ > t} = {Θ > Ψt}, we get

P{τ > t | F∞} = P{Θ > Ψt | F∞} = e−Ψt .

Consequently,
1− Ft = P{τ > t | Ft} = EP

(
P{τ > t | F∞} |Ft

)
= e−Ψt ,
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and so F is an F-adapted, continuous, increasing process. We conclude that for every t ∈ R+

Ft = 1− e−Ψt = P{τ ≤ t | F∞} = P{τ ≤ t | Ft}, (6)

and thus Ψ coincides with the F-hazard process Γ of τ and the hypothesis (H) is valid. It is also not
difficult to show that the process Mt = Ht − Γt∧τ = Ht −Ψt∧τ follows a G-martingale.

The following result shows that under the hypothesis (H), for any random time τ with continuous
hazard process Γ, the auxiliary random variable Θ can be constructed on the original probability
space, using τ and Γ (see El Karoui [18] or Blanchet-Scalliet and Jeanblanc [9]).

Lemma 1.4 Let τ be a random time on a probability space (Ω,G,P) such that the F-hazard process
Γ of τ under P is continuous and the hypothesis (H) holds. Then there exists a random variable Θ
on (Ω,G,P), independent of F and with the exponential distribution of parameter 1, such that

τ = inf { t ∈ R+ : Γt ≥ Θ}. (7)

Proof. It suffices to check that the random variable Θ = Γτ has the desired properties. Indeed, we
have, for every t ∈ R+,

P(Θ ≥ t | F∞) = P(Γτ ≥ t | F∞) = P(τ ≥ At | F∞) = exp(−ΓAt) = e−t,

where A is the left inverse of Γ, so that ΓAt = t for every t ∈ R+. ¤

1.3 Change of a Probability Measure

Kusuoka [28] shows, by means of a counter-example, that the hypothesis (H) is not invariant with
respect to an equivalent change of the underlying probability measure, in general. It is worth noting
that his counter-example is based on two filtrations, H1 and H2, generated by the two random times
τ1 and τ2, and he chooses H1 to play the role of the reference filtration F. We shall argue that in the
case where F is generated by a Brownian motion (or, more generally, by some martingale orthogonal
to M under P), the above-mentioned invariance property is valid under mild technical assumptions.

1.3.1 Preliminary Lemma

Let us first examine a general set-up in which G = F ∨ H, where F is an arbitrary filtration and H
is generated by the default process H. We say that Q is locally equivalent to P if Q is equivalent to
P on (Ω,Gt) for every t ∈ R+. Then there exists the Radon-Nikodým density process η such that

dQ | Gt = ηt dP | Gt , ∀ t ∈ R+. (8)

Part (i) in the next lemma is well known (see Jamshidian [26]). We assume that the hypothesis (H)
holds under P.

Lemma 1.5 (i) Let Q be a probability measure equivalent to P on (Ω,Gt) for every t ∈ R+, with
the associated Radon-Nikodým density process η. If the density process η is F-adapted then we have
Q(τ ≤ t | Ft) = P(τ ≤ t | Ft) for every t ∈ R+. Hence, the hypothesis (H) is also valid under Q and
the F-intensities of τ under Q and under P coincide.
(ii) Assume that Q is equivalent to P on (Ω,G) and dQ = η∞ dP, so that ηt = EP(η∞ | Gt). Then
the hypothesis (H) is valid under Q whenever we have, for every t ∈ R+,

EP(η∞Ht | F∞)
EP(η∞ | F∞)

=
EP(ηtHt | F∞)
EP(ηt | F∞)

. (9)
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Proof. To prove (i), assume that the density process η is F-adapted. We have for each t, h ∈ R+

Q(τ ≤ t | Ft) =
EP(ηt11{τ≤t} | Ft)
EP(ηt | Ft)

= P(τ ≤ t | Ft) = P(τ ≤ t | Ft+h) = Q(τ ≤ t | Ft+h),

where the last equality follows by another application of the Bayes formula. The assertion now
follows from part (i) in Lemma 1.2.

To prove part (ii), it suffices to establish the equality

F̂t := Q(τ ≤ t | Ft) = Q(τ ≤ t | F∞), ∀ t ∈ R+. (10)

Note that since the random variables ηt11{τ≤t} and ηt are P-integrable and Gt-measurable, using
the Bayes formula, part (v) in Lemma 1.2, and assumed equality (9), we obtain the following chain
of equalities

Q(τ ≤ t | Ft) =
EP(ηt11{τ≤t} | Ft)
EP(ηt | Ft)

=
EP(ηt11{τ≤t} | F∞)
EP(ηt | F∞)

=
EP(η∞11{τ≤t} | F∞)
EP(η∞ | F∞)

= Q(τ ≤ t | F∞).

We conclude that the hypothesis (H) holds under Q if and only if (9) is valid. ¤

Unfortunately, straightforward verification of condition (9) is rather cumbersome. For this reason,
we shall provide alternative sufficient conditions for the preservation of the hypothesis (H) under a
locally equivalent probability measure.

1.3.2 Case of the Brownian Filtration

Let W be a Brownian motion under P with respect to its natural filtration F. Since we work under
the hypothesis (H), the process W is also a G-martingale, where G = F∨H. Hence, W is a Brownian
motion with respect to G under P. Our goal is to show that the hypothesis (H) is still valid under
Q ∈ Q for a large class Q of (locally) equivalent probability measures on (Ω,G).

Let Q be an arbitrary probability measure locally equivalent to P on (Ω,G). Kusuoka [28] (see also
Section 5.2.2 in Bielecki and Rutkowski [2]) proved that, under the hypothesis (H), any G-martingale
under P can be represented as the sum of stochastic integrals with respect to the Brownian motion
W and the jump martingale M . In our set-up, Kusuoka’s representation theorem implies that there
exist G-predictable processes θ and ζ > −1, such that the Radon-Nikodým density η of Q with
respect to P satisfies the following SDE

dηt = ηt−
(
θt dWt + ζt dMt

)
(11)

with the initial value η0 = 1. More explicitly, the process η equals

ηt = Et

(∫ ·

0

θu dWu

)
Et

(∫ ·

0

ζu dMu

)
= η1

t η2
t , (12)

where we write

η1
t = Et

(∫ ·

0

θu dWu

)
= exp

(∫ t

0

θu dWu − 1
2

∫ t

0

θ2
u du

)
, (13)

and

η2
t = Et

(∫ ·

0

ζu dMu

)
= exp

(∫ t

0

ln(1 + ζu) dHu −
∫ t∧τ

0

ζuγu du

)
. (14)

Moreover, by virtue of a suitable version of Girsanov’s theorem, the following processes Ŵ and M̂
are G-martingales under Q

Ŵt = Wt −
∫ t

0

θu du, M̂t = Mt −
∫ t

0

11{u<τ}γuζu du. (15)
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Proposition 1.1 Assume that the hypothesis (H) holds under P. Let Q be a probability measure
locally equivalent to P with the associated Radon-Nikodým density process η given by formula (12).
If the process θ is F-adapted then the hypothesis (H) is valid under Q and the F-intensity of τ

under Q equals γ̂t = (1 + ζ̃t)γt, where ζ̃ is the unique F-predictable process such that the equality
ζ̃t11{t≤τ} = ζt11{t≤τ} holds for every t ∈ R+.

Proof. Let P̃ be the probability measure locally equivalent to P on (Ω,G), given by

dP̃ | Gt = Et

(∫ ·

0

ζu dMu

)
dP | Gt = η2

t dP | Gt . (16)

We claim that the hypothesis (H) holds under P̃. From Girsanov’s theorem, the process W follows
a Brownian motion under P̃ with respect to both F and G. Moreover, from the predictable repre-
sentation property of W under P̃, we deduce that any F-local martingale L under P̃ can be written
as a stochastic integral with respect to W . Specifically, there exists an F-predictable process ξ such
that

Lt = L0 +
∫ t

0

ξu dWu.

This shows that L is also a G-local martingale, and thus the hypothesis (H) holds under P̃. Since

dQ | Gt = Et

(∫ ·

0

θu dWu

)
dP̃ | Gt ,

by virtue of part (i) in Lemma 1.5, the hypothesis (H) is valid under Q as well. The last claim in
the statement of the lemma can be deduced from the fact that the hypothesis (H) holds under Q
and, by Girsanov’s theorem, the process

M̂t = Mt −
∫ t

0

11{u<τ}γuζu du = Ht −
∫ t

0

11{u<τ}(1 + ζ̃u)γu du

is a Q-martingale. ¤

We claim that the equality P̃ = P holds on the filtration F. Indeed, we have dP̃ |Ft = η̃t dP |Ft ,
where we write η̃t = EP(η2

t | Ft), and

EP(η2
t | Ft) = EP

(
Et

(∫ ·

0

ζu dMu

) ∣∣∣F∞
)

= 1, ∀ t ∈ R+, (17)

where the first equality follows from part (v) in Lemma 1.2.

To establish the second equality in (17), we first note that since the process M is stopped at
τ , we may assume, without loss of generality, that ζ = ζ̃ where the process ζ̃ is F-predictable (see
Lemma 1.1). Moreover, in view of (7) the conditional cumulative distribution function of τ given
F∞ has the form 1 − exp(−Γt(ω)). Hence, for arbitrarily selected sample paths of processes ζ and
Γ, the claimed equality can be seen as a consequence of the martingale property of the Doléans
exponential.

Formally, it can be proved by following elementary calculations, where the first equality is a
consequence of (14)),

EP
(
Et

(∫ ·

0

ζ̃u dMu

) ∣∣∣F∞
)

= EP
((

1 + 11{t≥τ}ζ̃τ

)
exp

(
−

∫ t∧τ

0

ζ̃uγu du
) ∣∣∣F∞

)

= EP
(∫ ∞

0

(
1 + 11{t≥u}ζ̃u

)
exp

(
−

∫ t∧u

0

ζ̃vγv dv
)
γue−

∫ u
0 γv dvdu

∣∣∣F∞
)

= EP
(∫ t

0

(
1 + ζ̃u

)
γu exp

(
−

∫ u

0

(1 + ζ̃v)γv dv
)
du

∣∣∣F∞
)



10 Hedging of Credit Derivatives

+ exp
(
−

∫ t

0

ζ̃vγv dv
)
EP

(∫ ∞

t

γue−
∫ u
0 γv dvdu

∣∣∣F∞
)

=
∫ t

0

(
1 + ζ̃u

)
γu exp

(
−

∫ u

0

(1 + ζ̃v)γv dv
)
du + exp

(
−

∫ t

0

ζ̃vγv dv
) ∫ ∞

t

γue−
∫ u
0 γv dvdu

= 1− exp
(
−

∫ t

0

(1 + ζ̃v)γv dv
)

+ exp
(
−

∫ t

0

ζ̃vγv dv
)

exp
(
−

∫ t

0

γv dv
)

= 1,

where the second last equality follows by an application of the chain rule.

1.3.3 Extension to Orthogonal Martingales

Equality (17) suggests that Proposition 1.1 can be extended to the case of arbitrary orthogonal local
martingales. Such a generalization is convenient, if we wish to cover the situation considered in
Kusuoka’s counterexample.

Let N be a local martingale under P with respect to the filtration F. It is also aG-local martingale,
since we maintain the assumption that the hypothesis (H) holds under P. Let Q be an arbitrary
probability measure locally equivalent to P on (Ω,G). We assume that the Radon-Nikodým density
process η of Q with respect to P equals

dηt = ηt−
(
θt dNt + ζt dMt

)
(18)

for some G-predictable processes θ and ζ > −1 (the properties of the process θ depend, of course,
on the choice of the local martingale N). The next result covers the case where N and M are
orthogonal G-local martingales under P, so that the product MN follows a G-local martingale.

Proposition 1.2 Assume that the following conditions hold:
(a) N and M are orthogonal G-local martingales under P,
(b) N has the predictable representation property under P with respect to F, in the sense that any
F-local martingale L under P can be written as

Lt = L0 +
∫ t

0

ξu dNu, ∀ t ∈ R+,

for some F-predictable process ξ,
(c) P̃ is a probability measure on (Ω,G) such that (16) holds.
Then we have:
(i) the hypothesis (H) is valid under P̃,
(ii) if the process θ is F-adapted then the hypothesis (H) is valid under Q.

The proof of the proposition hinges on the following simple lemma.

Lemma 1.6 Under the assumptions of Proposition 1.2, we have:
(i) N is a G-local martingale under P̃,
(ii) N has the predictable representation property for F-local martingales under P̃.

Proof. In view of (c), we have dP̃ | Gt = η2
t dP | Gt , where the density process η2 is given by (14), so

that dη2
t = η2

t−ζt dMt. From the assumed orthogonality of N and M , it follows that N and η2 are
orthogonal G-local martingales under P, and thus Nη2 is a G-local martingale under P as well. This
means that N is a G-local martingale under P̃, so that (i) holds.

To establish part (ii) in the lemma, we first define the auxiliary process η̃ by setting η̃t =
EP(η2

t | Ft). Then manifestly dP̃ |Ft = η̃t dP |Ft , and thus in order to show that any F-local martin-
gale under P̃ follows an F-local martingale under P, it suffices to check that η̃t = 1 for every t ∈ R+,
so that P̃ = P on F. To this end, we note that

EP(η2
t | Ft) = EP

(
Et

(∫ ·

0

ζu dMu

) ∣∣∣F∞
)

= 1, ∀ t ∈ R+,
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where the first equality follows from part (v) in Lemma 1.2, and the second one can established
similarly as the second equality in (17).

We are in a position to prove (ii). Let L be an F-local martingale under P̃. Then it follows also
an F-local martingale under P and thus, by virtue of (b), it admits an integral representation with
respect to N under P and P̃. This shows that N has the predictable representation property with
respect to F under P̃. ¤

We now proceed to the proof of Proposition 1.2.

Proof of Proposition 1.2. We shall argue along the similar lines as in the proof of Proposition 1.1.
To prove (i), note that by part (ii) in Lemma 1.6 we know that any F-local martingale under P̃
admits the integral representation with respect to N . But, by part (i) in Lemma 1.6, N is a G-local
martingale under P̃. We conclude that L is a G-local martingale under P̃, and thus the hypothesis
(H) is valid under P̃. Assertion (ii) now follows from part (i) in Lemma 1.5. ¤

Remark 1.3 It should be stressed that Proposition 1.2 is not directly employed in what follows.
We decided to present it here, since it sheds some light on specific technical problems arising in the
context of modelling dependent default times through an equivalent change of a probability measure
(see Kusuoka [28]).

Example 1.1 Kusuoka [28] presents a counter-example based on the two independent random times
τ1 and τ2 given on some probability space (Ω,G,P). We write M i

t = Hi
t−

∫ t∧τi

0
γi(u) du, where Hi

t =
11{t≥τi} and γi is the deterministic intensity function of τi under P. Let us set dQ | Gt = ηt dP | Gt ,
where ηt = η1

t η2
t and, for i = 1, 2 and every t ∈ R+,

ηi
t = 1 +

∫ t

0

ηi
u−ζi

u dM i
u = Et

(∫ ·

0

ζi
u dM i

u

)

for some G-predictable processes ζi, i = 1, 2, where G = H1 ∨ H2. We set F = H1 and H = H2.
Manifestly, the hypothesis (H) holds under P. Moreover, in view of Proposition 1.2, it is still valid
under the equivalent probability measure P̃ given by

dP̃ | Gt
= Et

(∫ ·

0

ζ2
u dM2

u

)
dP | Gt

.

It is clear that P̃ = P on F, since

EP(η2
t | Ft) = EP

(
Et

(∫ ·

0

ζ2
u dM2

u

) ∣∣∣H1
t

)
= 1, ∀ t ∈ R+.

However, the hypothesis (H) is not necessarily valid under Q if the process ζ1 fails to be F-adapted.
In Kusuoka’s counter-example, the process ζ1 was chosen to be explicitly dependent on both ran-
dom times, and it was shown that the hypothesis (H) does not hold under Q. For an alternative
approach to Kusuoka’s example, through an absolutely continuous change of a probability measure,
the interested reader may consult Collin-Dufresne et al. [12].

2 Semimartingale Model with a Common Default

In what follows, we fix a finite horizon date T > 0. For the purpose of this work, it is enough to
formally define a generic defaultable claim through the following definition.

Definition 2.1 A defaultable claim with maturity date T is represented by a triplet (X, Z, τ),
where:
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(i) the default time τ specifies the random time of default, and thus also the default events {τ ≤ t}
for every t ∈ [0, T ],
(ii) the promised payoff X ∈ FT represents the random payoff received by the owner of the claim
at time T, provided that there was no default prior to or at time T ; the actual payoff at time T
associated with X thus equals X11{T<τ},
(iii) the F-adapted recovery process Z specifies the recovery payoff Zτ received by the owner of a
claim at time of default (or at maturity), provided that the default occurred prior to or at maturity
date T .

In practice, hedging of a credit derivative after default time is usually of minor interest. Also, in
a model with a single default time, hedging after default reduces to replication of a non-defaultable
claim. It is thus natural to define the replication of a defaultable claim in the following way.

Definition 2.2 We say that a self-financing strategy φ replicates a defaultable claim (X, Z, τ) if its
wealth process V (φ) satisfies VT (φ)11{T<τ} = X11{T<τ} and Vτ (φ)11{T≥τ} = Zτ11{T≥τ}.

When dealing with replicating strategies, in the sense of Definition 2.2, we will always assume,
without loss of generality, that the components of the process φ are F-predictable processes.

2.1 Dynamics of Asset Prices

We assume that we are given a probability space (Ω,G,P) endowed with a (possibly multi-dimensional)
standard Brownian motion W and a random time τ admitting an F-intensity γ under P, where F
is the filtration generated by W . In addition, we assume that τ satisfies (4), so that the hypothesis
(H) is valid under P for filtrations F and G = F∨H. Since the default time admits an F-intensity, it
is not an F-stopping time. Indeed, any stopping time with respect to a Brownian filtration is known
to be predictable.

We interpret τ as the common default time for all defaultable assets in our model. For simplicity,
we assume that only three primary assets are traded in the market, and the dynamics under the
historical probability P of their prices are, for i = 1, 2, 3 and t ∈ [0, T ],

dY i
t = Y i

t−
(
µi,t dt + σi,t dWt + κi,t dMt

)
, (19)

or equivalently,
dY i

t = Y i
t−

(
(µi,t − κi,tγt11{t≤τ}) dt + σi,t dWt + κi,t dHt

)
. (20)

The processes (µi, σi, κi) = (µi,t, σi,t, κi,t, t ≥ 0), i = 1, 2, 3, are assumed to be G-adapted, where
G = F ∨ H. In addition, we assume that κi ≥ −1 for any i = 1, 2, 3, so that Y i are nonnegative
processes, and they are strictly positive prior to τ .

Note that, according to Definition 2.2, replication refers to the behavior of the wealth process
V (φ) on the random interval [[0, τ ∧ T ]] only. Hence, for the purpose of replication of defaultable
claims of the form (X,Z, τ), it is sufficient to consider prices of primary assets stopped at τ ∧T . This
implies that instead of dealing with G-adapted coefficients in (19), it suffices to focus on F-adapted
coefficients of stopped price processes. However, for the sake of completeness, we shall also deal with
T -maturity claims of the form Y = G(Y 1

T , Y 2
T , Y 3

T ,HT ) (see Section 5 below).

2.1.1 Pre-default Values

As will become clear in what follows, when dealing with defaultable claims of the form (X,Z, τ), we
will be mainly concerned with the so-called pre-default prices. The pre-default price Ỹ i of the ith
asset is an F-adapted, continuous process, given by the equation, for i = 1, 2, 3 and t ∈ [0, T ],

dỸ i
t = Ỹ i

t

(
(µi,t − κi,tγt) dt + σi,t dWt

)
(21)
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with Ỹ i
0 = Y i

0 . Put another way, Ỹ i is the unique F-predictable process such that (see Lemma 1.1)
Ỹ i

t 11{t≤τ} = Y i
t 11{t≤τ} for t ∈ R+. When dealing with the pre-default prices, we may and do assume,

without loss of generality, that the processes µi, σi and κi are F-predictable.

It is worth stressing that the historically observed drift coefficient equals µi,t − κi,tγt, rather
than µi,t. The drift coefficient denoted by µi,t is already credit-risk adjusted in the sense of our
model, and it is not directly observed. This convention was chosen here for the sake of simplicity of
notation. It also lends itself to the following intuitive interpretation: if φi is the number of units of
the ith asset held in our portfolio at time t then the gains/losses from trades in this asset, prior to
default time, can be represented by the differential

φi
t dỸ i

t = φi
tỸ

i
t

(
µi,t dt + σi,t dWt

)− φi
tỸ

i
t κi,tγt dt.

The last term may be here separated, and formally treated as an effect of continuously paid dividends
at the dividend rate κi,tγt. However, this interpretation may be misleading, since this quantity is
not directly observed. In fact, the mere estimation of the drift coefficient in dynamics (21) is not
practical.

Still, if this formal interpretation is adopted, it is sometimes possible make use of the standard
results concerning the valuation of derivatives of dividend-paying assets. It is, of course, a delicate
issue how to separate in practice both components of the drift coefficient. We shall argue below
that although the dividend-based approach is formally correct, a more pertinent and simpler way of
dealing with hedging relies on the assumption that only the effective drift µi,t− κi,tγt is observable.
In practical approach to hedging, the values of drift coefficients in dynamics of asset prices play no
essential role, so that they are considered as market observables.

2.1.2 Market Observables

To summarize, we assume throughout that the market observables are: the pre-default market prices
of primary assets, their volatilities and correlations, as well as the jump coefficients κi,t (the financial
interpretation of jump coefficients is examined in the next subsection). To summarize we postulate
that under the statistical probability P we have

dY i
t = Y i

t−
(
µ̃i,t dt + σi,t dWt + κi,t dHt

)
(22)

where the drift terms µ̃i,t are not observable, but we can observe the volatilities σi,t (and thus the
assets correlations), and we have an a priori assessment of jump coefficients κi,t. In this general
set-up, the most natural assumption is that the dimension of a driving Brownian motion W equals
the number of tradable assets. However, for the sake of simplicity of presentation, we shall frequently
assume that W is one-dimensional. One of our goals will be to derive closed-form solutions for repli-
cating strategies for derivative securities in terms of market observables only (whenever replication
of a given claim is actually feasible). To achieve this goal, we shall combine a general theory of
hedging defaultable claims within a continuous semimartingale set-up, with a judicious specification
of particular models with deterministic volatilities and correlations.

2.1.3 Recovery Schemes

It is clear that the sample paths of price processes Y i are continuous, except for a possible discon-
tinuity at time τ . Specifically, we have that

∆Y i
τ := Y i

τ − Y i
τ− = κi,τY i

τ−,

so that Y i
τ = Y i

τ−(1 + κi,τ ) = Ỹ i
τ−(1 + κi,τ ).

A primary asset Y i is termed a default-free asset (defaultable asset, respectively) if κi = 0 (κi 6= 0,
respectively). In the special case when κi = −1, we say that a defaultable asset Y i is subject to a
total default, since its price drops to zero at time τ and stays there forever. Such an asset ceases to
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exist after default, in the sense that it is no longer traded after default. This feature makes the case
of a total default quite different from other cases, as we shall see in our study below.

In market practice, it is common for a credit derivative to deliver a positive recovery (for instance,
a protection payment) in case of default. Formally, the value of this recovery at default is determined
as the value of some underlying process, that is, it is equal to the value at time τ of some F-adapted
recovery process Z.

For example, the process Z can be equal to δ, where δ is a constant, or to g(t, δYt) where g is a
deterministic function and (Yt, t ≥ 0) is the price process of some default-free asset. Typically, the
recovery is paid at default time, but it may also happen that it is postponed to the maturity date.

Let us observe that the case where a defaultable asset Y i pays a pre-determined recovery at
default is covered by our set-up defined in (19). For instance, the case of a constant recovery payoff
δi ≥ 0 at default time τ corresponds to the process κi,t = δi(Y i

t−)−1 − 1. Under this convention, the
price Y i is governed under P by the SDE

dY i
t = Y i

t−
(
µi,t dt + σi,t dWt + (δi(Y i

t−)−1 − 1) dMt

)
. (23)

If the recovery is proportional to the pre-default value Y i
τ−, and is paid at default time τ (this scheme

is known as the fractional recovery of market value), we have κi,t = δi − 1 and

dY i
t = Y i

t−
(
µi,t dt + σi,t dWt + (δi − 1) dMt

)
. (24)

2.2 Risk-Neutral Valuation

To provide a partial justification for the postulated dynamics of the price of a defaultable asset
delivering a recovery, let us study a toy example with two assets: a savings account with constant
interest rate r and a defaultable asset Y represented by a defaultable claim (X, Z, τ). In this toy
model, the only source of noise is the default time, hence, the only relevant filtration is H (in other
words, the reference filtration F is trivial). We assume that by choosing today’s prices of a large
family liquidly traded defaultable assets, the market implicitly specifies a martingale measure Q,
equivalent to the historical probability P. More precisely, the probability distribution of τ under an
equivalent martingale measure (e.m.m.) Q can be inferred from market data. We are thus interested
in the dynamics of the price process of (X, Z, τ) under Q.

It is worth noting that in this subsection we adopt a totally different perspective than in the rest
of the present paper. In fact, no attempt to replicate a defaultable claim is done in this section.
We assume instead that the risk-neutral default intensity can be uniquely determined from prices
of traded assets, and we postulate that the price of (X, Z, τ) is defined by the standard risk-neutral
valuation formula. The argument that formally justifies the use of this pricing rule is that we obtain
in this way an arbitrage-free market model in which Q is a martingale measure, and a defaultable
claim can be considered to be an additional traded asset. Since we do not assume here that a
defaultable claim is attainable, its spot price (that is, the price expressed in units of cash) depends
explicitly on the risk-neutral default intensity. As was mentioned above, the arbitrage price of a
defaultable claim, when expressed in terms of tradeable assets used for its replication, will be shown
to not depend directly on real-world (or risk-neutral) default intensity.

To conclude, the rationale for the calculations given below, is that we strive here to justify the
dynamics of prices of primary assets in our model. The risk-neutral valuation considered in this
subsection is not supported by replication-based arguments, and thus it is not surprising that it
exhibits specific features that are not present in the replication-based valuation.

We make the standing assumption that τ admits a continuous cumulative distribution function
F̂ under Q. Hence, the hazard function Γ̂ is also continuous, and the process M̂t = Ht − Γ̂(t ∧ τ) is
an H-martingale under Q. The following result is standard (see, e.g., Proposition 4.3.2 in Bielecki
and Rutkowski [2]).
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Proposition 2.1 Assume that the cumulative distribution function F of τ is continuous. Let Mh

be an H-martingale given by Mh
t = EQ(h(τ) |Ht) for some Borel measurable function h : R+ → R

such that the random variable h(τ) is Q-integrable. Then

Mh
t = Mh

0 +
∫ t

0

(h(u)− g(u)) dM̂u = Mh
0 +

∫ t

0

(h(u)−Mh
u−) dM̂u, (25)

where we write
g(t) = eΓ̂(t) EQ

(
11{t<τ}h(τ)

)
.

Remark 2.1 Using the above proposition, it can be easily shown that on (Ω,GT ) we have

dP = ET

(
−

∫ ·

0

ζ(u) dM̂u

)
dQ,

for some H-predictable process ζ.

2.2.1 Price Dynamics of a Survival Claim (X, 0, τ).

In what follows, we shall refer to a defaultable claim of the form (X, 0, τ) as a survival claim. By
virtue of the risk-neutral valuation formula, the price of the payoff 11{T<τ}X that settles at time T
equals, for every t ∈ [0, T ],

Yt = ert EQ(11{T<τ}e−rT X |Ht).

Note that X is FT -measurable, and thus constant since the σ-field FT is trivial. To find the dynamics
of the price process, it suffices to apply Proposition 2.1 to the function h(u) = 11{u>T}e−rT X. For
the Q-martingale Mh

t = e−rtYt, we thus get, for every t ∈ [0, T ],

e−rtYt = Y0 −
∫ t

0

e−ruYu− dM̂u.

Suppose that Γ̂(t) =
∫ t

0
γ̂(u) du. Then an application of Itô’s formula yields

dYt = rYt dt− Yt− dM̂t =
(
r + 11{t<τ}γ̂(t)

)
Yt dt− Yt− dHt. (26)

We deal here with an example of a defaultable asset that is subject to the total default, meaning
that its price vanishes at and after default.

2.2.2 Price Dynamics of a Recovery Claim (0, Z, τ).

Recall that our standard convention stipulates that the recovery Z is paid at the time of default.
Hence, the price process Y of (0, Z, τ) is given by the expression

Yt = ert EQ(11{T≥τ}e−rτZ(τ) |Ht).

We now have h(u) = 11{u≤T}e−ruZ(u). Consequently,

e−rtYt = Y0 +
∫ t

0

(
e−ruZ(u)− e−ruYu−

)
dM̂u.

By applying Itô’s formula, we conclude that that the dynamics under Q of an asset that delivers
Z(τ) at time τ are

dYt = rYt− dt + (Z(t)− Yt−) dM̂t

=
(
r + 11{t<τ}γ̂(t)

)
Yt dt− 11{t<τ}Z(t)γ̂(t) dt + (Z(t)− Yt−) dHt.
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2.2.3 Price Dynamics of a Defaultable Claim (X, Z, τ).

By combining the formula above with (26), and using Remark 2.1 together with Girsanov’s theorem,
we arrive at the following result.

Proposition 2.2 The price process Y of a defaultable claim (X, Z, τ) satisfies under Q

dYt = rYt− dt + (Z(t)− Yt−) dM̂t

with the initial condition

Y0 = EQ
(
11{T<τ}e−rT X + 11{T≥τ}e−rτZ(τ)

)
= e−(rT+Γ̂(T ))X +

∫ T

0

Z(u)γ̂(u)e−Γ̂(u) du.

Under the statistical probability P, the price process Y satisfies

dYt =
(
rYt− + 11{t<τ}(Z(t)− Yt−)γ̂(t)ζ(t)

)
dt + (Z(t)− Yt−) dMt,

where the G-martingale M under P equals

Mt = M̂t +
∫ t

0

11{u<τ}γ̂(u)ζ(u) du.

Remark 2.2 Proposition 2.2 can be extended to the case when the recovery is random, and is given
in the feedback form as Z(t) = g(t, Yt−) for some function g(t, y), which is Lipschitz continuous with
respect to y. Assume, for instance, that the claim is subject to the fractional recovery of market
value, so that Z(t) = δYt− for some constant δ. If, in addition, ζ and γ̂ are constant, then we obtain
(cf. (24))

dYt = Yt−
(
(r + 11{t<τ}(δ − 1)γ̂ζ) dt + (δ − 1) dMt

)
.

Note that here the drift coefficient µt = r+11{t<τ}(δ−1)γ̂ζ in dynamics of Y follows a G-predictable
process, but it is not F-predictable. However, the drift of the pre-default value Ỹ is simply r.

3 Trading Strategies in a Semimartingale Set-up

We consider trading within the time interval [0, T ] for some finite horizon date T > 0. For the
sake of expositional clarity, we restrict our attention to the case where only three primary assets are
traded. The general case of k traded assets was examined by Bielecki et al. [4]. We first recall some
general properties, which do not depend on the choice of specific dynamics of asset prices.

In this section, we consider a fairly general set-up. In particular, processes Y i, i = 1, 2, 3, are
assumed to be nonnegative semi-martingales on a probability space (Ω,G,P) endowed with some
filtration G. We assume that they represent spot prices of traded assets in our model of the financial
market. Neither the existence of a savings account, nor the market completeness are assumed, in
general.

Our goal is to characterize contingent claims which are hedgeable, in the sense that they can
be replicated by continuously rebalanced portfolios consisting of primary assets. Here, by a con-
tingent claim we mean an arbitrary GT -measurable random variable. We work under the standard
assumptions of a frictionless market.

3.1 Unconstrained Strategies

Let φ = (φ1, φ2, φ3) be a trading strategy; in particular, each process φi is predictable with respect
to the filtration G. The wealth of φ equals

Vt(φ) =
3∑

i=1

φi
tY

i
t , ∀ t ∈ [0, T ],
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and a trading strategy φ is said to be self-financing if

Vt(φ) = V0(φ) +
3∑

i=1

∫ t

0

φi
u dY i

u, ∀ t ∈ [0, T ].

Let Φ stand for the class of all self-financing trading strategies. We shall first prove that a self-
financing strategy is determined by its initial wealth and the two components φ2, φ3. To this end,
we postulate that the price of Y 1 follows a strictly positive process, and we choose Y 1 as a numéraire
asset. We shall now analyze the relative values:

V 1
t (φ) := Vt(φ)(Y 1

t )−1, Y i,1
t := Y i

t (Y 1
t )−1.

Lemma 3.1 (i) For any φ ∈ Φ, we have

V 1
t (φ) = V 1

0 (φ) +
3∑

i=2

∫ t

0

φi
u dY i,1

u , ∀ t ∈ [0, T ].

(ii) Conversely, let X be a GT -measurable random variable, and let us assume that there exists x ∈ R
and G-predictable processes φi, i = 2, 3 such that

X = Y 1
T

(
x +

3∑

i=2

∫ T

0

φi
u dY i,1

u

)
. (27)

Then there exists a G-predictable process φ1 such that the strategy φ = (φ1, φ2, φ3) is self-financing
and replicates X. Moreover, the wealth process of φ (i.e. the time-t price of X) satisfies Vt(φ) =
V 1

t Y 1
t , where

V 1
t = x +

3∑

i=2

∫ t

0

φi
u dY i,1

u , ∀ t ∈ [0, T ]. (28)

Proof. The proof of part (i) is given, for instance, in Protter [33]. In the case of continuous
semimartingales, this is a well-known result; for discontinuous processes, the proof is not much
different. We reproduce it here for the reader’s convenience.

Let us first introduce some notation. As usual, [X,Y ] stands for the quadratic covariation of the
two semi-martingales X and Y , as defined by the integration by parts formula:

XtYt = X0Y0 +
∫ t

0

Xu− dYu +
∫ t

0

Yu− dXu + [X,Y ]t.

For any càdlàg (i.e., RCLL) process Y , we denote by ∆Yt = Yt − Yt− the size of the jump at time
t. Let V = V (φ) be the value of a self-financing strategy, and let V 1 = V 1(φ) = V (φ)(Y 1)−1 be its
value relative to the numéraire Y 1. The integration by parts formula yields

dV 1
t = Vt−d(Y 1

t )−1 + (Y 1
t−)−1dVt + d[(Y 1)−1, V ]t.

From the self-financing condition, we have dVt =
∑3

i=1 φi
t dY i

t . Hence, using elementary rules to
compute the quadratic covariation [X, Y ] of the two semi-martingales X,Y , we obtain

dV 1
t = φ1

t Y
1
t− d(Y 1

t )−1 + φ2
t Y

2
t− d(Y 1

t )−1 + φ3
t Y

3
t− d(Y 1

t )−1

+ (Y 1
t−)−1φ1

t dY 1
t + (Y 1

t−)−1φ2
t dY 1

t + (Y 1
t−)−1φ3

t dY 1
t

+ φ1
t d[(Y 1)−1, Y 1]t + φ2

t d[(Y 1)−1, Y 2]t + φ3
t d[(Y 1)−1, Y 1]t

= φ1
t

(
Y 1

t− d(Y 1
t )−1 + (Y 1

t−)−1 dY 1
t + d[(Y 1)−1, Y 1]t

)

+ φ2
t

(
Y 2

t− d(Y 1
t )−1 + (Y 1

t−)−1 dY 1
t− + d[(Y 1)−1, Y 2]t

)

+ φ3
t

(
Y 3

t− d(Y 1
t )−1 + (Y 1

t−)−1 dY 1
t− + d[(Y 1)−1, Y 3]t

)
.



18 Hedging of Credit Derivatives

We now observe that

Y 1
t− d(Y 1

t )−1 + (Y 1
t−)−1 dY 1

t + d[(Y 1)−1, Y 1]t = d(Y 1
t (Y 1

t )−1) = 0

and
Y i

t− d(Y 1
t )−1 + (Y 1

t−)−1 dY i
t + d[(Y 1)−1, Y i]t = d((Y 1

t )−1Y i
t ).

Consequently,
dV 1

t = φ2
t dY 2,1

t + φ3
t dY 3,1

t ,

as was claimed in part (i). We now proceed to the proof of part (ii). We assume that (27) holds for
some constant x and processes φ2, φ3, and we define the process V 1 by setting (cf. (28))

V 1
t = x +

3∑

i=2

∫ t

0

φi
u dY i,1

u , ∀ t ∈ [0, T ].

Next, we define the process φ1 as follows:

φ1
t = V 1

t −
3∑

i=2

φi
tY

i,1
t = (Y 1

t )−1
(
Vt −

3∑

i=2

φi
tY

i
t

)
,

where Vt = V 1
t Y 1

t . Since dV 1
t =

∑3
i=2 φi

t dY i,1
t , we obtain

dVt = d(V 1
t Y 1

t ) = V 1
t−dY 1

t + Y 1
t−dV 1

t + d[Y 1, V 1]t

= V 1
t−dY 1

t +
3∑

i=2

φi
t

(
Y 1

t− dY i,1
t + d[Y 1, Y i,1]t

)
.

From the equality

dY i
t = d(Y i,1

t Y 1
t ) = Y i,1

t− dY 1
t + Y 1

t−dY i,1
t + d[Y 1, Y i,1]t,

it follows that

dVt = V 1
t−dY 1

t +
3∑

i=2

φi
t

(
dY i

t − Y i,1
t− dY 1

t

)
=

(
V 1

t− −
3∑

i=2

φi
tY

i,1
t−

)
dY 1

t +
3∑

i=2

φi
t dY i

t ,

and our aim is to prove that dVt =
∑3

i=1 φi
t dY i

t . The last equality holds if

φ1
t = V 1

t −
3∑

i=2

φi
tY

i,1
t = V 1

t− −
3∑

i=2

φi
tY

i,1
t− , (29)

i.e., if ∆V 1
t =

∑3
i=2 φi

t∆Y i,1
t , which is the case from the definition (28) of V 1. Note also that from

the second equality in (29) it follows that the process φ1 is indeed G-predictable. Finally, the wealth
process of φ satisfies Vt(φ) = V 1

t Y 1
t for every t ∈ [0, T ], and thus VT (φ) = X. ¤

We say that a self-financing strategy φ replicates a claim X ∈ GT if

X =
3∑

i=1

φi
T Y i

T = VT (φ),

or equivalently,

X = V0(φ) +
3∑

i=1

∫ T

0

φi
t dY i

t .

Suppose that there exists an e.m.m. for some choice of a numéraire asset, and let us restrict our
attention to the class of all admissible trading strategies, so that our model is arbitrage-free.
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Assume that a claim X can be replicated by some admissible trading strategy, so that it is
attainable (or hedgeable). Then, by definition, the arbitrage price at time t of X, denoted as πt(X),
equals Vt(φ) for any admissible trading strategy φ that replicates X.

In the context of Lemma 3.1, it is natural to choose as an e.m.m. a probability measure Q1

equivalent to P on (Ω,GT ) and such that the prices Y i,1, i = 2, 3, are G-martingales under Q1. If a
contingent claim X is hedgeable, then its arbitrage price satisfies

πt(X) = Y 1
t EQ1(X(Y 1

T )−1 | Gt).

We emphasize that even if an e.m.m. Q1 is not unique, the price of any hedgeable claim X is
given by this conditional expectation. That is to say, in case of a hedgeable claim these conditional
expectations under various equivalent martingale measures coincide.

In the special case where Y 1
t = B(t, T ) is the price of a default-free zero-coupon bond with

maturity T (abbreviated as ZC-bond in what follows), Q1 is called T -forward martingale measure,
and it is denoted by QT . Since B(T, T ) = 1, the price of any hedgeable claim X now equals
πt(X) = B(t, T )EQT

(X | Gt).

3.2 Constrained Strategies

In this section, we make an additional assumption that the price process Y 3 is strictly positive. Let
φ = (φ1, φ2, φ3) be a self-financing trading strategy satisfying the following constraint:

2∑

i=1

φi
tY

i
t− = Zt, ∀ t ∈ [0, T ], (30)

for a predetermined, G-predictable process Z. In the financial interpretation, equality (30) means
that a portfolio φ is rebalanced in such a way that the total wealth invested in assets Y 1, Y 2 matches
a predetermined stochastic process Z. For this reason, the constraint given by (30) is referred to as
the balance condition.

Our first goal is to extend part (i) in Lemma 3.1 to the case of constrained strategies. Let Φ(Z)
stand for the class of all (admissible) self-financing trading strategies satisfying the balance condition
(30). They will be sometimes referred to as constrained strategies. Since any strategy φ ∈ Φ(Z) is
self-financing, from dVt(φ) =

∑3
i=1 φi

t dY i
t , we obtain

∆Vt(φ) =
3∑

i=1

φi
t∆Y i

t = Vt(φ)−
3∑

i=1

φi
tY

i
t−.

By combining this equality with (30), we deduce that

Vt−(φ) =
3∑

i=1

φi
tY

i
t− = Zt + φ3

t Y
i
t−.

Let us write Y i,3
t = Y i

t (Y 3
t )−1, Z3

t = Zt(Y 3
t )−1. The following result extends Lemma 1.7 in Bielecki

et al. [3] from the case of continuous semi-martingales to the general case (see also [4]). It is apparent
from Proposition 3.1 that the wealth process V (φ) of a strategy φ ∈ Φ(Z) depends only on a single
component of φ, namely, φ2.

Proposition 3.1 The relative wealth V 3
t (φ) = Vt(φ)(Y 3

t )−1 of any trading strategy φ ∈ Φ(Z) satis-
fies

V 3
t (φ) = V 3

0 (φ) +
∫ t

0

φ2
u

(
dY 2,3

u − Y 2,3
u−

Y 1,3
u−

dY 1,3
u

)
+

∫ t

0

Z3
u

Y 1,3
u−

dY 1,3
u . (31)



20 Hedging of Credit Derivatives

Proof. Let us consider discounted values of price processes Y 1, Y 2, Y 3, with Y 3 taken as a numéraire
asset. By virtue of part (i) in Lemma 3.1, we thus have

V 3
t (φ) = V 3

0 (φ) +
2∑

i=1

∫ t

0

φi
u dY i,3

u . (32)

The balance condition (30) implies that
2∑

i=1

φi
tY

i,3
t− = Z3

t ,

and thus
φ1

t = (Y 1,3
t− )−1

(
Z3

t − φ2
t Y

2,3
t−

)
. (33)

By inserting (33) into (32), we arrive at the desired formula (31). ¤

The next result will prove particularly useful for deriving replicating strategies for defaultable
claims.

Proposition 3.2 Let a GT -measurable random variable X represent a contingent claim that settles
at time T . Assume that there exists a G-predictable process φ2, such that

X = Y 3
T

(
x +

∫ T

0

φ2
t dY ∗

t +
∫ T

0

Z3
t

Y 1,3
t−

dY 1,3
t

)
. (34)

Then there exist G-predictable processes φ1 and φ3 such that the strategy φ = (φ1, φ2, φ3) belongs to
Φ(Z) and replicates X. The wealth process of φ equals, for every t ∈ [0, T ],

Vt(φ) = Y 3
t

(
x +

∫ t

0

φ2
u dY ∗

u +
∫ t

0

Z3
u

Y 1,3
u−

dY 1,3
u

)
. (35)

Proof. As expected, we first set (note that the process φ1 is a G-predictable process)

φ1
t =

1
Y 1

t−

(
Zt − φ2

t Y
2
t−

)
(36)

and

V 3
t = x +

∫ t

0

φ2
u dY ∗

u +
∫ t

0

Z3
u

Y 1,3
u−

dY 1,3
u .

Arguing along the same lines as in the proof of Proposition 3.1, we obtain

V 3
t = V 3

0 +
2∑

i=1

∫ t

0

φi
u dY i,3

u .

Now, we define

φ3
t = V 3

t −
2∑

i=1

φi
tY

i,3
t = (Y 3

t )−1
(
Vt −

2∑

i=1

φi
tY

i
t

)
,

where Vt = V 3
t Y 3

t . As in the proof of Lemma 3.1, we check that

φ3
t = V 3

t− −
2∑

i=1

φi
tY

i,3
t− ,

and thus the process φ3 is G-predictable. It is clear that the strategy φ = (φ1, φ2, φ3) is self-financing
and its wealth process satisfies Vt(φ) = Vt for every t ∈ [0, T ]. In particular, VT (φ) = X, so that φ
replicates X. Finally, equality (36) implies (30), and thus φ belongs to the class Φ(Z). ¤

Note that equality (34) is a necessary (by Lemma 3.1) and sufficient (by Proposition 3.2) condition
for the existence of a constrained strategy that replicates a given contingent claim X.
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3.2.1 Synthetic Asset

Let us take Z = 0, so that φ ∈ Φ(0). Then the balance condition becomes
∑2

i=1 φi
tY

i
t− = 0, and

formula (31) reduces to

dV 3
t (φ) = φ2

t

(
dY 2,3

t − Y 2,3
t−

Y 1,3
t−

dY 1,3
t

)
. (37)

We set

dY ∗
t = dY 2,3

t − Y 2,3
t−

Y 1,3
t−

dY 1,3
t = dY 2,3

t − Y 2,1
t− dY 1,3

t ,

where, by convention, Y ∗
0 = 0. The process Ȳ 2 = Y 3Y ∗ is called a synthetic asset. It corresponds

to a particular self-financing portfolio, with the long position in Y 2 and the short position of Y 2,1
t−

number of shares of Y 1, and suitably re-balanced positions in the third asset so that the portfolio is
self-financing, as in Lemma 3.1.

It can be shown (see Bielecki et al. [4]) that trading in primary assets Y 1, Y 2, Y 3 is formally
equivalent to trading in assets Y 1, Ȳ 2, Y 3. This observation supports the name synthetic asset
attributed to the process Ȳ 2. Note, however, that the synthetic asset process may take negative
values.

3.2.2 Case of Continuous Asset Prices

In the case of continuous asset prices, the relative price Y ∗ = Ȳ 2(Y 3)−1 of the synthetic asset can be
given an alternative representation, as the following result shows. Recall that the predictable bracket
of the two continuous semi-martingales X and Y , denoted as 〈X,Y 〉, coincides with their quadratic
covariation [X,Y ].

Proposition 3.3 Assume that the price processes Y 1 and Y 2 are continuous. Then the relative
price of the synthetic asset satisfies

Y ∗
t =

∫ t

0

(Y 3,1
u )−1eαu dŶu,

where Ŷt := Y 2,1
t e−αt and

αt := 〈ln Y 2,1, ln Y 3,1〉t =
∫ t

0

(Y 2,1
u )−1(Y 3,1

u )−1 d〈Y 2,1, Y 3,1〉u. (38)

In terms of the auxiliary process Ŷ , formula (31) becomes

V 3
t (φ) = V 3

0 (φ) +
∫ t

0

φ̂u dŶu +
∫ t

0

Z3
u

Y 1,3
u−

dY 1,3
u , (39)

where φ̂t = φ2
t (Y

3,1
t )−1eαt .

Proof. It suffices to give the proof for Z = 0. The proof relies on the integration by parts formula
stating that for any two continuous semi-martingales, say X and Y , we have

Y −1
t

(
dXt − Y −1

t d〈X, Y 〉t
)

= d(XtY
−1
t )−Xt dY −1

t ,

provided that Y is strictly positive. An application of this formula to processes X = Y 2,1 and
Y = Y 3,1 leads to

(Y 3,1
t )−1

(
dY 2,1

t − (Y 3,1
t )−1d〈Y 2,1, Y 3,1〉t

)
= d(Y 2,1

t (Y 3,1
t )−1)− Y 2,1

t d(Y 3,1)−1
t .
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The relative wealth V 3
t (φ) = Vt(φ)(Y 3

t )−1 of a strategy φ ∈ Φ(0) satisfies

V 3
t (φ) = V 3

0 (φ) +
∫ t

0

φ2
u dY ∗

u

= V 3
0 (φ) +

∫ t

0

φ2
u(Y 3,1

u )−1eαu dŶu,

= V 3
0 (φ) +

∫ t

0

φ̂u dŶu

where we denote φ̂t = φ2
t (Y

3,1
t )−1eαt .

Remark 3.1 The financial interpretation of the auxiliary process Ŷ will be studied in Sections 4.1.6
and 4.1.8 below. Let us only observe here that if Y ∗ is a local martingale under some probability Q∗
then Ŷ is a Q∗-local martingale (and vice-versa, if Ŷ is a Q̂-local martingale under some probability
Q̂ then Y ∗ is a Q̂-local martingale). Nevertheless, for the reader’s convenience, we shall use two
symbols Q∗ and Q̂, since this equivalence holds for continuous processes only.

It is thus worth stressing that we will apply Proposition 3.3 to pre-default values of assets, rather
than directly to asset prices, within the set-up of a semimartingale model with a common default,
as described in Section 2.1. In this model, the asset prices may have discontinuities, but their
pre-default values follow continuous processes.

4 Martingale Approach to Valuation and Hedging

Our goal is to derive quasi-explicit conditions for replicating strategies for a defaultable claim in a
fairly general set-up introduced in Section 2.1. In this section, we only deal with trading strategies
based on the reference filtration F, and the underlying price processes (that is, prices of default-
free assets and pre-default values of defaultable assets) are assumed to be continuous. Hence, our
arguments will hinge on Proposition 3.3, rather than on a more general Proposition 3.1. We shall
also adapt Proposition 3.2 to our current purposes.

To simplify the presentation, we make a standing assumption that all coefficient processes are
such that the SDEs appearing below admit unique strong solutions, and all stochastic exponentials
(used as Radon-Nikodým derivatives) are true martingales under respective probabilities.

4.1 Defaultable Asset with Total Default

In this section, we shall examine in some detail a particular model where the two assets, Y 1 and Y 2,
are default-free and satisfy

dY i
t = Y i

t

(
µi,t dt + σi,t dWt

)
, i = 1, 2,

where W is a one-dimensional Brownian motion. The third asset is a defaultable asset with total
default, so that

dY 3
t = Y 3

t−
(
µ3,t dt + σ3,t dWt − dMt

)
.

Since we will be interested in replicating strategies in the sense of Definition 2.2, we may and do do
assume, without loss of generality, that the coefficients µi,t, σi,t, i = 1, 2, are F-predictable, rather
than G-predictable. Recall that, in general, there exist F-predictable processes µ̃3 and σ̃3 such that

µ̃3,t11{t≤τ} = µ3,t11{t≤τ}, σ̃3,t11{t≤τ} = σ3,t11{t≤τ}. (40)

We assume throughout that Y i
0 > 0 for every i, so that the price processes Y 1, Y 2 are strictly

positive, and the process Y 3 is nonnegative, and has strictly positive pre-default value.
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4.1.1 Default-Free Market

It is natural to postulate that the default-free market with the two traded assets, Y 1 and Y 2,
is arbitrage-free. More precisely, we choose Y 1 as a numéraire, and we require that there exists a
probability measure P1, equivalent to P on (Ω,FT ), and such that the process Y 2,1 is a P1-martingale.
The dynamics of processes (Y 1)−1 and Y 2,1 are

d(Y 1
t )−1 = (Y 1

t )−1
(
(σ2

1,t − µ1,t) dt− σ1,t dWt

)
, (41)

and
dY 2,1

t = Y 2,1
t

(
(µ2,t − µ1,t + σ1,t(σ1,t − σ2,t)) dt + (σ2,t − σ1,t) dWt

)
,

respectively. Hence, the necessary condition for the existence of an e.m.m. P1 is the inclusion A ⊆ B,
where A = {(t, ω) ∈ [0, T ]×Ω : σ1,t(ω) = σ2,t(ω)} and B = {(t, ω) ∈ [0, T ]×Ω : µ1,t(ω) = µ2,t(ω)}.
The necessary and sufficient condition for the existence and uniqueness of an e.m.m. P1 reads

EP
{
ET

(∫ ·

0

θu dWu

)}
= 1 (42)

where the process θ is given by the formula (by convention, 0/0 = 0)

θt = σ1,t − µ1,t − µ2,t

σ1,t − σ2,t
, ∀ t ∈ [0, T ]. (43)

Note that in the case of constant coefficients, if σ1 = σ2 then the model is arbitrage-free only in the
trivial case when µ2 = µ1.

Remark 4.1 Since the martingale measure P1 is unique, the default-free model (Y 1, Y 2) is com-
plete. However, this is not a necessary assumption and thus it can be relaxed. As we shall see
in what follows, it is typically more natural to assume that the driving Brownian motion W is
multi-dimensional.

4.1.2 Arbitrage-Free Property

Let us now consider also a defaultable asset Y 3. Our goal is now to find a martingale measure Q1 (if
it exists) for relative prices Y 2,1 and Y 3,1. Recall that we postulate that the hypothesis (H) holds
under P for filtrations F and G = F ∨H. The dynamics of Y 3,1 under P are

dY 3,1
t = Y 3,1

t−
{(

µ3,t − µ1,t + σ1,t(σ1,t − σ3,t)
)
dt + (σ3,t − σ1,t) dWt − dMt

}
.

Let Q1 be any probability measure equivalent to P on (Ω,GT ), and let η be the associated
Radon-Nikodým density process, so that

dQ1 | Gt = ηt dP | Gt , (44)

where the process η satisfies
dηt = ηt−(θt dWt + ζt dMt) (45)

for some G-predictable processes θ and ζ, and η is a G-martingale under P.

From Girsanov’s theorem, the processes Ŵ and M̂ , given by

Ŵt = Wt −
∫ t

0

θu du, M̂t = Mt −
∫ t

0

11{u<τ}γuζu du, (46)

are G-martingales under Q1. To ensure that Y 2,1 is a Q1-martingale, we postulate that (42) and
(43) are valid. Consequently, for the process Y 3,1 to be a Q1-martingale, it is necessary and sufficient
that ζ satisfies

γtζt = µ3,t − µ1,t − µ1,t − µ2,t

σ1,t − σ2,t
(σ3,t − σ1,t).
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To ensure that Q1 is a probability measure equivalent to P, we require that ζt > −1. The unique
martingale measure Q1 is then given by the formula (44) where η solves (45), so that

ηt = Et

(∫ ·

0

θu dWu

)
Et

(∫ ·

0

ζu dMu

)
.

We are in a position to formulate the following result.

Proposition 4.1 Assume that the process θ given by (43) satisfies (42), and

ζt =
1
γt

(
µ3,t − µ1,t − µ1,t − µ2,t

σ1,t − σ2,t
(σ3,t − σ1,t)

)
> −1. (47)

Then the model M = (Y 1, Y 2, Y 3; Φ) is arbitrage-free and complete. The dynamics of relative prices
under the unique martingale measure Q1 are

dY 2,1
t = Y 2,1

t (σ2,t − σ1,t) dŴt,

dY 3,1
t = Y 3,1

t−
(
(σ3,t − σ1,t) dŴt − dM̂t

)
.

Since the coefficients µi,t, σi,t, i = 1, 2, are F-adapted, the process Ŵ is an F-martingale (hence,
a Brownian motion) under Q1. Hence, by virtue of Proposition 1.1, the hypothesis (H) holds under
Q1, and the F-intensity of default under Q1 equals

γ̂t = γt(1 + ζt) = γt +
(

µ3,t − µ1,t − µ1,t − µ2,t

σ1,t − σ2,t
(σ3,t − σ1,t)

)
.

Example 4.1 We present an example where the condition (47) does not hold, and thus arbitrage
opportunities arise. Assume the coefficients are constant and satisfy: µ1 = µ2 = σ1 = 0, µ3 < −γ
for a constant default intensity γ > 0. Then

Y 3
t = 11{t<τ}Y 3

0 exp
(

σ3Wt − 1
2
σ2

3t + (µ3 + γ)t
)
≤ Y 3

0 exp
(

σ3Wt − 1
2
σ2

3t

)
= Vt(φ),

where V (φ) represents the wealth of a self-financing strategy (φ1, φ2, 0) with φ2 = σ3
σ2

. Hence, the
arbitrage strategy would be to sell the asset Y 3, and to follow the strategy φ.

Remark 4.2 Let us stress once again, that the existence of an e.m.m. is a necessary condition for
viability of a financial model, but the uniqueness of an e.m.m. is not always a convenient condition to
impose on a model. In fact, when building a model, we should be mostly concerned with its flexibility
and ability to reflect the pertinent risk factors, rather than with its mathematical completeness. In
the present context, it is natural to postulate that the dimension of the underlying Brownian motion
equals the number of tradeable risky assets. In addition, each particular model should be tailored
to provide intuitive and handy solutions for a predetermined family of contingent claims that will
be priced and hedged within its framework.

4.1.3 Hedging a Survival Claim

We first focus on replication of a survival claim (X, 0, τ), that is, a defaultable claim represented by
the terminal payoff X11{T<τ}, where X is an FT -measurable random variable. For the moment, we
maintain the simplifying assumption that W is one-dimensional. As we shall see in what follows,
it may lead to certain pathological features of a model. If, on the contrary, the driving noise is
multi-dimensional, most of the analysis remains valid, except that model completeness is no longer
ensured, in general.
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Recall that Ỹ 3 stands for the pre-default price of Y 3, defined as (see (21))

dỸ 3
t = Ỹ 3

t

(
(µ̃3,t + γt) dt + σ̃3,t dWt

)
(48)

with Ỹ 3
0 = Y 3

0 . This strictly positive, continuous, F-adapted process enjoys the property that Y 3
t =

11{t<τ}Ỹ 3
t . Let us denote the pre-default values in the numéraire Ỹ 3 by Ỹ i,3

t = Y i
t (Ỹ 3

t )−1, i = 1, 2,
and let us introduce the pre-default relative price Ỹ ∗ of the synthetic asset Ȳ 2 by setting

dỸ ∗
t := dỸ 2,3

t − Ỹ 2,3
t

Ỹ 1,3
t

dỸ 1,3
t = Ỹ 2,3

t

((
µ2,t − µ1,t + σ3,t(σ1,t − σ2,t)

)
dt + (σ2,t − σ1,t) dWt

)
,

and let us assume that σ1,t − σ2,t 6= 0. It is also useful to note that the process Ŷ , defined in
Proposition 3.3, satisfies

dŶt = Ŷt

((
µ2,t − µ1,t + σ3,t(σ1,t − σ2,t)

)
dt + (σ2,t − σ1,t) dWt

)
.

In Sections 4.1.6 and 4.1.8, we shall show that in the case, where α given by (38) is deterministic,
the process Ŷ has a pertinent financial interpretation as a credit-risk adjusted forward price of Y 2

relative to Y 1. Therefore, it is more convenient to work with the process Ỹ ∗ when dealing with the
general case, but to use the process Ŷ when analyzing a model with deterministic volatilities.

Consider an F-predictable self-financing strategy φ satisfying the balance condition φ1
t Y

1
t +

φ2
t Y

2
t = 0, and the corresponding wealth process

Vt(φ) :=
3∑

i=1

φi
tY

i
t = φ3

t Y
3
t .

Let Ṽt(φ) := φ3
t Ỹ

3
t . Since the process Ṽ (φ) is F-adapted, we see that this is the pre-default price

process of the portfolio φ, that is, we have 11{τ>t}Vt(φ) = 11{τ>t}Ṽt(φ); we shall call this process the
pre-default wealth of φ. Consequently, the process Ṽ 3

t (φ) := Ṽt(φ)(Ỹ 3
t )−1 = φ3

t is termed the relative
pre-default wealth.

Using Proposition 3.1, with suitably modified notation, we find that the F-adapted process Ṽ 3(φ)
satisfies, for every t ∈ [0, T ],

Ṽ 3
t (φ) = Ṽ 3

0 (φ) +
∫ t

0

φ2
u dỸ ∗

u .

Define a new probability on (Ω,FT ) by setting

dQ∗ = η∗T dP,

where dη∗t = η∗t θ∗t dWt, and

θ∗t =
µ2,t − µ1,t + σ̃3,t(σ1,t − σ2,t)

σ1,t − σ2,t
. (49)

The process Ỹ ∗
t , t ∈ [0, T ], is a (local) martingale under Q∗. We shall require that this process is in

fact a true martingale; a sufficient condition for this is that
∫ T

0

EQ∗
(
Ỹ 2,3

t (σ2,t − σ1,t)
)2

dt < ∞.

From the predictable representation theorem, it follows that for any X ∈ FT , such that X(Ỹ 3
T )−1 is

square-integrable under Q∗, there exists a constant x and an F-predictable process φ2 such that

X = Ỹ 3
T

(
x +

∫ T

0

φ2
u dỸ ∗

u

)
. (50)
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We now deduce from Proposition 3.2 that there exists a self-financing strategy φ with the pre-default
wealth Ṽt(φ) = Ỹ 3

t Ṽ 3
t for every t ∈ [0, T ], where we set

Ṽ 3
t = x +

∫ t

0

φ2
u dỸ ∗

u . (51)

Moreover, it satisfies the balance condition φ1
t Y

1
t + φ2

t Y
2
t = 0 for every t ∈ [0, T ]. Since clearly

ṼT (φ) = X, we have that

VT (φ) = φ3
T Y 3

T = 11{T<τ}φ3
T Ỹ 3

T = 11{T<τ}ṼT (φ) = 11{T<τ}X,

and thus this strategy replicates the survival claim (X, 0, τ). In fact, we have that Vt(φ) = 0 on the
random interval [[τ, T ]].

Definition 4.1 We say that a survival claim (X, 0, τ) is attainable if the process Ṽ 3 given by (51)
is a martingale under Q∗.

The following result is an immediate consequence of (50) and (51).

Corollary 4.1 Let X ∈ FT be such that X(Ỹ 3
T )−1 is square-integrable under Q∗. Then the survival

claim (X, 0, τ) is attainable. Moreover, the pre-default price π̃t(X, 0, τ) of the claim (X, 0, τ) is given
by the conditional expectation

π̃t(X, 0, τ) = Ỹ 3
t EQ∗(X(Ỹ 3

T )−1 | Ft), ∀ t ∈ [0, T ]. (52)

The process π̃(X, 0, τ)(Ỹ 3)−1 is an F-martingale under Q∗.

Proof. Since X(Ỹ 3
T )−1 is square-integrable under Q∗, we know from the predictable representation

theorem that φ2 in (50) is such that EQ∗
(∫ T

0
(φ2

t )
2 d〈Ỹ ∗〉t

)
< ∞, so that the process Ṽ 3 given by

(51) is a true martingale under Q∗. We conclude that (X, 0, τ) is attainable.

Now, let us denote by πt(X, 0, τ) the time-t price of the claim (X, 0, τ). Since φ is a hedging
portfolio for (X, 0, τ) we thus have Vt(φ) = πt(X, 0, τ) for each t ∈ [0, T ]. Consequently,

11{τ>t}π̃t(X, 0, τ) = 11{τ>t}Ṽt(φ) = 11{τ>t}Ỹ 3
t EQ∗(Ṽ 3

T | Ft) = 11{τ>t}Ỹ 3
t EQ∗(X(Ỹ 3

T )−1 | Ft)

for each t ∈ [0, T ]. This proves equality (52). ¤

In view of the last result, it is justified to refer to Q∗ as the pricing measure relative to Y 3 for
attainable survival claims.

Remark 4.3 It can be proved that there exists a unique absolutely continuous probability measure
Q̄ on (Ω,GT ) such that we have

Y 3
t EQ̄

(
11{τ>T}X

Y 3
T

∣∣∣Gt

)
= 11{τ>t}Ỹ 3

t EQ∗
(

X

Ỹ 3
T

∣∣∣Ft

)
.

However, this probability measure is not equivalent to Q∗, since its Radon-Nikodým density vanishes
after τ (for a related result, see Collin-Dufresne et al. [12]).

Example 4.2 We provide here an explicit calculation of the pre-default price of a survival claim.
For simplicity, we assume that X = 1, so that the claim represents a defaultable zero-coupon bond.
Also, we set γt = γ = const, µi,t = 0, and σi,t = σi, i = 1, 2, 3. Straightforward calculations yield
the following pricing formula

π̃0(1, 0, τ) = Y 3
0 e−(γ+ 1

2 σ2
3)T .
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We see that here the pre-default price π̃0(1, 0, τ) depends explicitly on the intensity γ, or rather,
on the drift term in dynamics of pre-default value of defaultable asset. Indeed, from the practical
viewpoint, the interpretation of the drift coefficient in dynamics of Y 2 as the real-world default
intensity is questionable, since within our set-up (and in practice) the default intensity never appears
as an independent variable, but is merely a component of the drift term in dynamics of pre-default
value of Y 3.

Note also that we deal here with a model with three tradeable assets driven by a one-dimensional
Brownian motion. No wonder that the model enjoys completeness, but as a downside, it has an unde-
sirable property that the pre-default values of all three assets are perfectly correlated. Consequently,
the drift terms in dynamics of traded assets are closely linked to each other, in the sense, that their
behavior under an equivalent change of a probability measure is quite specific.

As we shall see later, if traded primary assets are judiciously chosen then, typically, the pre-
default price (and hence the price) of a survival claim will not explicitly depend on the intensity
process.

Remark 4.4 Generally speaking, we believe that one can classify a financial model as ‘realistic’ if
its implementation does not require estimation of drift parameters in (pre-default) prices, at least
for the purpose of hedging and valuation of a sufficiently large class of (defaultable) contingent
claims of interest. It is worth recalling that the drift coefficients are not assumed to be market
observables. Since the default intensity can formally interpreted as a component of the drift term in
dynamics of pre-default prices, in a realistic model there is no need to estimate this quantity. From
this perspective, the model considered in Example 4.2 may serve as an example of an ‘unrealistic’
model, since its implementation requires the knowledge of the drift parameter in the dynamics of
Y 3. We do not pretend here that it is always possible to hedge derivative assets without using the
drift coefficients in dynamics of tradeable assets, but it seems to us that a good idea is to develop
models in which this knowledge is not of primary importance.

Of course, a generic semimartingale model considered until now provides only a framework for
a construction of realistic models for hedging of default risk. A choice of tradeable assets and
specification of their dynamics should be examined on a case-by-case basis, rather than in a general
semimartingale set-up. We shall address this important issue in the foregoing sections, in which we
shall deal with particular examples of practically interesting defaultable claims.

4.1.4 Hedging a Recovery Process

Let us now briefly study the situation where the promised payoff equals zero, and the recovery
payoff is paid at time τ and equals Zτ for some F-adapted process Z. Put another way, we consider
a defaultable claim of the form (0, Z, τ). Once again, we make use of Propositions 3.1 and 3.2. In
view of (34), we need to find a constant x and an F-predictable process φ2 such that

ψT := −
∫ T

0

Zt

Y 1
t

dỸ 1,3
t = x +

∫ T

0

φ2
t dỸ ∗

t . (53)

Similarly as in Section 4.1.3 we conclude that, under suitable integrability conditions on ψT , there
exists φ2 such that dψt = φ2

t dY ∗
t , where ψt = EQ∗(ψT | Ft). We now set

Ṽ 3
t = x +

∫ t

0

φ2
u dY ∗

u +
∫ T

0

Z̃3
u

Ỹ 1,3
u

dỸ 1,3
u ,

so that, in particular, Ṽ 3
T = 0. Then it is possible to find processes φ1 and φ3 such that the strategy

φ is self-financing and it satisfies: Ṽt(φ) = Ṽ 3
t Ỹ 3

t and Vt(φ) = Zt + φ3
t Y

3
t for every t ∈ [0, T ]. It is

thus clear that Vτ (φ) = Zτ on the set {τ ≤ T} and VT (φ) = 0 on the set {τ > T}.
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4.1.5 Bond Market

For the sake of concreteness, we assume that Y 1
t = B(t, T ) is the price of a default-free ZC-bond

with maturity T , and Y 3
t = D(t, T ) is the price of a defaultable ZC-bond with zero recovery, that

is, an asset with the terminal payoff Y 3
T = 11{T<τ}. We postulate that the dynamics under P of the

default-free ZC-bond are

dB(t, T ) = B(t, T )
(
µ(t, T ) dt + b(t, T ) dWt

)
(54)

for some F-predictable processes µ(t, T ) and b(t, T ). We choose the process Y 1
t = B(t, T ) as a

numéraire. Since the prices of the other two assets are not given a priori, we may choose any
probability measure Q equivalent to P on (Ω,GT ) to play the role of Q1.

In such a case, an e.m.m. Q1 is referred to as the forward martingale measure for the date T ,
and is denoted by QT . Hence, the Radon-Nikodým density of QT with respect to P is given by (45)
for some F-predictable processes θ and ζ, and the process

WT
t = Wt −

∫ t

0

θu du, ∀ t ∈ [0, T ],

is a Brownian motion under QT . Under QT the default-free ZC-bond is governed by

dB(t, T ) = B(t, T )
(
µ̂(t, T ) dt + b(t, T ) dWT

t

)

where µ̂(t, T ) = µ(t, T ) + θtb(t, T ). Let Γ̂ stand for the F-hazard process of τ under QT , so that
Γ̂t = − ln(1 − F̂t), where F̂t = QT (τ ≤ t | Ft). Assume that the hypothesis (H) holds under QT so
that, in particular, the process Γ̂ is increasing. We define the price process of a defaultable ZC-bond
with zero recovery by the formula

D(t, T ) := B(t, T )EQT (11{T<τ} | Gt) = 11{t<τ}B(t, T )EQT

(
eΓ̂t−Γ̂T

∣∣Ft

)
,

where the second equality follows from Lemma 1.3. It is then clear that Y 3,1
t = D(t, T )(B(t, T ))−1

is a QT -martingale, and the pre-default price D̃(t, T ) equals

D̃(t, T ) = B(t, T )EQT

(
eΓ̂t−Γ̂T

∣∣Ft

)
.

The next result examines the basic properties of the auxiliary process Γ̂(t, T ) given as, for every
t ∈ [0, T ],

Γ̂(t, T ) = Ỹ 3,1
t = D̃(t, T )(B(t, T ))−1 = EQT

(
eΓ̂t−Γ̂T

∣∣Ft

)
.

The quantity Γ̂(t, T ) can be interpreted as the conditional probability (under QT ) that default will
not occur prior to the maturity date T , given that we observe Ft and we know that the default has
not yet happened. We will be more interested, however, in its volatility process β(t, T ) as defined
in the following result.

Lemma 4.1 Assume that the F-hazard process Γ̂ of τ under QT is continuous. Then the process
Γ̂(t, T ), t ∈ [0, T ], is a continuous F-submartingale and

dΓ̂(t, T ) = Γ̂(t, T )
(
dΓ̂t + β(t, T ) dWT

t

)
(55)

for some F-predictable process β(t, T ). The process Γ̂(t, T ) is of finite variation if and only if the
hazard process Γ̂ is deterministic. In this case, we have Γ̂(t, T ) = eΓ̂t−Γ̂T .

Proof. We have
Γ̂(t, T ) = EQT

(
eΓ̂t−Γ̂T | Ft

)
= eΓ̂tLt,
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where we set Lt = EQT

(
e−Γ̂T | Ft

)
. Hence, Γ̂(t, T ) is equal to the product of a strictly positive,

increasing, right-continuous, F-adapted process eΓ̂t , and a strictly positive, continuous F-martingale
L. Furthermore, there exists an F-predictable process β̂(t, T ) such that L satisfies

dLt = Ltβ̂(t, T ) dWT
t

with the initial condition L0 = EQT

(
e−Γ̂T

)
. Formula (55) now follows by an application of Itô’s

formula, by setting β(t, T ) = e−Γ̂t β̂(t, T ). To complete the proof, it suffices to recall that a continuous
martingale is never of finite variation, unless it is a constant process. ¤

Remark 4.5 It can be checked that β(t, T ) is also the volatility of the process

Γ(t, T ) = EP
(
eΓt−ΓT

∣∣Ft

)
.

Assume that Γ̂t =
∫ t

0
γ̂u du for some F-predictable, nonnegative process γ̂. Then we have the

following auxiliary result, which gives, in particular, the volatility of the defaultable ZC-bond.

Corollary 4.2 The dynamics under QT of the pre-default price D̃(t, T ) equals

dD̃(t, T ) = D̃(t, T )
((

µ̂(t, T ) + b(t, T )β(t, T ) + γ̂t

)
dt +

(
b(t, T ) + β(t, T )

)
d̃(t, T ) dWT

t

)
.

Equivalently, the price D(t, T ) of the defaultable ZC-bond satisfies under QT

dD(t, T ) = D(t, T )
((

µ̂(t, T ) + b(t, T )β(t, T )
)
dt + d̃(t, T ) dWT

t − dMt

)
.

where we set d̃(t, T ) = b(t, T ) + β(t, T ).

Note that the process β(t, T ) can be expressed in terms of market observables, since it is simply
the difference of volatilities d̃(t, T ) and b(t, T ) of pre-default prices of tradeable assets.

4.1.6 Credit-Risk-Adjusted Forward Price

Assume that the price Y 2 satisfies under the statistical probability P

dY 2
t = Y 2

t

(
µ2,t dt + σt dWt

)
(56)

with F-predictable coefficients µ and σ. Let FY 2(t, T ) = Y 2
t (B(t, T ))−1 be the forward price of Y 2

T .
For an appropriate choice of θ (see 49), we shall have that

dFY 2(t, T ) = FY 2(t, T )
(
σt − b(t, T )

)
dWT

t .

Therefore, the dynamics of the pre-default synthetic asset Ỹ ∗
t under QT are

dỸ ∗
t = Ỹ 2,3

t

(
σt − b(t, T )

) (
dWT

t − β(t, T ) dt
)
,

and the process Ŷt = Y 2,1
t e−αt satisfies

dŶt = Ŷt

(
σt − b(t, T )

) (
dWT

t − β(t, T ) dt
)
.

Let Q̂ be an equivalent probability measure on (Ω,GT ) such that Ŷ (or, equivalently, Ỹ ∗) is a
Q̂-martingale. By virtue of Girsanov’s theorem, the process Ŵ given by the formula

Ŵt = WT
t −

∫ t

0

β(u, T ) du, ∀ t ∈ [0, T ],
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is a Brownian motion under Q̂. Thus, the forward price FY 2(t, T ) satisfies under Q̂

dFY 2(t, T ) = FY 2(t, T )
(
σt − b(t, T )

)(
dŴt + β(t, T ) dt

)
. (57)

It appears that the valuation results are easier to interpret when they are expressed in terms
of forward prices associated with vulnerable forward contracts, rather than in terms of spot prices
of primary assets. For this reason, we shall now examine credit-risk-adjusted forward prices of
default-free and defaultable assets.

Definition 4.2 Let Y be a GT -measurable claim. An Ft-measurable random variable K is called
the credit-risk-adjusted forward price of Y if the pre-default value at time t of the vulnerable forward
contract represented by the claim 11{T<τ}(Y −K) equals 0.

Lemma 4.2 The credit-risk-adjusted forward price F̂Y (t, T ) of an attainable survival claim (X, 0, τ),
represented by a GT -measurable claim Y = X11{T<τ}, equals π̃t(X, 0, τ)(D̃(t, T ))−1, where π̃t(X, 0, τ)
is the pre-default price of (X, 0, τ). The process F̂Y (t, T ), t ∈ [0, T ], is an F-martingale under Q̂.

Proof. The forward price is defined as an Ft-measurable random variable K such that the claim

11{T<τ}(X11{T<τ} −K) = X11{T<τ} −KD(T, T )

is worthless at time t on the set {t < τ}. It is clear that the pre-default value at time t of this claim
equals π̃t(X, 0, τ)−KD̃(t, T ). Consequently, we obtain F̃Y (t, T ) = π̃t(X, 0, τ)(D̃(t, T ))−1. ¤

Let us now focus on default-free assets. Manifestly, the credit-risk-adjusted forward price of the
bond B(t, T ) equals 1. To find the credit-risk-adjusted forward price of Y 2, let us write

F̂Y 2(t, T ) := FY 2(t, T ) eαT−αt = Y 2,1
t eαT−αt ,

where α is given by (see (38))

αt =
∫ t

0

(
σu − b(u, T )

)
β(u, T ) du =

∫ t

0

(
σu − b(u, T )

)(
d̃(u, T )− b(u, T )

)
du. (58)

Lemma 4.3 Assume that α given by (58) is a deterministic function. Then the credit-risk-adjusted
forward price of Y 2 equals F̂Y 2(t, T ) for every t ∈ [0, T ].

Proof. According to Definition 4.2, the price F̂Y 2(t, T ) is an Ft-measurable random variable K,
which makes the forward contract represented by the claim D(T, T )(Y 2

T −K) worthless on the set
{t < τ}. Assume that the claim Y 2

T −K is attainable.1 Since D̃(T, T ) = 1, from equation (52) it
follows that the pre-default value of this claim is given by the conditional expectation

D̃(t, T )EQ∗
(
Y 2

T −K
∣∣Ft

)
.

Consequently,

F̂Y 2(t, T ) = EQ̂
(
Y 2

T

∣∣Ft

)
= EQ̂

(
FY 2(T, T )

∣∣Ft

)
= FY 2(t, T ) eαT−αt ,

as was claimed. ¤

It is worth noting that the process F̂Y 2(t, T ) is a (local) martingale under the pricing measure
Q̂, since it satisfies

dF̂Y 2(t, T ) = F̂Y 2(t, T )(σt − b(t, T )) dŴt. (59)

Under the present assumptions, the auxiliary process Ŷ introduced in Proposition 3.3 and the credit-
risk-adjusted forward price F̂Y 2(t, T ) are closely related to each other. Indeed, we have F̂Y 2(t, T ) =
Ŷte

αT , so that thus the two processes are proportional.
1Attainability of this claim can be shown in a similar way as the attainability of a vulnerable call option considered

in Section 4.1.7.
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4.1.7 Vulnerable Option on a Default-Free Asset

We shall now analyze a vulnerable call option with the payoff

Cd
T = 11{T<τ}(Y 2

T −K)+.

Our goal is to find a replicating strategy for this claim, interpreted as a survival claim (X, 0, τ) with
the promised payoff X = CT = (Y 2

T −K)+, where CT is the payoff of an equivalent non-vulnerable
option. The method presented below is quite general, however, so that it can be applied to any
survival claim with the promised payoff X = G(Y 2

T ) for some function G : R → R satisfying the
usual integrability assumptions.

We assume that Y 1
t = B(t, T ), Y 3

t = D(t, T ) and the price of a default-free asset Y 2 is governed
by (56). Then

Cd
T = 11{T<τ}(Y 2

T −K)+ = 11{T<τ}(Y 2
T −KY 1

T )+.

We are going to apply Proposition 3.3. In the present set-up, we have Y 2,1
t = FY 2(t, T ) and

Ŷt = FY 2(t, T )e−αt . Since a vulnerable option is an example of a survival claim, in view of Lemma
4.2, its credit-risk-adjusted forward price satisfies F̂Cd(t, T ) = C̃d

t (D̃(t, T ))−1.

Proposition 4.2 Suppose that the volatilities σ, b and β are deterministic functions. Then the
credit-risk-adjusted forward price of a vulnerable call option written on a default-free asset Y 2 equals

F̂Cd(t, T ) = F̂Y 2(t, T )N(d+(F̂Y 2(t, T ), t, T ))−KN(d−(F̂Y 2(t, T ), t, T )) (60)

where

d±(f̂ , t, T ) =
ln f̂ − ln K ± 1

2v2(t, T )
v(t, T )

and

v2(t, T ) =
∫ T

t

(σu − b(u, T ))2 du.

The replicating strategy φ in the spot market satisfies for every t ∈ [0, T ], on the set {t < τ},

φ1
t B(t, T ) = −φ2

t Y
2
t , φ2

t = D̃(t, T )(B(t, T ))−1N(d+(t, T ))eαT−αt , φ3
t D̃(t, T ) = C̃d

t ,

where d+(t, T ) = d+(F̂Y 2(t, T ), t, T ).

Proof. In the first step, we compute the valuation formula. Assume for the moment that the option
is attainable. Then the pre-default value of the option equals, for every t ∈ [0, T ],

C̃d
t = D̃(t, T )EQ̂

(
(FY 2(T, T )−K)+

∣∣Ft

)
= D̃(t, T )EQ̂

(
(F̂Y 2(T, T )−K)+

∣∣Ft

)
. (61)

In view of (59), the conditional expectation above can be computed explicitly, yielding the valuation
formula (60).

To find the replicating strategy, and establish attainability of the option, we consider the Itô
differential dF̂Cd(t, T ) and we identify terms in (51). It appears that

dF̂Cd(t, T ) = N(d+(t, T )) dF̂Y 2(t, T ) = N(d+(t, T ))eαT dŶt = N(d+(t, T ))Ỹ 3,1
t eαT−αt dỸ ∗

t (62)

so that the process φ2 in (50) equals

φ2
t = Ỹ 3,1

t N(d+(t, T ))eαT−αt .

Moreover, φ1 is such that φ1
t B(t, T ) + φ2

t Y
2
t = 0 and φ3

t = C̃d
t (D̃(t, T ))−1. It is easily seen that this

proves also the attainability of the option. ¤
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Let us examine the financial interpretation of the last result.

First, equality (62) shows that it is easy to replicate the option using vulnerable forward contracts.
Indeed, we have

F̂Cd(T, T ) = X =
C̃d

0

D̃(0, T )
+

∫ T

0

N(d+(t, T )) dF̂Y 2(t, T )

and thus it is enough to invest the premium C̃d
0 = Cd

0 in defaultable ZC-bonds of maturity T , and
take at any instant t prior to default N(d+(t, T )) positions in vulnerable forward contracts. It is
understood that if default occurs prior to T all outstanding vulnerable forward contracts become
void.

Second, it is worth stressing that neither the arbitrage price, nor the replicating strategy for a
vulnerable option, depend explicitly on the default intensity. This remarkable feature is due to the
fact that the default risk of the writer of the option can be completely eliminated by trading in
defaultable zero-coupon bond with the same exposure to credit risk as a vulnerable option.

In fact, since the volatility β is invariant with respect to an equivalent change of a probability
measure, and so are the volatilities σ and b(t, T ), the formulae of Proposition 4.2 are valid for any
choice of a forward measure QT equivalent to P (and, of course, they are valid under P as well).
The only way in which the choice of a forward measure QT impacts these results is through the
pre-default value of a defaultable ZC-bond.

We conclude that we deal here with the volatility based relative pricing a defaultable claim. This
should be contrasted with more popular intensity-based risk-neutral pricing, which is commonly used
to produce an arbitrage-free model of tradeable defaultable assets. Recall, however, that if tradeable
assets are not chosen carefully for a given class of survival claims, then both hedging strategy and
pre-default price may depend explicitly on values of drift parameters, which can be linked in our
set-up to the default intensity (see Example 4.2).

Remark 4.6 Assume that X = G(Y 2
T ) for some function G : R→ R. Then the credit-risk-adjusted

forward price of a survival claim satisfies F̂X(t, T ) = v(t, F̂Y 2(t, T )), where the pricing function v
solves the PDE

∂tv(t, f̂) +
1
2
(σt − b(t, T ))2f̂2∂f̂ f̂v(t, f̂) = 0

with the terminal condition v(T, f̂) = G(f̂). The PDE approach is studied in Section 5 below.

Remark 4.7 Proposition 4.2 is still valid if the driving Brownian motion is two-dimensional, rather
than one-dimensional. In an extended model, the volatilities σt, b(t, T ) and β(t, T ) take values in R2

and the respective products are interpreted as inner products in R3. Equivalently, one may prefer
to deal with real-valued volatilities, but with correlated one-dimensional Brownian motions.

4.1.8 Vulnerable Swaption

In this section, we relax the assumption that Y 1 is the price of a default-free bond. We now let Y 1

and Y 2 to be arbitrary default-free assets, with dynamics

dY i
t = Y i

t

(
µi,t dt + σi,t dWt

)
, i = 1, 2.

We still take D(t, T ) to be the third asset, and we maintain the assumption that the model is
arbitrage-free, but we no longer postulate its completeness. In other words, we postulate the exis-
tence an e.m.m. Q1, as defined in Section 4.1.2, but not the uniqueness of Q1.

We take the first asset as a numéraire, so that all prices are expressed in units of Y 1. In particular,
Y 1,1

t = 1 for every t ∈ R+, and the relative prices Y 2,1 and Y 3,1 satisfy under Q1 (cf. Proposition
4.1)

dY 2,1
t = Y 2,1

t (σ2,t − σ1,t) dŴt,

dY 3,1
t = Y 3,1

t−
(
(σ3,t − σ1,t) dŴt − dM̂t

)
.



T.R. Bielecki, M. Jeanblanc and M. Rutkowski 33

It is natural to postulate that the driving Brownian noise is two-dimensional. In such a case, we
may represent the joint dynamics of Y 2,1 and Y 3,1 under Q1 as follows

dY 2,1
t = Y 2,1

t (σ2,t − σ1,t) dW 1
t ,

dY 3,1
t = Y 3,1

t−
(
(σ3,t − σ1,t) dW 2

t − dM̂t

)
,

where W 1, W 2 are one-dimensional Brownian motions under Q1, such that d〈W 1, W 2〉t = ρt dt for
a deterministic instantaneous correlation coefficient ρ taking values in [−1, 1].

We assume from now on that the volatilities σi, i = 1, 2, 3 are determnistic. Let us set

αt = 〈ln Ỹ 2,1, ln Ỹ 3,1〉t =
∫ t

0

ρu(σ2,u − σ1,u)(σ3,u − σ1,u) du, (63)

and let Q̂ be an equivalent probability measure on (Ω,GT ) such that the process Ŷt = Y 2,1
t e−αt

is a Q̂-martingale. To clarify the financial interpretation of the auxiliary process Ŷ in the present
context, we introduce the concept of credit-risk-adjusted forward price relative to the numéraire Y 1.

Definition 4.3 Let Y be a GT -measurable claim. An Ft-measurable random variable K is called
the time-t credit-risk-adjusted Y 1-forward price of Y if the pre-default value at time t of a vulnerable
forward contract, represented by the claim

11{T<τ}(Y 1
T )−1(Y −KY 1

T ) = 11{T<τ}(Y (Y 1
T )−1 −K),

equals 0.

The credit-risk-adjusted Y 1-forward price of Y is denoted by F̂Y |Y 1(t, T ), and it is also interpreted
as an abstract defaultable swap rate. The following auxiliary results are easy to establish, along the
same lines as Lemmas 4.2 and 4.3.

Lemma 4.4 The credit-risk-adjusted Y 1-forward price of a survival claim Y = (X, 0, τ) equals

F̂Y |Y 1(t, T ) = π̃t(X1, 0, τ)(D̃(t, T ))−1

where X1 = X(Y 1
T )−1 is the price of X in the numéraire Y 1, and π̃t(X1, 0, τ) is the pre-default

value of a survival claim with the promised payoff X1.

Proof. It suffices to note that for Y = 11{T<τ}X, we have

11{T<τ}(Y (Y 1
T )−1 −K) = 11{T<τ}X1 −KD(T, T ),

where X1 = X(Y 1
T )−1, and to consider the pre-default values. ¤

Lemma 4.5 The credit-risk-adjusted Y 1-forward price of the asset Y 2 equals

F̂Y 2|Y 1(t, T ) = Y 2,1
t eαT−αt = Ŷte

αT , (64)

where α is given by (63).

Proof. It suffices to find an Ft-measurable random variable K for which

D̃(t, T )EQ̂
(
Y 2

T (Y 1
T )−1 −K

∣∣Ft

)
= 0.

Consequently, K = F̂Y 2|Y 1(t, T ), where

F̂Y 2|Y 1(t, T ) = EQ̂
(
Y 2,1

T

∣∣Ft

)
= Y 2,1

t eαT−αt = Ŷt eαT ,
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where we have used the facts that Ŷt = Y 2,1
t e−αt is a Q̂-martingale, and α is deterministic. ¤

We are in a position to examine a vulnerable option to exchange default-free assets with the
payoff

Cd
T = 11{T<τ}(Y 1

T )−1(Y 2
T −KY 1

T )+ = 11{T<τ}(Y
2,1
T −K)+. (65)

The last expression shows that the option can be interpreted as a vulnerable swaption associated
with the assets Y 1 and Y 2. It is useful to observe that

Cd
T

Y 1
T

=
11{T<τ}

Y 1
T

(
Y 2

T

Y 1
T

−K

)+

,

so that, when expressed in the numéraire Y 1, the payoff becomes

C1,d
T = D1(T, T )(Y 2,1

T −K)+,

where C1,d
t = Cd

t (Y 1
t )−1 and D1(t, T ) = D(t, T )(Y 1

t )−1 stand for the prices relative to Y 1.

It is clear that we deal here with a model analogous to the model examined in Sections 4.1.5 and
4.1.7 in which, however, all prices are now relative to the numéraire Y 1. This observation allows us
to directly derive the valuation formula from Proposition 4.2.

Proposition 4.3 The credit-risk-adjusted Y 1-forward price of a vulnerable call option written with
the payoff given by (65) equals

F̂Cd|Y 1(t, T ) = F̂Y 2|Y 1(t, T )N
(
d+(F̂Y 2|Y 1(t, T ), t, T )

)−KN
(
d−(F̂Y 2|Y 1(t, T ), t, T )

)

where

d±(f̂ , t, T ) =
ln f̂ − ln K ± 1

2v2(t, T )
v(t, T )

and

v2(t, T ) =
∫ T

t

(σ2,u − σ1,u)2 du.

The replicating strategy φ in the spot market satisfies for every t ∈ [0, T ], on the set {t < τ},

φ1
t Y

1
t = −φ2

t Y
2
t , φ2

t = D̃(t, T )(Y 1
t )−1N(d+(t, T ))eαT−αt , φ3

t D̃(t, T ) = C̃d
t ,

where d+(t, T ) = d+

(
F̂Y 2(t, T ), t, T

)
.

Proof. The proof is analogous to that of Proposition 4.2, and thus it is omitted. ¤

It is worth noting that the payoff (65) was judiciously chosen. Suppose instead that the option
payoff is not defined by (65), but it is given by an apparently simpler expression

Cd
T = 11{T<τ}(Y 2

T −KY 1
T )+. (66)

Since the payoff Cd
T can be represented as follows

Cd
T = Ĝ(Y 1

T , Y 2
T , Y 3

T ) = Y 3
T (Y 2

T −KY 1
T )+,

where Ĝ(y1, y2, y3) = y3(y2−Ky1)+, the option can be seen an option to exchange the second asset
for K units of the first asset, but with the payoff expressed in units of the defaultable asset. When
expressed in relative prices, the payoff becomes

C1,d
T = 11{T<τ}(Y

2,1
T −K)+.

where 11{T<τ} = D1(T, T )Y 1
T . It is thus rather clear that it is not longer possible to apply the same

method as in the proof of Proposition 4.2.
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4.2 Two Defaultable Assets with Total Default

We shall now assume that we have only two assets, and both are defaultable assets with total default.
This case is also examined by Carr [11], who studies some imperfect hedging of digital options. Note
that here we present results for perfect hedging.

We shall briefly outline the analysis of hedging of a survival claim. Under the present assumptions,
we have, for i = 1, 2,

dY i
t = Y i

t−
(
µi,t dt + σi,t dWt − dMt

)
, (67)

where W is a one-dimensional Brownian motion, so that

Y 1
t = 11{t<τ}Ỹ 1

t , Y 2
t = 11{t<τ}Ỹ 2

t ,

with the pre-default prices governed by the SDEs

dỸ i
t = Ỹ i

t

(
(µi,t + γt) dt + σi,t dWt

)
. (68)

The wealth process V associated with the self-financing trading strategy (φ1, φ2) satisfies, for every
t ∈ [0, T ],

Vt = Y 1
t

(
V 1

0 +
∫ t

0

φ2
u dỸ 2,1

u

)
,

where Ỹ 2,1
t = Ỹ 2

t /Ỹ 1
t . Since both primary traded assets are subject to total default, it is clear that

the present model is incomplete, in the sense, that not all defaultable claims can be replicated. We
shall check in Section 4.2.1 that, under the assumption that the driving Brownian motion W is
one-dimensional, all survival claims satisfying natural technical conditions are hedgeable, however.
In the more realistic case of a two-dimensional noise, we will still be able to hedge a large class of
survival claims, including options on a defaultable asset (see Section 4.2.2) and options to exchange
defultable assets (see Section 4.2.3).

4.2.1 Hedging a Survival Claim

For the sake of expositional simplicity, we assume in this section that the driving Brownian motion
W is one-dimensional. This is definitely not the right choice, since we deal here with two risky
assets, and thus they will be perfectly correlated. However, this assumption is convenient for the
expositional purposes, since it will ensure the model completeness with respect to survival claims,
and it will be later relaxed anyway.

We shall argue that in a model with two defaultable assets governed by (67), replication of
a survival claim (X, 0, τ) is in fact equivalent to replication of the promised payoff X using the
pre-default processes.

Lemma 4.6 If a strategy φi, i = 1, 2, based on pre-default values Ỹ i, i = 1, 2, is a replicating
strategy for an FT -measurable claim X, that is, if φ is such that the process Ṽt(φ) = φ1

t Ỹ
1
t + φ2

t Ỹ
2
t

satisfies, for every t ∈ [0, T ],

dṼt(φ) = φ1
t dỸ 1

t + φ2
t dỸ 2

t ,

ṼT (φ) = X,

then for the process Vt(φ) = φ1
t Y

1
t + φ2

t Y
2
t we have, for every t ∈ [0, T ],

dVt(φ) = φ1
t dY 1

t + φ2
t dY 2

t ,

VT (φ) = X11{T<τ}.

This means that a strategy φ replicates a survival claim (X, 0, τ).



36 Hedging of Credit Derivatives

Proof. It is clear that Vt(φ) = 11{t<τ}Vt(φ) = 11{t<τ}Ṽt(φ). From

φ1
t dY 1

t + φ2
t dY 2

t = −(φ1
t Ỹ

1
t + φ2

t Ỹ
2
t ) dHt + (1−Ht−)(φ1

t dỸ 1
t + φ2

t dỸ 2
t ),

it follows that
φ1

t dY 1
t + φ2

t dY 2
t = −Ṽt(φ) dHt + (1−Ht−)dṼt(φ),

that is,
φ1

t dY 1
t + φ2

t dY 2
t = d(11{t<τ}Ṽt(φ)) = dVt(φ).

It is also obvious that VT (φ) = X11{T<τ}. ¤

Combining the last result with Lemma 3.1, we see that a strategy (φ1, φ2) replicates a survival
claim (X, 0, τ) whenever we have

Ỹ 1
T

(
x +

∫ T

0

φ2
t dỸ 2,1

t

)
= X

for some constant x and some F-predictable process φ2, where, in view of (68),

dỸ 2,1
t = Ỹ 2,1

t

((
µ2,t − µ1,t + σ1,t(σ1,t − σ2,t)

)
dt + (σ2,t − σ1,t) dWt

)
.

We introduce a probability measure Q̃, equivalent to P on (Ω,GT ), and such that Ỹ 2,1 is an F-
martingale under Q̃. It is easily seen that the Radon-Nikodým density η satisfies, for t ∈ [0, T ],

dQ̃ | Gt = ηt dP | Gt = Et

(∫ ·

0

θs dWs

)
dP | Gt (69)

with

θt =
µ2,t − µ1,t + σ1,t(σ1,t − σ2,t)

σ1,t − σ2,t
,

provided, of course, that the process θ is well defined and satisfies suitable integrability conditions.
We shall show that a survival claim is attainable if the random variable X(Ỹ 1

T )−1 is Q̃-integrable.
Indeed, the pre-default value Ṽt at time t of a survival claim equals

Ṽt = Ỹ 1
t EQ̃

(
X(Ỹ 1

T )−1 | Ft

)
,

and from the predictable representation theorem, we deduce that there exists a process φ2 such that

EQ̃
(
X(Ỹ 1

T )−1 | Ft

)
= EQ̃

(
X(Ỹ 1

T )−1
)

+
∫ t

0

φ2
u dỸ 2,1

u .

The component φ1 of the self-financing trading strategy φ = (φ1, φ2) is then chosen in such a way
that

φ1
t Ỹ

1
t + φ2

t Ỹ
2
t = Ṽt, ∀ t ∈ [0, T ].

To conclude, by focusing on pre-default values, we have shown that the replication of survival claims
can be reduced here to classic results on replication of (non-defaultable) contingent claims in a
default-free market model.

4.2.2 Option on a Defaultable Asset

In order to get a complete model with respect to survival claims, we postulated in the previous
section that the driving Brownian motion in dynamics (67) is one-dimensional. This assumption
is questionable, since it implies the perfect correlation of risky assets. However, we may relax this
restriction, and work instead with the two correlated one-dimensional Brownian motions. The model
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will no longer be complete, but options on a defaultable assets will be still attainable. The payoff of
a (non-vulnerable) call option written on the defaultable asset Y 2 equals

CT = (Y 2
T −K)+ = 11{T<τ}(Ỹ 2

T −K)+,

so that it is natural to interpret this contract as a survival claim with the promised payoff X =
(Ỹ 2

T −K)+.

To deal with this option in an efficient way, we consider a model in which

dY i
t = Y i

t−
(
µi,t dt + σi,t dW i

t − dMt

)
, (70)

where W 1 and W 2 are two one-dimensional correlated Brownian motions with the instantaneous
correlation coefficient ρt. More specifically, we assume that Y 1

t = D(t, T ) = 11{t<τ}D̃(t, T ) represents
a defaultable ZC-bond with zero recovery, and Y 2

t = 11{t<τ}Ỹ 2
t is a generic defaultable asset with

total default. Within the present set-up, the payoff can also be represented as follows

CT = G(Y 1
T , Y 2

T ) = (Y 2
T −KY 1

T )+,

where g(y1, y2) = (y2 − Ky1)+, and thus it can also be seen as an option to exchange the second
asset for K units of the first asset.

The requirement that the process Ỹ 2,1
t = Ỹ 2

t (Ỹ 1
t )−1 follows an F-martingale under Q̃ implies

that
dỸ 2,1

t = Ỹ 2,1
t

(
(σ2,tρt − σ1,t) dW̃ 1

t + σ2,t

√
1− ρ2

t dW̃ 2
t

)
, (71)

where W̃ = (W̃ 1, W̃ 2) follows a two-dimensional Brownian motion under Q̃. Since Ỹ 1
T = 1, replica-

tion of the option reduces to finding a constant x and an F-predictable process φ2 satisfying

x +
∫ T

0

φ2
t dỸ 2,1

t = (Ỹ 2
T −K)+.

To obtain closed-form expressions for the option price and replicating strategy, we postulate that the
volatilities σ1,t, σ2,t and the correlation coefficient ρt are deterministic. Let F̂Y 2(t, T ) = Ỹ 2

t (D̃(t, T ))−1

(F̂C(t, T ) = C̃t(D̃(t, T ))−1, respectively) stand for the credit-risk-adjusted forward price of the sec-
ond asset (the option, respectively). The proof of the following valuation result is fairly standard,
and thus it is omitted.

Proposition 4.4 The credit-risk-adjusted forward price of the option written on Y 2 equals

F̂C(t, T ) = F̂Y 2(t, T )N
(
d+(F̂Y 2(t, T ), t, T )

)−KN
(
d−(F̂Y 2(t, T ), t, T )

)
.

Equivalently, the pre-default price of the option equals

C̃t = Ỹ 2
t N

(
d+(F̂Y 2(t, T ), t, T )

)−KD̃(t, T )N
(
d−(F̂Y 2(t, T ), t, T )

)
,

where

d±(f̃ , t, T ) =
ln f̃ − ln K ± 1

2v2(t, T )
v(t, T )

and

v2(t, T ) =
∫ T

t

(σ2
1,u + σ2

2,u − 2ρuσ1,uσ2,u) du.

Moreover the replicating strategy φ in the spot market satisfies for every t ∈ [0, T ], on the set {t < τ},

φ1
t = −KN

(
d−(F̂Y 2(t, T ), t, T )

)
, φ2

t = N
(
d+(F̂Y 2(t, T ), t, T )

)
.
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4.2.3 Option to Exchange Defaultable Assets

We work here with the two correlated one-dimensional Brownian motions, so that

dY i
t = Y i

t−
(
µi,t dt + σi,t dW i

t − dMt

)
, i = 1, 2, (72)

where d〈W 1,W 2〉t = ρt dt for some function ρ with values in [−1, 1]. The model is no longer
complete, but it is still not difficult to establish a direct counterpart of Proposition 4.4 for the
exchange option with the payoff (Y 2

T − KY 1
T )+. In fact, the next result shows that the pricing

formula expressed in terms of pre-default prices has the same shape as the standard formula for the
option to exchange non-defaultable assets with dynamics (67). It is notable that we do not need to
make any assumption about the behavior of the default intensity.

We only assume that the coefficients in (72) are such that there exist an e.m.m. for the process
Ỹ 2,1, where

dỸ i
t = Ỹ i

t

(
(µi,t + γt) dt + σi,t dW i

t

)
, i = 1, 2, (73)

so that we implicitly impose mild technical conditions on drift coefficients.

Proposition 4.5 Assume that the volatilities σ1, σ2 and the instantaneous correlation coefficient ρ
are deterministic. Then the pre-default price of the exchange option equals

C̃t = Ỹ 2
t N

(
d+(Ỹ 2,1

t , t, T )
)−KỸ 1

t N
(
d−(Ỹ 2,1

t , t, T )
)
,

where

d±(ỹ, t, T ) =
ln ỹ − ln K ± 1

2v2(t, T )
v(t, T )

and

v2(t, T ) =
∫ T

t

(
σ2

1,u + σ2
2,u − 2ρuσ1,uσ2,u

)
du.

Moreover the replicating strategy φ in the spot market satisfies for every t ∈ [0, T ], on the set {t < τ},

φ1
t = −KN

(
d−(Ỹ 2,1

t , t, T )
)
, φ2

t = N
(
d+(Ỹ 2,1

t , t, T )
)
.

The pricing formula for the option on a defaultable asset (see Proposition 4.4) can be seen as a
special case of the formula established in Proposition 4.5.

Similarly as in Sections 4.1.7 and 4.1.8, we conclude that the pricing and hedging of any attainable
survival claim with the promised payoff X = g(Ỹ 1

T , Ỹ 2
T ) depends on the choice of a default intensity

only through the pre-default prices Ỹ 1
t and Ỹ 2

t . This property shows that we have correctly specified
the hedging instruments for a claim at hand. Of course, the model considered in this section is not
complete, even if the concept of completeness is reduced to survival claims. Basically, a survival
claim can be hedged if its promised payoff can be represents as X = Ỹ 1

T h(Y 2,1
T ).

5 PDE Approach to Valuation and Hedging

In the remaining part of the paper, we take a different perspective, and we assume that trading
occurs on the time interval [0, T ] and our goal is to replicate a contingent claim of the form

Y = 11{T≥τ}g1(Y 1
T , Y 2

T , Y 3
T ) + 11{T<τ}g0(Y 1

T , Y 2
T , Y 3

T ) = G(Y 1
T , Y 2

T , Y 3
T ,HT ),

which settles at time T . We do not need to assume here that the coefficients in dynamics of
primary assets are F-predictable. Since our goal is to develop the PDE approach, it will be essential,
however, to postulate a Markovian character of a model. For the sake of simplicity, we assume that
the coefficients are constant, so that

dY i
t = Y i

t−
(
µi dt + σi dWt + κi dMt

)
, i = 1, 2, 3.
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The assumption of constancy of coefficients is rarely, if ever, satisfied in practically relevant models of
credit risk. It is thus important to note that it was postulated here mainly for the sake of notational
convenience, and the general results established in this section can be easily extended to a non-
homogeneous Markov case in which µi,t = µi(t, Y 1

t−, Y 2
t−, Y 3

t−,Ht−), σi,t = σi(t, Y 1
t−, Y 2

t−, Y 3
t−, Ht−),

etc.

5.1 Defaultable Asset with Total Default

We first assume that Y 1 and Y 2 are default-free, so that κ1 = κ2 = 0, and the third asset is subject
to total default, i.e. κ3 = −1,

dY 3
t = Y 3

t−
(
µ3 dt + σ3 dWt − dMt

)
.

We work throughout under the assumptions of Proposition 4.1. This means that any Q1-integrable
contingent claim Y = G(Y 1

T , Y 2
T , Y 3

T ;HT ) is attainable, and its arbitrage price equals

πt(Y ) = Y 1
t EQ1(Y (Y 1

T )−1 | Gt), ∀ t ∈ [0, T ]. (74)

The following auxiliary result is thus rather obvious.

Lemma 5.1 The process (Y 1, Y 2, Y 3,H) has the Markov property with respect to the filtration G
under the martingale measure Q1. For any attainable claim Y = G(Y 1

T , Y 2
T , Y 3

T ; HT ) there exists a
function v : [0, T ]× R3 × {0, 1} → R such that πt(Y ) = v(t, Y 1

t , Y 2
t , Y 3

t ;Ht).

We find it convenient to introduce the pre-default pricing function v(· ; 0) = v(t, y1, y2, y3; 0) and
the post-default pricing function v(· ; 1) = v(t, y1, y2, y3; 1). In fact, since Y 3

t = 0 if Ht = 1, it suffices
to study the post-default function v(t, y1, y2; 1) = v(t, y1, y2, 0; 1). Also, we write

αi = µi − σi
µ1 − µ2

σ1 − σ2
, b = (µ3 − µ1)(σ1 − σ2)− (µ1 − µ3)(σ1 − σ3).

Let γ > 0 be the constant default intensity under P, and let ζ > −1 be given by formula (47).

Proposition 5.1 Assume that the functions v(· ; 0) and v(· ; 1) belong to the class C1,2([0, T ] ×
R3

+,R). Then v(t, y1, y2, y3; 0) satisfies the PDE

∂tv(· ; 0) +
2∑

i=1

αiyi∂iv(· ; 0) + (α3 + ζ)y3∂3v(· ; 0) +
1
2

3∑

i,j=1

σiσjyiyj∂ijv(· ; 0)− α1v(· ; 0)

+
(

γ − b

σ1 − σ2

) [
v(t, y1, y2; 1)− v(t, y1, y2, y3; 0)

]
= 0

subject to the terminal condition v(T, y1, y2, y3; 0) = G(y1, y2, y3; 0), and v(t, y1, y2; 1) satisfies the
PDE

∂tv(· ; 1) +
2∑

i=1

αiyi∂iv(· ; 1) +
1
2

2∑

i,j=1

σiσjyiyj∂ijv(· ; 1)− α1v(· ; 1) = 0

subject to the terminal condition v(T, y1, y2; 1) = G(y1, y2, 0; 1).

Proof. For simplicity, we write Ct = πt(Y ). Let us define

∆v(t, y1, y2, y3) = v(t, y1, y2; 1)− v(t, y1, y2, y3; 0).

Then the jump ∆Ct = Ct − Ct− can be represented as follows:

∆Ct = 11{τ=t}
(
v(t, Y 1

t , Y 2
t ; 1)− v(t, Y 1

t , Y 2
t , Y 3

t−; 0)
)

= 11{τ=t}∆v(t, Y 1
t , Y 2

t , Y 3
t−).
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We write ∂i to denote the partial derivative with respect to the variable yi, and we typically omit
the variables (t, Y 1

t−, Y 2
t−, Y 3

t−,Ht−) in expressions ∂tv, ∂iv, ∆v, etc. We shall also make use of the
fact that for a Borel function g

∫ t

0

g(u, Y 2
u , Y 3

u−) du =
∫ t

0

g(u, Y 2
u , Y 3

u ) du

since Y 3
u and Y 3

u− differ only for at most one value of u (for each ω).

Let ξt = 11{t<τ}γ. An application of Itô’s formula yields

dCt = ∂tv dt +
3∑

i=1

∂iv dY i
t +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv dt +
(
∆v + Y 3

t−∂3v
)

dHt

= ∂tv dt +
3∑

i=1

∂iv dY i
t +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv dt +
(
∆v + Y 3

t−∂3v
)(

dMt + ξt dt
)

= ∂tv dt +
3∑

i=1

Y i
t−∂iv

(
µi dt + σi dWt

)
+

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv dt

+ ∆v dMt +
(
∆v + Y 3

t−∂3v
)
ξt dt

=



∂tv +

3∑

i=1

µiY
i
t−∂iv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt



 dt

+
( 3∑

i=1

σiY
i
t−∂iv

)
dWt + ∆v dMt.

We now use the integration by parts formula together with (41) to derive dynamics of the relative
price Ĉt = Ct(Y 1

t )−1. In view of (46), we find that

dĈt = Ĉt−
(
(−µ1 + σ2

1) dt− σ1 dWt

)

+ (Y 1
t−)−1



∂tv +

3∑

i=1

µiY
i
t−∂iv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt



 dt

+ (Y 1
t−)−1

3∑

i=1

σiY
i
t−∂iv dWt + (Y 1

t−)−1∆v dMt − (Y 1
t−)−1σ1

3∑

i=1

σiY
i
t−∂iv dt

= Ĉt−
(− µ1 + σ2

1

)
dt + Ĉt−

(
− σ1 dŴt − σ1θ dt

)

+ (Y 1
t−)−1



∂tv +

3∑

i=1

µiY
i
t−∂iv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt



 dt

+ (Y 1
t−)−1

3∑

i=1

σiY
i
t−∂iv dŴt + (Y 1

t−)−1
3∑

i=1

σiY
i
t−θ∂iv dt

+ (Y 1
t−)−1∆v dM̂t + (Y 1

t−)−1ζξt∆v dt− (Y 1
t−)−1σ1

3∑

i=1

σiY i
t−∂iv dt.

This yields the following decomposition for the process Ĉ

dĈt = Ĉt−
(− µ1 + σ2

1 − σ1θ
)
dt

+ (Y 1
t−)−1



∂tv +

3∑

i=1

µiY
i
t−∂iv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt



 dt
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+ (Y 1
t−)−1

3∑

i=1

σiY
i
t−θ∂iv dt + (Y 1

t−)−1ζξt∆v dt

− (Y 1
t−)−1σ1

3∑

i=1

σiY
i
t−∂iv dt + a Q1-martingale.

From (74), it follows that the process Ĉ is a martingale under Q1. Therefore, the continuous finite
variation part in the above decomposition necessarily vanishes, and thus we get

0 = Ct−(Y 1
t−)−1

(− µ1 + σ2
1 − σ1θ

)

+ (Y 1
t−)−1



∂tv +

3∑

i=1

µiY
i
t−∂iv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt





+ (Y 1
t−)−1

3∑

i=1

σiY
i
t−θ∂iv + (Y 1

t−)−1ζξt∆v − (Y 1
t−)−1σ1

3∑

i=1

σiY
i
t−∂iv.

Consequently, we have that

0 = Ct−
(− µ1 + σ2

1 − σ1θ
)

+ ∂tv +
3∑

i=1

µiY
i
t−∂iv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt

+
3∑

i=1

σiY
i
t−θ∂iv + ζξt∆v − σ1

3∑

i=1

σiY
i
t−∂iv.

Finally, we obtain

∂tv +
2∑

i=1

αiY
i
t−∂iv + (α3 + ξt)Y 3

t−∂3v +
1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv − α1Ct− + (1 + ζ)ξt∆v = 0.

Recall that ξt = 11{t<τ}γ. It is thus clear that the pricing functions v(·, 0) and v(·; 1) satisfy the
PDEs given in the statement of the proposition. ¤

The next result deals with a replicating strategy for Y .

Proposition 5.2 The replicating strategy φ for the claim Y is given by formulae

φ3
t Y

3
t− = −∆v(t, Y 1

t , Y 2
t , Y 3

t−) = v(t, Y 1
t , Y 2

t , Y 3
t−; 0)− v(t, Y 1

t , Y 2
t ; 1),

φ2
t Y

2
t (σ2 − σ1) = −(σ1 − σ3)∆v − σ1v +

3∑

i=1

Y i
t−σi∂iv,

φ1
t Y

1
t = v − φ2

t Y
2
t − φ3

t Y
3
t .

Proof. As a by-product of our computations, we obtain

dĈt = −(Y 1
t )−1σ1v dŴt + (Y 1

t )−1
3∑

i=1

σiY
i
t−∂iv dŴt + (Y 1

t )−1∆v dM̂t.

The self-financing strategy that replicates Y is determined by two components φ2, φ3 and the fol-
lowing relationship:

dĈt = φ2
t dY 2,1

t + φ3
t dY 3,1

t = φ2
t Y

2,1
t (σ2 − σ1) dŴt + φ3

t Y
3,1
t−

(
(σ3 − σ1) dŴt − dM̂t

)
.
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By identification, we obtain φ3
t Y

3,1
t− = (Y 1

t )−1∆v and

φ2
t Y

2
t (σ2 − σ1)− (σ3 − σ1)∆v = −σ1Ct +

3∑

i=1

Y i
t−σi∂iv.

This yields the claimed formulae. ¤

Corollary 5.1 In the case of a total default claim, the hedging strategy satisfies the balance condi-
tion.

Proof. A total default corresponds to the assumption that G(y1, y2, y3, 1) = 0. We now have
v(t, y1, y2; 1) = 0, and thus φ3

t Y
3
t− = v(t, Y 1

t , Y 2
t , Y 3

t−; 0) for every t ∈ [0, T ]. Hence, the equality
φ1

t Y
1
t + φ2

t Y
2
t = 0 holds for every t ∈ [0, T ]. The last equality is the balance condition for Z = 0.

Recall that it ensures that the wealth of a replicating portfolio jumps to zero at default time. ¤

5.1.1 Hedging with the Savings Account

Let us now study the particular case where Y 1 is the savings account, i.e.,

dY 1
t = rY 1

t dt, Y 1
0 = 1,

which corresponds to µ1 = r and σ1 = 0. Let us write r̂ = r + γ̂, where

γ̂ = γ(1 + ζ) = γ + µ3 − r +
σ3

σ2
(r − µ2)

stands for the intensity of default under Q1. The quantity r̂ has a natural interpretation as the risk-
neutral credit-risk adjusted short-term interest rate. Straightforward calculations yield the following
corollary to Proposition 5.1.

Corollary 5.2 Assume that σ2 6= 0 and

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
µ2 dt + σ2 dWt

)
,

dY 3
t = Y 3

t−
(
µ3 dt + σ3 dWt − dMt

)
.

Then the function v(· ; 0) satisfies

∂tv(t, y2, y3; 0) + ry2∂2v(t, y2, y3; 0) + r̂y3∂3v(t, y2, y3; 0)− r̂v(t, y2, y3; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijv(t, y2, y3; 0) + γ̂v(t, y2; 1) = 0

with v(T, y2, y3; 0) = G(y2, y3; 0), and the function v(· ; 1) satisfies

∂tv(t, y2; 1) + ry2∂2v(t, y2; 1) +
1
2
σ2

2y2
2∂22v(t, y2; 1)− rv(t, y2; 1) = 0

with v(T, y2; 1) = G(y2, 0; 1).

In the special case of a survival claim, the function v(· ; 1) vanishes identically, and thus the
following result can be easily established.
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Corollary 5.3 The pre-default pricing function v(· ; 0) of a survival claim Y = 11{T<τ}G(Y 2
T , Y 3

T )
is a solution of the following PDE:

∂tv(t, y2, y3; 0) + ry2∂2v(t, y2, y3; 0) + r̂y3∂3v(t, y2, y3; 0) +
1
2

3∑

i,j=2

σiσjyiyj∂ijv(t, y2, y3; 0)

− r̂v(t, y2, y3; 0) = 0

with the terminal condition v(T, y2, y3; 0) = G(y2, y3). The components φ2 and φ3 of the replicating
strategy satisfy

φ2
t σ2Y

2
t =

3∑

i=2

σiY
i
t−∂iv(t, Y 2

t , Y 3
t−; 0) + σ3v(t, Y 2

t , Y 3
t−; 0),

φ3
t Y

3
t− = v(t, Y 2

t , Y 3
t−; 0).

Example 5.1 Consider a survival claim Y = 11{T<τ}g(Y 2
T ), that is, a vulnerable claim with default-

free underlying asset. Its pre-default pricing function v(· ; 0) does not depend on y3, and satisfies
the PDE (y stands here for y2 and σ for σ2)

∂tv(t, y; 0) + ry∂2v(t, y; 0) +
1
2
σ2y2∂22v(t, y; 0)− r̂v(t, y; 0) = 0 (75)

with the terminal condition v(T, y; 0) = 11{t<τ}g(y). The solution to (75) is

v(t, y) = e(r̂−r)(t−T ) vr,g,2(t, y) = eγ̂(t−T ) vr,g,2(t, y),

where the function vr,g,2 is the Black-Scholes price of g(YT ) in a Black-Scholes model for Yt with
interest rate r and volatility σ2.

5.2 Defaultable Asset with Non-Zero Recovery

We now assume that
dY 3

t = Y 3
t−(µ3 dt + σ3 dWt + κ3 dMt)

with κ3 > −1 and κ3 6= 0. We assume that Y 3
0 > 0, so that Y 3

t > 0 for every t ∈ R+. We shall
briefly describe the same steps as in the case of a defaultable asset with total default.

5.2.1 Arbitrage-Free Property

As usual, we need first to impose specific constraints on model coefficients, so that the model is
arbitrage-free. Indeed, an e.m.m. Q1 exists if there exists a pair (θ, ζ) such that

θt(σi − σ1) + ζtξt
κi − κ1

1 + κ1
= µ1 − µi + σ1(σi − σ1) + ξt(κi − κ1)

κ1

1 + κ1
, i = 2, 3.

To ensure the existence of a solution (θ, ζ) on the set τ < t, we impose the condition

σ1 − µ1 − µ2

σ1 − σ2
= σ1 − µ1 − µ3

σ1 − σ3
,

that is,
µ1(σ3 − σ2) + µ2(σ1 − σ3) + µ3(σ2 − σ1) = 0.

Now, on the set τ ≥ t, we have to solve the two equations

θt(σ2 − σ1) = µ1 − µ2 + σ1(σ2 − σ1),
θt(σ3 − σ1) + ζtγκ3 = µ1 − µ3 + σ1(σ3 − σ1).
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If, in addition, (σ2 − σ1)κ3 6= 0, we obtain the unique solution

θ = σ1 − µ1 − µ2

σ1 − σ2
= σ1 − µ1 − µ3

σ1 − σ3
,

ζ = 0 > −1,

so that the martingale measure Q1 exists and is unique.

5.2.2 Pricing PDE and Replicating Strategy

We are in a position to derive the pricing PDEs. For the sake of simplicity, we assume that Y 1

is the savings account, so that Proposition 5.3 is a counterpart of Corollary 5.2. For the proof of
Proposition 5.3, the interested reader is referred to Bielecki et al. [6].

Proposition 5.3 Let σ2 6= 0 and let Y 1, Y 2, Y 3 satisfy

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
µ2 dt + σ2 dWt

)
,

dY 3
t = Y 3

t−
(
µ3 dt + σ3 dWt + κ3 dMt

)
.

Assume, in addition, that σ2(r − µ3) = σ3(r − µ2) and κ3 6= 0, κ3 > −1. Then the price of a
contingent claim Y = G(Y 2

T , Y 3
T ,HT ) can be represented as πt(Y ) = v(t, Y 2

t , Y 3
t , Ht), where the

pricing functions v(· ; 0) and v(· ; 1) satisfy the following PDEs

∂tv(t, y2, y3; 0) + ry2∂2v(t, y2, y3; 0) + y3 (r − κ3γ) ∂3v(t, y2, y3; 0)− rv(t, y2, y3; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijv(t, y2, y3; 0) + γ
(
v(t, y2, y3(1 + κ3); 1)− v(t, y2, y3; 0)

)
= 0

and

∂tv(t, y2, y3; 1) + ry2∂2v(t, y2, y3; 1) + ry3∂3v(t, y2, y3; 1)− rv(t, y2, y3; 1)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijv(t, y2, y3; 1) = 0

subject to the terminal conditions

v(T, y2, y3; 0) = G(y2, y3; 0), v(T, y2, y3; 1) = G(y2, y3; 1).

The replicating strategy φ equals

φ2
t =

1
σ2κ3Y 2

t

(
κ3

3∑

i=2

σiyi∂iv(t, Y 2
t , Y 3

t−,Ht−)− σ3

(
v(t, Y 2

t , Y 3
t−(1 + κ3); 1)− v(t, Y 2

t , Y 3
t−; 0)

)
)

,

φ3
t =

1
κ3Y 3

t−

(
v(t, Y 2

t , Y 3
t−(1 + κ3); 1)− v(t, Y 2

t , Y 3
t−; 0)

)
,

and φ1
t is given by φ1

t Y
1
t + φ2

t Y
2
t + φ3

t Y
3
t = Ct.

5.2.3 Hedging of a Survival Claim

We shall illustrate Proposition 5.3 by means of examples. First, consider a survival claim of the
form

Y = G(Y 2
T , Y 3

T ,HT ) = 11{T<τ}g(Y 3
T ).
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Then the post-default pricing function vg(· ; 1) vanishes identically, and the pre-default pricing func-
tion vg(· ; 0) solves the PDE

∂tv
g(· ; 0) + ry2∂2v

g(· ; 0) + y3 (r − κ3γ) ∂3v
g(· ; 0) +

1
2

3∑

i,j=2

σiσjyiyj∂ijv
g(· ; 0)− (r + γ)vg(· ; 0) = 0

with the terminal condition vg(T, y2, y3; 0) = g(y3). Denote α = r − κ3γ and β = γ(1 + κ3).

It is not difficult to check that vg(t, y2, y3; 0) = eβ(T−t)vα,g,3(t, y3) is a solution of the above
equation, where the function w(t, y) = vα,g,3(t, y) is the solution of the standard Black-Scholes PDE
equation

∂tw + yα∂yw +
1
2
σ2

3y2∂yyw − αw = 0

with the terminal condition w(T, y) = g(y), that is, the price of the contingent claim g(YT ) in the
Black-Scholes framework with the interest rate α and the volatility parameter equal to σ3.

Let Ct be the current value of the contingent claim Y , so that

Ct = 11{t<τ}eβ(T−t)vα,g,3(t, Y 3
t ).

The hedging strategy of the survival claim is, on the event {t < τ},

φ3
t Y

3
t = − 1

κ3
e−β(T−t)vα,g,3(t, Y 3

t ) = − 1
κ3

Ct,

φ2
t Y

2
t =

σ3

σ2

(
Y 3

t e−β(T−t)∂yvα,g,3(t, Y 3
t )− φ3

t Y
3
t

)
.

5.2.4 Hedging of a Recovery Payoff

As another illustration of Proposition 5.3, we shall now consider the contingent claim G(Y 2
T , Y 3

T ,HT ) =
11{T≥τ}g(Y 2

T ), that is, we assume that recovery is paid at maturity and equals g(Y 2
T ). Let vg be

the pricing function of this claim. The post-default pricing function vg(· ; 1) does not depend on y3.
Indeed, the equation (we write here y2 = y)

∂tv
g(· ; 1) + ry∂yvg(· ; 1) +

1
2
σ2

2y2∂yyvg(· ; 1)− rvg(· ; 1) = 0,

with vg(T, y; 1) = g(y), admits a unique solution vr,g,2, which is the price of g(YT ) in the Black-
Scholes model with interest rate r and volatility σ2.

Prior to default, the price of the claim can be found by solving the following PDE

∂tv
g(·; 0)+ry2∂2v

g(·; 0)+y3 (r − κ3γ) ∂3v
g(·; 0)+

1
2

3∑

i,j=2

σiσjyiyj∂ijv
g(·; 0)−(r+γ)vg(·; 0) = −γvg(t, y2; 1)

with vg(T, y2, y3; 0) = 0. It is not difficult to check that

vg(t, y2, y3; 0) = (1− eγ(t−T ))vr,g,2(t, y2).

The reader can compare this result with the one of Example 5.1.

5.3 Two Defaultable Assets with Total Default

We shall now assume that we have only two assets, and both are defaultable assets with total default.
We shall briefly outline the analysis of this case, leaving the details and the study of other relevant
cases to the reader. We postulate that

dY i
t = Y i

t−
(
µi dt + σi dWt − dMt

)
, i = 1, 2, (76)
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so that
Y 1

t = 11{t<τ}Ỹ 1
t , Y 2

t = 11{t<τ}Ỹ 2
t ,

with the pre-default prices governed by the SDEs

dỸ i
t = Ỹ i

t

(
(µi + γ) dt + σi dWt

)
, i = 1, 2.

In the case where the promised payoff X is path-independent, so that

X11{T<τ} = G(Y 1
T , Y 2

T )11{T<τ} = G(Ỹ 1
T , Ỹ 2

T )11{T<τ}

for some function G, it is possible to use the PDE approach in order to value and replicate survival
claims prior to default (needless to say that the valuation and hedging after default are trivial here).

We know already from the martingale approach that hedging of a survival claim X11{T<τ} is
formally equivalent to replicating the promised payoff X using the pre-default values of tradeable
assets

dỸ i
t = Ỹ i

t

(
(µi + γ) dt + σi dWt

)
, i = 1, 2.

We need not to worry here about the balance condition, since in case of default the wealth of the
portfolio will drop to zero, as it should in view of the equality Z = 0.

We shall find the pre-default pricing function v(t, y1, y2), which is bound to satisfy the terminal
condition v(T, y1, y2) = G(y1, y2), as well as the hedging strategy (φ1, φ2). The replicating strategy
φ is such that for the pre-default value C̃ of our claim we have

C̃t := v(t, Ỹ 1
t , Ỹ 2

t ) = φ1
t Ỹ

1
t + φ2

t Ỹ
2
t ,

and
dC̃t = φ1

t dỸ 1
t + φ2

t dỸ 2
t . (77)

Proposition 5.4 Assume that σ1 6= σ2. Then the pre-default pricing function v satisfies the PDE

∂tv + y1

(
µ1 + γ − σ1

µ2 − µ1

σ2 − σ1

)
∂1v + y2

(
µ2 + γ − σ2

µ2 − µ1

σ2 − σ1

)
∂2v

+
1
2

(
y2
1σ2

1∂11v + y2
2σ2

2∂22v + 2y1y2σ1σ2∂12v
)

=
(

µ1 + γ − σ1
µ2 − µ1

σ2 − σ1

)
v

with the terminal condition v(T, y1, y2) = G(y1, y2).

Proof. We shall merely sketch the proof. By applying Itô’s formula to v(t, Ỹ 1
t , Ỹ 2

t ), and comparing
the diffusion terms in (77) and in the Itô differential dv(t, Ỹ 1

t , Ỹ 2
t ), we find that

y1σ1∂1v + y2σ2∂2v = φ1y1σ1 + φ2y2σ2, (78)

where φi = φi(t, y1, y2). Since φ1y1 = v(t, y1, y2)− φ2y2, we deduce from (78) that

y1σ1∂1v + y2σ2∂2v = vσ1 + φ2y2(σ2 − σ1),

and thus
φ2y2 =

y1σ1∂1v + y2σ2∂2v − vσ1

σ2 − σ1
.

On the other hand, by identification of drift terms in (78), we obtain

∂tv + y1(µ1 + γ)∂1v + y2(µ2 + γ)∂2v +
1
2

(
y2
1σ2

1∂11v + y2
2σ2

2∂22v + 2y1y2σ1σ2∂12v
)

= φ1y1(µ1 + γ) + φ2y2(µ2 + γ).

Upon elimination of φ1 and φ2, we arrive at the stated PDE. ¤
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Recall that the historically observed drift terms are µ̂i = µi + γ, rather than µi. The pricing
PDE can thus be simplified as follows:

∂tv + y1

(
µ̂1 − σ1

µ̂2 − µ̂1

σ2 − σ1

)
∂1v + y2

(
µ̂2 − σ2

µ̂2 − µ̂1

σ2 − σ1

)
∂2v

+
1
2

(
y2
1σ2

1∂11v + y2
2σ2

2∂22v + 2y1y2σ1σ2∂12v
)

= v

(
µ̂1 − σ1

µ̂2 − µ̂1

σ2 − σ1

)
.

The pre-default pricing function v depends on the market observables (drift coefficients, volatilities,
and pre-default prices), but not on the (deterministic) default intensity.

To make one more simplifying step, we make an additional assumption about the payoff function.
Suppose, in addition, that the payoff function is such that G(y1, y2) = y1g(y2/y1) for some function
g : R+ → R (or equivalently, G(y1, y2) = y2h(y1/y2) for some function h : R+ → R). Then we
may focus on relative pre-default prices Ĉt = C̃t(Ỹ 1

t )−1 and Ỹ 2,1 = Ỹ 2
t (Ỹ 1

t )−1. The corresponding
pre-default pricing function v̂(t, z), such that Ĉt = v̂(t, Y 2,1

t ) will satisfy the PDE

∂tv̂ +
1
2
(σ2 − σ1)2z2∂zz v̂ = 0

with terminal condition v̂(T, z) = g(z). If the price processes Y 1 and Y 2 in (67) are driven by the
correlated Brownian motions W and Ŵ with the constant instantaneous correlation coefficient ρ,
then the PDE becomes

∂tv̂ +
1
2
(σ2

2 + σ2
1 − 2ρσ1σ2)z2∂zz v̂ = 0.

Consequently, the pre-default price C̃t = Ỹ 1
t v̂(t, Ỹ 2,1

t ) will not depend directly on the drift coefficients
µ̂1 and µ̂2, and thus, in principle, we should be able to derive an expression the price of the claim in
terms of market observables: the prices of the underlying assets, their volatilities and the correlation
coefficient. Put another way, neither the default intensity nor the drift coefficients of the underlying
assets appear as independent parameters in the pre-default pricing function.

Before we conclude this work, let us stress once again that the martingale approach can be used
in fairly general set-up. By contrast, the PDE methodology is only suitable when dealing with a
Markovian framework. In a forthcoming paper [7], we analyze a more general situation where a
traded defaultable asset is a credit default swap, so that its dynamics involve also a continuous
dividend stream.
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