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Abstract. We characterise strongly minimal groups interpretable in elemen-

tary extensions of compact complex analytic spaces.

1. Introduction

In [19] Zilber observed that compact complex manifolds may be naturally regarded
as structures of finite Morley rank for which the axioms of Zariski-type structures
hold. As such, the key to a model theoretic structure theory for sets definable in
compact complex manifolds is a description of the interpretable strongly minimal
groups. Pillay and Scanlon described these groups in [15] but left open the question
of what strongly minimal groups might be definable in elementary extensions of
compact complex manifolds. In this paper, we complete the classification.

We regard a compact complex manifold M as a structure in the language having
a predicate for each closed analytic subvariety of each Cartesian power of M . It is
convenient to consider all compact complex analytic spaces at the same time. To
do so, we form the many sorted structure A having a sort for each (isomorphism
class of) compact complex analytic space(s) and having as basic relations on the
product of sorts S1 × · · · × Sn the closed analytic subvarieties. As every point in
A is distinguished by a basic relation, this structure cannot be saturated. More
seriously, even if one restricts to a single sort M in A it can happen that there is
no countable reduct for which every definable set in M is parametrically definable
in the reduct. That is, not all compact complex manifolds are essentially saturated
in the sense of [10]. Consequently, to study properties of elementary extensions of
A one cannot work entirely within the standard model.

By definition, elementary properties transfer fromA to its elementary extensions.
Much of our work consists of unwinding results for the standard model to find
their elementary content. In addition to close readings and reworkings of existing
proofs, we use properties of families of analytic spaces. In particular, Grothendieck’s
relative infinitesimal neighbourhoods play an important role.

The structure A is interpretable in Ran, the field of real numbers with restricted
analytic functions, a well-studied o-minimal structure. We use this observation
in only one place in our arguments, but as Peterzil and Starchenko have shown, it
could form the basis for a theory of complex analytic spaces over arbitrary o-minimal
expansions of real closed fields (see [12, 13]). However, the strongly minimal groups
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definable in the interpreted complex analytic spaces in nonstandard models of the
theory of Ran may have properties not enjoyed by any group in an elementary
extension of A. For instance, while every (complex-) one-dimensional group in any
elementary extension of A is algebraic [11], this does not hold in the Ran world [13].
Thus, while the o-minimal approach may be useful, it must be paired with work
internal to A.

Complex algebraic geometry lives in A in the sense that the field of complex
numbers is a definable set (being the complement of the point at infinity on the
complex projective line) and the field operations on C are themselves definable.
Moreover, by Chow’s theorem, A induces no additional structure on C. It follows
from the classification of locally compact fields that any other field interpretable in
A is definably isomorphic to C. Moosa showed that this conclusion continues to hold
in elementary extensions of A even though the statement of the result is not facially
elementary and the Euclidean topology is unavailable in the elementary extensions.
Moosa proves in addition a nonstandard version of the Riemann existence theorem
from which one may show, using the Zilber trichotomy, that any strongly minimal
group interpretable in an elementary extension of A is either a one-dimensional
algebraic group over the (nonstandard) complex numbers or is locally modular.

We direct our attention to the strongly minimal locally modular groups in ele-
mentary extensions of A (though local modularity itself plays no role in our argu-
ments). In A itself, these groups are the simple nonalgebraic complex tori [15]. We
prove a version for elementary extensions.

Theorem 1.1. Suppose A′ � A is a saturated elementary extension of A with C′

its interpretation of C. If G is a strongly minimal group intepretable in A′ then
either G is definably isomorphic to an algebraic group over C′ or G is “compact”
in either of the following senses:

(i) viewing G as a definable manifold by interpreting A′ in an elementary ex-
tension of Ran, G is definably compact, or

(ii) there exists a Zariski closed set X in A′ and a surjective definable map
π : X → G which is holomorphic with respect to the natural nonstandard
meromorphic manifold structure on G.

Formulation (i) of “compact” is an easy consequence of (ii) and it is in the
sense of the latter that the theorem is proved. See Section 4 for a more precise
formulation.

We would say that the group G is a nonstandard complex torus if G were of
the form Ta where ν : T → B is a holomorphic map between compact complex
manifolds whose general fibres are (uniformly) complex tori and a ∈ B(A′) is a
nonstandard point of B. It may very well be the case that any “compact” group
in the sense of Theorem 1.1 must be a nonstandard complex torus, but we were
unable to resolve this question as it implicates some subtle issues in the theory of
moduli of complex tori.

Remark 1.2. If G lives in a sort that is of Kähler-type (i.e., is a holomorphic
image of a compact Kähler manifold) then, using essential saturation (cf. [10]),
Theorem 1.1 follows automatically from the characterisation of strongly minimal
groups in A itself [15]. In fact, in that case we can replace “compact” group in the



STRONGLY MINIMAL GROUPS IN THE THEORY OF COMPACT COMPLEX SPACES 3

conclusion by “nonstandard complex torus”. However, not every strongly minimal
group in A′ lives in a sort that is of Kähler-type, see [14] for an example.1

This paper is organized as follows. In Section 2 we recall and supply a detailed
proof of the main compactification result of [15] that any strongly minimal group G
in A may be embedded as a Zariski open subset of some compact complex manifold.
In Section 3 we reformulate the statement of this compactification so as to make
its elementary content transparent. In Section 4, we recall some of the theory
of elementary extensions of A, show how to transfer part of the compactification
theorem and then analyse the case where there is no action of G on its boundary.
In Section 5 we analyze the remaining case transposing a theorem of Fujiki to the
nonstandard context to complete the proof.

Acknowledgements. We are grateful to the Banff International Research Station
and the Mathematisches Forschungsinstitut Oberwolfach where part of this work
was done during the workshops Interactions between model theory and geometry
(BIRS, March 2004) and Model theory and complex analytic geometry (Oberwolfach,
July 2004).

2. Compactifications in A

In this section we concentrate on proving in detail the following main compactifi-
cation result from [15].
Proposition 2.1. Let G be a complex manifold expressible as the disjoint union
of an open set U and a finite set F , where U is a non-empty Zariski open subspace
of an irreducible compact complex manifold X. There exist:

• a compact complex manifold G∗ and a holomorphic embedding ι : G → G∗

such that ι(G) is a Zariski open subset of G∗, and
• a holomorphic surjection π : X → G∗;

such that the following diagram commutes:

X
π // G∗

U

OO

// G

ι

OO

and π is a biholomorphism off ι(F ) ⊆ G∗.
The published proof of this result while correct is, to our taste, incomplete in

that the nontrivial verification of the efficacy of the construction is left to the
reader. Many of the details of the proof that follows involve routine topological
manipulations, but the proof as a whole is remarkably tricky. It should be noted
that while we work with the Euclidean topology, the hypotheses and the conclusion
of this proposition concern objects definable in the structure A.

We first reduce to the case when F is a singleton. Given (G,U,X, F ) we prove the
result by induction on |F | with the case of |F | = 0 being trivial. If F = F ′∪̇{g},
let G′ := G r F ′. Then G′ is a manifold expressible as U ∪̇{g}. If the result is
true for (G′, U,X, {g}), then it follows for (G,U,X, F ). Indeed, suppose ι′ : G′ ↪→
(G′)∗ and π′ : X → (G′)∗ satisfy the conclusion for (G′, U,X, {g}). After replacing

1An explicit argument for why this example is not definably isomorphic to a strongly minimal

group in a sort of Kähler-type is given in Example 6.1 of [11].
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(G′)∗ by its image under a suitable biholomorphism and composing π′ with this
biholomorphism, we may assume that (G′)∗ contains G′ as a Zariski open subset
and ι′ is the natural inclusion G′ ⊆ (G′)∗. Now G may be expressed as G′ ∪ F ′,
and by induction we find ι : G ↪→ G∗ and π̃ : (G′)∗ → G∗ satisfying the conclusion
for (G, ι(G′), (G′)∗, F ′). Take π := π̃ ◦ π′ : X → G∗.

So it suffices to prove the Proposition in the case that F = {g} is a singleton,
and for the rest of this section we assume that F has this form.

We begin with some notation: For a subset S of a topological space R we denote
the closure of S in R by clS(R) and the interior of S in R by intR(S). The boundary
of S in R is denoted by bdR(S) := clR(S) r intR(S), and the frontier of S in R
by frR(S) := clR(S) r S. When the context is clear we drop the reference to
R in this notation. Recall also that a subset S of R is called regular open if
S = int(cl(S)). Note that for every S ⊆ R, the set int(cl(S)) is regular open and
cl(int(cl(S))) ⊆ cl(S), with equality if S is open.
Lemma 2.2. Let V ⊆ G be a regular open co-ordinate neighbourhood of g in G
and let D be the frontier of clG(V )r {g} in X. That is,

D := clX(clG(V )r {g})r (clG(V )r {g}).
Then D ∪ (V r {g}) is open in X.

Indeed, we will show that D ∪ (V r {g}) = intX(clX(V r {g})). Note that D is
nonempty as clG(V )r {g} is not compact, and hence not closed, in X. The proof
of Lemma 2.2 is preceded by a series of claims.
Claim 2.3. intG(clG(V )r {g}) = V r {g}

Proof. Since clG(V )r {g} = clG(V )∩ (Gr {g}), the set Gr {g} is open in G, and
V is regular open in G, we have

intG(clG(V )r {g}) = intG(clG(V )) ∩ intG(Gr {g}) = V ∩ (Gr {g}),
hence intG(clG(V )r {g}) = V r {g} as claimed. �

Claim 2.4. U ∩ clX(V r {g}) = clG(V )r {g}

Proof. Let x ∈ U , and suppose first that x ∈ clG(V ). Then any G-neighbourhood
of x has a nonempty intersection with V . If N ⊆ X is any sufficiently small X-
neighbourhood of x, then g /∈ N so that N is also a G-neighbourhood of x; hence
N ∩ (V r {g}) 6= ∅. This shows x ∈ clX(V r {g}). Now suppose x /∈ clG(V ), so
there is an open neighbourhood N of x in G with N ⊆ U and N ∩V = ∅. Then N
is also an X-neighbourhood of x disjoint from V r{g}, hence x /∈ clX(V r{g}). �

Claim 2.5. U ∩ intX(clX(V r {g})) = V r {g}

Proof. Since U is an open subspace of both G and X, for every S ⊆ U we have
intG S = intX S. The claim follows from this remark and Claim 2.3 by applying
intX on both sides of the equation in Claim 2.4. �

Claim 2.6. clX(clG(V )r {g}) = clX(V r {g})

Proof. Certainly clX(clG(V )r{g}) ⊇ clX(V r{g}), and the reverse inclusion follows
by taking clX on both sides of the equation stated in Claim 2.4. �

Note that from Claims 2.4 and 2.6 we get D ⊆ X r U .
Claim 2.7. clX(V r {g}) = (V r {g}) ∪ bdG(V ) ∪D
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Proof. By the definition of D and Claim 2.6, D ∪ (clG(V )r {g}) = clX(V r {g}).
On the other hand, clG(V )r {g} = bdG(V ) ∪ (V r {g}). �

By Claim 2.5 we have bdG(V ) ∩ intX(clX(V r {g})) = ∅; hence by Claim 2.7
we get intX(clX(V r {g})) ⊆ (V r {g}) ∪D. Our aim now is to show the reverse
inclusion and thereby prove Lemma 2.2. We first observe:

Claim 2.8. bdG(V ) ∪D ⊇ bdX(clX(V r {g}))

Proof. Since V r {g} ⊆ intX(clX(V r {g})), Claim 2.7 yields

bdX(clX(V r {g})) = clX(V r {g})r intX(clX(V r {g})) ⊆
clX(V r {g})r (V r {g}) ⊆ bdG(V ) ∪D.

�

In the next two claims we will use the fact that any complex manifold admitting
a finite atlas where the model spaces are polydiscs (so, in particular, a compact
complex manifold) is interpretable in the o-minimal structure Ran, the real field
equipped with restricted analytic functions. The sets we have been dealing with
(i.e., V , D, etc.), though not necessarily definable in A, will “live” definably in Ran

and we will thus have recourse to the o-minimal dimension of these sets.
To make this more precise, consider the disjoint unionM := GqX of the complex

manifolds G and X, that is, the complex manifold whose underlying topological
space is the disjoint union of the topological spaces G and X, and whose atlas
is the disjoint union of the ones of G and X. Then M , in fact, admits a finite
atlas where the model spaces are polydiscs, which we can assume to contain the
co-ordinate chart V of G. Hence, M can be identified with a definable C-manifold
in Ran (as defined in Section 3 of [13]) in such a way that V becomes definable in
Ran. Moreover, since U is an Ran-definable open subset of both X and G (in both
cases it is the complement of an analytic set), and since the identification of the U
of G with the U of X is biholomorphic, this identification is also Ran-definable. It
follows that V

G
r {g} as a subset of X is also definable in Ran, and hence so is D.

We will use the following property of o-minimal dimension, which is probably
well-known, although we could not locate it in the literature. For this we fix an
o-minimal structure R.

Fact 2.9. Suppose that R expands a real closed field. Let M be a definable manifold
of dimension m > 0 and S a definable open subset of M . Then the definable set
bdM (clM (S)) has local dimension m− 1 at each point a ∈ bdM (clM (S)).

For the proof, we first reduce to the case that M = Rm, by passing to a chart
around a and applying the fact that open cells in Rm are definably homeomorphic to
Rm, since R expands a real closed field. The next lemma (valid without this extra
assumption on R) and the equality bd(cl(S)) = fr(int(cl(S))) then immediately
yield the claim.

Lemma 2.10. Let S be a non-empty proper definable regular open subset of Rm,
m > 0. Then dim fr(S) = m− 1.

In the proof of the lemma we use the following notations and observations. Let
S be a subset of Rm, m > 0. For x ∈ R we put Sx := {y ∈ Rm−1 : (x, y) ∈ S}. If



6 MATTHIAS ASCHENBRENNER, RAHIM MOOSA, AND THOMAS SCANLON

S is definable, then each of the following sets is finite:

FS := {x ∈ R : fr(Sx) 6= fr(S)x};
CS := {x ∈ R : cl(Sx) 6= cl(S)x};
IS := {x ∈ R : int(Sx) 6= int(S)x}.

(We have CS = FS , and finiteness of FS is shown in [2], Lemma 4.1.7. Using
int(A) = Rn r cl(Rn r A) for all n > 0 and A ⊆ Rn we see that IS = CRmrS ,
hence IS is also finite.) In particular, we obtain:
Lemma 2.11. Suppose that S is regular open. If S is definable, then Sx is regular
open for all but finitely many x ∈ R. Moreover, with π : Rm → R denoting the
projection onto the first co-ordinate, the set S′ := {x ∈ π(S) : Sx 6= Rm−1} is
either empty or infinite.

Proof. For the first statement, just note that the set of x ∈ R such that Sx is not
regular open is contained in CS ∪ Icl(S). As for the second statement, if S′ is finite,
then cl(S) = cl(π(S)) × Rm−1, hence S = int(cl(S)) = int(cl(π(S))) × Rm−1, and
therefore S′ = ∅. �

(In the first statement of the previous lemma we cannot replace “all but finitely
many” by “all”, as the example S = the union of the two open discs of radius 1
centered at (0, 1) and (0,−1) in R2 shows.)

Proof of Lemma 2.10. By Theorem 4.1.8 in [2] we have dim fr(S) < dimS = m, so
it suffices to show that dim fr(S) ≥ m − 1. For this, we proceed by induction on
m. Note that fr(S) 6= ∅, since S 6= ∅ and S 6= Rm. This yields the claim in the
case m = 1. Suppose m > 1 and the claim holds with m replaced by m − 1. The
definable subset π(S) of R is open and non-empty, and the definable subset S′ of
π(S) is either empty or has dimension 1. If S′ = ∅, then S = π(S)×Rm−1, hence
fr(S) = fr(π(S))×Rm−1 and thus dim fr(S) ≥ m− 1 as required.

By the remarks above, the set F consisting of all x ∈ S′ such that fr(Sx) 6= (frS)x
or Sx is not regular open is finite, and if x ∈ S′ r F then dim fr(Sx) ≥ m − 2 by
inductive hypothesis. Hence if dimS′ = 1, then also dim(S′ r F ) = 1, and

fr(S) ∩ π−1(S′ r F ) =
⋃

x∈S′rF
{x} × fr(Sx)

yields dim fr(S) ≥ dim
(

fr(S)∩π−1(S′rF )
)
≥ m− 1 by [2], Proposition 4.1.5. �

Claim 2.12. If D ∩ bdX(clX(V r {g})) 6= ∅, then the o-minimal dimension of D
is at least 2n− 1 where n is the complex dimension of X.

Proof. Suppose x ∈ D∩bdX(clX(V r{g})). Since D∩U = ∅, we have x /∈ bdG(V ).
As bdG(V ) is also closed in X there exists an open neighbourhood P of x in X
such that P ∩ bdG(V ) = ∅. In Ran, o-minimal dimension for complex analytic sets
is twice the complex dimension. Hence the o-minimal dimension of X is 2n, and
the set V r{g} is open in X and definable in Ran. By Fact 2.9, bdX(clX(V r{g}))
has o-minimal dimension 2n− 1 everywhere, in particular, at x. So, the o-minimal
dimension of P ∩ bdX(clX(V r {g})) is 2n− 1. Moreover, by 2.8 and our choice of
P , we get P ∩ bdX(clX(V r {g})) ⊆ D. �

Claim 2.13. D ⊆ intX(clX(V r {g}))
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Proof. Since X r U is a proper analytic subset of the irreducible space X, the
complex dimension of X r U is at most n− 1, and hence its o-minimal dimension
is at most 2n − 2. By D ∩ U = ∅ and Claim 2.12, D ∩ bdX(clX(V r {g})) = ∅.
As D ⊆ clX(V r {g}), we conclude that D ⊆ intX(clX(V r {g})). �

Proof of Lemma 2.2. We already know that intX(clX(V r {g})) ⊆ (V r {g}) ∪D.
The reverse inclusion also holds, by Claim 2.13. So the set D ∪ (V r {g}) =
intX(clX(V r {g})) is open, as desired. �

Lemma 2.14. As in 2.2, suppose V ⊆ G is a regular open co-ordinate neighbour-
hood of g in G and D is the frontier of clG(V ) r {g} in X. Suppose N ⊆ V is
another regular open co-ordinate neighbourhood of g in G and let DN be the frontier
of clG(N)r {g} in X.

Then DN = D.

Proof. By Claims 2.5 and 2.6 we have D = clX(V r {g}) ∩ (X r U), and similarly
DN = clX(N r {g}) ∩ (X r U) by applying these claims to N in place of V . Now

D = clX(V r {g}) ∩ (X r U)
= clX((V rN) ∪ (N r {g})) ∩ (X r U)
=

[
clX(V rN) ∪ clX(N r {g})

]
∩ (X r U)

=
[

clX(V rN) ∩ (X r U)
]
∪
[

clX(N r {g}) ∩ (X r U)
]

Since V rN is bounded away from g, we have clX(V rN) = clG(V rN) ⊆ U ,
hence D = clX(N r {g}) ∩ (X r U) = DN .

�

Proof of Proposition 2.1. As mentioned before, it suffices to prove the Proposition
in the case that |F | = 1. Let F = {g}, and set V and D to be as in Lemma 2.2. Let
W ⊇ V be a larger co-ordinate neighbourhood around g inG for which clG(V ) ⊆W .
As a set, we define G∗ := (X rD)∪̇{g} and the function π : X → G∗ by π(x) := g
if x ∈ D and π(x) := x otherwise. That is, G∗ is formed by collapsing D to the
point g, and π is this collapsing map.

We give G∗ a complex manifold structure by specifying a system of local co-
ordinate neighborhoods about each point in G∗. In what follows we write ∆ for
the standard dimG-unit polydisc. Around g, take Og := V with its co-ordinate
function φg : ∆→ Og as the chart. For x ∈ X rD find a chart Ox ⊆ X rD in the
sense of X with co-ordinate function ψx : ∆ → Ox. If x ∈ W , then we may (and
do) choose Ox so that it is contained in W ⊆ G and, so, ψx is also a chart in the
sense of G as well. If x /∈ W , then, in particular, x /∈ clX(V r {g}). So, we may
(and do) choose Ox so that Ox ∩ V = ∅.

Consider two distinct points x 6= y ∈ G∗. We must show that

ϑ := φ−1
y ◦ φx � φ−1

x (Ox ∩Oy)

is holomorphic. If neither x nor y is equal to g, then because X rD is a complex
manifold, the transition map ϑ is a transition map in the sense of X and is therefore
holomorphic. So, we may suppose that x = g 6= y. If y /∈W , then Oy ∩Og = ∅ so
that there is nothing to check. If y ∈W , then ϑ is a transition map in the sense of
G and is holomorphic.

Next we verify that π is continuous. Let a ∈ X. If a /∈ D, then there is a
neighbourhood about a on which π is the identity, so π is clearly continuous at
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a. If a ∈ D, and N ⊆ V ⊆ G∗ is a regular open co-ordinate neighbourhood of
g = π(a), then

π−1(N) = D ∪ (N r {g}) = DN ∪ (N r {g})

by Lemma 2.14. The latter is open in X by Lemma 2.2 (applied to N instead of
V ). That is, π is continuous at a. So π is continuous everywhere.

The map π is the identity on X rD, and from the choice of co-ordinate neigh-
bourhoods it is clear that it is biholomorphic there. Hence to show that π is
holomorphic on X it suffices to consider a ∈ D and N a co-ordinate neighbourhood
about a in X, and show that f := π � N is holomorphic.

Since D ⊆ X r U , A := N ∩D is thin in N ; it is contained in the analytic set
N ∩ (X r U). Also, f is holomorphic on N r A and locally bounded everywhere
(as it is continuous on N). By the Riemann extension theorem, f is holomorphic
on N .

Finally, let ι : G → G∗ be the inclusion map on the underlying sets (recalling
that U ⊆ X rD). It follows from the definitions that ι is an embedding and that
π agrees with ι on U . It remains to show that ι(G) is Zariski open in G∗. Note
that G∗rU = π(X rU) and hence U is Zariski open in G∗ (by Remmert’s Proper
Mapping Theorem). It follows that ι(G) = U ∪ {g} is constructible and it suffices
to show that U ∪ {g} is open in G∗. As π is a biholomorphism on U we need only
consider the point g. But V is an open neighbourhood of g in G∗ contained in
U ∪ {g}. �

3. Standard strongly minimal groups

Suppose (G,µ) is a group definable inA. We will mostly deal with strongly minimal,
hence abelian, (G,µ). Therefore, we sometimes also write the group operation
(g, h) 7→ µ(g, h) : G×G→ G of G as µ(g, h) = g + h, even if (G,µ) is not abelian.
Suppose, moreover, that we can write G = U ∪ F where U is a non-empty Zariski
open subset of an irreducible compact complex manifold X and F is a finite set of
points disjoint from U . For example, when G is strongly minimal we can always
write G in this way (by quantifier elimination).

Every group interpretable in A has the structure of a complex Lie group making
it into a connected meromorphic group in the sense of [15]. Indeed, the proof given
in [1] of the Weil-Hrushovski theorem for groups interpretable in algebraically closed
fields generalises immediately to groups interpretable in A.

So (G,µ) has the structure of a meromorphic group. In particular, Propo-
sition 2.1 applies to the complex manifold G, and for now we identify G with
ι(G) ⊆ G∗. Moreover, µ is holomorphic with respect to this manifold structure
and extends to a meromorphic map µ∗ : G∗ ×G∗ → G∗. Let S := G∗ rG and let
Γ(µ∗) ⊆ (G∗)3 denote the graph of µ∗.
Fact 3.1 (Lemma 3.3 of [15]). Suppose S 6= ∅. Then every component of S has
codimension 1 in G∗ and µ∗ restricts to a meromorphic map µ∗S : G∗ × S → S.
Moreover, for each component C of S, µ∗ induces a generic action of (G,µ) on C.

More precisely, for each g ∈ G, Γ(µ∗)g∩(C×C) is the graph of a bimeromorphic
map µ∗C(g,−) : C → C; and for g, h ∈ G,

µ∗C(g,−) ◦ µ∗C(h,−) = µ∗C(g + h,−)

on a non-empty Zariski open subset of C.
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In order to transfer the above fact to elementary extensions we would like to
remove the reference to the compactification G∗ (whose existence we cannot a priori
establish in the nonstandard case). To this end we formulate the following corollary
of Proposition 2.1 and Fact 3.1:

Let Γ(µ) ⊆ G3 be the graph of µ, and consider the Zariski closure Γ(µ) ∩ U3 of
Γ(µ) ∩ U3 in X3. Since the general fibres over X2 under the map (x1, x2, x3) 7→
(x1, x2) are singletons, Γ(µ) ∩ U3 has a unique irreducible component Γ ⊆ X3 which
projects onto X2.
Corollary 3.2. Either G is compact — and hence is a complex torus — or Γ
induces a generic action of (G,µ) on some component of X r U .

The latter case can be stated more precisely as: for some component C ′ of XrU ,
Γ ∩ (X × C ′ × C ′) is the graph of a meromorphic map µ′ : X × C ′ → C ′; for each
g ∈ U , µ′(g,−) : C ′ → C ′ is bimeromorphic; and for g, h ∈ U such that g + h ∈ U ,

µ′(g,−) ◦ µ′(h,−) = µ′(g + h,−)

on a non-empty Zariski open subset of C ′.

Proof. If G = G∗ (that is, if S = ∅) then G is a complex torus. So we assume that
S 6= ∅. Let π : X → G∗ be as in Proposition 2.1. Then

X r U = π−1(S) ∪ π−1(F )

and π−1(S) is just a copy of S in X. In particular, every component of π−1(S) has
codimension 1 in X and hence is a component of X r U . Let C ′ = π−1(C) be one
such component. By Fact 3.1 µ∗ induces a generic action of (G,µ) on C. Note that
π3(Γ) agrees with Γ(µ∗) on a non-empty Zariski open subset of (G∗)3 and hence
π3(Γ) = Γ(µ∗). Since π3 is biholomorphic over (G∗ r F )3, it lifts a generic action
to a generic action. That is, Γ induces a generic action of (G,µ) on C ′. �

Remark 3.3. The components of X r U split up into those coming from the
boundary of G in G∗ and those that collapse to the finite set F . It is on the
components of the former type that we have a generic action.

When G is strongly minimal, the latter case of Corollary 3.2 implies that G is
a linear algebraic group. Indeed, using the fact that C ′ is of lower dimension one
shows that G acts holomorphically on C ′ as the identity (see the proof of Lemma
3.5 in [15]). It then follows from an argument of Fujiki’s in [5] that G is linear
algebraic. We will mimic this argument in elementary extensions.

But first we deal with the former case of Corollary 3.2 in elementary extensions.

4. Elementary extensions and the case of no boundary action

Let A′ be a sufficiently saturated elementary extension of A. Definable sets and
maps in A′ can be understood in terms of uniformly definable families of sets and
maps in the standard model A. A systematic discussion of this correspondence is
given in section 2 of [11], and we restrict ourselves to only a few remarks here.

First, given an irreducible Zariski closed set F in A we use F (A′) to denote its
interpretation in the nonstandard model. By a generic point of F we will mean
a point a ∈ F (A′) that is not contained in H(A′) for any proper Zariski closed
subset H ⊆ F . By saturation, every irreducible Zariski closed set has generic
points. Conversely, given a sort X of A and a point a ∈ X(A′), the locus of a is
the smallest Zariski closed set F ⊆ X such that a ∈ F (A′). By noetherianity of
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the Zariski topology, such a Zariski closed set exists (and is irreducible). Note that
a Zariski closed subset F of X is the locus of an element a ∈ F (A′) if and only if
a is generic in F .

If P is a ∅-definable property of points in F , then P holds in some non-empty
Zariski open subset of F (we say that P holds for general x ∈ F ) if and only if it
holds for a generic point.

By a Zariski closed set in A′ over s we mean a set of the form

G(A′)s := {x ∈ X(A′) : (x, s) ∈ G(A′)}

where X,Y are sorts of A, G ⊆ X × Y is a Zariski closed subset, and s ∈ Y (A′).
Taking S ⊆ Y to be the locus of s and restricting the second co-ordinate projection
map to F := G ∩ (X × S), we see that G(A′)s is the fibre of F → S over s. That
is, every Zariski closed set in A′ is the fibre of a holomorphic map from a compact
complex analytic space to an irreducible compact complex analytic space, over a
generic point. This description of Zariski closed sets in A′ is more canonical and
behaves well with respect to parameters: working over additional parameters in A′
corresponds to base change in A.

The Zariski closed sets in A′ form the closed sets of a noetherian topology on
each sort, and every such set can be written uniquely as an irredundant union of
finitely many absolutely irreducible Zariski closed sets — sets that cannot be written
as a union of two proper Zariski closed subsets. Absolutely irreducible Zariski
closed sets are exactly the generic fibres of fibre spaces, i.e., holomorphic maps
between irreducible compact complex spaces whose general fibres are irreducible
(see Lemma 2.7 of [11]).

Suppose A and B are absolutely irreducible Zariski closed sets in A′, where A is
the fibre of F → S over some generic point s ∈ S(A′) and B is the fibre of G→ T
over some generic point t ∈ T (A′). A map f : A→ B is holomorphic if there exist

• common base extensions FZ := F ×S Z → Z and GZ := G×T Z → Z;
• an irreducible Zariski closed subset Γ of the fibre product FZ ×Z GZ ; and,
• a point z ∈ Z which maps to s and t respectively,

such that the graph of f is the fibre of Γ→ Z over z. In a similar manner, one can
define meromorphic maps between absolutely irreducible Zariski closed sets in A′.

One advantage of working in a saturated model, besides the existence of generic
points, is homogeneity. In particular, if F is a definable set in A′ and P is a set of
parameters in A′, then F is definable over P if and only if every automorphism of
A′ that fixes P pointwise fixes F setwise. We use this fact often and abbreviate it
to the phrase “by automorphisms”.

We now extend the notion of meromorphic group as given in [15] to A′:

Definition 4.1. A meromorphic group in A′ (or a nonstandard meromorphic group)
is given by the following data: a definable group (G,+) in A′ with a finite covering
by definable sets W1, . . . ,Wn; and definable bijections φi : Wi → Ui where Ui is a
non-empty Zariski open subset of an absolutely irreducible Zariski closed set Xi,
for i = 1, . . . , n; such that

(i) for each i 6= j, the subset φi(Wi∩Wj) of Xi is Zariski open, and the induced
bijection from φi(Wi ∩Wj) to φj(Wi ∩Wj) is a biholomorphic map that
extends to a meromorphic map from Xi to Xj ; and
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(ii) for each i, j, k, the set{
(x, y) ∈ Ui × Uj : φ−1

i (x) + φ−1
j (y) ∈Wk

}
is Zariski open in Xi ×Xj and the induced map from this set to Uk given
by (x, y) 7−→ φk

(
φ−1
i (x) + φ−1

j (y)
)

is holomorphic and extends to a mero-
morphic map from Xi ×Xj to Xk.

We say the meromorphic group (G,+) is defined over a set of parameters P if all
the definable sets and maps involved in the above data are over P .
Lemma 4.2. Every group interpretable in A′ has the structure of a nonstandard
meromorphic group.

Proof. By elimination of imaginaries for Th(A) (see the appendix of [10]) we need
only consider definable groups. As in the standard case, the result now follows by
the proof of the Weil-Hrushovski theorem (see [1]). �

For the rest of this paper, we let (G,+) be a strongly minimal group definable
in A′. There exists an irreducible compact complex space Y , a uniformly definable
family (G→ Y, µ : G×Y G→ G) of groups over Y (in the standard model), and a
generic point a ∈ Y (A′), such that (G,+) = (Ga, µa). Note that the set G may be
merely a definable set (not necessarily Zariski closed), and the maps G→ Y and µ
merely definable functions (not necessarily holomorphic). By strong minimality of
G and quantifier elimination, there exist

• an irreducible compact complex space over Y , f : X → Y , whose general
fibres are smooth and irreducible;
• a non-empty Zariski open set U of X; and
• a compact complex space F over Y , whose general fibres are finite;

such that Gy = Uy∪Fy for general y ∈ Y . In particular, Gy is a (standard) definable
group of the form discussed in the previous section. Note that G = Ua ∪ Fa.

By Lemma 4.2, (G,+) is a nonstandard meromorphic group. We can choose Y
and a ∈ Y (A′) such that this meromorphic group structure is also over a. It follows
that there is a uniformly definable meromorphic group structure on (Gy, µy) for
general y ∈ Y .
Proposition 4.3. Suppose that + does not extend to a generic action of G on any
absolutely irreducible components of Xa r Ua. Then for general y ∈ Y (A), Gy is
definably isomorphic to a complex torus.

Moreover, possibly after base extension, there is a definable map π : X → G over
Y such that for general y ∈ Y , πy : Xy → Gy is a holomorphic surjection with
respect to the complex manifold structure on Gy viewed as a meromorphic group.

That is, πa : Xa → G is a holomorphic surjection with respect to the nonstandard
meromorphic manifold structure on G.

Proof. Let Γa be the unique absolutely irreducible component of Γ(+) ∩ U3
a ⊆ X3

a

that projects onto the first two factors. By automorphisms, Γa is defined over a
and hence Γa is the generic fibre over Y of an irreducible analytic subset Γ ⊆ X3.

Claim 4.4. For generic g ∈ Xa, Γa(g) := Γa∩
(
{g}×X2

a

)
is absolutely irreducible.

Proof of claim. In the standard model the general fibres of of the first projection
Γ → X have a unique maximal dimensional irreducible component that projects
onto X (viewing the fibres as subsets of X ×Y X and taking the first projection).
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This is because they are generically one-to-one over X. These distinguished com-
ponents are uniformly definable over X (by automorphisms). So there is a con-
structible Γ′ ⊆ Γ whose general fibres over X are these distinguished irreducible
components of the fibres of Γ. Counting dimension and using the irreducibility of
Γ we see that the Zariski closure of Γ′ must be Γ. As the general fibres of Γ′ are
Zariski closed, Γ′ and Γ′ have the same general fibres. So the general fibres of Γ
are irreducible. So the generic fibre is absolutely irreducible. �

Possibly after base extension, we may assume that the absolutely irreducible
components of XarUa are defined over a — write them as (C1)a, . . . , (Cn)a where
C1, . . . , Cn are irreducible analytic subsets of X. Now fix i ≤ n. To say that “+
extends to a generic action of G on (Ci)a” is to say that

(i) over some Zariski open subset of Xa × (Ci)a, Γa ∩
(
Xa × (Ci)a × (Ci)a

)
is

the graph of a well-defined function to (Ci)a; and
(ii) for generic g ∈ Xa, Γia(g) := Γa ∩

(
{g} × (Ci)2

a

)
induces a well-defined

bijection between Zariski open subsets of (Ci)a; and
(iii) for generic g, h ∈ Xa, Γia(g + h) agrees with{

(x, y) ∈ (Ci)2
a : ∃z (x, z) ∈ Γia(h) and (z, y) ∈ Γia(g)

}
.

Both (i) and (ii) are definable properties of a: (i) is expressed by stating that the
co-ordinate projection

Γa ∩
(
Xa × (Ci)a × (Ci)a

)
→ Xa × (Ci)a

is surjective with generic fibre a singleton; and (ii) is expressed by saying that for
generic g ∈ Xa, both co-ordinate projections from Γia(g) := Γa ∩ ({g} × (Ci)2

a) to
(Ci)a are surjective with generic fibres singletons. (To say that the generic fibre has
a property P is equivalent to saying that the set of point in the base over which the
fibre has property P is of the same dimension as the base — and hence is definable
if P is.) Note that (iii) is always true since Γa(g + h) agrees with{

(x, y) ∈ X2
a : ∃z (x, z) ∈ Γa(h) and (z, y) ∈ Γa(h)

}
on the nonempty Zariski open subset of X2

a where Γ agrees with +; and hence on
all of X2

a .
It follows that “+ does not extend to a generic action of G on any absolutely

irreducible components of Xa rUa” is a definable property of a. Hence for general
y ∈ Y , µy does not extend to a generic action of Gy on any irreducible component
of Xy r Uy. By Corollary 3.2 this implies that Gy is definably isomorphic to a
complex torus, as desired.

For the “moreover” clause, fix a sufficiently general y ∈ Y . Let ι : Gy → G∗y be
the compactification of Gy obtained in Proposition 2.1. In this case ι(Gy) = G∗y,
and we set πy : Xy → Gy to be the composition of the associated holomorphic
surjection Xy → G∗y with ι−1. As ι is an isomorphism on the complex manifold
Gy viewed as a meromorphic group, πy is a holomorphic surjection with respect
to this structure. Despite the optimistic notation, we have yet to verify that πy is
uniformly definable in y (we do not claim that ι is). We know from Proposition 2.1
that πy is the identity on Uy, and so it remains to consider πy on Xy r Uy. Note
that πy(XyrUy) is equal to the finite set Fy. It follows that πy is constant on each
of the irreducible components of Xy rUy and takes values in Fy. Since Fy and the
components of Xy r Uy are uniformly definable in y, for each possible behavior of



STRONGLY MINIMAL GROUPS IN THE THEORY OF COMPACT COMPLEX SPACES 13

πy on Xy r Uy, the set of y having this behavior is definable. As there are only
finitely many possibilities, one of them holds on a nonempty Zariski open subset of
Y , as desired. �

Remark 4.5. Proposition 4.3 says that if + does not extend to a generic action
on the boundary then G is “compact” in the sense of Theorem 1.1.
Question 4.6. Does it follow from the conclusion of Proposition 4.3 that (possi-
bly after base extension) there exists a compact complex space G∗ over Y and a
definable map ι : G → G∗ over Y such that for general y ∈ Y , ιy is a definable
isomorphism between Gy and G∗y? If so it would follow that G is a nonstandard
complex torus.

5. The case of a boundary action

In this final section we complete the proof of Theorem 1.1 by dealing with the case
when the hypothesis of Proposition 4.3 fails — that is, when + does extend to
a generic action of G on some absolutely irreducible component of Xa r Ua. By
making an argument of Fujiki’s (Proposition 2.7 of [5]) uniform in parameters, we
will show that (G,+) is definably isomorphic to a linear algebraic group over C′.
We begin by reviewing some notions from complex geometry.

5.1. Douady spaces. For any first-order structure M in a language L one may
list all of the (parametrically) definable subsets of M by considering all L-formulae
in 1 + n variables (as n varies) and all instances of these formulae with tuples
from M substituted for the parameter variables. Of course, this method of listing
the definable sets may be redundant as two different formulae may define the same
subset of the model. In some cases it is possible to achieve a correspondence between
syntax and semantics. That is, there may exist some subset S of all the L-formulae
such that, perhaps, allowing for imaginary parameters, every definable subset of M
is defined by {x ∈M |M |= φ(x;m)} for a unique φ ∈ S and unique parameter m.
In the cases that M carries a good definable topology, one might even hope that
some topology on the parameters for the definable sets reflects the way in which
the definable sets lie in M .

The compact analytic subspaces of a complex analytic space have a particularly
nice parametrisation called the Douady space, which we describe below. For cer-
tain compact complex manifolds M , in particular, Kähler manifolds, the Douady
spaces may be used to produce canonical formulae for the definable subsets of M .
Even outside this setting, the Douady spaces provide a canonical analytic, though
possibly non-definable, parameterisation of analytic subspaces. A more complete
discussion of the model-theoretic relevance of Douady spaces can be found in [10].

The theory of Douady spaces may be applied in a very general setting, and we
shall require it for non-reduced complex analytic spaces. For a modern treatment
of complex analytic spaces, including the non-reduced case, the reader is advised
to consult [17].

For any complex analytic space X (possibly non-compact and non-reduced),
Douady [3] constructed a universal family for the compact analytic subspaces of
X. That is, there exists a complex analytic space D = D(X) and a closed analytic
subspace Z = Z(X) ⊆ D ×X such that:

(a) The projection Z → D is a flat and proper surjection.
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(b) If S is a complex analytic space and G is an analytic subspace of S × X
that is flat and proper over S, then there exists a unique holomorphic map
g : S → D such that G ' S ×D Z canonically.

D(X) is called the Douady Space of X, Z(X) is called the universal family of X,
and g : S → D(X) as in (b) is called the Douady map associated to G→ S.

Condition (b) says that every flat family of compact analytic subspaces of X is
witnessed uniquely by a subfamily of Z(X) over D(X). The condition of flatness,
while technically necessary, may seem somewhat ill-motivated from the model the-
oretic point of view. We can, however, avoid considerations of flatness as follows: if
G and S are as in (b) with S now reduced but G→ S not necessarily flat, then we
can always find, by a theorem of Frisch, a non-empty Zariski-open subset U ⊆ S
over which G is flat. Hence, we have a Douady map g : U → D(X). Moreover,
by Hironaka’s Flattening theorem, g extends to a meromorphic map S → D(X).
Hence, in the non-flat case we still have a Douady map, however, it is only mero-
morphic and not necessarily holomorphic.

It is instructive to note that, in particular, for every compact analytic subspace
A of X there is a unique point [A] ∈ D such that A is the fibre of Z over [A].
Indeed, applying (b) to the 0-dimensional variety S := {s} and G := S × A, we
obtain a holomorphic map g : {s} → D such that A is the fibre of Z → D above
g(s). More precisely, {s} ×D Z, which is the sheaf-theoretic fibre of Z → D over
g(s), is isomorphic under the projection {s} ×D Z → X to A. That [A] := g(s) is
the unique such point in D follows from the uniqueness of the Douady map. We
call [A] the Douady point of A.

In the case that X is a projective variety, D(X) is the Hilbert scheme of X and
hence is a countable union of projective varieties.

There is also a relative version of the Douady space constructed by Pourcin [16]:
Let X and S be complex spaces and f : X → S a holomorphic map. Then
there exists a complex space D(X/S) with a holomorphic map to S, and a closed
analytic subspace Z(X/S) ⊂ D(X/S)×SX such that Z(X/S)→ D(X/S) is proper
and flat and such that for any complex space Y → S and any complex subspace
G ⊂ Y ×S X that is flat and proper over Y , there is a unique holomorphic map
Y → D(X/S) over S such that G ' Y ×D(X/S) Z(X/S) canonically. Loosely
speaking, the Douady space of X over S parametrises all flat families of compact
subspaces of X whose fibres live in the fibres of f . In particular, D(X/S)s = D(Xs)
and Z(X/S)s = Z(Xs) for all s ∈ S. So the relative Douady space bundles together
the Douady spaces of all the fibres of f in a uniform manner.

The components of the Douady spaces are not necessarily compact even when
X and S are. Hence the Douady spaces are not a priori definable in A. However,
the following fact will play an important role for us: if X and S are compact and
f : X → S is projective2 then the irreducible components of D(X/S) are compact
and projective over S (cf. Theorem 5.2 of [6]).

5.2. Automorphism groups. One of the first applications of Douady spaces was
to the group of automorphisms of a complex analytic space X. Let Aut(X) denote
the set of biholomorphic maps from X to X. Identifying an automorphism with
the Douady point of its graph, we can view Aut(X) as a subset of D(X × X).

2Recall that f : X → S is projective if X is biholomorphic over S to an analytic subspace of

some projective bundle over S.
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Douady [3] showed that Aut(X) is an open subset of D(X×X) and, equipped with
the inherited complex structure, is a complex Lie group acting biholomorphically
on X. Fujiki observes that in fact Aut(X) is a Zariski open subset of D(X × X)
(cf. Lemma 1 of [5] and Lemma 5.5 of [4]).

We follow Fujiki [7] in describing the relative version of automorphism groups:
Suppose f : X → S is a proper surjective morphism of irreducible complex analytic
spaces (not necessarily reduced or compact). Suppose for the moment, that f is
flat. Then there exists a Zariski open subset AutS(X) ⊂ D(X ×S X/S) such that
for all s ∈ S, AutS(X)s = Aut(Xs) (cf. Schuster [18]). That is, AutS(X) bundles
together the automorphism groups of the fibres of f in a uniform manner. The
inherited complex structure on AutS(X) makes it into a complex Lie group over S
acting biholomorphically on X over S.

Now suppose that f is not flat but S is reduced. Then as discussed above, there
is a non-empty Zariski-open subset U ⊆ S over which f is flat. We may consider
AutU (XU ), which is a Zariski open subset of D(XU ×U XU/U) = π−1(U) where
π : D(X ×S X/S)→ S. Following Fujiki [7], by the essential closure of AutU (XU )
in D(X ×SX/S) we mean the union of those irreducible components of the Zariski
closure of AutU (XU ) in D(X ×S X/S) that project onto S. Note that the essential
closure does not depend on U : if V ⊆ U is another Zariski open subset then the
essential closure of AutV (XV ) coincides with that of AutU (XU ). The essential
closure of AutU (XU ) in D(X ×S X/S) is denoted by Aut∗S(X). Shrinking U if
necessary, we have that for all s ∈ U , Aut∗S(X)s is the Zariski closure of Aut(Xs)
in D(Xs ×Xs).

The following fact summarises the relevant properties of relative automorphism
groups in the case we will be considering:
Fact 5.1. Suppose S is a reduced and irreducible compact complex space, X is an
irreducible compact complex space, and f : X → S is a finite surjective morphism.
Then the irreducible components of Aut∗S(X) are compact and projective over S.
Moreover, there exists a non-empty Zariski open subset U ⊆ S over which f is flat
and the following hold:

(i) For all s ∈ U , Aut(Xs) is definably isomorphic to a linear algebraic group.
(ii) The relative group multiplication ν : AutU (XU )×UAutU (XU )→ AutU (XU )

over U , the relative inversion ι : AutU (XU ) → AutU (XU ) over U , and
the identity section e : U → AutU (XU ), all extend to meromorphic maps
ν∗ : Aut∗S(X) ×S Aut∗S(X) → Aut∗S(X) over S, ι∗ : Aut∗S(X) → Aut∗S(X)
over S, and e∗ : S → Aut∗S(X).

In particular, if A′ is a saturated elementary extension of A with C′ its interpretaion
of C, then any generic fibre of AutU (XU ) → U in A′ is definably isomorphic to a
linear algebraic group over C′.
Remark 5.2. (i) It is important here that we do not require X to be reduced.

Indeed, in the case we will be considering the underlying set of X will be
S itself and the map f will be the identity on the underlying space, so all
the information will live in the non-reduced structure of X and the action
of f on the structure sheaf. However, while X itself may not be accessible
to us model-theoretically, Aut∗S(X) will be a definable object.

(ii) If in Fact 5.1 we only wish to conclude that the generic fibres are algebraic
groups then we can weaken the hypothesis on f from being finite to be-
ing projective. Moreover, weakening the hypothesis further to f being of
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Kähler-type, we still obtain that the components of Aut∗S(X) are compact
over S and that for general s ∈ S the fibres form a uniformly definable
family of groups (and hence the generic fibres are definable groups).

Proof. Since f is finite, it is projective (this follows from the Finite Mapping The-
orem, see [17]). The components of D(X ×S X/S) are therefore compact and
projective over S (cf. Section 5.1 above). The same is thus true of Aut∗S(X).

As f is finite, the automorphisms of a fibre of f are just the linear transformations
of the structure sheaf of the fibre, which is a finite dimensional complex vector space.
Hence each Aut(Xs) with its inherited complex Lie group structure is isomorphic to
a linear algebraic group. To see that it is definably so we need only find a definable
embedding of Aut(Xs) into projective space. The projectivity of Aut∗S(X) → S
implies that each fibre is biholomorphic (and hence definably isomorphic) to a
projective variety. As Aut(Xs) is a definable subset of Aut∗S(X)s for s ∈ U , the
restriction gives the required definable embedding.

Part (ii) is stated in general as a remark in Section 1 of [7] and proved for the
absolute case (when S is a point) in Proposition 2.2 of [5]. It is straightforward to
see that these latter arguments extend to the relative case.

Now for the “in particular” clause. To show that the generic fibres are defin-
ably isomorphic to nonstandard linear algebraic groups we need to show that the
standard fibres are uniformly definably isomorphic (over possibly additional pa-
rameters) to linear algebraic groups. Since Aut∗S(X) → S is projective, after base
change to some compact T , Aut∗S(X) ×S T → T embeds into T × Pr(C) over T
(cf. Lemma 3.3 of [11]). By the stable embeddability of the projective sort, this
implies that the fibres of AutU (XU )→ U form a uniformly definable family living
entirely in the projective sort of A; that is, the family can be written as a uniformly
definable family of subsets of a cartesian power of P(C), parametrised by a defin-
able subset of a cartesian power of P(C). Moreover, this is a uniformly definably
family of definable groups by part (ii), and each member is definably isomorphic
to a linear algebraic group by part (i). Now Chow’s theorem (that the analytic
subsets of projective space are algebraic) implies that the structure induced on the
sort P(C) by A is definably bi-interpretable with the complex field. It follows by
saturation of (C,+,×), that the fibres of AutU (XU ) → U are uniformly definably
isomorphic to linear algebraic groups. �

5.3. Infinitesimal neighbourhoods. We review here Grothendieck’s theory of
infinitesimal neighbourhoods for complex analytic spaces from [8]. An exposition
of this material emphasising model-theoretic relevance can also be found in [9].

Let X be a complex space and x a point in X. The nth infinitesimal neighbour-
hood of x in X is the complex subspace ∆(n)

X,x := (x,OX,x/mn+1
X,x ) whose underlying

set is {x} and whose structure sheaf is the quotient of the local ring OX,x of X at
x by the (n+ 1)st power of the maximal ideal mX,x of X at x. These infinitesimal
neighbourhoods can be witnessed as the fibres of a complex space over X as follows:
Let ∆(n)

X be the complex subspace of X ×X whose underlying set is the diagonal
in X ×X and whose structure sheaf is OX×X/I(n+1) where I is the ideal sheaf of
the diagonal. The first co-ordinate projection induces a finite surjective morphism
∆(n)
X → X whose fibres are canonically isomorphic to ∆(n)

X,x.
The above construction extends to the relative case: If f : X → S is a morphism

of complex spaces, then ∆(n)
X/S is the complex subspace of X×SX whose underlying
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set is the diagonal in X ×S X and whose structure sheaf is OX×SX/I(n+1) where
I is the ideal sheaf of the diagonal. The first projection map induces a finite
surjective morphism ∆(n)

X/S → X over S whose fibre over x ∈ X is ∆(n)
Xf(x),x

, the nth
infinitesimal neighbourhood of x in Xf(x) (cf. Corollaire 2.5 of [8]).

5.4. Proof of Theorem 1.1. We recover the notation of Section 4 and review our
set-up: A′ is a saturated elementary extension of A and (G,+) is a strongly minimal
group definable in A′. The definable group (G,+) appears as a generic fibre (Ga, µa)
of a uniformly definable family of definable groups (G → Y, µ : G ×Y G → G) in
A where Y is a reduced and irreducible compact complex space and a ∈ Y (A′) is
generic. As G is strongly minimal it is the union of a nonstandard Zariski open
subset of an absolutely irreducible Zariski closed set in A′, together with finitely
many additional points. In terms of the standard model, we can choose Y such that
there exists a reduced and irreducible compact complex space X with a holomorphic
surjection f : X → Y whose general fibres are smooth and irreducible, a non-empty
Zariski open subset U ⊆ X, and a reduced compact complex space F → Y whose
general fibres are finite, such that for general y ∈ Y , Gy = Uy ∪ Fy. In particular,
G = Ua ∪ Fa.

Let Γa be (as in the proof of Proposition 4.3) the unique absolutely irreducible
component of the Zariski closure of Γ(+) ∩ U3

a in X3
a that projects onto X2

a via
the first two factors. Here Γ(+) ⊂ G3 is the graph of the group operation. Then,
as the notation suggests, Γa is the fibre over a of an irreducible Zariski closed set
Γ ⊂ X×Y X×Y X. For general y ∈ Y and general g ∈ Xy, Γy(g) := Γy∩({g}×X2

y )
(viewed as a subset of X2

y ) is the graph of a meromorphic map τg : Xy → Xy which
agrees with translation by g on a non-empty Zariski open set contained in Uy.

In Section 4 we proved that if + does not extend to a generic action on any
absolutely irreducible component of Xa \ Ua, then G is compact in the sense that
there is a holomorphic surjection from Xa to G with respect to the nonstandard
meromorphic group structure on G. Hence to prove Theorem 1.1 it remains to
show that if + does extend to a generic action on some components of Xa \ Ua,
then (G,+) is definably isomorphic to a linear algebraic group over C′ (and hence
to the additive or multiplicative group by strong minimality).

We therefore assume that + does extend to a generic action on some components
of Xa \ Ua. In terms of the standard model, this means that there exists an irre-
ducible Zariski closed subset C of X \U whose general fibres over Y are irreducible
such that for general y ∈ Y and g ∈ Xy, τg extends to a bimeromorphism Cy → Cy
such that τg ◦ τh = τg+h on a non-empty Zariski open subset of Cy. The graph of
this action is given by the unique irreducible component of Γy ∩ (Xy × C2

y) that
projects onto the first two co-ordinates – let us call it ΓCy . In fact, we have:
Lemma 5.3. For general y ∈ Y and general g ∈ Xy, τg is the identity on Cy.

Proof. This is just as in Lemma 3.5 of [15]. Note that the generic types of G and Ca
(over a) are orthogonal. Indeed, by strong minimality of G any nonorthogonality
would be witnessed by (model-theoretic) algebraicity. But dim(G) = dimXa >
dimCa. Let g, h be generic independent elements of G and let x ∈ Ca be generic
over {g, h}. Then τa(g, x) ∈ Ca is generic in Ca over x. Hence, each of g and h
is independent from τa(g, x) over x by orthogonality. As G has a unique generic
type over {x, τa(g, x)}, we have τa(g, x) = τa(h, x) and thus τa(g− h, x) = x. Since
(g − h, x) is a generic of Xa ×Ca, we have shown that ΓCa agrees with the product
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of Xa with the diagonal in C2
a on a non-empty Zariski open subset of Xa × C2

a —
and hence everywhere by absolute irreducibility. �

In particular, there exists a point p ∈ Ca such that for general g ∈ Xa, τg is
defined on a Zariski open subset of Xa containing p, and τg(p) = p. We fix from
now on this point p.

The idea for the rest of the proof, loosely speaking, is as follows: translation by a
general element of G is defined at and fixes p, and, hence, induces an automorphism
of the nonstandard “nth infinitesimal neighbourhoods of p in Xa”, for each n.
For n sufficiently large, this action will separate points of G. That is, we obtain
a generic embedding of G into the automorphism group of the nth infinitesimal
neighbourhood of p in Xa. Since the latter is a linear algebraic group over C′, we
obtain the desired conclusion. Since we do not have a natural interpretation of
infinitesimal neighbourhoods in A′, in order for this argument to make sense in A′
we need to carry it out uniformly in the standard model.

First of all, we may assume (by taking a base extension if necessary) that p =
ρ(a), where ρ : Y → X is a holomorphic section to f : X → Y . Let ∆(n)

X/Y ⊂ X×Y X
be as in Section 5.2; for y ∈ Y and x ∈ Xy, the fibre of the first projection map
∆(n)
X/Y → X over x is canonically isomorphic to the nth infinitesimal neighbour-

hood of x in Xy. Let D(n) be the restriction of ∆(n)
X/Y to ρ(Y ) ⊆ X. So D(n)

is a closed analytic subspace of X ×Y X whose support is ρ(Y ) ×Y ρ(Y ) and the
induced surjective morphism D(n) → Y is a finite map such that for y ∈ Y the
fibre D(n)

y of D(n) → Y over y is the nth infinitesimal neighbourhood of ρ(y) in
Xy. Fact 5.1 applies and so for W ⊆ Y a sufficiently small non-empty Zariski
open subset, AutW (D(n)

W ) → W is a definable group over W with compactifica-
tion Aut∗Y (D(n))→ Y . Moreover, AutW (D(n)

W )a is definably isomorphic to a linear
algebraic group over A′.

Via the diagonal map on the second and third co-ordinates, we can and do
identify X ×Y X ×Y ×X with an irreducible Zariski closed subset of X ×Y (X ×Y
X)×Y (X ×Y X). With this identification in mind, let

Γ[n] := Γ ∩ (X ×Y D(n) ×Y D(n)).

We mean here of course the sheaf-theoretic intersection. That is, Γ[n] is the (non-
reduced) closed subspace of X ×Y D(n)×Y D(n) obtained as the inverse image of Γ
under the closed embedding of X×Y D(n)×Y D(n) in X×Y (X×Y X)×Y (X×Y X).
For each y ∈ Y we view

Γ[n]
y = Γy ∩

(
Xy ×D(n)

y ×D(n)
y

)
as a family of analytic subspaces of D(n)

y ×D(n)
y via the first projection Γ[n]

y → Xy.

Remark 5.4. At this point one could, after taking n sufficiently large, prove that
Γ[n] → X is a canonical family and then apply a theorem of Fujiki [6] to argue that
the projection Γ[n] → D(n) ×Y D(n) is Moishezon. One could then deduce that
(G,+) is definably isomorphic to an algebraic group. This would, however, be a
rather perverse way to proceed as it would obscure the cause of algebraicity and
not shorten the proof considerably. Instead we will prove the linear algebraicity
of the general fibres of X → Y by constructing a meromorphic embedding over
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Y , γn : X → Aut∗Y (D(n)) for n sufficiently large (as is done by Fujiki [5] for the
absolute case).

We claim that for general y ∈ Y and general g ∈ Xy, the fibre Γ[n]
y (g) of Γ[n]

y →
Xy over g is the graph of an automorphism of D(n)

y . To make this precise, recall
that the graph of a holomorphic map φ : A → B between (possibly non-reduced)
complex spaces is the fibre product of φ : A → B and idB : B → B. We use the
following Lemma.
Lemma 5.5. Suppose A and B are complex analytic spaces, Φ ⊆ A × B is an
analytic subspace, and a ∈ A is such that Φ defines a holomorphic map φ on a
neighbourhood of a. Let b = φ(a) and Φ[n]

(a,b) := Φ ∩ (∆(n)
A,a ×∆(n)

B,b). Then Φ[n]
(a,b) is

the graph of a holomorphic map from ∆(n)
A,a to ∆(n)

B,b. Indeed, it is the graph of the

restriction of φ to ∆(n)
A,a.

Proof. Note that if V is an open neighbourhood of a in A then the nth infinitesimal
neighbourhood of a in V coincides with the nth infinitesimal neighbourhood of a
in A. That is, the entire question is local and we may assume that Φ defines a
holomorphic map φ on all of A.

By functoriality of the infinitesimal neighbourhoods (section 1 of [8]), there is a
unique map

φ
(n)
(a,b) : ∆(n)

A,a → ∆(n)
B,b

which commutes with the inclusions ∆(n)
A,a ⊆ A and ∆(n)

B,b ⊆ B via φ : A → B. So

φ
(n)
(a.b) is the restriction of φ to ∆(n)

A,a. The graph of φ(n)
(a,b) is the inverse image of

the graph of φ under the closed embedding of ∆(n)
A,a ×∆(n)

B,b in A×B. That is, the

graph of φ(n)
(a,b) is Φ[n]

(a,b). �

Corollary 5.6. For general y ∈ Y and general g ∈ Xy, Γ[n]
y (g) is the graph of the

automorphism of D(n)
y induced by τg.

Proof. Recall that Γy(g) ⊆ X2
y is the graph of the meromorphic map τg : Xy → Xy.

Moreover, τg is holomorphic on a Zariski-open subset of Xy containing ρ(y), and
τg(ρ(y)) = ρ(y).

By Lemma 5.5,
(
Γy(g)

)[n]

(ρ(y),ρ(y))
is the graph of (τg)

(n)
(ρ(y),ρ(y)) which is the holo-

morphic map from D
(n)
y = ∆(n)

Xy,ρ(y) to itself induced by τg. On the other hand,
as τg agrees with translation by g on a non-empty Zariski open subset of Xy, τg
has τ−g as an inverse on a non-empty Zariski open set. Hence τg and τ−g are
inverses to each other everywhere where they define a holomorphic map — includ-
ing at ρ(y). By functoriality, (τg)

(n)
(ρ(y),ρ(y)) and (τ−g)

(n)
(ρ(y),ρ(y)) are inverses, and so(

Γy(g)
)[n]

(ρ(y),ρ(y))
is the graph of an automorphism of D(n)

y . Finally, observe that(
Γy(g)

)[n]

(ρ(y),ρ(y))
= Γy(g) ∩ (D(n)

y ×D(n)
y ) = Γ[n]

y (g).

�

We are in the following situation:

Γ[n] ⊆ X ×Y (D(n) ×Y D(n))
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defines a family of analytic subspaces of D(n) ×Y D(n) parameterised by X over
Y . By the universal property of relative Douady spaces (cf. Section 5.1) there is a
meromorphic map γn from X to the relative Douady space of D(n) ×Y D(n) over
Y , which for general y ∈ Y and general g ∈ Xy, takes g to the Douady point of
Γ[n]
y (g). By Corollary 5.6, we have γn : X → Aut∗Y (D(n)). Moreover this map is

generically a group homomorphism:
Lemma 5.7. For general y ∈ Y and general g, h ∈ Xy, γn(g + h) = γn(g) ◦ γn(h).

Proof. As we have a generic action, we know that τg+h = τg ◦ τh as meromorphic
maps from Xy to itself. But by (the proof of) Corollary 5.6, γ(g) is the automor-
phism (τg)

(n)
(ρ(y),ρ(y)) of D(n)

y — and similarly for h and g + h. By functoriality of
the infinitesimal neighbourhoods,

(τg)
(n)
(ρ(y),ρ(y)) ◦ (τh)(n)

(ρ(y),ρ(y)) = (τg+h)(n)
(ρ(y),ρ(y)).

�

Lemma 5.8. Suppose y ∈ Y and g, h ∈ Xy are very general. If γn(g) = γn(h) for
all n ∈ N, then g = h.

Proof. By ‘very general’ we will mean outside a countable union of proper Zariski
closed sets. Choose y and g, h sufficiently general so as to ensure that for each
n, γn(g) and γn(h) are (the Douady points of the graphs of) (τg)

(n)
(ρ(y),ρ(y)) and

(τh)(n)
(ρ(y),ρ(y)) respectively. So (τg)

(n)
(ρ(y),ρ(y)) = (τh)(n)

(ρ(y),ρ(y)) for all n. That is,

for each n, the restrictions of τg and τh coincide on D
(n)
y , the nth infinitesimal

neighbourhood of ρ(y) in Xy. Recalling that D(n)
y is canonically isomorphic to

({ρ(y)},OXy,ρ(y)/m
n+1
Xy,ρ(y)), and that

⋂
n

mn+1
Xy,ρ(y) = 0, we conclude that τg = τh on

some local open neighbourhood of ρ(y). As they are meromorphic maps, this means
that τg = τh everywhere where they are defined. Since they agree with translation
by g and h (respectively) on a non-empty Zariski open set, g = h. �

Corollary 5.9. For N sufficiently large, γN : X → Aut∗Y (D(N)) is a bimeromor-
phism with its image.

Proof. We will show that for some N , γN is injective off a countable union of proper
Zariski closed sets (this will suffice). Moreover, it suffices to do this fibrewise over
Y ; so fix a sufficently general y ∈ Y . Now let Σ(g, h) be the partial type that
says g and h are outside the appropriate countable union of Zariski closed sets that
makes Lemma 5.8 work, that γn(g) = γn(h) for all n ∈ N, and that g 6= h. By
Lemma 5.8, this type is not realised. By ω1-compactness, as Σ is countable, some
finite fragment of Σ is not realised. Let N be the maximum of the n that appear
in such a fragment. This N works (noting that if m ≤ n and γn(g) = γn(h) then
γm(g) = γm(h)). �

Passing to the elementary extension, Lemma 5.7 and Corollary 5.9 imply that
(γN )a : Xa → Aut∗Y (D(n))a is a definable map which is generically an injective ho-
momorphism from G to Aut(D(n)|W /W )a. Using the Hrushovski-Weil theorem on
group chunks in A′, we see that this generic homomorphism extends to a definable
group embedding of G into Aut(D(n)|W /W )a. By Fact 5.1, Aut(D(n)|W /W )a is a
linear algebraic group over C′. We obtain:
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Proposition 5.10. Suppose that + does extend to a generic action of G on some
absolutely irreducible component of XarUa. Then G is definably isomorphic to the
multiplicative or additive group of C′. �

Propositions 4.3 and 5.10 prove Theorem 1.1. �
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